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Abstract (Italiano) 

L'uso del simulatore di guida per lo sviluppo di veicoli è un argomento attuale sia nella ricerca 

che nell'industria, colmando il divario tra la mera simulazione e le sensazioni e i feedback che 

un guidatore può sperimentare, anche prima che sia disponibile un prototipo fisico. 

Per System Integration, si fa riferimento al processo di combinazione e coordinamento di vari 

componenti, sistemi e tecnologie per creare un ambiente di simulazione driver-in-the-loop 

coeso e funzionale. Questa integrazione implica l'allineamento di elementi hardware e 

software, consentendo al simulatore di guida di replicare accuratamente scenari di guida reali 

in conformità con un modello veicolare affidabile. 

Questo lavoro si basa sulla modellazione virtuale del veicolo con un focus principale sulle 

sospensioni, considerando sia la cinematica che l'elasto-cinematica. Vengono proposti 

algoritmi e modelli che consentono sia la progettazione che l'analisi di questi sottosistemi, 

nonché l'integrazione con la simulazione in tempo reale. È stato sviluppato un software con 

interfaccia grafica, 3DSusp, per l'analisi cinematica delle sospensioni. Sono proposti modelli 

completi per il calcolo dei carichi sulla sospensione e per la valutazione delle cedevolezze, 

caratterizzate principalmente dalle boccole in gomma con proprietà rigorosamente non lineari. 

Vengono inoltre presentati metodi e modelli riguardanti la dinamica del veicolo, con 

particolare attenzione alla modellazione del differenziale LSD e agli algoritmi di stima per 

l'angolo di assetto e la loro integrazione con il simulatore di guida. Viene fornito un confronto 

tra due metodi per stimare l'angolo di assetto: uno basato su reti neurali artificiali e l'altro 

basato sul filtro di Kalman. 

Infine, viene esplorata la possibilità di estendere le simulazioni per lo sviluppo di sistemi 

ADAS utilizzando ViWorldSim®. In questo lavoro vengono inoltre esaminati metodi di 

integrazione hardware, come pad tattili e dashboard. 

Gli ambienti di sviluppo utilizzati per l'integrazione con il simulatore di guida sono 

principalmente Matlab Simulink® e ViCarRealTime®. I test online sono stati effettuati 

utilizzando il simulatore di guida Vi-Grade disponibile presso l'Università di Brescia. 
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Abstract 

The use of a driving simulator for vehicle development is a current topic in both research and 

industry, bridging the gap between pure simulation and the feeling and feedback a driver may 

experience, even before a physical prototype is available. 

System integration refers to the process of combining and coordinating various components, 

systems, and technologies to create a cohesive and functional driver-in-the-loop simulation 

environment. This integration involves aligning hardware and software elements to work 

together seamlessly, allowing the driving simulator to accurately replicate real-world driving 

scenarios in accordance with a reliable vehicle model.  

This work is based on virtual vehicle modelling focusing mainly on suspension, considering 

both kinematics and elasto-kinematics. Algorithms and models are proposed that allow both 

the design and analysis of these subsystems, and the integration with real-time simulation. 

Software with a graphic interface is developed for the suspension kinematic analysis, 3DSusp. 

Comprehensive models are proposed for calculating the loads on the suspension and for 

assessing its compliance characterised by rubber bushings with strictly non-linear 

characteristics. 

Methods and models concerning vehicle dynamics are also presented, focusing on LSD 

differential modelling and estimation algorithms for the side slip angle and their integration 

with the driving simulator. A comparison of two methods for estimating the side slip angle is 

presented, one based on artificial neural networks, and one based on the Kalman filter. Finally, 

the possibility of extending simulations for the development of ADAS systems through 

ViWorldSim® is also explored. Methods for hardware integration such as tactile pads and 

dashboards are also explored in this work. 

The development environments used for integration with the driving simulator are mainly 

Matlab Simulink® and ViCarRealTime®. Online tests are conducted using the Vi-Grade 

driving simulator available at the University of Brescia.  

Keywords 

Driving simulator; Vehicle dynamics; Suspension; Differential; Vehicle Side slip Angle; 

Elasto-kinematics; Driver in the loop; System integration; ADAS;  



6 

 

1 Introduction 

The purpose of this research is to investigate the potential of the driving simulator. To provide methodologies 

for the software and hardware implementation of vehicle subsystems, embracing so-called system integration. 

The focus of this thesis is primarily on the integration of models to simulate automotive suspension systems, 

considering both their kinematic and elastokinematic aspects, also suitable for real-time applications. 

The use of simulations is now an established practice in every field of engineering. The matter is getting more 

complicated when these technologies have a direct interface with the human, in which case it becomes 

necessary to also consider subjective aspects, which are often difficult to quantify numerically, while remaining 

in the field of simulations. The driving simulator attempts to bridge this gap between real testing and 

simulations by introducing the concept of driver-in-the-loop, where the driver is immersed in the simulation 

loop. Many studies have been done on the interaction between professional driving simulators and the human 

driver. There are many types of simulators, ranging from static ones to dynamic ones, which are considered 

more “realistic” because they can reproduce the movements of the vehicle body, specifically accelerations, 

inclinations, and angular velocities. Figure 1 shows a dynamic simulator. 

 

Figure 1. Vi-Grade® Dynamic Simulator DiM400 

It is not guaranteed that a dynamic simulator is inherently more effective than a static one [1], [2]. The articles 

highlight how the validity of a driving simulator depends on the specific use case, with low-fidelity simulators 

potentially being as suitable for certain scenarios as high-fidelity simulators. 

The first article presents a study conducted on six different driving simulators, ranging from static systems to 

highly dynamic motion systems with varying levels of fidelity. The researchers compared driving behaviour, 

perception, simulator sickness, and subjective feedback across the simulators, as well as with real-world 

driving data when available. The second article discusses the advantages and disadvantages of within-subject 
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and between-subject experimental designs in the context of driving simulator validation. The authors argue 

that the choice of research design can significantly influence the outcomes, and that careful consideration of 

the use case and experimental variables is crucial to ensure reliable validation. 

Both articles emphasize the need for further research to determine which driving simulators are best suited for 

investigating specific use cases. The findings suggest that while high-fidelity simulators may offer certain 

advantages, such as reduced simulator sickness, low-fidelity simulators can still provide valid results for 

specific driving tasks. The choice of simulator should be guided by the specific research requirements and the 

need to balance realism, cost, and practical considerations. 

The aim of this work is not to study the relationship between humans and the simulator, nor its validity, but to 

explore methodologies for integrating the vehicle and its sub-components into the simulation environment. 

This aspect appears to be less studied in the scientific literature, likely because, in the author's opinion, it is a 

topic of greater relevance within the industry, where methodologies are not always shared. However, paper [3] 

describes a Hardware-in-the-Loop (HiL) setup developed by Cranfield University for the design and validation 

of vehicle dynamics control systems. The HiL integrates real actuators (steering and brakes), a high-fidelity 

vehicle model, and rapid prototyping tools to test control systems in a realistic environment, including a real 

driver in the simulation loop. Applications include characterizing actuators, rapid prototyping of control 

strategies, and testing systems under critical conditions. The setup is presented as a powerful tool for 

developing and validating ADAS and active safety systems. 

The two keywords for system integration are software-in-the-loop (Sil) and hardware-in-the-loop (HiL), 

representing the integration of physical systems and mathematical models interacting with the driving 

simulator, respectively. This means that both the software and hardware, which will be installed on the actual 

vehicle in the future, can first be developed and tested using the driving simulator by integrating them into the 

simulation loop. 

The work carried out in this PhD is mainly divided into two strands: The first purely focuses on suspension 

modelling, the development of methodologies for driving simulator integration and assisted design. This purely 

research work also includes comparisons between different methods for the vehicle side slip angle estimation 

and some hardware integrations. The second strand groups together a series of works resulting from research 

projects carried out with the Automotive Engineering and Design group at the University of Brescia, with the 

companies YCOM® and Adas Mobile®. 

The first part of the work focuses on the continuation of the development of 3DSusp, developed during the 

author's master's thesis, a user-friendly software with a graphical user interface, for suspension design and 

kinematic analysis. The software was improved, and new features were added, including new elements and 

integration with ViCarRealTime®, software for vehicle dynamics simulations, both offline and for the Vi-

Grade® static driving simulator at the University of Brescia (Figure 2). 
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Figure 2. Vi-Grade® static driving simulator at University of Brescia. 

Much of the research then focuses on the analysis of automotive suspension loads and compliance. Methods 

and algorithms have been proposed for calculating constraint reactions and solving the elastokinematics of 

suspensions. In particular, a complete method is presented that also takes into account the presence of rubber 

bushing with non-linear characteristics, validated using multibody software. These algorithms were written in 

Matlab® and then also used in the Simulink® environment to integrate them in co-simulation with the driving 

simulator to work also in real-time. 

Suspension and steering design play a major role in ensuring the correct dynamic behaviour of road vehicles. 

Passenger cars are especially demanding from this point of view: NVH (Noise, Vibration and Harshness) and 

ride comfort requirements often collide with active safety-related requirements such as road holding in steady-

state conditions and stability in transients. Driving pleasure is also important for market success, therefore 

accurate steering feedback and predictable handling properties are additional priorities.  

In motorsport applications, on the other hand, proper calculation of suspension compliance can make a 

difference in performance and feedback for the driver. In this field, minimizing compliance is important and 

comfort is not a target to chase, spherical joints, the so-called Uniballs, are used to make the connections 

between suspension elements. In passenger cars, on the other hand, flexible rubber bushing is used, which can 

absorb shock and vibration. These two different connections are shown in the Figure 3. 
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Figure 3. a) Uniballs used in motorsport application. b) Rubber bushings used in passenger cars. 

Modern passenger cars require an intensive effort for the design of suspension elastokinematic properties 

because of their relevant impact on ride, handling, and steering feel as well [4]. This is reflected in a vast 

engineering literature on the subject. The use of multi-body models for instance, although being the industry 

standard, is often considered demanding because of the high level of details required. The development and 

application of relatively simple, dedicated design and simulation tools instead is often considered more 

practical, especially when designing a new suspension concept ground up. This tendency is clearly visible in 

the related literature as many publications describe self-developed, peculiar methodologies, often responding 

to a varied level of complexity as well as to a different computational approach. A multibody model is often 

used as validation in these cases. 

The so-called multi-link rear suspension concept was introduced in the early eighties by Mercedes with the 

W201 (190) model, which represented a leap forward in terms of elastokinematics. The design requirements 

aimed at decoupling longitudinal compliance and wheel guidance, as well as the innovative way they were 

achieved are accurately described in [1], which is considered a milestone in the related literature. FEM analysis 

on suspension link deflection was used in order to simulate the deflection of rubber bushings. 

