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A B S T R A C T

This paper presents a low-cost pose measuring device capable of simultaneously measuring all
six coordinates (3 translations and 3 rotations) of a rigid body with respect to a given reference
frame. The proposed system consists of a mechanical chain of rigid bodies and two encoders. The
mechanism is a spatial four-bar linkage system with a symmetrical Revolute-Spherical-Spherical-
Revolute (RSSR) kinematic structure, where two encoders measure the rotation of the revolute
joints. The mechanism is investigated theoretically and solved kinematically using a numerical
estimation method. The uncertainty of the pose determination, caused by the repeatability of
the sensors, is estimated, as well as the achievable measurement range. A low uncertainty is
achieved by a suitable design of the proposed kinematic chain. The mechanism is easy to realize
with low tolerances and the correct definition of the length of the links allows a quite large
workspace. The system can be profitably used in the calibration of robots or multi-axis machine
tools where the actual pose of the gripper or spindle must be measured over the workspace of
the machine. An experimental prototype is described, and the first experimental results are
reported.

. Introduction

Robotic manipulators are employed in the industrial sector in many applications. Accuracy and repeatability of a robot are very
mportant features, which significantly influence performance in an industrial environment [1,2]. Accuracy is more relevant than
epeatability when the robot is used in advanced applications, e.g. micro-assembly operations, robot-based measurement, welding
asks, and off-line programming. The repeatability of industrial robots is typically very good, on the order of tenths of mm (even
p to 0.02 mm), while the accuracy is not so good. The accuracy can sometimes even be 20 mm [3].

Inaccuracies of industrial robots are mainly related to structural mechanics, as a matter of fact about 90% of the total positioning
rror is caused by geometrical errors, i.e. link lengths, joint offsets, and link twist angles [4–7].

Zhong [8] and Shiakolas [9] argue that among these, joint offsets mainly affect accuracy. Due to manufacturing errors, different
xemplars of the same robot model usually have differences in structural parameters, such as the offsets of the joints, which can be
nfluenced by the assembly or replacement of motors and encoders. The mathematical model within the robot controller assumes that
he links of a robot have nominal length values so that the same values are taken into account in the model of another robot of the
ame type. Similarly, this happens for the relative orientations of the joint axes. Unfortunately, this is not the case. The positioning
rrors of the end-effector can also be caused by the imperfect assembly of different links and result from the displacement and/or
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rotation of the frames connected to different elements that are normally assumed to be aligned with each other. In addition, other
factors such as thermal expansion, clearances in mechanical couplings, joint compliance, structural deformations, etc. can also play
a role. All these causes of inaccuracy lead to a deviation between the theoretical and the real position of the robot if they are
not taken into account in the model used by the robot controller to calculate the kinematics. Therefore, inaccurate values in the
kinematic parameters specified in the robot controller are the main cause of pose inaccuracies.

In applications for which high accuracy is required, the implementation of robot calibration procedures is essential. Many
alibration methods have been developed for estimating and compensating for pose errors [1,10–16]. Most of these methods
equire the measurement of the actual gripper pose of the robot at different positions in the workspace. The adopted measurement
echniques are classified into open-loop and closed-loop [6]. Open-loop methods use external measuring devices, such as laser
racking systems [17,18], a laser displacement meter [17,19], Coordinate Measurement Machines (CMMs) [20], Computer Numerical
ontrolled (CNC) machines [21], optical sensors (mirrors and laser point sensors, interferometers) [22–24], cameras [25,26],

nclinometers or accelerometers [27–29], theodolites [30–32], wire potentiometers [3,33], instrumented ballbar [34], telescopic
allbar [35] and many others.

The second class is related to devices that form a closed kinematic chain when coupled with the robot, by applying physical
onstraints to the robot Tool Center Point (TCP) [8,36–39].

Hollerbach and Wampler in [35] presented a taxonomy of kinematic calibration methods for which all methods are unified in the
efinition of kinematic loop methods: all methods are considered closed-loop, and in open-loop methods the measurement system
s considered to form a joint.

Usually, six coordinates are measured, three translational coordinates for the position and three rotational coordinates for the
rientation, otherwise in a limited number of cases only the position is measured [40]. In practice, partial pose information is
ften used, which provides one- to five-dimensional measurements instead of full pose information. In general, the low-dimensional
easurement is more attractive as the set-up of the calibration experiment is simpler.

Most of the adopted sensors can only detect a portion of the body’s pose. For example, a double ball bar system measures one
oordinate per pose (the distance between the centers of the balls), inclinometers can only measure two angles (tilt and rotation)
nd laser trackers the three translations of a body point.

The complete measurement of body pose is possible with the help of dimes, cameras, or a combination of different sensors. In
eneral, the most accurate measurement systems are very expensive and often not easy to install and use. A large measurement
ange is another desirable feature that is difficult to achieve.

A monocular camera-based method for kinematic calibration is presented by Boby in [26]. The TCP pose is not measured directly,
ut the 2-D images captured by a monocular camera mounted on the end-effector are used to measure errors, and corrections in
he parameters space are made to correct errors detected in 2-D images. The results obtained with random measurements showed
hat the average accuracy decreased from 4.67 mm to 3.07 mm, a positive result, but still far from the result of 0.9 mm achieved
ith a laser tracker system.

Filion et al. [41] investigate the possible use of a commercially available portable photogrammetry system (the MaxSHOT 3D)
n the calibration of industrial robots. The obtained accuracy after kinematic calibration (0.439 maximum and 0.197 mean) is
omparable with that obtained with the FARO laser tracker (0.356 maximum and 0.147 mean).

The development of a measuring system based on wire sensors and its application to an anthropomorphic robot with six degrees
f freedom led to an accuracy of around 2 mm [33].

Driels et al. [20] used a coordinate measuring machine (CMM) to measure the center positions of five spheres placed on specially
esigned end effectors and achieved an accuracy in the order of 0.3 mm with kinematic calibration.

Nubiola et al. [35] presented a method to fully measure the posture of robotic end-effectors using a single telescopic ball bar
nd two planar fixtures. Each fixture carries three magnetic cups located at the corners of an equilateral triangle. This device has a
exapod geometry, it is therefore an extension of a known approach using a hexapod (a Stewart-Gough platform) with telescopic
egs. The positional accuracy of the device is in the range of ±0.003mm, making it suitable for measuring the pose accuracy and
epeatability of industrial robots and even for their calibration, and enables the acquisition of more than fifty poses under static
onditions.

Besnard et al. [42] developed a method for the kinematic calibration of parallel robots with six degrees of freedom using two
nclinometers. They achieved an accuracy of 0.4 mm in the simulation.

This article presents a system for measuring pose, based on a spatial four-bar linkage mechanism with 𝑅𝑆𝑆𝑅 chain (R=rotational
inkage, S=spherical linkage), in which the pose is estimated by measuring the rotation of the two rotational joints.

This class of mechanisms has been analyzed in detail by several researchers. The motion analysis was studied in [43–48], the
ynthesis and motion generation performances are the most analyzed points [49–54], but has never been used as a 3D measurement
ystem.

In Section 2 the considered mechanism is described (Section 2.1), and the pose estimation approach is explained (Section 2.2).
fter a brief description of the notation used, the kinematics of the system and the procedure for pose estimation in analytical form
re developed. Section 2.3 examines the uncertainty of the pose estimation. The results of experiments performed on a prototype
f the mechanism are presented in Section 3. The design solution is described in Section 3.1, and 3.4 compares them with the
2

heoretical ones (Section 3.3). In Section 4 the conclusions are drawn.
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Fig. 1. Kinematic scheme of the four-bar linkage measurement system.

2. The considered linkage-based measuring mechanism

2.1. Spatial four-bar linkage measuring mechanism description

The proposed measurement system consists of a symmetrical serial chain with RSSR structure, i.e. with three links connected
respectively by a revolute joint, two ball joints and a revolute joint, as shown in Fig. 1.

When the pose of a body is measured, two reference frames are implicitly defined: one is embedded in the body and moves with
it (the ‘‘mobile’’ frame), and the other is fixed to the ground or, more generally, to the base of the measuring system (the ‘‘reference
frame’’), as visible in Fig. 1.

The first revolute joint is connected to the reference frame and the last one is connected to the body (the gripper) whose position
is to be measured (Fig. 2).

By assigning an arbitrary pose to the body, the system forms a spatial joint with four rods. An important feature of the mechanism
is that the serial chain has an internal degree of freedom (DoF). This means that the coordinate of a joint can assume any value
(within a defined range) when the pose of the first and last frame of the chain is determined. For example, one of the two revolute
joints can rotate freely and the other joints move uniformly.

By simultaneously measuring the rotations of the two revolute joints 𝜃1 and 𝜃2 in several positions (at least six), the position of
the movable frame in relation to the fixed frame can be estimated.

For better clarification, the reference frame and the moving frame can be considered as the fixed and moving base of a virtual
parallel kinematic machine (PKM), whose legs are the 𝑆𝑆 links of the four-bar linkage in different positions (Fig. 3). In this virtual
PKM, the ball joints at the bases are placed on circles and all legs have the same length. By simultaneously measuring the rotations
of the pivot points and knowing the dimensions of the links, the position of the spherical joints of the fixed and movable base can
be calculated. The pose of the moving base can be calculated if there are at least six positions of the mechanism forming a PKM in
a non-singular configuration.

Depending on the selected pose, neither, one or both of the revolute joints can perform a complete rotation (see Section 2.2).
Of course, more than six measurements can be performed for the same pose within the allowed ranges, which avoids the singular
configuration and greatly reduces the uncertainty of the estimation (see Section 2.3).

2.2. Pose estimation approach

2.2.1. Notation
Table 1 summarizes the notation used to describe the spatial four bar linkage shown in Fig. 1.
𝑥1 𝑦1 𝑧1 and 𝑥2 𝑦2 𝑧2 denote the axes of the reference frame and the moving frame, respectively. 𝜃1 and 𝜃2 are the angles of

rotation of the two revolute joints 𝑅 and 𝑅 . 𝑙 𝑙 𝑙 are the lengths of the three links.
3

1 2 1 2 3
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Fig. 2. Use of the spatial linkage to measure the pose of an industrial robot with serial kinematic chain.

Fig. 3. Definition of a virtual parallel kinematic machine (PKM) by the movement of the four-bar linkage.

Table 1
Notation used to describe the spatial four-bar linkage.
𝑥1 𝑦1 𝑧1 Reference frame
𝑥2 𝑦2 𝑧2 Mobile frame
𝜃1 Rotation angle of the revolute joint 𝑅1
𝜃2 Rotation angle of the revolute joint R2
𝑙1 𝑙2 𝑙3 Links lengths
𝐒𝟏 𝐒𝟐 Spherical joints
𝐑𝟏 𝐑𝟐 Revolute joints
4
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2.2.2. Constraint equation
By assigning a pose to the moving frame {2}, the mechanism still has a DoF with respect to the reference frame {1}, i.e. the

values of the rotation angles 𝜃1 and 𝜃2 cannot assume arbitrary values, but must fulfill a constraint equation, the so-called closure
equation.

To avoid the singularities associated with the choice of a particular set of rotation angles, the relative pose of the frame {2} with
espect to {1} was described with a general roto-translation transformation matrix 𝐓 (Eq. (1)).

𝐓 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐑 𝐓

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(1)

where 𝐑 is a rotation matrix, ans so it is orthogonal.
The spatial position of the two spherical joints S1 and S2 can be computed by using homogeneous coordinates as follows:

𝑆1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑙1 cos(𝜃1)
𝑙1 sin(𝜃1)

0
1

⎤

⎥

⎥

⎥

⎥

⎦

𝑆2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑙2(𝑟11 cos(𝜃2) + 𝑟12 sin(𝜃2)) + 𝑡𝑥
𝑙2(𝑟21 cos(𝜃2) + 𝑟22 sin(𝜃2)) + 𝑡𝑦
𝑙2(𝑟31 cos(𝜃2) + 𝑟32 sin(𝜃2)) + 𝑡𝑧

1

⎤

⎥

⎥

⎥

⎥

⎦

(2)

The constraint equation Eq. (3) is obtained by setting the distance between the two centers of the ball joints equal to 𝑙3.

𝑓 (𝐓, 𝜃1, 𝜃2) = (𝑆1 − 𝑆2)𝑡(𝑆1 − 𝑆2) − 𝑙23 =
= (𝑙2(𝑟11𝑐𝜃2 + 𝑟12𝑠𝜃2 ) + 𝑡𝑥 − 𝑙1𝑐𝜃1 )

2 + (𝑙2(𝑟21𝑐𝜃2 + 𝑟22𝑠𝜃2 )+
𝑡𝑦 − 𝑙1𝑠𝜃1 )

2 + (𝑙2(𝑟31𝑐𝜃2 + 𝑟32𝑠𝜃2 ) + 𝑡𝑧)2 − 𝑙23 = 0
(3)

where:

𝑠𝜃1 = sin(𝜃1) 𝑐𝜃1 = cos(𝜃1) 𝑠𝜃2 = sin(𝜃2) 𝑐𝜃2 = cos(𝜃2) (4)

2.2.3. Solutions of the constraint equation
If the pose matrix 𝐓 is known, the constraint equation (Eq. (3)) is solved by calculating the angle 𝜃1 in relation to 𝜃2, or vice

versa. To solve the constraint Eq. (3) with respect to 𝜃2, all terms containing sin(𝜃2) and cos(𝜃2) can be collected, as in Eq. (5).

(𝑘1 cos(𝜃2) + 𝑘2) sin(𝜃2) + 𝑘3 cos(𝜃2)2 + 𝑘4 cos(𝜃2) + 𝑘5 = 0 (5)

where
𝑘1 = 2𝑙22

(

𝑟11𝑟12 + 𝑟21𝑟22 + 𝑟31𝑟32
)

𝑘2 = −2𝑙1𝑙2
(

𝑟12 cos(𝜃1) + 𝑟22 sin(𝜃1)
)

+
2𝑙2

(

𝑟12𝑡𝑥 + 𝑟22𝑡𝑦 + 𝑟32𝑡𝑧
)

𝑘3 = 𝑙22
(

𝑟211 + 𝑟221 + 𝑟231 − 𝑟212 − 𝑟222 − 𝑟232
)

𝑘4 = −2𝑙1𝑙2
(

𝑟21 sin(𝜃1) + 𝑟11 cos(𝜃1)
)

+2𝑙2
(

𝑟11𝑡𝑥 + 𝑟21𝑡𝑦 + 𝑟31𝑡𝑧
)

𝑘5 = 𝑡2𝑥 + 𝑡2𝑦 + 𝑡2𝑧 + 𝑙21 + 𝑙22
(

𝑟212 + 𝑟222 + 𝑟232
)

− 𝑙23+
−2𝑙1

(

𝑡𝑥 cos(𝜃1) + 𝑡𝑦 sin(𝜃1)
)

(6)

Considering that 𝐑 is an orthogonal matrix (thus its columns are unitary and mutual orthogonal), for all possible sets of angular
coordinates, 𝑟211 + 𝑟221 + 𝑟231 − 𝑟212 − 𝑟222 − 𝑟232 = 0, 𝑟11𝑟12 + 𝑟21𝑟22 + 𝑟31𝑟32 = 0, and 𝑟212 + 𝑟222 + 𝑟232 = 1. It follows that:

𝑘1 = 0,
𝑘3 = 0,
𝑘5 = 𝑡2𝑥 + 𝑡2𝑦 + 𝑡2𝑧 + 𝑙21 + 𝑙22 − 𝑙23 − 2𝑙1(𝑡𝑦 sin(𝜃1) + 𝑡𝑥 cos(𝜃1))

(7)

then Eq. (5) can be simplified as

𝑘2 sin(𝜃2) + 𝑘4 cos(𝜃2) + 𝑘5 = 0 (8)

The previous equation has 2 solutions:

𝜃2𝐴, 𝜃2𝐵 =
𝑎𝑡𝑎𝑛2((𝑘4(𝑘5𝑘4 ±𝐾1)∕𝐾2 − 𝑘5)∕𝑘2,−(𝑘5𝑘4 ±𝐾1)∕𝐾2),

𝐾1 =
√

𝑘24𝑘
2
2 + 𝑘42 − 𝑘22𝑘

2
5,

𝐾2 = 𝑘24 + 𝑘22

(9)

The solution of the constraint equation Eq. (3) with respect to 𝜃1 results in the Eq. (10).
5

𝑣1 sin(𝜃1) + 𝑣2 cos(𝜃1) + 𝑣3 = 0 (10)
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where
𝑣1 = −2𝑙2𝑟21𝑐𝜃2 𝑙1 − 2𝑙2𝑟22𝑠𝜃2 𝑙1 − 2𝑡𝑦𝑙1,
𝑣2 = −2𝑙2𝑟12𝑠𝜃2 𝑙1 − 2𝑙2𝑟11𝑐𝜃2 𝑙1 − 2𝑡𝑥𝑙1,
𝑣3 = 𝑙22(𝑟

2
11 + 𝑟221 + 𝑟231 − 𝑟212 − 𝑟222 − 𝑟232)𝑐

2
𝜃2
+

+2𝑙22(𝑟11𝑟12 + 𝑟21𝑟22 + 𝑟31𝑟32)𝑠𝜃2+
+2𝑙2

(

𝑟11𝑡𝑥 + 𝑟21𝑡𝑦 + 𝑟31𝑡𝑧
)

𝑐𝜃2+
+2𝑙2

(

𝑟12𝑡𝑥 + 𝑟22𝑡𝑦 + 𝑟32𝑡𝑧
)

𝑠𝜃2 + 𝑡2𝑥 + 𝑡2𝑦 + 𝑡2𝑧+
+𝑙21 + 𝑙22(𝑟

2
12 + 𝑟222 + 𝑟232) − 𝑙23

(11)

By analogy with what was seen for Eq. (6), for the properties of the 𝐑 matrix, Eq. (11) can be simplified as follows:

𝑣1 = −2𝑙2𝑟21𝑐𝜃2 𝑙1 − 2𝑙2𝑟22𝑠𝜃2 𝑙1 − 2𝑡𝑦𝑙1,
𝑣2 = −2𝑙2𝑟12𝑠𝜃2 𝑙1 − 2𝑙2𝑟11𝑐𝜃2 𝑙1 − 2𝑡𝑥𝑙1,
𝑣3 = 2𝑙2

(

𝑟11𝑡𝑥 + 𝑟21𝑡𝑦 + 𝑟31𝑡𝑧
)

𝑐𝜃2+
+2𝑙2

(

𝑟12𝑡𝑥 + 𝑟22𝑡𝑦 + 𝑟32𝑡𝑧
)

𝑠𝜃2 + 𝑡2𝑥 + 𝑡2𝑦 + 𝑡2𝑧+
+𝑙21 + 𝑙22 − 𝑙23

(12)

Eq. (10) is formally identical to Eq. (8), and this is due to the symmetry of the mechanism. The two solutions for 𝜃1 are:

𝜃1𝐴, 𝜃1𝐵 =
𝑎𝑡𝑎𝑛2((𝑣2(𝑣3𝑣2 ± 𝑉1)∕𝑉2 − 𝑣3)∕𝑣1,−(𝑣3𝑣2 ± 𝑉1)∕𝑉2),

𝑉1 =
√

𝑣22𝑣
2
1 + 𝑣41 − 𝑣21𝑣

2
3,

𝑉2 = 𝑣22 + 𝑣21

(13)

2.2.4. Ranges of rotations for the 𝜃1 and 𝜃2 angles
Depending on the dimensions of the links, which are known, and the chosen pose of the movable frame, which must be measured,

one, both, or none of the revolute joints 𝐑1 and 𝐑2 can perform a complete rotation. This means that the four-bar linkage is a double
rocker, crank rocker, or double crank mechanism. Many researchers have proposed different methods to determine the mobility of
a spatial 𝑅𝑆𝑆𝑅 mechanism [43,44,47,48,53]. The classification can be determined by the intersection of the surfaces generated by
the joints of the mechanism or by the sign of the radicands 𝐾1 and 𝑉1 of the Eqs. (9) and (13).

In the first approach, when one of the two ball joints (e.g. 𝑆2) is disconnected, the mechanism is divided into a 𝑅𝑆 arm with
two links (𝑙1 and 𝑙2) and a single link (𝑙3) with a 𝑅 joint. The working volume of the 𝑅𝑆-arm is a torus, while the endpoint of the
second arm describes a circle (Fig. 4, left). The intersection of the two working volumes defines the permissible configurations of
the four-bar linkage. Four cases can occur:

− the circle is completely enclosed in the torus: the link 𝑙3 is a crank (it can realize a complete rotation);
− an arc of the circle lies within the torus: the link 𝑙3 is a rocker;
− two separate arcs of the circle lie within the torus: 𝑙3 is a rocker and two different configurations are possible;
− the circle has no intersection with the torus: no configuration is allowed for the mechanism.

The procedure must be repeated, with the other spherical joint disconnected, to determine the mobility of the limb 𝑙1 (Fig. 4,
right). The problem of the intersection of a torus with a circle can be solved in closed form, so that the case encountered and the
limits of the rotations can be easily determined.

The same results are obtained by numerically evaluating the radicands 𝐾1(𝜃1) and 𝑉1(𝜃2). The values of 𝜃1 (𝜃2) that make 𝐾1 (𝑉1)
positive are the allowed angles of the 𝑅1 (𝑅2) connection and the limits can be determined under the assumptions 𝐾1 = 0 (𝑉1 = 0).

The permitted angle pairs 𝜃1 and 𝜃2 can be displayed in a Cartesian plane for a given pose. Since the angles are cyclic quantities,
but the Cartesian dimensions are not, the solution locus can be better represented on the surface of a torus (𝜃1 is the angle of
rotation, 𝜃2 is the angle of the cross-section of the circle). Using these two representations, Figs. 5 and 6 show the most important
possible mobility cases.

2.2.5. Pose estimation procedure
The actual end-effector pose, to be estimated, is the relative pose of the frame {2} with respect to the fixed frame {1}. For a

𝑅𝑆𝑆𝑅 mechanism, with fixed geometric dimensions (𝑙1, 𝑙2 and 𝑙3 are known), it is represented by the rotation-translation matrix
𝐌𝑎 (Eq. (14)), and can be described by a set of six coordinates 𝐬𝑎 = [𝑥𝑎 𝑦𝑎 𝑧𝑎 𝛼𝑎 𝛽𝑎 𝛾𝑎]𝑡:

𝐌𝑎(𝐬𝑎) =
𝑇 𝑟𝑎(𝑋, 𝑥𝑎) ⋅ 𝑇 𝑟𝑎(𝑌 , 𝑦𝑎) ⋅ 𝑇 𝑟𝑎(𝑍, 𝑧𝑎) ⋅ 𝑅𝑜𝑡(𝑋, 𝛼𝑎)⋅
⋅𝑅𝑜𝑡(𝑌 , 𝛽𝑎) ⋅ 𝑅𝑜𝑡(𝑍, 𝛾𝑎)

(14)

𝑁 pairs of values of 𝜃𝑖1 and 𝜃𝑖2 (Θ𝑚) can be obtained by moving the two 𝑅 joints within the permissible ranges by simultaneous
acquisition of the two encoders.