Among other efforts, significant contributions on design requirements for suspension kinematics and 

elastokinematics have been released by Volvo [2], Nissan [7], [8], Hyundai-Kia [9], and Ford [10], with the 

latter focused on the so-called integral link geometry. 

With specific regard to computational methodology, the work done stems from the study of industrial robot 

kinematics [11]. Specifically, the automotive suspension is seen as a Stewart-Gough platform where the end 

effector represents the wheel hub carrier. In the literature, much work has been done to study the kinematics 

and compliance properties of parallel robots and manipulators where arms and joints having finite stiffness are 

analysed [12], [13], [14], [15], [16].  

Analysing the literature in the automotive field, pure kinematics is dealt with by M.B. Gerrard in [17]. Another 

effort from the same author, this time regarding kinematics synthesis is [18], where significant limitations also 

occur, small displacements around the design configuration apply, and the interposition of elements between 
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suspension linkages is not considered, a layout like the integral link cannot be modelled. Kinematics is also on 

focus in [19], while the synthesis of five-link kinematics is discussed in [20], [21]. This is a relevant subject, 

even when neglecting elastokinematics, due to the optimization complexity with so many design variables 

available to play with.  

Pure kinematics computation is also used for applications related to motorsport [22], [23], [24] and for 

educational purposes as well [25]. The integration of a dedicated software with a toolchain for vehicle 

dynamics simulation is presented in [26]. It features a built-in graphical user interface conceived to facilitate 

the kinematics design process. 

Papers from well-known authors Knapczyk et al. are cited quite often. Among many, [27] still refers to [5] as 

a case study and reports a method for computing the force/displacement relationship of a five-rod multi-link 

suspension based on the vector algebraic method. Rubber bushings are described in detail, although their 

stiffness is considered in the radial and axial directions only. While [28] mainly deals with vertical dynamics, 

an approach similar to [27] is found in [29], where the role of the subframe (also referred to as “bogie” in its 

typical arrangement, i.e. connected to the chassis by four, vertical-axis, large rubber bushings) is also taken 

into account in order to simulate the elastokinematic behaviour of the rear axle as a whole. Again, from the 

same authors comes [30], dealing once again with a rear, five-link suspension, although with attention to 

vertical dynamics as well. 

The contribution of rubber bushings is considered in [31], where a comprehensive model of a double-wishbone 

front suspension is used for durability simulations, with specific focus on the angular travel of ball joints fitted 

at the outer end of both the lower and upper control arms as well as at both ends of the steering rod. Bushings 

feature non-linear characteristics in the axial, radial, torsional, and conical directions. 

Various authors adopted the equivalent stiffness approach in order to correlate suspension geometry and rubber 

bushing characteristics to the stiffness at the wheel centre. This method is strongly focused on the design of 

kinematics and compliance properties of the suspension as a whole. Compliance properties are computed at 

the wheel centre as a function of linear bushing characteristics in [32]. Kinematics is neglected in this case, as 

it is in [33]. In this case the same authors take link flexibility into account as well. 

Another interesting effort based on the stiffness matrix is [34], from the same author of [17], [18]. Once again 

however the paper deals with small displacements and linear bushings, which should be seen as an important 

limitation given their typically non-linear behaviour [31]. 

Elastokinematics is the subject of papers focusing on the MacPherson layout as well. Examples are [35], [36], 

where the bushing stiffness is considered in the radial and axial directions and fully linear.  

An extensive sensitivity analysis is carried out in [37], focusing on the interactions between steering 

kinematics, anti-roll bar rate, elastokinematics, and handling response of a front-wheel-drive passenger car by 

means of multi-body modelling. The correlation between elastokinematic modelling and experimental testing 
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on Michelin’s well-known K&C (Kinematics & Compliance) test rig is the subject of [38]. Rubber bushings 

are modelled quite accurately, while according to the authors ball joint friction and the visco-elastic properties 

of rubber also play an important role in the overall suspension behaviour. 

Starting again from experimental data, reverse engineering of the three translational bushing characteristics is 

the aim of [39]. In this case rubber joints can be placed either side of each suspension link. All bushing 

characteristics however are deemed as linear: this is a typical case study of an identification process. It also 

seems that the assumption of variable length suspension links might require further assessment.  

Non-linear stiffness of bushings along all six degrees of freedom is instead adopted in [40], aimed at the 

computation of joint forces on the chassis side of a double-wishbone suspension. In this work, which in the 

author's opinion seems to be one of the most complete, the wheel-side bushings are not considered, and all 

elements except the spring are rigid. However, the spring is considered as a simple elastic element without 

considering that it is often mounted on the frame and suspension by means of rubber bushings. The nonlinearity 

of stiffnesses is considered by means of force-displacement curves composed of several linear segments. 

Finally, the methodology behind an earlier version of the well-known commercial tool Shark by Lotus 

Engineering is described in [41]. In this tool, both wheel-side and frame-side bushings can be inserted, but 

limitations remain: stiffnesses can only be linear. Also, the kinematics of the system are not taken into account; 

the tool calculates the stiffness matrix of the suspension, linearizing it, but this is only good for small 

deformations. 

As a general rule, most of the papers in the literature tend to neglect one or more factors of the real-world 

design. Either the bushings are represented with linear characteristics, or with non-linear curves but only for 

translational displacements i.e. in the axial and radial directions only, while the angular deflection rates are not 

considered. Another limitation that is often found is the fact that rubber bushings are featured on the chassis 

side of suspension arms only, while in current suspension systems they are sometimes located between the 

suspension arms and the wheel carrier as well, or even in the middle of the trackrod. Some papers also tend to 

linearize suspension behaviour in a small displacement range around the static or design configuration with a 

single stiffness matrix. 

Since flexible bushings are used as interface between the suspension arms and the chassis, extra degrees of 

freedom make the design process a complex task. While the use of a multi-body model is common practice in 

the industry, a dedicated computational tool can be more practical and straightforward, especially when 

undertaking the design of a new suspension concept ground-up. 

One chapter of this thesis is dedicated to the description of some algorithms for calculating suspension elasto-

kinematics, both for motorsport and non-motorsport applications. The various models were developed during 

the author's PhD period, starting from simpler algorithms to a comprehensive one. 
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Two simplest algorithms are based on calculating the loads acting on the suspension joints, but they consider 

spherical joints for load computation and consider the arms as ideal connecting rods, thus subjected only to 

axial load. In fact, in the first subchapter, before describing the algorithms for elasto-kinematics, a method a 

method is described to be able to calculate the constraining reactions on the suspension joints. This method 

was created not only for the purpose of developing elasto-kinematics but so that it could also be implemented 

in 3DSusp to include additional functionality in the program that would allow one to be able to know the loads 

on the suspensions to perform a first design process and/or use these results as input for FEM analysis. 

These elasto-kinematics models will also be implemented in the Vi-CarRealTime® environment and also for 

real-time simulations. It is well known that correct modelling of elastokinematics, taking non-linearities into 

account, is crucial for several aspects: design [31], for handling [37] and also for ride & comfort [42]. The 

integration of models characterizing elastokinematics in vehicle dynamics simulations is a recurring topic, 

with the main challenge being the speed of computation [43].  

With regard to real-time simulations, the current trend in the literature shows an approach based on modelling 

suspension compliance through artificial neural networks (ANN) [44]. In this way, it is also possible to 

consider dynamic effects as opposed to a quasi-static solver. However, a significant amount of data is needed 

to train the network, which can be particularly complicated or even impossible during the design phase. The 

purpose of this work is to provide a method for solving the suspension elastokinematic problem using a general 

procedure that enables the design of any layout under any combination of jounce and steering or load. Bushings 

can be described with real-world, non-linear stiffness curves for all six degrees of freedom. They can be located 

on either side of each suspension arm, i.e., on the chassis side and/or the wheel side. The axial flexibility of a 

track rod can also be represented by means of equivalent, non-linear bushings. The wheel bearing stiffness can 

be considered as well. Wheel movements, hence variations of vehicle dynamics-relevant parameters like 

camber, side view angle, toe, track, wheelbase, and vertical displacement, can be computed under any 

combination of road loads, also considering steering due to rack translation. Loads through suspension joints, 

components, and chassis pick-up points can also be computed. 

In general, elastokinematics is implemented in vehicle dynamics simulations using look-up tables, often 

derived from experimental data obtained through K&C or SPMD, then applying the superposition principle 

[45]. This method is characterized by requiring negligible computational resources. 

One of the aims of this work is to show how the superposition principle, which can work well in some cases, 

does not allow for a correct characterization of compliance when large lateral and longitudinal accelerations 

are involved, as mentioned in [45]. A comparison, through simulation, with a model based on look-up tables 

and the superposition principle is proposed to show how vehicle behavior can change in a test with large 

accelerations. The simulation is also carried out to demonstrate the possibility of using the method proposed 

in this work in real-time. 
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Research work on the estimation of the vehicle side slip angle, one of the most important parameters for 

characterising vehicle dynamics, is also proposed. A comparison between two models is proposed, the first 

based on artificial neural networks, the second based on a Kalman filter. Finally, a methodology for 

implementing the neural network on the Wintax data acquisition software on the Vi-Grade® driving simulator 

is also presented.  

Vehicle sideslip angle (VSA) estimation has been a big challenge since the introduction of the very first on-

board active systems controlling vehicle stability, such as the electronic stability control (ESC, aka ESP) in the 

early 1990s [46]. It can be used to investigate the cornering behaviour in terms of understeer/oversteer and 

stability, which are related to active safety and drivability, for either passenger cars or high-performance 

vehicles. Moreover, active safety systems such as ESC can be used in conjunction with VSA to extend the 

vehicle performance envelope and/or enhance driver perception and comfort [47] as the average driver feels 

uncomfortable when large VSA values occur, during emergency maneuvers for instance [48]. It is also worth 

mentioning that vehicle drivability is strictly related to VSA: whenever it is large, the authority of the steering 

wheel angle in generating a yaw moment becomes significantly reduced. VSA can also be used for autonomous 

driving strategies and advanced motion control of high-performance electric vehicles, thus improving active 

safety and efficiency which are considered key factors in the automotive market [49]. 

VSA estimation is usually classified as Kalman Filter-based and Neural Network-based. According to [50] 

however none of the proposed methods succeeded as the most effective, and the problem is not yet fully 

resolved. The aim of chapter 4.1 is to further investigate estimation performances of both methods through a 

direct comparison with real-world data. 

Work on hardware integration is also presented, special touch-sensitive paddles were mounted on the driving 

simulator to manage the shift logic in an original way. Methods for creating customised dashboards that 

communicate with the driving simulator are also presented. 

The research project in collaboration with YCOM® led to the study and modelling of mainly two vehicle 

subsystems. Firstly, the inboard part of the suspension, i.e. everything including spring elements, shock 

absorbers and anti-roll bars, with the possibility of being able to control them fully during the simulation, with 

the aim also of developing active suspension controls. As second the modelling, again in Simulink®, of a 

limited slip differential (LSD) with the aim of creating active controls by actuating the clutch pack. 

Finally, the research project with Adas Mobile® allowed the author to explore the possibility of developing 

ADAS systems through the driving simulator, to create traffic scenarios, through the ViWorldSim® software. 
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2 3DSusp 

The first part of the work starts from my master's thesis: the development of suspension design software, a 

screenshot is shown in Figure 4. 

This tool can calculate the kinematics of any type of independent wheel suspension, such as Multilink, Double 

Wishbone, MacPherson, Trailing Arm, etc. Much work has been devoted to the development of the graphical 

interface; in fact, the suspension is drawn in both orthogonal projections and a perspective view. The graphics 

were developed using the OpenGL libraries that allow them to communicate directly with the computer's 

graphics card. 

 

Figure 4. 3Dsusp software screenshot representing a double wishbone suspension of an F4 race car. 

The calculation method is derived from robotics and is based on that used for the platform of Stewart-Gough 

and using the multi-variable Newton-Raphson method as the solver of the nonlinear equations. 

The software has been developed with a user-friendly interface. For example, it is possible to select different 

suspension points with the mouse and move them quickly with the header and monitor the various parameters 

calculated by the software in real-time. 

This tool also has a rather innovative feature that is not present in other competing software, the so-called 

design mode: where it is possible to simulate different setup changes to be made on the suspension, simulating 

the adjustments that are made for example on the track during a race. 

It is obviously not the purpose of this text to describe the operation and methodologies of software 

development, already discussed extensively in the master's thesis.  
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During the PhD, however, a need arose to develop new features and improve the tool. Significant 

improvements were made on the computational speed and quality of the GUI (Figure 5) by streamlining the 

functions from a computational point of view and by studying the functionality of the OpenGL graphics 

libraries more thoroughly. For example, now the software to perform a suspension bump calculation with 100 

steps takes less than 0.2 seconds, instead, in the version created for the master's thesis it took about 8 seconds. 

Most of the improvement was achieved by better studying how the VB.net programming language handles 

memory when calling functions. 

 

Figure 5. Comparison of software graphics now a) and just finished master's degree b), 4 four years ago. 

Instead, the development of other features arises mainly from two factors, the first being a research contract 

made with YCOM, a race car manufacturer specializing in composites, and the second being the presence of 

the Vi-Grade driving simulator purchased by the department in 2019. 

The research project in collaboration with YCOM involved the development of a fully electric race car. 

Specifically, for the design of its suspension, the need arose to add the ability to model other elements such as 

anti-roll bars, heave elements, and roll elements. Other external projects also made it necessary to include an 

additional suspension model in 3DSusp, the integral link. 

With the purchase of the Vi-Grade driving simulator and with the use of their Vi-CarRealTime® vehicle 

dynamics simulation software, the need arose to interface these with 3DSusp so that a suspension could be 

designed on the software and in a few steps could be entered into the virtual vehicle model and eventually 

driven on the simulator as well. 

2.1 New suspension elements 

As mentioned earlier, new suspension elements were modelled in the 3DSusp software to allow for their 

design. These elements do not directly affect the suspension kinematics and wheel movement but connect the 

two suspensions of the same axle and are used to control heave, roll, and pitch movements. 

Specifically, these new elements are: 
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• C-Shaped Antiroll Bar 

• T-Shaped Antiroll Bar with Third Element 

• Heave Element and Roll Element 

2.1.1 C-Shaped Antiroll Bar 

The c-shape is one of the simplest anti-roll bars (ARBs), also used in passenger cars. It consists of a "C"-

shaped bar where the middle part functions as a torsional spring and two connecting rods that connect the bar 

to the two wheels of the axle, respectively. The special feature of this element is its simplicity, which is why it 

is used in ordinary cars and unlike the other elements mentioned in later chapters does not make it necessary 

to have a suspension scheme with rocker and pushrod/pullrod. In fact, it is possible to attach the anti-roll bar 

to the hub carrier or to one of the wishbones or to one of the links if the suspension is a multilink type. On the 

other hand, if it is a race car, the bar is often tied to the rockers. A schematic of a C-shaped anti-roll bar can be 

seen in the Figure 6. 

 

Figure 6. A schematic of a C-shaped anti-roll bar. a) ARB attached through the wishbones. b) ARB attached through the 

rockers. In red the torsion "C" bar and in green the links. 

Three points in space are enough to model the ARB: 

• E: Link attachment point on the element that can be the rocker or a wishbone or a rod. 

• B: Link attachment point with the bar. 

• P: Pivot point defining the torsion axis of the bar. 

These three points totally identify the position of the ARB as they define the position on the left wheel; the 

points on the right wheel are symmetrical to the median plane of the axle. 

First, a reference system integral to the element to which the 𝐴𝑅𝐵 is constrained is defined, which is called the 

ERS (Element Reference System). The orientation of this reference system with respect to the Global 

Reference System (GRS) is known from the kinematics calculation performed in the software. In particular, 
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the transformation matrix 𝑀𝐸𝑅𝑆 containing the direction cosines and translation vector of 𝐸𝑅𝑆 with respect to 

𝐺𝑅𝑆 is known. In this work, the global reference system will always be defined with the X-axis parallel to the 

longitudinal axis of the vehicle and direction coinciding with the direction of driving, the Z-axis is instead 

vertical, and the Y-axis is accordingly defined as positive to the left. 

Next, a second reference system called 𝐵𝑅𝑆 is identified, by convention the x-axis of this reference system is 

placed along the torsion axis of the bar. A diagram for identifying the C-shaped anti-roll bar can be seen in the 

Figure 7. 

 

Figure 7. Schematic of the C-shaped anti-roll bar with reference systems. a) Bar attached to the rocker. b) Bar attached 

to the lower wishbone. 

The purpose of modelling the bar is to be able to calculate its motion, and particularly its torsion during the 

movements of the two wheels. What happens is that the 𝐵𝑅𝑆 reference system will have to rotate a certain 

angle around the torsion axis of the bar. Given the two rotation angles, one for each wheel, the difference 

expresses the torsion angle of the bar. 

In this case, the system has only one degree of freedom, which is the rotation of the bar around its own axis, 

passing through point P and directed as the Y-axis of the 𝐺𝑅𝑆. The degrees of bar rotation are calculated 

through the Newton-Rapshon algorithm by imposing that the length of the 𝐸𝐵 rod does not vary during the 

motion of the suspension. The point 𝐸 is rigid with the reference system of the element (𝐸𝑅𝑆) to which it is 

bound, so its position is known during the movement of the suspension. The point 𝐵 is solid with the 𝐵𝑅𝑆 

reference system, which can only rotate around the rotating axis of the ARB. Thus, the position of point 𝐵 is 

function of the angle of rotation of the bar 𝜃. The actual value is easily calculable by knowing the coordinates 

of the points 𝐸 and 𝐵, thanks to the transformation matrices that define the different reference systems as 

described in the following equations. 

𝑋𝐸𝑅𝑆 = 𝑀(𝜃) ∙  𝑋𝐺𝑅𝑆 (2.1) 

𝑋𝐺𝑅𝑆 = 𝑀(𝜃) 
−1 ∙  𝑋𝐸𝑅𝑆 (2.2) 
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where 𝑋𝐸𝑅𝑆 and 𝑋𝐺𝑅𝑆 are the vectors that represent the coordinates of a point in the 𝐸𝑅𝑆 and 𝐺𝑅𝑆 reference 

systems respectively and are defined as in equation 2.3. 

𝑋 = [

𝑥
𝑦
𝑧
1

] 

(2.3) 

The 𝑀(𝜃) matrix represents the transformation matrix containing the directors cosines and the translation 

vector of the 𝐸𝑅𝑆 reference system relative to 𝐺𝑅𝑆. The distance between two points is calculated by 

calculating the difference between the two vectors representing the coordinates, eq. 2.4. 

𝐸𝐵̅̅ ̅̅ =  ‖𝑋𝐸 − 𝑋𝐵‖ (2.4) 

The function 𝑓(𝜃) is then defined in eq. 2.5, representing the length difference between the current value of 

the 𝐸𝐵 segment, that depend to  𝜃 and the initial one.  

𝑓(𝜃) =  𝐸𝐵̅̅ ̅̅ 𝐴𝑐𝑡𝑢𝑎𝑙(𝜃) − 𝐸𝐵̅̅ ̅̅ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 (2.5) 

Now it is possible to find the correct 𝜃 value by solving the equation 𝑓(𝜃) =  0 using the Newton-Raphson 

iterative algorithm, described in eq. 2.6. 

𝜃𝑖+1 = 𝜃𝑖 −
𝑓(𝜃𝑖)

𝑓′(𝜃𝑖)
 

(2.6) 

Until 𝜃𝑖+1 is smaller than a number close to 0. 𝑓′(𝜃𝑖) represents the derivative relative to 𝜃 of the function 

𝑓(𝜃) and is calculated numerically by applying an infinitesimal vertical shift to the suspension. 

It is therefore possible to know for each bump value of the suspension, the relative rotation of one side of the 

bar. It is obvious that for symmetrical bump (Heave) the bar moves but does not undergo any twist, so it is 

interesting to calculate the twist of the bar for different values of shaking between right and left wheels, 

therefore for different roll angles. 

In addition, the motion ratio 𝑀𝑅 of the bar can also be calculated. The motion ratio of an element is generally 

defined as the derivative of its motion (twisting in this case) with respect to a wheel motion. By imposing small 

displacements on the left and right wheels, it is possible to calculate the torsion of the bar relative to that small 

displacement. Two different motion ratios are calculated, the first is defined as the derivative on the roll angle 

and the second as the derivative on the vertical displacement of the wheel, considering the other fixed. 

Specifically, the former will be a dimensionless number, the latter will have units in °/𝑚𝑚. 

Shown in the Figure 8 is the graph, in the 3DSusp GUI, showing the trend of bar torsion during the roll of an 

example suspension. 
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Figure 8. C-Shaped ARB torsion angle vs roll angle in 3DSusp interface. 

2.1.2 T-Shaped Antiroll Bar with Third Element 

Another type of anti-roll bar, used in motorsport, is the T-Shaped Antiroll Bar. Again, there are two rods 

connecting the suspension to the ARB, in this case, however, the connecting rods are always mounted on the 

rocker. The bar is free to rotate about its axis of rotation, which is always parallel to the Y-axis of the GRS. 

This movement occurs during the parallel bump (Heave) movement. During roll movement, on the other hand, 

the bar is deformed, and in general, stiffness is controlled by making the vertical section of the bar work in 

torsion. In some cases, knives can also be used to make the horizontal sections of the ARB work in bending. 