Θ𝑚 =

⎡

⎢

⎢

⎢

⎢

𝜃11 𝜃12
𝜃21 𝜃22
⋮ ⋮
𝑁 𝑁

⎤

⎥

⎥

⎥

⎥

6

⎣

𝜃1 𝜃2 ⎦
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Fig. 4. Intersection of the working volume of the RS arm (torus) with those of the R link (circle).

Fig. 5. Graphs of the solution loci of 𝜃1 and 𝜃2 for the most important possible mobility cases - Part 1.
7
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Fig. 6. Graphs of the solution loci of 𝜃1 and 𝜃2 for the most important possible mobility cases - Part 2.

Since each pair of measured angles must satisfy the constraint equation Eq. (3), a system of 𝑁 equations can be written in the
form of Eq. (15), where the six coordinates of 𝐬 are the unknowns that must be determined by numerical algorithms.

𝑓 𝑖(𝐌(𝐬), 𝜃𝑖1, 𝜃
𝑖
2) = 0 𝑖 = 1…𝑁 (15)

In the general case, n = 6 independent configurations are sufficient. For n > 6 configurations (equations) the system is over
constraint and the solution must be determined using least squares algorithms. In this case, the solution is more accurate and more
robust against measurement errors due to the limited resolution or repeatability of the angle transducers used.

For a given estimate of the pose 𝐬𝑒, the error vector 𝐞 in the closure equations is expressed by Eq. (16).

𝐞 = 𝐹
(

𝐌
(

𝐬𝑒
)

,Θ𝑚
)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 (𝐌(𝐬𝐞), 𝜃11 , 𝜃
1
2 )

𝑓 (𝐌(𝐬𝐞), 𝜃21 , 𝜃
2
2 )

⋮
𝑓 (𝐌(𝐬𝐞), 𝜃𝑁1 , 𝜃𝑁2 )

⎤

⎥

⎥

⎥

⎥

⎦

(16)

A better estimate for the current pose 𝐬𝑎 can be calculated iteratively using the Newton–Raphson algorithm. The problem of
finding the initial guess for initializing the Newton–Raphson method is easy to solve since calibration is usually done by moving the
robot into a series of predefined poses (commanded poses). The measurement system is then used to measure the actual achieved
pose (reaction poses), which is slightly different. Thus, for each pose, the known commanded pose is used to initialize the iterative
procedure that determines the response pose. By adding the estimated pose 𝐬𝑒,𝑗 and the error 𝐞𝑗 in the 𝑗th execution step, the
numerical law is obtained, as expressed in Eq. (17), where 𝐉𝑒,𝑗 is a (𝑁 × 6) matrix and the operation (⋅)+ is the pseudo-inverse
(required since 𝑁 > 6).

{

𝐞𝑗 = 𝐹
(

𝐌
(

𝐬𝑒,𝑗
)

,Θ𝑚
)

𝐉 = 𝜕𝐞𝑗

{

𝐬𝑒,0 = 𝐬𝑒
𝐬 = 𝐬 − 𝐉+ ⋅𝐞 (17)
8

𝑒,𝑗 𝜕𝐬𝑒,𝑗 𝑒,𝑗+1 𝑒,𝑗 𝑒,𝑗 𝑗
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d

w

If the first trial solution 𝐬𝑒,0 is sufficiently close to the actual pose 𝐬𝑎, the iterations bring ‖𝐞𝑗‖ → 0 and 𝐬𝑒,𝑗 → 𝐬𝑎. The exact
convergence of the algorithm can be hindered by several factors.

Every angle transducer (used to measure 𝜃1 and 𝜃2 angles) has an error due to limited accuracy, repeatability, and resolution.
The (small) errors in measuring the angles prevent the closure equation from being satisfied when 𝑁 > 6.

In addition, these errors cause uncertainties in the estimation 𝐬𝑒 of the actual pose of the moving frame. The variance 𝜎2𝑡𝑟𝑎 in
the pose estimation

(

𝐬𝑒,𝑡𝑟𝑎 = [𝑥𝑒 𝑦𝑒 𝑧𝑒]
)

is proportional to the dimension of the mechanism (𝑙1, 𝑙2 and 𝑙3), while the variance 𝜎2𝑟𝑜𝑡 for
the orientation

(

𝐬𝑒,𝑟𝑜𝑡 = [𝛼𝑒 𝛽𝑒 𝛾𝑒]
)

is independent from them. Both are proportional to the variance 𝜎2𝜃 of the angle transducers and
decrease as the number of measured angles increases:

𝜎𝑡𝑟𝑎 = 𝑘𝑡𝑟𝑎
𝜎𝜃
√

𝑁
𝜎𝑟𝑜𝑡 = 𝑘𝑟𝑜𝑡

𝜎𝜃
√

𝑁
(18)

The values of 𝑘𝑡𝑟𝑎 and 𝑘𝑟𝑜𝑡 depend on the pose 𝐬 and on the proportions between the limbs.
The mechanical inaccuracies (backlash and deflection) have the same effect on the fulfillment of the closure equation and on

the accuracy of the pose estimation. For this reason, special care was taken in the development of the prototype.
The procedure for estimating the pose can be summarized in the following steps:

1. sensor installation: one end of the linkage is attached to the gripper and the other to the ground (global frame of reference);
2. positioning: the gripper is brought into the position to be measured and the robot’s actuators are locked;
3. data acquisition: the 𝑅 joints are moved over the permissible range and several pairs of rotation angles 𝜃1 and 𝜃2 are recorded

simultaneously. It is easy to collect a large number of readings as it is possible to record the two angles synchronously during
a slow movement of the mechanism. One of the two 𝑅 joints can be driven by standard electric motors (when using two
motors, appropriate control strategies must be used as the two rotations are not independent).

4. data processing: the recorded pairs of values of 𝜃1 and 𝜃2 and the known dimensions of the mechanism are used to form the
system of non-linear equations (Eq. (15)) which can be solved using numerical algorithms, using the nominal pose as the first
attempt solution.

2.3. Uncertainty analysis

The uncertainty of a measurement is a function of the specific measurement procedure used to obtain the measurement result,
regardless of whether it is a simple or a complex procedure. Analyzing the measurement uncertainty provides an estimate of the
largest error that can reasonably be expected for that specific measurement process.

Every angle transducer (used to measure 𝜃1 and 𝜃2 angles) has an error due to its limited accuracy, repeatability, and resolution.
These errors lead to uncertainties in estimating the true pose of the moving frame. In other words, the estimated pose matrix 𝐓𝑒
deviates from the actual 𝐓𝑎. Since the error in estimating the pose is small, Eq. (19) can be written, where 𝑑𝑥 𝑑𝑦 𝑑𝑧 and 𝑑𝛼 𝑑𝛽 𝑑𝛾
are the linear and angular error, respectively.

𝑑𝐓 = 𝐓𝑎𝐓−1
𝑒 ≃

⎡

⎢

⎢

⎢

⎢

⎣

1 −𝑑𝛾 𝑑𝛽 𝑑𝑥
𝑑𝛾 1 −𝑑𝛼 𝑑𝑦
−𝑑𝛽 𝑑𝛼 1 𝑑𝑧
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(19)

The relationship between the error of the angle measurement 𝐝θ and the error of the pose estimate 𝑑𝐬 can be determined by
ifferentiating the constraint Eq. (3), as given in Eq. (20),

𝐉𝑓𝑚 𝐉𝑚𝑠 𝑑𝐬 + 𝐉𝑓𝜃 𝑑θ = 0 (20)

here

𝑑𝐬 = [𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝛼 𝑑𝛽 𝑑𝛾]𝑡 ,
𝐭 =

[

𝑟11 𝑟21 𝑟31 𝑟12 𝑟22 𝑟32 𝑟13 𝑟23 𝑟33 𝑡𝑥 𝑡𝑦 𝑡𝑧
]𝑡 ,

θ =
[

𝜃1 𝜃2
]𝑡 ,

𝐉𝑓𝑚 = 𝜕𝑓
𝜕𝐭 =

[

𝑚1𝑐𝜃2 𝑙2 𝑚2𝑐𝜃2 𝑙2 𝑚3𝑐𝜃2 𝑙2 𝑚1𝑠𝜃2 𝑙2 𝑚2𝑠𝜃2 𝑙2
𝑚3𝑠𝜃2 𝑙2 0 0 0 𝑚1 𝑚2 𝑚3

]

,
𝑚1 = 2((𝑟11𝑐𝜃2 + 𝑟12𝑠𝜃2 )𝑙2 + 𝑡𝑥 − 𝑙1𝑐𝜃1 ),
𝑚2 = 2((𝑟21𝑐𝜃2 + 𝑟22𝑠𝜃2 )𝑙2 + 𝑡𝑦 − 𝑙1𝑠𝜃1 ),
9

𝑚3 = 2((𝑟31𝑐𝜃2 + 𝑟32𝑠𝜃2 )𝑙2 + 𝑡𝑧)
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𝐉𝑚𝑠 =
𝜕𝐭
𝜕𝐬

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 −𝑟13 𝑟12
0 0 0 0 −𝑟23 𝑟22
0 0 0 0 −𝑟33 𝑟32
0 0 0 𝑟13 0 −𝑟11
0 0 0 𝑟23 0 −𝑟21
0 0 0 𝑟33 0 −𝑟31
0 0 0 −𝑟12 𝑟11 0
0 0 0 −𝑟22 𝑟21 0
0 0 0 −𝑟32 𝑟31 0
𝑟11 𝑟12 𝑟13 0 0 0
𝑟21 𝑟22 𝑟23 0 0 0
𝑟31 𝑟32 𝑟33 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐉𝑓𝜃 = 𝜕𝑓
𝜕𝜃 =

[

𝑝1𝑠𝜃1 𝑙1 − 𝑝2𝑐𝜃1 𝑙1 𝑝1𝑙2(−𝑟11𝑠𝜃2 + 𝑟12𝑐𝜃2 )+

+𝑝2𝑙2(−𝑟21𝑠𝜃2 + 𝑟22𝑐𝜃2 ) + 𝑝3𝑙2(−𝑟31𝑠𝜃2 + 𝑟32𝑐𝜃2 )
]

,
𝑝1 = 2((𝑟11𝑐𝜃2 + 𝑟12𝑠𝜃2 )𝑙2 + 𝑡𝑥 − 𝑙1𝑐𝜃1 ),
𝑝2 = 2((𝑟21𝑐𝜃2 + 𝑟22𝑠𝜃2 )𝑙2 + 𝑡𝑦 − 𝑙1𝑠𝜃1 ),
𝑝3 = 2((𝑟31𝑐𝜃2 + 𝑟32𝑠𝜃2 )𝑙2 + 𝑡𝑧)

To avoid singularity problems, it was chosen to calculate the pose error 𝑑𝐬 as a deviation from the actual pose 𝐓𝑎.
Assuming that the measurement error of the angles 𝜃1 and 𝜃2 can be modeled with a normal distribution due to the limited

repeatability and resolution, the covariance matrix of the vector 𝐝θ is 𝐂𝜃 (Eq. (21)). Since the two measures are independent, they
are statistically uncorrelated and the matrix 𝐂𝜃 is diagonal.

𝐂𝜃 =
[

𝜎2𝜃 0
0 𝜎2𝜃

]

= 𝜎2𝜃 𝐈2 (21)

If the two transducers are identical (which is plausible since the mechanism is symmetric), then 𝐂𝜃 can be expressed according
to Eq. (21), where 𝜎2𝜃 is the variance of the angle measure and 𝐈2 is the identity matrix.

The variance of the term 𝑏 = 𝐉𝑓𝜃𝐝θ (cf Eq. (20)) for the 𝑖th configuration is estimated as given in Eq. (22), where 𝐉𝑓𝜃,𝑖 is the
Jacobian matrix 𝐉𝑓𝜃 , which is evaluated for 𝜃1 = 𝜃1,𝑖 and 𝜃2 = 𝜃2,𝑖.

𝜎2𝑏,𝑖 = 𝐉𝑓𝜃,𝑖 𝐂𝜃 𝐉𝑡𝑓𝜃,𝑖 (22)

Since the measures obtained in 𝑁 different configurations of the mechanism are uncorrelated to each other, the covariance
matrix of the vector 𝐛𝑡𝑜𝑡 = [𝑏1 𝑏2 … 𝑏𝑛]𝑡 is also diagonal:

𝐂𝑏,𝑡𝑜𝑡 = 𝑑𝑖𝑎𝑔(𝜎2𝑏,1, 𝜎
2
𝑏,2, … , 𝜎2𝑏,𝑛) (23)

Considering Eq. (21), the covariance matrix of the vector 𝐛𝑡𝑜𝑡 can be reorganized as follows:

𝐂𝑏,𝑡𝑜𝑡 = 𝜎2𝜃 𝐂𝑓𝜃 (24)

where

𝐂𝑓𝜃 = 𝜎2𝜃 𝑑𝑖𝑎𝑔(𝐉𝑓𝜃,1𝐉𝑡𝑓𝜃,1, 𝐉𝑓𝜃,2𝐉
𝑡
𝑓𝜃,2, … , 𝐉𝑓𝜃,𝑛𝐉𝑡𝑓𝜃,𝑛)

Eq. (20) yields the covariance matrix 𝐂𝑠 of the pose estimation error 𝑑𝐬 according to Eq. (25):

𝐂𝑠 = 𝐉+𝑓𝑠,𝑡𝑜𝑡 𝐂𝑏,𝑡𝑜𝑡 𝐉+𝑡𝑓𝑠,𝑡𝑜𝑡 = 𝜎2𝜃𝐉
+
𝑓𝑠,𝑡𝑜𝑡 𝐂𝑓𝜃 𝐉+𝑡𝑓𝑠,𝑡𝑜𝑡 (25)

where

𝐉𝑓𝑠,𝑡𝑜𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐉𝑓𝑚,1𝐉𝑚𝑠,1
𝐉𝑓𝑚,2𝐉𝑚𝑠,2

⋮
𝐉𝑓𝑚,𝑛𝐉𝑚𝑠,𝑛

⎤

⎥

⎥

⎥

⎥

⎦

and (⋅)+ is the pseudo-inverse of a matrix.
The matrix 𝐂𝑠 has the following form and is proportional to 𝜎2𝜃

𝐂𝑠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜎2𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧 𝜎𝑥𝛼 𝜎𝑥𝛽 𝜎𝑥𝛾
𝜎𝑥𝑦 𝜎2𝑦 𝜎𝑦𝑧 𝜎𝑦𝛼 𝜎𝑦𝛽 𝜎𝑦𝛾
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎2𝑧 𝜎𝑧𝛼 𝜎𝑧𝛽 𝜎𝑥𝛾
𝜎𝑥𝛼 𝜎𝑦𝛼 𝜎𝑧𝛼 𝜎2𝛼 𝜎𝛼𝛽 𝜎𝛼𝛾
𝜎𝑥𝛽 𝜎𝑦𝛽 𝜎𝑧𝛽 𝜎𝛼𝛽 𝜎2𝛽 𝜎𝛽𝛾

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(26)
10

⎣

𝜎𝑥𝛾 𝜎𝑦𝛾 𝜎𝑧𝛾 𝜎𝛼𝛾 𝜎𝛽𝛾 𝜎𝛾 ⎦
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Fig. 7. Contour plot of the 𝑘𝑡𝑟𝑎 index for three levels of the workspace.