This scheme also allows for the possibility of mounting the so-called third element, which is a spring/shock 

absorber bound on one side to the chassis and on the other side to the bar, usually in its symmetry’s axis. The 

purpose of this element is to provide stiffness during heave motion while maintaining a zero contribution to 

roll stiffness. A schematic of a T-shaped anti-roll bar can be seen in the Figure 9. 

 

Figure 9. A schematic of a T-shaped anti-roll bar. a) ARB without third element. b) ARB with third element. In red the 

torsion "T" bar, in green the links and in blue the third element. 
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Exactly as in the "C" Bar, three points in space are enough to model the ARB: 

• E: Link attachment point on the element that can be the rocker. 

• B: Link attachment point with the bar. 

• P: Pivot point of the bar. 

These three points totally identify the position of the ARB as they define the position on the left wheel; the 

points on the right wheel are symmetrical to the median plane of the axle. For point 𝑃, only 𝑋 and 𝑍 coordinates 

can be varied since 𝑌 is fixed at 0. 

For the third element, however, it is necessary to define two points: the TB point, connected to the bar, and the 

TC point, connected to the frame. 

As explained in the previous subchapter, the GRS and ERS reference systems are defined and a diagram for 

identifying the T-shaped ARB and the third element can be seen in the Figure 10. The points 𝐸′ and 𝐵′ represent 

the corresponding symmetrical points on the opposite wheel of the same axis. 

 

Figure 10. Schematic of the T-shaped anti-roll bar with reference systems.  

Mathematically modelling this scheme allows to know the motion of the bar during bump and roll motion. The 

bump motion can also be useful in the absence of the third element to study the overall dimensions during 

design. The purpose is to calculate the angle of rotation of the 𝐵𝑅𝑆 reference system around the torsion axis 

of the bar and eventually the compression of the third element. 

Unlike the C-Shaped ARB, this system has two degrees of freedom: the rotation about the transverse axis 

(parallel to 𝐺𝑅𝑆 Y-axis and passing through 𝑃) and rotation about the torsion axis of the bar, which is the axis 

passing from the point P and the midpoint between 𝐵 and 𝐵′. This rotation represents the torsion of the ARB.  
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In this case, to calculate the two bar rotations, the other suspension wheel must also be considered. By causing 

the two wheels to make different movements, the points 𝐸 and 𝐸′ will move, and the two degrees of freedom, 

called the 𝜃 and 𝛿, can be calculated through the Newton-Rapshon algorithm by imposing the length of the 

𝐸𝐵 and 𝐸′𝐵′ connecting rods as constant. It is then necessary to define the function 𝑓(𝜃, 𝛿) to be imposed 

equal 0 as a vector function defined in the eq. 2.7. 

𝑓(𝜃, 𝛿) = [
𝑓1(𝜃, 𝛿)
𝑓2(𝜃, 𝛿)

] =  [
𝐸𝐵̅̅ ̅̅ 𝐴𝑐𝑡𝑢𝑎𝑙(𝜃, 𝛿) − 𝐸𝐵̅̅ ̅̅ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙
𝐸′𝐵′̅̅ ̅̅ ̅̅

𝐴𝑐𝑡𝑢𝑎𝑙(𝜃, 𝛿) − 𝐸′𝐵′̅̅ ̅̅ ̅̅
𝐼𝑛𝑖𝑡𝑖𝑎𝑙

] 

 

(2.7) 

The position of the points 𝐸, 𝐸′, 𝐵, and 𝐵′ during the movement of the suspension are calculated similarly to 

what was seen in the previous subchapter. The 𝜃 and 𝛿 values are then calculated with the Newton-Raphson 

algorithm, this time defined for multi-variable vector functions, eq. 2.8. 

(𝜃, 𝛿)𝑖+1 = (𝜃, 𝛿)𝑖 − [𝐽(𝜃, 𝛿)𝑖]
−1 ∙ 𝑓(𝜃, 𝛿)𝑖 (2.8) 

Until 𝑅𝑀𝑆 of 𝜃 and 𝛿 are less than a small number. Where 𝐽(𝜃, 𝛿) is the Jacobian matrix containing the partial 

derivatives of the function, as in the eq. 2.9. 

𝐽(𝜃, 𝛿) = [

𝜕𝑓1(𝜃, 𝛿)

𝜕𝜃

𝜕𝑓1(𝜃, 𝛿)

𝜕𝛿
𝜕𝑓2(𝜃, 𝛿)

𝜕𝜃

𝜕𝑓2(𝜃, 𝛿)

𝜕𝛿

]  

(2.9) 

Having solved the function, the position of the bar is known and the 𝜃 angle corresponds to its torsion, and it 

is also possible to calculate the position of the bar-bound 𝑇𝐵 point of the third element to calculate its 

compression by the distance between 𝑇𝐵 and 𝑇𝐶. In the same way as in the previous subchapter, it is also 

possible to calculate the motion ratios of the bar and the third element, both in bump and roll. Shown in the 

Figure 11 is the graph, in the 3DSusp GUI, showing the trend of bar torsion during suspension roll.  

 

Figure 11. T-Shaped ARB torsion angle vs roll angle in 3DSusp interface. 
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2.1.3 Heave Element and Roll Element 

The heave and roll element are two devices that are used in race cars. Each of these elements consists of a 

spring/shock absorber that connects the two rockers of the same axle, as can be seen in the Figure 12. 

 

Figure 12. Heave element and roll element installed on a race car. 

The purpose of these elements is to provide stiffness (or damping) for heave (parallel bump) and roll motion, 

respectively, by making them work completely separately. In fact, typically the heave element is mounted 

horizontally so that it compresses or extends only for parallel vertical movements of the suspension, while 

remaining almost unchanged in length during opposite vertical wheel movements. The roll element, on the 

other hand, is mounted so that its length varies only at roll and not during heave. 

The modelling of these two elements is quite simple; for each element it is necessary to identify two points, 

each constrained to one of the two rockers. The heave element is defined through the points H1 and H2, the 

roll element through R1 and R2, as can be seen from the Figure 13. 

 

Figure 13. Schematic of the heave element and roll element 

As seen in previous sub-chapter 2.1.2, points are constrained to the relevant element reference systems (𝐸𝑅𝑆), 

and through the associated transformation matrices, coordinates are derived in the global reference system 
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(𝐺𝑅𝑆). By calculating the distance between the points, the compression of the elements is derived, and by 

applying infinitesimal displacements to the wheels, the derivative of the compression with respect to wheel 

motion, that is the motion ratio, can also be calculated. 

Figure 14 shows, in the 3DSusp interface, of the length of the two elements as a function of the movement of 

heave of an example suspension. The suspension bump, while being the independent variable is plotted on the 

y-axis so that it is more intuitive in that a positive bump value represents the suspension compressing, thus the 

wheel rising upward relative to the chassis. 

 

Figure 14. Heave element and roll element length vs bump travel in 3DSusp interface 

It is possible to see that the roll element, called the roll spring in 3DSusp, also works slightly in heave, but the 

magnitude of its deformation is negligible compared to that of the heave element. The opposite phenomenon 

also happens for the heave element during suspension roll, as can be seen in the Figure 15. 

 

Figure 15. Heave element and roll element length vs roll angle in 3DSusp interface 
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2.2 Integral Link 

A new type of suspension that can be modelled, the so-called Integral Link, has been implemented in 3DSusp. 

The algorithm for calculating suspension kinematics is inspired by that used in the field of robotics for parallel 

robots, particularly the Stewart-Gough platform, Figure 16. In this platform, the frame connects the moving 

part via 6 connecting rods to control its 6 degrees of freedom. The similarity to an automotive suspension is 

obvious: the wheel is connected to the frame via connecting rods that give 5 degrees of constraint. 

 

Figure 16. Stewart-Gough platform. 

The sixth connecting rod, on the other hand, is a segment constrained to the ground point of the wheel, vertical 

and of infinite length (ten orders of magnitude larger to simulate a big number) to control the vertical movement 

of the wheel. The goal is to find the position of the wheel, defined by 3 coordinates and 3 angles by making 

sure that the 6 connecting rods are of a fixed length. Again, this involves solving 6 nonlinear equations, so the 

Newton-Rapshon algorithm with the appropriate 6x6 Jacobian matrix is used. The operation of the kinematics 

resolution algorithm is not the subject of this thesis, as it is explained in depth in the master's thesis of the 

author. 

With this type of model, it is possible to build almost any type of independent-wheel suspension, those where 

individual arms connect the chassis of the car to the upright. By positioning the 5 connecting rods appropriately, 

it is possible to model suspension types such as Multilink, Double Wishbone, Trailing arm, etc. 

There is, however, a particular type of suspension called “integral link”, which has been used a lot lately, where 

there is a connecting rod that does not directly connect the hub carrier with the frame, but generally connects 

it with the lower arm. With this 'parallel robot' model, it is not possible to model the integral link. Some 

examples on real vehicle suspensions, such as the Ferrari 488 and Tesla Model 3, are shown in the Figure 17. 
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Figure 17. Integral suspension with link connecting arm and upright on real cars. a) Ferrari 488 rear suspension. b) Tesla 

Model 3 rear suspension 

Figure 17 show a small connecting rod (highlighted with the red arrow) that connects the lower arm to the hub 

carrier. This is a solution that is implemented to simplify the suspension architecture from the chassis side. The 

number of total degrees of constraint do not change, but it was necessary to implement a change to the 

algorithm in order to consider that the coordinates of this connecting rod (integral link), during the suspension 

movement, change on both the wheel side and the frame side. From the computational point of view, nothing 

new is considered; a reference system integral to the arm is considered so that the new coordinates of the 

integral link joint can be computed during the kinematic computation. The key difference is that in all other 

models, the hardpoints on the chassis side remain fixed during movement. In the integral link, however, one 

of these points moves with the suspension, and its position must be recalculated at each iteration. 

In the Figure 18 it is possible to see the implementation of the integral link in 3DSusp. 

 

Figure 18. Integral link (vertical red link) in 3DSusp connecting the lower arm (blue) with the upright (green). 



26 

 

2.3 Integration with Vi-CarRealTime® 

Vi-CarRealTime® is a vehicle dynamics simulation software; it represents the state of the art and is used 

professionally by major automakers. This software allows to create a virtual vehicle model; the architecture of 

the solver is based on a multibody model. A screenshot of the Vi-CarRealTime® GUI can be seen in the Figure 

19. The company that produces this software, Vi-Grade is a world leader in building professional driving 

simulators. The University of Brescia bought one in 2019, specifically getting a compact simulator like the 

one shown in the Figure 19. With this simulator it is possible to drive in a simulated environment the vehicle 

model created in Vi-CarRealTime®. 

 

Figure 19. a) Vi-CarRealTime® graphic interface. b). Vi-Grade compact driving simulator. 

Having developed suspension design software such as 3DSusp, the need arose to be able to integrate 

suspension kinematics easily and quickly into a virtual vehicle model in Vi-CarRealTime®. 