𝐂𝑠 = 𝜎2𝜃

[

𝐂𝑡𝑟𝑎 𝐂𝑡𝑟𝑎−𝑟𝑜𝑡
𝐂𝑡𝑟𝑎−𝑟𝑜𝑡 𝐂𝑟𝑜𝑡

]

= 𝜎2𝜃 𝐂𝑝𝑜𝑠 (27)

Depending on the application of the pose measurement method, it may be important to separately estimate the expected error
in estimating the translation, rotation, or overall pose of the moving frame, as follows:

𝑒𝑡𝑟𝑎 =
√

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

𝑒𝑟𝑜𝑡 =
√

𝑑𝛼2 + 𝑑𝛽2 + 𝑑𝛾2

𝑒𝑝𝑜𝑠 =
√

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 + 𝑢2(𝑑𝛼2 + 𝑑𝛽2 + 𝑑𝛾2)
(28)

where 𝑢 is a constant used to compare rotational and translational errors.
It is important to note that the position estimation error increases proportionally with the dimensions (𝑙1, 𝑙2 and 𝑙3) of the

mechanism (at the same ratio), while the rotation estimation error is independent of the scale.
𝜎2𝑡𝑟𝑎, 𝜎2𝑟𝑜𝑡, and 𝜎2𝑝𝑜𝑠 can be estimated as follows:

𝜎2𝑡𝑟𝑎 = 𝜎2𝜃 ‖‖𝐂𝑡𝑟𝑎
‖

‖

𝜎2𝑟𝑜𝑡 = 𝜎2𝜃 ‖‖𝐂𝑟𝑜𝑡
‖

‖

𝜎2𝑝𝑜𝑠 = 𝜎2𝜃
‖

‖

‖

𝐂𝑝𝑜𝑠
‖

‖

‖

(29)

where ‖ ⋅ ‖ is the norm of a matrix corresponding to the maximum singular value of a matrix.
If the number 𝑁 of angular measures used for pose estimation is sufficiently large and the chosen angles are well distributed

over the allowed rotation range, the values of 𝜎2𝑡𝑟𝑎, 𝜎2𝑟𝑜𝑡, and 𝜎2𝑝𝑜𝑠 are inversely proportional to the number of measures 𝑁 (Eq. (30)).

𝜎𝑡𝑟𝑎 = 𝑘𝑡𝑟𝑎
𝜎𝜃
√

𝑁
𝜎𝑟𝑜𝑡 = 𝑘𝑟𝑜𝑡

𝜎𝜃
√

𝑁
𝜎𝑝𝑜𝑠 = 𝑘𝑝𝑜𝑠

𝜎𝜃
√

𝑁
(30)

The constants 𝑘𝑡𝑟𝑎, 𝑘𝑟𝑜𝑡 and 𝑘𝑝𝑜𝑠 are defined as

𝑘𝑡𝑟𝑎 = lim
𝑁→∞

√

𝑁 ‖

‖

𝐂𝑡𝑟𝑎
‖

‖

𝑘𝑟𝑜𝑡 = lim
𝑁→∞

√

𝑁 ‖

‖

𝐂𝑟𝑜𝑡
‖

‖

𝑘𝑝𝑜𝑠 = lim
𝑁→∞

√

𝑁 ‖

‖

‖

𝐂𝑝𝑜𝑠
‖

‖

‖

(31)

These constants are independent of the number 𝑁 and the variance 𝜎2𝜃 of the measured values, but vary only as a function of
the pose of the moving frame, so they can be used as indices of the mechanism’s ability to estimate this pose.

As an example, Figs. 7–9 show the numerical results of a special case. The mechanism has the dimensions 𝑙1 = 𝑙2 = 𝑙3 = 1 [m].
The orientation of the movable frame is fixed and its position is moved over a three-dimensional grid:

𝐌 = 𝑅𝑜𝑡(𝑋, 80)𝑅𝑜𝑡(𝑌 , 45)𝑇 𝑟𝑎(𝑋, 𝑥𝑖)𝑇 𝑟𝑎(𝑌 , 𝑦𝑖)𝑇 𝑟𝑎(𝑍, 𝑧𝑖)
𝑥𝑖 = −1…1 𝑦𝑖 = −1…1 𝑧𝑖 = 0.5, 0.8, 1.1

(32)

with rotations expressed in degrees, and positions in meters.
It is noticeable that the values of all indices are quite small (𝑘𝑡𝑟𝑎 < 10, 𝑘𝑟𝑜𝑡 < 14 and 𝑘𝑝𝑜𝑠 < 18) in almost all analyzed positions

(a volume of 2 × 2 × 0.6 [m]). This means that the uncertainty in estimating the pose is also low. Eq. (30) can be used to quickly
determine the expected accuracy of the pose estimate. For digital encoders, the standard deviation 𝜎𝜃 of the measure is related to
the number of steps per revolution 𝑛𝑠𝑡𝑒𝑝 by the following relationship

𝜎𝜃 = 2𝜋
√

≃ 1.8
𝑛

[rad] (33)
11
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Fig. 8. Contour plot of the 𝑘𝑟𝑜𝑡 index for three levels of the workspace.

Fig. 9. Contour plot of the 𝑘𝑝𝑜𝑠 index for three levels of the workspace.

By using two identical encoders with 𝑛𝑠𝑡𝑒𝑝 = 8000 (2500 pulses per revolution), for the previous example, and by collecting
𝑛 = 2000 pairs of measurements from 𝜃1 and 𝜃2 in each pose, Eq. (30) and (35) yield 𝜎𝑡ℎ𝑒𝑡𝑎 = 2.2 ⋅ 10−4 [rad], 𝜎𝑡𝑟𝑎 = 5.1 ⋅ 10−5 [m],
𝜎𝑟𝑜𝑡 = 7.1 ⋅ 10−5 [rad] and using 𝑢 = 1 [m∕rad], 𝜎𝑝𝑜𝑠 = 9.1 ⋅ 10−5 [m].

Since other sources of error may also be present (backlash, geometric inaccuracies, deflections), the estimation error for the
position is expected to be less than 0.1 [mm] (much less than one ten-thousandth of the full scale) and for orientation less than
0.1 [mrad].

3. Experiments on a linkage-based measuring mechanism prototype

3.1. Description of the prototype of linkage-based measuring mechanism

Fig. 10 shows the created prototype of the proposed linkage-based measuring device. The aim of the realization of the prototype
is the experimental validation of the measurement method and an initial assessment of the achievable repeatability and accuracy
of the system.

In terms of mechanical design, the revolute joints are derived directly from the shafts of the encoders (with reinforced ball
bearings), while the ball joints have been specially developed (Fig. 11). The correct operation of the measurement system is closely
related to the angular mobility of the ball joints and the presence of low backlash and friction in the joints. All these objectives
were achieved by realizing the joint with an iron ball held in contact with a conical seat (made of Teflon) by the attractive force
of a magnet. This low-cost joint ensures a large angular movement (more than 2𝜋 [sr]), no backlash (thanks to the self-centering
unilateral constraint), and low friction.

There is a certain freedom in the choice of geometric dimensions of the device. The main constraints to be considered concern
the ratio between the lengths of the different links, on which important mechanical aspects such as the possible mechanical bending
depend. The diameter of the rods also has a major influence on this aspect, as does the material chosen for their construction. In
the prototype created, the geometric dimensions chosen, both in terms of the length of the links and the diameter of the rods, give
the system considerable structural stability with very limited possible deformations. Given the small dimensions, no special analyses
were carried out. The dimensions of the links determine the measuring range of the system. Larger dimensions are of course possible
and can extend the measuring range considerably. In this case, a finite element analysis of the structure, simulating the possible
12
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Fig. 10. The realized prototype of linkage-based measuring device.