Integration via Vi-Grade environment was done with two different mereologies in different steps. The first 

approach is the simplest from an implementation point of view but slower and less effective from a user 

experience point of view. A tool in the Vi-Grade package was exploited to do this: Vi-SuspensionGen®. 

The second approach takes advantage of the fact that Vi-CarRealTime® allows its solver to be used in the 

Matlab-Simulink® environment so that external models can be utilized in co-simulation. 

2.3.1 Integration through Vi-SuspensionGen® 

A vehicle model in Vi-CarRealTime® is composed of several subsystems such as: body, powertrain, front and 

rear suspension, and so on. Each subsystem is characterized by a file with an .xml extension that describes all 

its properties, also including the curves that describe the kinematics of the suspension. The same goes for the 

file describing the subsystem "Steering." 
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Vi-CarRealTime® provides a tool called Vi-SuspensionGen® that allows the creation of .xml files needed for 

the vehicle model from a suspension defined by hardpoints, such as 3DSusp. Vi-SuspensionGen® allows the 

creation of different suspension architectures, such as those shown in the Figure 20. 

 

 

Figure 20. Available suspension model in Vi-SuspensionGen®. 

Thus, in Vi-SuspensionGen® it is possible to import any type of suspension from 3DSusp except for the solid 

axle since it is a dependent wheel suspension and not provided for in 3DSusp. However, there are some 

configurations that can be modelled in 3DSusp that are not provided for in Vi-SuspensionGen®, such as the 

integral link discussed in the previous subchapter. 

To get the two pieces of software talking, it was necessary to analyse the files with which Vi-SuspensionGen® 

manages and saves suspensions, which utilizes the .sgs extension. The necessary routines were then created in 

3DSusp to be able to generate the .sgs files that can be read by Vi-SuspensionGen®, and through a simple 

button it is then possible to create the file, open it in Vi-SuspensionGen®, and generate the .xml files with the 

kinematic curve characteristics to be inserted into the vehicle model. As an example, a screenshot of how the 

.sgs file is formatted is shown in the Figure 21. 
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Figure 21. Screenshot showing the formatting of the readable .sgs file in Vi-SuspensionGen®. 

 

2.3.2 Integration through Matlab-Simulink® Co-Simulation 

Vi-CarRealTime® allows to use the solver in the Matlab-Simulink® environment thus being able to integrate 

logic or algorithms that work in co-simulation. 

Vi-CarRealTime® precisely provides the possibility of using the so-called "External Suspension" and 

"External Steering" so that we can manage externally, in this in Simulink®, a suspension model with its 

steering mechanism. At each simulation step, the Vi-CarRealTime® solver needs to have information about 

the position and orientation of the wheel to correctly calculate the forces applied to the suspension and then to 

the chassis. It is necessary to provide information on the change in wheelbase, track, camber, toe and SVA 

(Side View Angle), which is the rotation of the suspension about its y-axis. Obviously, this data must be 

provided for each of the 4 wheels of the vehicle. 

Vi-Grade's software provides detailed guidance on the inputs to be provided in order to work with an external 

suspension model. To be able to calculate how forces are transmitted to the chassis, thus taking into account 

anti-effects, jacking-force and so on, the first and second derivatives with respect to bump and steering must 
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be provided, for each suspension parameter. The first and second derivatives with respect to time are also 

needed.  

The following is then a list of input variables to be provided, for each parameter (Variation of wheelbase and 

track, Toe, Camber and SVA) to the Vi-CarRealTime® solver to externally manage the suspension of a single 

wheel: 

• InternalFlag 

• Displacement 

• Velocity 

• Acceleration 

• DerivativeWrtSwa 

• DerivativeWrtJside 

• DerivativeWrtJopp 

• SecondDerivativeWrtSwaSwa 

• SecondDerivativeWrtSwaJside 

• SecondDerivativeWrtSwaJopp 

• SecondDerivativeWrtJsideJside 

• SecondDerivativeWrtJsideJopp 

• SecondDerivativeWrtJoppJopp 

Where InternalFlag is simply a boolean value to turn internal kinematics computation on or off, the value "0" 

must be provided to work with an external model. 

Displacement is the value of the parameter at that instant, and Velocity and Acceleration represent the first and 

second derivatives of that value, respectively, with respect to time. 

The other values represent first and second derivatives with respect to different values where Jside represents 

the jounce of the wheel itself, Jopp represents the jounce of the opposite wheel of the same axle, Swa represents 

the steering wheel angle. Wrt means "With respect to." 

3DSusp models only independent-wheel suspensions, so that the value of a suspension parameter has no 

dependence on the jounce value of the opposite wheel, it follows that the derivatives with respect to Jopp will 

all be zero. Similar reasoning applies to the rear wheels; since they are not steered, the derivatives with respect 

to Swa will all be zero. 

3DSusp's algorithm, natively written in VB.Net language has been rewritten in Matlab® language within a 

matlab-function that can be used within Simulink. This function receives as input the jounce of the individual 

suspension and the steering angle (for the front suspension) and returns, for each suspension parameter a vector 

containing the inputs to be provided to the Vi-CarRealTime® solver. 
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For the calculation of derivatives with respect to time, the Simulink® "Derivative" block has been used. 

Instead, the calculation of the other derivatives is simply done numerically by applying small jounce and steer 

values in the algorithm to then calculate the differential value for each individual parameter. The method is 

similar to that used for calculating the motion ratio of elements, described in previous chapters. For second 

derivatives, the small displacement is applied twice, and the differential is calculated on the values of the first 

derivative. 

Shown in the Figure 22 is a screenshot of a corner of the Simulink® file where it is possible to see the matlab-

function related to the left front wheel containing the 3DSusp resolution algorithm and its links to the Simulink 

block of the Vi-CarRealTime® solver. 

 

Figure 22. Screenshot of a corner of the Simulink® showing how the Matlab-function containing the 3DSusp algorithm 

is integrated into the Vi-CarRealTime® solver. 

This method proved to be particularly powerful because the change of any point in the suspension can be 

evaluated instantaneously on the vehicle dynamics simulation software. 

In addition, this method is particularly effective at the driving simulator because it even makes it possible to 

change any suspension parameter in real-time without having to stop the simulation and reload the model. 
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3 Suspension Elasto-kinematics and Loads 

3.1 Suspension Loads 

The algorithm for calculating the loads acting on the suspension is quite simple and is based on solving the 

equilibrium equations of the forces and moments. These equations are always linear, so it is only necessary to 

invert a matrix to solve. 

By loads, more properly is meant the calculation of the constraint reactions acting on the suspension joints and 

eventually the axial force on the connecting rods, because of external forces applied on the wheel. 

In general, two main cases can occur, depending on where the pushrod or spring is constrained: 

• Pushrod/Spring attached to the upright 

• Pushrod/Spring attached to a wishbone arm 

The suspension model being considered is the most general one possible, namely the Multilink. The other 

suspension architectures are special configurations of the multilink where certain connecting rod joints are 

made to coincide with it. For example, a double wihsbone suspension is a multilink where the connecting rods 

converge two by two on the hub carrier. 

Acronyms are defined below to facilitate understanding of the following subchapters. In particular, a name is 

given to each of the 6 connecting rods that make up the multilink: 

• TLF = Top Link Front 

• TLR = Top Link Rear 

• BLF = Bottom Link Front  

• BLF = Bottom Link Rear 

• TR = TrackRod  

• PR = PushRod/PullRod or Spring 

To identify the points of each connecting rod, a letter is added to identify: wheel side (𝑊) and frame side (𝐶). 

For example, the frame side point of the front upper connecting rod will be 𝑇𝐿𝐹𝐶. Its coordinates will be: 

𝑇𝐿𝐹𝐶 = (𝑋𝑇𝐿𝐹𝐶 , 𝑌𝑇𝐿𝐹𝐶 , 𝑍𝑇𝐿𝐹𝐶). 

To write the equations, a reference system with origin in the wheel centre and directions equal to the main 

reference system is considered. It is therefore necessary to change from an absolute to a relative coordinate 

system. This is done by using a transformation matrix that contains the direct cosines of the wheel reference 

system with respect to the global one. 

The coordinates written in the equilibrium equations will always refer to the reference system integral with the 

wheel centre. The equilibrium at rotation will be written by choosing the wheel centre as the pole. 

Next, the direct cosines are calculated for each connecting rod. Given two Points 𝐴 and 𝐵, the direct cosines 

of segment 𝐴𝐵 are called: 𝑐𝐴𝐵 = [𝑐𝑋𝐴𝐵  𝑐𝑌𝐴𝐵  𝑍𝑐𝐴𝐵] 
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3.1.1 Pushrod or Spring attached to the upright 

The first case is the simplest, because all the suspension arms are, in this model, considered to be connecting 

rods, thus subjected only to axial action. Thus, it is sufficient to calculate the equilibrium equations on the hub-

carrier to be able to know all the constraint reactions. 

A schematic of the model with PR constrained to the hub carrier can be seen in the Figure 23, where the yellow 

arrows represent the axial forces of each connecting rod. 

 

Figure 23. Schematic of the model with PR constrained to the hub carrier, the yellow arrows represent the axial forces 

of each connecting rod. 

The direction of the axial force of each connecting rod is known, as it coincides with the vector of the directing 

cosines that identify the connecting rod in the reference system integral to the wheel. 

The equations of equilibrium on the hub carrier are written in matrix in eq. 3.1. 

[𝑀] ∙ [𝑅] = [𝐹] 
(3.1) 

 

Where [𝑀] is described in eq. 3.2. Due to space requirements, subscripts have been omitted in the last three 

rows of the matrix, but they intuitively refer to those in the very column that identifies them. 

[
 
 
 
 
 

𝑐𝑋𝑇𝐿𝐹 𝑐𝑋𝑇𝐿𝑅 𝑐𝑋𝐵𝐿𝐹 𝑐𝑋𝐵𝐿𝑅 𝑐𝑋𝑇𝑅 𝑐𝑋𝑃𝑅
𝑐𝑌𝑇𝐿𝐹 𝑐𝑌𝑇𝐿𝑅 𝑐𝑌𝐵𝐿𝐹 𝑐𝑌𝐵𝐿𝑅 𝑐𝑌𝑇𝑅 𝑐𝑌𝑃𝑅
𝑐𝑍𝑇𝐿𝐹 𝑐𝑍𝑇𝐿𝑅 𝑐𝑍𝐵𝐿𝐹 𝑐𝑍𝐵𝐿𝑅 𝑐𝑍𝑇𝑅 𝑐𝑍𝑃𝑅

𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊
𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊
𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 ]

 
 
 
 
 

 

(3.2) 

 

And the vector 𝑅 is described in the eq. 3.3. This vector contains the axial actions of each of the connecting 

rods. 
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[𝑅] =

[
 
 
 
 
 
𝑅𝑇𝐿𝐹𝑊
𝑅𝑇𝐿𝑅𝑊
𝑅𝐵𝐿𝐹𝑊
𝑅𝐵𝐿𝑅𝑊
𝑅𝑇𝑅𝑊
𝑅𝑃𝑅𝑊 ]

 
 
 
 
 

 

(3.3) 

 

And the vector 𝐹 is described in the eq. 3.4. This vector represents the forces and moments eging in the 

wheel centre, thus in the origin of the reference system integral to the hub carrier. By calculating the carrier 

moments appropriately, it is possible to change the point of application of the forces. 

[𝐹] = −

[
 
 
 
 
 
𝐹𝑋
𝐹𝑦
𝐹𝑍
𝑀𝑋
𝑀𝑌
𝑀𝑍]
 
 
 
 
 

 

(3.4) 

 

To calculate the unknown vector R, then the axial actions on each connecting rod, it is sufficient to solve eq. 

3.5. 

[𝑅] = [𝑀]−1 ∙ [𝐹] 
(3.5) 

 

The axial actions on each connecting rod, because of the way the system is written, will be positive if the 

connecting rod is under tension and negative if it is compressed, in a manner concordant with convention. 

Given the axial actions, to calculate the wheel-side constraint reactions [𝑅𝐶] along the 𝑋, 𝑌 and 𝑍 directions, 

simply multiply the value of the action by the corresponding director cosine.  The frame-side reactions will be 

equal but of opposite sign. 

3.1.2 Pushrod or Spring attached to a wishbone arm 

In this case, if the pushrod or spring is connected to a wishbone, the wishbone can no longer be considered to 

consist of two connecting rods subject to axial force alone. It will then be necessary to write another set of 

equations with respect to the previous subchapter in order to know the loads acting on the arm to which the 

pushrod is bound. 

However, the system on the hub carrier turns out to be solvable. It turns out to be connected by 3 connecting 

rods plus the triangle (3 reactions in the 3 XYZ directions), the structure still remains isostatic and solvable. 

Going to analyse the triangle to which the pushrod is connected, we see that the degrees of constraint are 7: 3 

for each frame-side hinge and a constraint given by the Pushrod/Pullrod.  

The system results kinematically hyperstatic. To solve it accurately, the stiffness of the materials must be 

considered. 
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An approximation is made to solve this problem. The concept is that the two joints constrained to the triangle 

frame, generate a redundant degree of constraint. In fact, the triangle during its movement will always rotate 

about an axis that is defined by the line passing through the two frame-side joints. The two spherical joints 

both provide a constraint on translation along this axis, when only one would suffice. A seventh equation is 

then written that binds the components along the axis of rotation of the triangle so that the system is solvable. 

This equation takes into account the fact that these two components are distributed according to the stiffness 

of the joints along the axis of rotation, like two springs in parallel. The equation will be described later; in the 

Figure 24 it is possible to see an example of a suspension with pushrod constrained to the lower arm and see 

the two components along the axis mentioned earlier. 

 

Figure 24. Components along the axis of rotation of the wishbone to which the hub carrier is attached. 

Calculations for a suspension with a pushrod constrained to the lower arm are given below. For the upper 

wishbone, however, the same logic is applied. The first procedure is to calculate the constraint reactions on the 

hub carrier, which is now constrained with 3 connecting rods (2 for the wishbone and one for the trackrod) and 

a ball joint (representing the wishbone with the constrained pushrod).  The Figure 25 represents the wheel-side 

constraint reactions. 
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Figure 25. Schematic of the model with PR constrained to upper arm, the yellow arrows represent constraint reaction 

forces. In low the three direct axial actions like connecting rods. On top three orthogonal reactions on the connection 

with the upper wishbone. 

As with the case seen in the previous subsection, the equilibrium reactions on the hub carrier are written in the 

eq. 3.6. 

[𝑀] ∙ [𝑅] = [𝐹] 
(3.6) 

Where [𝑀] is described in eq. 3.7. Due to space requirements, subscripts have been omitted in the last three 

rows of the matrix, but they intuitively refer to those in the very column that identifies them. 

[
 
 
 
 
 

1 0 𝑐𝑋𝐵𝐿𝐹 𝑐𝑋𝐵𝐿𝑅 𝑐𝑋𝑇𝑅 0
0 1 𝑐𝑌𝐵𝐿𝐹 𝑐𝑌𝐵𝐿𝑅 𝑐𝑌𝑇𝑅 0
0 0 𝑐𝑍𝐵𝐿𝐹 𝑐𝑍𝐵𝐿𝑅 𝑐𝑍𝑇𝑅 1
0 −𝑍𝑇𝐿𝐹𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 𝑌𝑇𝐿𝐹𝑊

𝑍𝑇𝐿𝐹𝑊 0 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 −𝑋𝑇𝐿𝐹𝑊
−𝑌𝑇𝐿𝐹𝑊 𝑋𝑇𝐿𝐹𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 0 ]

 
 
 
 
 

 

(3.7) 

 

And the vector 𝑅 is described in the eq. 3.8. This vector contains the axial actions of each of the connecting 

rods. 

[𝑅] =

[
 
 
 
 
 
𝑅𝑋
𝑅𝑌

𝑅𝐵𝐿𝐹𝑊
𝑅𝐵𝐿𝑅𝑊
𝑅𝑇𝑅𝑊
𝑅𝑍 ]

 
 
 
 
 

 

(3.8) 

Where 𝑅𝑋 , 𝑅𝑌 𝑒 𝑅𝑍 are the reactions given by the upper wishbone. 
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And the vector 𝐹 is described in the eq. 3.9. This vector represents the forces and moments acting on the 

wheel centre, thus in the origin of the reference system integral to the hub carrier. By calculating the carrier 

moments appropriately, it is possible to change the point of application of the forces. 

[𝐹] = −

[
 
 
 
 
 
𝐹𝑋
𝐹𝑦
𝐹𝑍
𝑀𝑋
𝑀𝑌
𝑀𝑍]
 
 
 
 
 

 

(3.9) 

 

To calculate the unknown vector R, then the axial actions on each connecting rod, it is sufficient to solve eq. 

3.10. 

[𝑅] = [𝑀]−1 ∙ [𝐹] 
(3.10) 

Now the frame side reactions of the lower arm and steering tierod are known; to derive the frame side constraint 

reactions of the upper triangle and to calculate the axial action acting on the Pushrod we proceed to write the 

equilibrium equations on the upper wishbone. Plus, a final equation that binds the components along the axis 

of rotation of the wishbone, of the frame-side constraint reactions. 

The triangle thus has 6 frame-side constraint reactions given by the ball joints plus the reaction given by the 

Pushrod, which is considered as a connecting rod. It is possible to see these reactions in the Figure 26, in light 

blue. In yellow the wheel-side constraint reactions, calculated just now. 

 

Figure 26. Diagram of the forces acting on the upper arm, in light blue the constraint reactions given by the frame-side 

joints and the pushrod. In yellow the wheel-side constraint reactions. 

As mentioned earlier, in order to be able to solve the system, it is necessary to add a seventh equation to the 6 

of equilibrium that binds the frame-side constraint reactions together. Specifically, an equation is written that 

distributes the components along the axis of rotation proportionally to the translational stiffness of the joints 

along this direction. In particular, the ratio 𝑘𝑟 is defined in eq. 3.11. 
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𝑘𝑟 =
𝑘𝑇𝐿𝐹𝑎𝑥

𝑘𝑇𝐿𝐹𝑎𝑥 + 𝑘𝑇𝐿𝑅𝑎𝑥
 

(3.11) 

 

Where 𝑘𝑇𝐿𝐹𝑎𝑥 and 𝑘𝑇𝐿𝑅𝑎𝑥 are the stiffness along the axis of rotation of the arm, which is denoted by 𝑎𝑥. In 

the next equations there will also be written the direct cosines of this axis, denoted as 𝑐𝑋𝑎𝑥, 𝑐𝑌𝑎𝑥 and 𝑐𝑍𝑎𝑥. 

In case in two frame-side joints are two equal uniballs, the stiffnesses will be the same, so the value of 𝑘𝑟 

will be equal to 0.5 and the components along the axis will be equal. 

Continuing, we then write the equation in matrix form to solve the system in eq. 3.12. 

[𝑅𝐴𝑟𝑚] = [𝑀𝐴𝑟𝑚]
−1 ∙ [𝐹𝐴𝑟𝑚] 

(3.12) 

 

Where the matrix 𝑀𝐴𝑟𝑚 is defined in equation 3.13. 

[
 
 
 
 
 
 

𝑐𝑋𝑃𝑅 1 1 0 0 0 0
𝑐𝑌𝑃𝑅 0 0 1 1 0 0
𝑐𝑍𝑃𝑅 0 1 0 1 1 1

𝑐𝑍 ∙ 𝑌𝑊 − 𝑐𝑌 ∙ 𝑍𝑊 0 0 −𝑐𝑍𝑇𝐿𝐹 −𝑐𝑍𝑇𝐿𝑅 𝑐𝑌𝑇𝐿𝐹 𝑐𝑌𝑇𝐿𝑅
𝑐𝑋 ∙ 𝑍𝑊 − 𝑐𝑍 ∙ 𝑋𝑊 𝑐𝑍𝑇𝐿𝐹 𝑐𝑍𝑇𝐿𝑅 0 0 −𝑐𝑋𝑇𝐿𝐹 −𝑐𝑋𝑇𝐿𝑅
𝑐𝑌 ∙ 𝑋𝑊 − 𝑐𝑋 ∙ 𝑌𝑊 −𝑐𝑌𝑇𝐿𝐹 −𝑐𝑌𝑇𝐿𝑅 𝑐𝑋𝑇𝐿𝐹 𝑐𝑋𝑇𝐿𝑅 0 0

0 𝑐𝑋𝑎𝑥 ∙ 2(1 − 𝑘𝑟) 𝑐𝑌𝑎𝑥 ∙ 2(1 − 𝑘𝑟) 𝑐𝑍𝑎𝑥 ∙ 2(1 − 𝑘𝑟) −𝑐𝑋𝑎𝑥 ∙ 2𝑘𝑟 −𝑐𝑌𝑎𝑥 ∙ 2𝑘𝑟 −𝑐𝑍𝑎𝑥 ∙ 2𝑘𝑟]
 
 
 
 
 
 

 

(3.13) 

 

The matrix 𝑀𝐴𝑟𝑚 is a 7x7. Where the first 6 rows represent the 6 equilibrium equations, the last equation 

instead binds the frame-side constraint reactions as explained above. 

The Vector 𝐹𝐴𝑟𝑚 is defined in the eq. 3.14. 