Fig. 11. Close view of a spherical joint.

loading conditions and the most critical working configurations, can be important for an adequate dimensioning of the mechanical
structure of the system.

To reduce deflection, the connections were made with lightweight aluminum tubes with a large cross-section. The entire structure
is statically balanced with additional masses so that it can remain at rest in any position (indifferent equilibrium).

The angular position encoders of the revolute joints are two incremental encoders with 10,000 pulses/revolution (𝑛𝑠𝑡𝑒𝑝 = 40000
pulses/revolution according to hardware multiplier). Their synchronous acquisition is performed by an ISA DSP-based card with
1 kHz. The resolution of the encoder is evaluated as in Eq. (34).

𝜃𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
2𝜋
𝑛𝑠𝑡𝑒𝑝

= 2𝜋
40000

= 1.57⋅10−4 [rad]; (34)

The random error in Eq. (34) is uniformly distributed around zero because the encoders divide a full revolution into several
predefined steps (in our case 40,000) and the sensor provides the same output for each angle in this interval. The reading error is
therefore distributed around zero with the same probability in the 360◦∕𝑛𝑠𝑡𝑒𝑝 range.

Taking into account the uniform error distribution caused by the limited resolution, the standard deviation of the angular measure
is given in (35).

𝜎𝜃 = 2𝜋

𝑛𝑠𝑡𝑒𝑝
√

12
= 4.5⋅10−5 [rad] (35)

3.2. Measure of the geometrical elements

The system was calibrated using a coordinate measuring machine (CMM) with a resolution of 1 ⋅10−6 [m], a repeatability of
3⋅10−6 [m] and an accuracy of 5⋅10−6 [m].

First, the geometric dimensions of the prototype were measured: the length of the rod (𝑙3) was determined by measuring the
distance between the centers of the spheres at its ends, while for the lengths of the cranks (𝑙1 and 𝑙2) the axes of the encoder shafts
and the center of each sphere were used.
13
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Table 2
Geometrical dimensions of the elements of the prototype.

Nominal dimensions Measured dimension
[m] [m]

Spheres diameters 𝑆1 0.0254 0.025405
𝑆2 0.0254 0.025409

Cranks length 𝑙1 0.250 0.250825
𝑙2 0.250 0.250768

Rod length 𝑙3 0.250 0.250358

Fig. 12. Joint movements for the measure of the uncertainty of the pose estimation procedure.

The reverse engineering software of the CMM was used to identify the geometric objects (spheres and cylinders). The resolution of
the dimensions of the geometric objects is 1⋅10−6 [m] for the linear dimensions and 5⋅10−4 [rad] for the angular dimensions (alignment
of the cylinder axes). The limited resolution when measuring angles restricts the resolution of the software when measuring the
relative position of objects. Namely, if 𝑑 ≃ 0.25 [m] is used to specify the maximum dimension of the prototype to be measured, the
CMM can measure the relative positions of objects with a resolution of ≃ 5⋅10−4 ⋅𝑑 = 1.25⋅10−4 [m].

The geometrical dimensions of the prototype are reported in Table 2.

3.3. Uncertainty analysis of the pose estimation procedure

To measure the uncertainty of the pose estimation, several forward and backward movements of the 𝐑 joints in different
configurations were investigated (see e.g. Fig. 12). The pairs

(

𝜃𝑖1, 𝜃
𝑖
2
)

relating to the movement shown in Fig. 12 are represented
in Fig. 13.

During the movement, pairs of values
(

𝜃𝑖1, 𝜃
𝑖
2
)

were recorded synchronously. Since it is very easy to collect many experimental
points for each pose, two thousand values for each pose have been collected. Based on this data, the relative pose 𝐌 was determined
using the algorithm proposed in Section 2.2.5. Then, for each 𝜃𝑖1 and 𝜃𝑖2 the corresponding values of 𝜃𝑖2,𝑒𝑠𝑡 and 𝜃𝑖1,𝑒𝑠𝑡 were computed
using the Eq. (13) and (9) respectively (see Fig. 14). The angular errors expressed in Eq. (36) are not suitable for the evaluation of
repeatability, as their value depends strongly on the local slope of the solution loci (Fig. 6).

𝛥𝜃𝑖1 = 𝜃𝑖1 − 𝜃𝑖1,𝑒𝑠𝑡 𝛥𝜃𝑖2 = 𝜃𝑖2 − 𝜃𝑖2,𝑒𝑠𝑡 (36)

A more effective measure of the angular error is given in (37).

𝛥𝜃𝑖 =
𝛥𝜃𝑖1 𝛥𝜃

𝑖
2

√

(

𝛥𝜃𝑖1
)2 +

(

𝛥𝜃𝑖2
)2

(37)

The standard deviation of 𝛥𝜃𝑖, given by 𝑢 (𝛥𝜃), can be seen as a measure of the uncertainty of the system for the angular position.
The difference between the standard deviation 𝜎𝜃 determined for the encoders (Eq. (35)) and 𝑢 (𝛥𝜃) can be used as a measure of the
other sources of error that may be present, such as backlash, geometric inaccuracies, and deflections.
14
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Fig. 13. Plot of the points
(

𝜃𝑖1 , 𝜃
𝑖
2

)

of Fig. 12.

Fig. 14. Representation of 𝛥𝜃𝑖1, 𝛥𝜃
𝑖
2, 𝛥𝜃

𝑖.

The relation between the error in the angle measurement 𝛥𝜃 and the error in the pose estimation 𝛥𝐬 can be determined by
differentiating the constraint equation Eq. (3):

𝐉𝑓𝑚 𝐉𝑚𝑠 𝑑𝐬 + 𝐉𝑓𝜃 𝑑θ = 0 𝛥𝐬 ⋍ −𝐉−1𝑚𝑠 𝐉−1𝑓𝑚 𝐉𝑓𝜃 𝛥θ (38)

where

⎧

⎪

⎨

⎪

⎩

𝑑𝐬 =
[

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝛼 𝑑𝛽 𝑑𝛾
]𝑡

𝐦 =
[

𝑚1 … 𝑚𝑖 … 𝑚12
]𝑡

θ =
[

𝜃1 𝜃2
]𝑡

⎧

⎪

⎨

⎪

⎩

𝐉𝑓𝑚 = 𝜕𝑓∕𝜕𝐦
𝐉𝑚𝑠 = 𝜕𝐦∕𝜕𝐬
𝐉𝑓𝜃 = 𝜕𝑓∕𝜕𝜃

(39)

𝐦 is the vector containing the first 12 elements of the matrix 𝐌 and the matrices 𝐉𝑓𝑚, 𝐉𝑚𝑠 and 𝐉𝑓𝜃 are functions of
(

𝜃1, 𝜃2
)

.
Since

(

𝜃𝑖1, 𝜃
𝑖
2
)

cannot be a solution of the Eq. (3) due to measurement errors,
(

𝜃𝑖1, 𝜃
𝑖
2,𝑒𝑠𝑡

)

and
(

𝜃𝑖1,𝑒𝑠𝑡, 𝜃
𝑖
2

)

can be used correctly in their
place. As in Eq. (30), the positional error 𝛥𝐬𝑖𝑡𝑟𝑎 can be separated from the angular error 𝛥𝐬𝑖𝑟𝑒𝑑 . The uncertainty 𝑢

(

𝛥𝐬𝑡𝑟𝑎
)

and 𝑢
(

𝛥𝐬𝑟𝑜𝑡
)

are calculated using the standard deviations.
Table 4 contains the experimental results for the 3 different poses of the Table 3. The small value of 𝑢 (𝛥𝜃) shows the high

repeatability of the system. As 𝑢 (𝛥𝜃) is almost twice as high as the theoretical value 𝜎𝜃 = 4.5⋅10−5 [rad], the mechanical inaccuracy
due to backlash and deflection is very small (its influence is almost as large as the error due to the encoder resolution), but cannot
be neglected. In addition, the agreement between the theoretical values 𝜎𝑡𝑟𝑎 and 𝜎𝑟𝑜𝑡 is also quite good. A statistical determination
15

of the uncertainty must be investigated over the entire working area.
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Table 3
Measured poses.