[𝐹𝐴𝑟𝑚 ] =

[
 
 
 
 
 
 

𝑅𝑋
𝑅𝑦
𝑅𝑧

𝑅𝑍 ∙ 𝑌𝑇𝐿𝐹𝑊 − 𝑅𝑌 ∙ 𝑍𝑇𝐿𝐹𝑊
𝑅𝑋 ∙ 𝑍𝑇𝐿𝐹𝑊 − 𝑅𝑍 ∙ 𝑋𝑇𝐿𝐹𝑊
𝑅𝑌 ∙ 𝑋𝑇𝐿𝐹𝑊 − 𝑅𝑋 ∙ 𝑌𝑇𝐿𝐹𝑊

0 ]
 
 
 
 
 
 

 

 

(3.14) 

The first 3 elements of the vector represent the wheel-side constraint reactions calculated earlier, the other 3 

values are the moments generated by these forces, calculated with respect to the origin of the reference system. 

The last value imposes equality to 0 for the seventh equation. 

The Vector 𝑅𝐴𝑟𝑚 is defined in Eq. 3.15. 
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[𝑅𝐴𝑟𝑚 ] =

[
 
 
 
 
 
 
𝑅𝑃𝑅𝑊
𝑋𝑇𝐿𝐹𝐶
𝑋𝑇𝐿𝑅𝐶
𝑌𝑇𝐿𝐹𝐶
𝑌𝑇𝐿𝑅𝐶
𝑍𝑇𝐿𝐹𝐶
𝑍𝑇𝐿𝑅𝐶]

 
 
 
 
 
 

 

(3.15) 

 

Solving the eq. 3.10 all frame-side constraint reactions are then known. The frame-side reactions of the pushrod 

are the same as the arm-side reactions, but of opposite sign since this is a connecting rod. 

3.1.3 Example and Comparison with Lotus Shark® 

This algorithm was implemented in Matlab®; Figure 27 show an example suspension subjected to loads. A 

simple graphical interface was created so that all constraint reactions can be visualized, and it can be 

understood which ones have a higher magnitude. 

A double wishbone suspension was used in this example case. Each constraint reaction is displayed with 3 

lines, each of a colour representing a component of the triad. The length of the lines is proportional to the 

magnitude of the force; finally, numerical values are also represented. 

 

Figure 27. Graphical interface of the output of the calculation algorithm for loads on the suspension. 

To validate the results, a comparison with a commercial software used in the automotive field, called Lotus 

Shark,® [51] was chosen. For any type of suspension and load case, the results were always identical. Two 
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screenshots showing the calculated loads on the suspension can be seen in Figure 28. The suspension chosen 

is a double wishbone with pushrod constrained to the lower triangle; a load case of 500𝑁 of 𝐹𝑥 under braking 

and 2000𝑁 of 𝐹𝑧 is shown in Figure 28. Looking closely at the numbers, the results are identical. 

 

Figure 28. Screenshot representing the loads acting on the same suspension. a) Lotus Shark®. b) Algorithm presented 

visualized in Matlab®. 

3.2 Translational Stiffness Elasto-kinematics 

The model for calculating elasto-kinematics presented in this chapter was developed following the algorithm 

for calculating loads on the suspension. In fact, it is closely related to it. The goal of this algorithm is to define 

a suspension, giving as input the coordinates of the points, the stiffnesses of the joints and a vector with external 

forces and moments applied on the suspension and then having as output the deformed configuration of the 

suspension. 

In this model, the ball joints are replaced with joints having translational compliance, that is, bushing 

deformable along the three Cartesian directions, as in the Figure 29. 

 

Figure 29. Model of the bushing in this algorithm. Characterized by three stiffnesses along the axes. 
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The suspension spring is considered infinitely stiff, and we focus only on the compliance provided by the 

bushings. Stiffnesses are considered linear, so each bushing is represented by 3 stiffness values expressed in 

𝑁/𝑚𝑚. Furthermore, each bushing, in addition to being defined by its position with 3 coordinates, is also 

defined by the 3 Euler angles that define its orientation in the global reference system. In fact, the 3 rigidities 

are defined in the bushing local reference system (bLRS) using the vector 𝑘𝑏𝐿𝑅𝑆 = [𝑘𝑥 𝑘𝑦 𝑘𝑧]. 

To calculate the rigidities in the local reference system, it is sufficient to calculate the rotation matrix 𝑅𝑏, a 

function of the 3 angles 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧 and calculate the new vector of rigidities as in the eq. 3.16. 

𝑘𝐺𝑅𝑆 = 𝑅 ∙ 𝑘𝑏𝐿𝑅𝑆 
(3.16) 

The rotation matrix 𝑅𝑏 is calculated with a Tait-Bryan transformation (4) 𝑋1𝑍2𝑌3. 

𝑅𝑏 = [𝑟𝑜𝑡𝑥(𝜃𝑥)] ∙ [𝑟𝑜𝑡𝑧(𝜃𝑧)] ∙ [𝑟𝑜𝑡𝑦(𝜃𝑦)] 
(3.17) 

Where: 

[𝑟𝑜𝑡𝑥(𝛼)] = [
1 0 0
0 𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼
0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

] 

(3.18) 

[𝑟𝑜𝑡𝑦(𝛼)] = [
𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼 0
𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0
0 0 1

] 

(3.19) 

[𝑟𝑜𝑡𝑧(𝛼)] = [
𝑐𝑜𝑠 𝛼 0 𝑠𝑖𝑛 𝛼
0 1 0

−𝑠𝑖𝑛 𝛼 0 𝑐𝑜𝑠 𝛼
] 

(3.20) 

 

In this model, the rotational stiffnesses of the bushing are not considered, only the translational ones. In fact, 

in this algorithm the loads acting on the joints are first calculated using the algorithm explained in the previous 

subsection. After that the positions of the joints are slightly modified as a function of the constraint reaction 

and stiffness, the deformation vector 𝑢𝐺𝑅𝑆 in the eq. 3.21 is thus defined for each joint in the GRS. 

𝑢𝐺𝑅𝑆  = −𝐿𝐺𝑅𝑆⊘𝑘𝐺𝑅𝑆  
(3.21) 

Where 𝐿𝐺𝑅𝑆 is the 3x1 vector representing the calculated load on the specific bushing in the GRS and ⊘ is the 

operator that define a vector division element by element. The vector 𝑢𝑤𝐿𝑅𝑆 is also defined in eq. 3.22 which 

always defines a displacement vector, but in wheel local reference system (wLRS). 

𝑢𝑤𝐿𝑅𝑆  = 𝑅𝑤 ∙  𝑢𝐺𝑅𝑆 
(3.22) 

Where 𝑅𝑤 is the rotation matrix that defines the orientation of the wheel in the GRS, a function of camber, toe 

and side view angle. Calculated similarly to that seen in Eq. 3.17. Specifically, the vector 𝑢𝐺𝑅𝑆 will be 

calculated for each frame-side joint, while the vector 𝑢𝑤𝐿𝑅𝑆 will be calculated for each wheel-side joint, that 
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is, those bushing that connect the arms to the hub carrier. These strain vectors are always referred to the position 

of the joints in the initial configuration. 

At this point, the position of the frame-side points is updated by translating them by the vector 𝑢𝐺𝑅𝑆. The 

coordinates relative to the wheel, then in the wLRS, are also updated by translating them by the vector 𝑢𝑤𝐿𝑅𝑆.  

Having shifted the points, it is now necessary to run the kinematics calculation, the same one used in the 

3DSusp algorithm, remembering that as input there are just the positions of the frame-side joints in the GRS 

and the wheel-side joints in the wLRS. The calculation is done again using the Newton-Raphson algorithm by 

finding the new position of the hub carrier (thus also of the wheel-side joints) by imposing that the 6 connecting 

rods that make up the suspension have the same length as the one set at the beginning. 

The 𝑢 vectors are saved, and the calculation of the loads is now carried out again. New strain vectors 𝑢 for 

each joint are then calculated. An 𝑒𝑟𝑟𝑜𝑟 variable, defined as the norm of the difference between the current 

and previous strain vectors, is calculated, as in the eq. 3.23. 

𝑒𝑟𝑟𝑜𝑟 = ‖𝑢𝑖−1 − 𝑢𝑖‖ 
(3.23) 

In this way a loop can be constructed, where the suspension is deformed according to the loads, and at each 

iteration the loads are recalculated on the deformed configuration until the deformation vector changes little 

from that calculated in the previous iteration. That is, when the variable error is less than a small arbitrary 

value such as 0.001. Once the cycle exit condition is met, the suspension has reached an equilibrium 

configuration, and the new joint coordinates, wheel position, and all constraint reactions can be output. To 

better understand the algorithm explained, a flowchart is shown in the Figure 30. 
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Figure 30. Simplified flowchart of the algorithm for calculating elastokinematics with translational stiffnesses. 

The algorithm was implemented in Matlab® and a simple graphical interface was created to see the deformed 

configuration of the suspension after the load was applied to it. An example can be seen in the Figure 31 where 

loads of 𝐹𝑋 = 1000𝑁 and 𝐹𝑌 = 2000𝑁 were applied on a generic suspension. 
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Figure 31. Matlab® interface screenshot showing the deformed configuration of the suspension, superimposed on the 

design configuration, after external forces are applied. In bold the deformed configuration 

The development of this algorithm, which had some limitations, was prophetic for later ones. This model is 

very computationally fast and can be used for passenger cars where the bushings are very compliant. 

Finally, this tool allows the calculation of suspension elasto-kinematics not only in the static suspension 

configuration; in fact, it is possible to use a suspension in steering and/or bump configuration as input. 

3.3 Elasto-Kinematics Comprehensive Model 

The development of this algorithm occupied most of the author's time during the PhD course. And it was 

probably the most significant one. 

Purpose of this work is to provide a method for the solution of the suspension elastokinematic problem, by 

means of a general method enabling the design of most of the modern layouts, from simple semi-trailing arms 

to all kinds of suspensions with a virtual instantaneous axis of rotation in steering or under load, including the 

so-called integral link geometry. Bushings can be described with their stiffness properties for all six degrees 

of freedom and with real-world, non-linear curves. They can be located either side of each suspension arm i.e. 

on the chassis side and/or on the wheel side. The flexibility of trackrod can also be represented by means of 

equivalent, non-linear bushings. The wheel bearing stiffness can be considered as well. Wheel movement 

hence variations of vehicle dynamics-relevant parameters like camber, side view angle, toe, track, wheelbase 
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and vertical displacement can be computed under any combination of road loads: braking, traction, cornering 

and bump impacts. Any combination of jounce and steer motion can be simulated within the whole range 

allowed by bump and rebound stop. Suspension’s joints and chassis loads can also be computed. 

In this model, the suspension of a passenger car equipped with compliant bushings is considered. The 

compliance of the suspension arms is considered negligible, as it is much lower than that of the deformable 

joints. 

The proposed algorithm has been presented in a general mathematical formulation; however, it has been 

implemented in the Matlab environment. This environment was chosen as it specialises in matrix calculation 

and allows the programmer to write vectors, matrices, and operations between them in an intuitive way, and is 

characterised by good computational speed despite being a high-level language. 