Pose 1 Pose 2 Pose 3

𝑋 [m] 0.044 0.069 0.043
𝑌 [m] 0.108 0.143 0.143
𝑍 [m] 0.147 0.150 0.055

𝛼 [rad] −2.984 2.813 −2.758
𝛽 [rad] 0.029 0.143 −0.306
𝛾 [rad] 0.250 0.255 −1.118

Table 4
Values for standard deviation and uncertainty in the pose reported in Table 3.
Theoretical results

Pose 1 Pose 2 Pose 3

𝑘𝑡𝑟𝑎 [-] 26.4 4.0 34.3
𝑘𝑟𝑜𝑡 [-] 119.8 18.8 58.1
𝜎𝑡𝑟𝑎 [m] 4.4⋅10−5 1.1⋅10−5 1.7⋅10−5

𝜎𝑟𝑜𝑡 [rad] 1.0⋅10−5 5.3⋅10−5 2.9⋅10−5

Experimental results

Pose 1 Pose 2 Pose 3

𝑚𝑎𝑥(𝛥𝜃) [rad] 20.7⋅10−5 63.5⋅10−5 44.8⋅10−5

𝑢 (𝛥𝜃) [rad] 7.9⋅10−5 8.5⋅10−5 9.4⋅10−5

𝑢
(

𝛥𝐬𝑡𝑟𝑎
)

[m] 13.6⋅10−5 1.4⋅10−5 0.6⋅10−5

𝑢
(

𝛥𝐬𝑟𝑜𝑡
)

[rad] 0.9⋅10−5 9.0⋅10−5 2.8⋅10−5

Table 5
Comparison between the pose measured by the CMM and the estimated one.

Pose measured Pose estimated Pose error

𝑋 [m] 0.044 292 0.044 199 𝑑𝑥 [m] 8.7⋅10−5

𝑌 [m] 0.107 981 0.107 887 𝑑𝑦 [m] 10.6⋅10−5

𝑍 [m] 0.147 886 0.147 655 𝑑𝑧 [m] 5.8⋅10−5

𝛼 [rad] −2.9813 −2.9831 𝑑𝛼 [rad] 1.7⋅10−3

𝜃 [rad] 0.02874 0.0292 𝑑𝛽 [rad] 0.4⋅10−3

𝛾 [rad] 0.24841 0.2488 𝑑𝛾 [rad] 0.5⋅10−3

3.4. First calibration tests

The agreement between the actual position measured by the CMM (Section 3.2) and the estimated position was tested. The
rototype was positioned in the working area of the CMM. The absolute position of the frame {1} attached to the first encoder and
he frame {2} attached to the second encoder was measured by estimating the position of the shaft axes of the encoder and the ball
enters of the ball joints.

Given 𝐌𝑎 and 𝐌𝑒 as the rotation-translation matrix describing the actual position measured by the CMM and the estimated
position, respectively, the error in pose estimation is calculated according to Eq. (40).

𝛥𝐌 = 𝐌𝑎𝐌−1
𝑒 ≃

⎡

⎢

⎢

⎢

⎢

⎣

1 −𝑑𝛾 𝑑𝛽 𝑑𝑥
𝑑𝛾 1 −𝑑𝛼
−𝑑𝛽 𝑑𝛼 1
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(40)

𝑑𝑥, 𝑑𝑦, 𝑑𝑧, and 𝑑𝛼, 𝑑𝛽, 𝑑𝛾 are the linear and angular errors respectively.
Table 5 shows the estimated pose error for an exemplary experiment. The third column indicates the value for the error

represented by Eq. (40). It can be seen that both the linear and angular errors are close to the resolution provided by the processing
software of the CMM (see Section 3.2). This preliminary result provides proof of the correctness of the measurement system and a
first estimate of the achievable accuracy.

4. Conclusions

A new method for pose measurement is proposed based on the measurement of joint rotation of a spatial four-bar mechanism.
The method for estimating both the position coordinates and the uncertainty has been developed in analytical form. The main
advantages of the proposed method are:
16

− all six coordinates of the pose moving frame can be measured simultaneously;
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− for a given pose to be measured, a large number of measurements of the rotation of the 𝐑 joints can be easily collected. This
property of the method can greatly reduce the uncertainty of the estimate;

− the kinematic structure of the mechanism is simple (𝑅𝑆𝑆𝑅), therefore it can be easily realized with high accuracy (low
backlash and low deformations);

− the measuring range of the mechanism is quite large (e.g. a mechanism with 𝑙1 = 𝑙2 = 𝑙3 = 𝑙 can measure a volume of 2𝑙×2𝑙×𝑙,
depending on the position of the moving frame);

− the required sensors (two digital encoders are suitable) are simple, generally usable, and therefore cheap.

There are also some disadvantages:

− measuring the pose requires the contact with the body to be measured;
− the procedure appears to apply only to static measures;
− deformations and backlashes in the mechanical structure of the four-bar linkage cause measurement errors (not investigated

in this work);
− within the achievable measurement volume of the mechanism, some singular configurations may occur that lead to a high

uncertainty in the estimation of one or more of the position coordinates. These poses can be detected by examination if
𝑟𝑎𝑛𝑘(𝐽𝑓𝑠,𝑡𝑜𝑡) < 6 and have a correspondence in high values of the indices 𝑘𝑡𝑟𝑎, 𝑘𝑟𝑜𝑡 and 𝑘𝑝𝑜𝑠. A singular configuration exists,
for example, if 𝑙1 = 𝑙2, the axes 𝑧1 and 𝑧2 coincide and the distance between the frames is equal to 𝑙3 (the rotation around 𝑧2
is indeterminable). These configurations must be avoided or the singularity can be eliminated by repositioning the mobile or
the reference frame.

The following issues stem from comparing the proposed system with other strategies suggested in the literature or often utilized
in practical applications. The double ball bar system, inclinometer, interferometers, and laser tracker techniques can only measure
a portion of the pose coordinates, while the suggested solution enables a full position measurement. The primary drawback, as
compared to laser tracking systems, is the lower accuracy. Conversely, the system is more cost-effective since it utilizes two standard
digital encoders and straightforward ball joint construction. The primary benefit of this approach over others based on dimes is the
potential for a broader range of measurement. The measuring is easier compared to camera-based alternatives. However, these
approaches do not need interaction with the end effector. The precision achieved is markedly higher when compared to approaches
utilizing wires.

The experiments only served to test the feasibility of the measurement system and an initial assessment of its accuracy.
The experimental results show that the measuring system has an accuracy of about 1⋅10−5 [m] when estimating the linear position

of an object in space and about 1⋅10−4 [rad] when estimating the angular position.
This accuracy result may be sufficient for some types of robotic applications, such as palletizing, painting, surface treatment,

etc. For applications requiring better position and/or orientation accuracy, the developed device prototype would not be suitable.
However, the proposed approach is also valid for these applications and a design solution of the device with improved constructive
characteristics can certainly lead to an improvement of both position and orientation accuracy. The main objectives of this work
were to propose a methodology, to show that it is promising, and that even with a first prototype acceptable results in terms of
accuracy have been obtained for some types of applications. However, there is still plenty of scope for improving the achievable
measurement accuracy.

Future work is planned in this direction to develop a constructive implementation of the device that will improve its accuracy.
A statistical determination of the accuracy and repeatability of the system has not been developed and will be the subject of

future work.
The natural development of the work will also concern the application of the proposed method to the calibration of an industrial

robot, comparing the results obtained when measuring the pose with laser trackers or other methods.
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