The Matlab environment also allows interfacing with Simulink, enabling the user to implement other functions, 

e.g. implementing optimisation logic or sensitivity analysis. 

However, Matlab is not freely accessible, and this may be the main limitation. An excellent alternative could 

be Python, using existing mathematical libraries. Another alternative, which would guarantee higher 

computation speeds than Matlab, could be to implement the code in C++, although this is less intuitive to code. 

3.3.1 Model Description 

In this model, two types of elements are considered. The first type of element is called “spring rod” and it is 

composed by two bushings at the ends and a rod with an axial stiffness. The second element is called “rigid 

element” and it is composed by a rigid body with any number of bushings. These elements can be seen in 

Figure 32. 

 

Figure 32. General "spring rod" and "rigid element" of the suspension model. 
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Any element can be attached to each other element or to the ground. The elements connected to each other 

share a bushing. Otherwise, the element is attached to the ground by linking its bushing to the global reference 

system (GRS) which represents the body chassis of the vehicle. 

By combining these elements, it is possible to create any type of independent suspension. For example, in a 

double wishbone, the two wishbones will consist of a rigid element connected to the chassis by two bushings 

and to the upright by one bushing. The upright will also be a rigid element with three bushings, two connected 

to the wishbones and one to the steering tie rod; this one will instead be modelled using a spring rod element. 

A Multilink suspension can be easily modelled using five spring rods for the arms and a rigid element with 

five bushings for the hub carrier. A MacPherson strut can also be modelled by constraining a spring rod between 

the chassis and the hub carrier and making the bushing that connects them infinitely rigid. It is also possible to 

create an integral link suspension attaching a spring rod between the wishbone and the upright. 

Finally, to calculate the elastokinematics configuration under lateral load more realistically, it is possible to 

steer the suspension by moving the attachment point on the chassis side of the steering rod. 

By playing with bushing stiffnesses, it is also possible to exclude the elastic component. For example, by 

increasing the translation stiffness by a few orders of magnitude and decreasing the rotation stiffness, it is 

possible to turn the bushing into ball joints. 

 

Figure 33. Bushing model with linear and rotational stiffnesses. 

Each bushing must be defined with its position 𝑋𝑏 = [𝑥𝑏 𝑦𝑏 𝑧𝑏]   in the GRS and with three angles 𝜃𝑏 =

[𝜃𝑏𝑥 𝜃𝑏𝑦 𝜃𝑏𝑧], with which it is therefore possible to define a rotation matrix [𝑅] to identify the orientation of 

the bushing in the GRS. The bushing is defined by a function “Reaction Forces Vector” in eq. 3.24 that contains 

six functions that correspond to the three reaction forces and the three reaction moments generated by the 

bushing as a function of the six deformations 𝑢𝑏𝐿𝑅𝑆 of the bushing itself. 

 

 

 

   ,    

   ,    

   ,    
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𝐹𝑏(𝑢𝑏𝐿𝑅𝑆)𝐿𝑅𝑆 =

[
 
 
 
 
 
 
𝐹𝑏𝑥(𝑢𝑏𝑥)
𝐹𝑏𝑦(𝑢𝑏𝑦)

𝐹𝑏𝑧(𝑢𝑏𝑧)
𝐹𝑏𝑟𝑥(𝑢𝑏𝑟𝑥)
𝐹𝑏𝑟𝑦(𝑢𝑏𝑟𝑦)

𝐹𝑏𝑟𝑧(𝑢𝑏𝑟𝑧)]
 
 
 
 
 
 

 

(3.24) 

Where “LRS” stays for Local Reference System. Both the deformations and the reaction forces vector are 

defined in the LRS in this case. Knowing the rotation matrix 𝑅𝑏(𝜃𝑏) that identifies the orientation of the 

bushing, it is possible to calculate the reaction force in the global reference system GRS in eq.3.25. 

𝐹𝑏(𝑢𝑏)𝐺𝑅𝑆 = [𝑅𝑏𝑒𝑥𝑝] ∙ 𝐹𝑏 ([𝑅𝑏𝑒𝑥𝑝]
𝑇
∙ (𝑢𝑏𝐺𝑅𝑆))

𝐿𝑅𝑆

 

(3.25) 

Where [𝑅𝑏𝑒𝑥𝑝] is the expanded rotation matrix defined in eq. 3.26. 

[𝑅𝑏𝑒𝑥𝑝(𝜃𝑏)] = [
[𝑅𝑏(𝜃𝑏)] 0

0 [𝑅𝑏(𝜃𝑏)]
] 

(3.26) 

The rotation matrix 𝑅𝑏 is calculated with a Tait-Bryan transformation  𝑋1𝑍2𝑌3 in eq. 3.27. 

𝑅𝑏(𝜃𝑏) = [𝑟𝑜𝑡𝑥(𝜃𝑏𝑥)] ∙ [𝑟𝑜𝑡𝑧(𝜃𝑏𝑧)] ∙ [𝑟𝑜𝑡𝑦(𝜃𝑏𝑦)] 
(3.27) 

Where: 

[𝑟𝑜𝑡𝑥(𝛼)] = [
1 0 0
0 𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼
0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

] 

(3.28) 

[𝑟𝑜𝑡𝑦(𝛼)] = [
𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼 0
𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0
0 0 1

] 

(3.29) 

[𝑟𝑜𝑡𝑧(𝛼)] = [
𝑐𝑜𝑠 𝛼 0 𝑠𝑖𝑛 𝛼
0 1 0

−𝑠𝑖𝑛 𝛼 0 𝑐𝑜𝑠 𝛼
] 

(3.30) 

Each function of 𝐹𝑏 can be any function of the deformation 𝑢𝑏, even non-linear. 

For the spring rod element, a function 𝐹𝑎(𝑢𝑎) is also defined that represents the axial elastic force as a function 

of the axial deformation of the element. It can also be any function, just like for the bushings. The force-

displacement curve that characterizes the spring element can be generated at will. It is also possible to insert a 

preload value as a displacement. Each i-th element of the suspension is described by a vector 𝑢𝑖
𝐺𝑅𝑆 =

[𝑢𝑥  𝑢𝑦 𝑢𝑧 𝑢𝑟𝑥 𝑢𝑟𝑦 𝑢𝑟𝑧] containing the displacement of one of its bushings from its design position and by its 

axial displacement 𝑢𝑎𝑖 if it is a spring rod element. The displacement vector of the other bushings of the 

element can be easily calculate trough transformation matrix because the element is a rigid body. To calculate 
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the deformed configuration of the suspension is necessary to know all the deformation vector and axial 

deformation of each element. The vector 𝑈 containing these vectors is defined in eq. 3.31. 

𝑈 = [𝑢1
𝐺𝑅𝑆 𝑢2

𝐺𝑅𝑆  … 𝑢𝑛
𝐺𝑅𝑆𝑢𝑎1 𝑢𝑎2…𝑢𝑎𝑛] 

(3.31) 

To know the vector 𝑢, it is necessary to solve a system of 𝑁 equations. Where 𝑁 depends on the number of 

elements as in eq. 3.32. 

𝑁 = 6 ∙ 𝑁𝑟𝑖𝑔𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 +  7 ∙ 𝑁𝑠𝑝𝑟𝑖𝑛𝑔 𝑟𝑜𝑑 
(3.32) 

On each rigid element is possible to apply an external force on any point of the body. It is necessary to define 

a vector 𝐹𝑒𝑥𝑡𝑖 as in eq. 3.33 and its application point 𝑋𝐹𝑒𝑥𝑡𝑖. 

𝐹𝑒𝑥𝑡𝑖 = [𝐹𝑒𝑥𝑡𝑥 𝐹𝑒𝑥𝑡𝑦 𝐹𝑒𝑥𝑡𝑧 𝑀𝑒𝑥𝑡𝑥 𝑀𝑒𝑥𝑡𝑦 𝑀𝑒𝑥𝑡𝑧] 
(3.33) 

To solve the equation 𝑓(𝑈) = 0 a Newton-Raphson method (3.34) for multiple equation has been used to 

manage the non-linearity of the equations. This method is iterative, and the solution is accepted when 

𝑚𝑎𝑥(𝑎𝑏𝑠(𝑓(𝑈))) is less than 𝜀 which a small number. 

𝑈𝑖𝑡𝑒𝑟+1 = 𝑈𝑖𝑡𝑒𝑟 − [𝐽(𝑈𝑖𝑡𝑒𝑟)]
−1 ∙ 𝑓(𝑈𝑖𝑡𝑒𝑟) 

(3.34) 

Where 𝑈0 = [0 0…0] and [𝐽(𝑈𝑖𝑡𝑒𝑟)] is the Jacobian matrix, defined in eq. 3.35, of the function 𝑓(𝑈) 

calculated in 𝑈𝐼𝑡𝑒𝑟. 

[𝐽] =

(

 
 

𝜕𝑓1(𝑈)

𝜕𝑈1
⋯

𝜕𝑓1(𝑈)

𝜕𝑈𝑁
⋮ ⋱ ⋮

𝜕𝑓𝑁(𝑈)

𝜕𝑈1
⋯

𝜕𝑓𝑁(𝑈)

𝜕𝑈𝑁 )

 
 

 

(3.35) 

The Newton-Raphson algorithm works well if the solution is sufficiently close to the initial condition. For this 

reason, it may happen that the solver does not converge, particularly in cases where there are high forces or 

low stiffnesses. One way to overcome this problem has been to break the resolution algorithm into multiple 

iterations, progressively increasing the vector of external forces and the spring rod element’s preload if present. 

The function 𝑓(𝑈) is a set of 𝑁 functions, same dimensions of the displacement vector 𝑈. The first six functions 

(3.36) (3.37) represent the equilibrium equation of the system where the external forces and moments must be 

equal to the constraint reaction generated by the bushings which is attached to the ground and by the axial 

reaction of the spring rod element which has one of the bushings attached to the ground. 

𝑓 =∑𝐹𝑒𝑥𝑡[1 ∶ 3] − ∑𝐹𝑏𝐶ℎ𝑎𝑠𝑠𝑖𝑠[1 ∶ 3] (𝑢𝑏) 
(3.36) 
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𝑓 =∑𝐹𝑒𝑥𝑡[4 ∶ 6] +∑𝐹𝑒𝑥𝑡[1 ∶ 3] × 𝑋𝐹𝑒𝑥𝑡

− ∑𝐹𝑏𝐶ℎ𝑎𝑠𝑠𝑖𝑠[4 ∶ 6] −∑𝐹𝑏𝐶ℎ𝑎𝑠𝑠𝑖𝑠[1 ∶ 3] (𝑢𝑏) × 𝑋𝑏
 

(3.37) 

The next functions (3.38) (3.39), on the other hand, describe the also kinematic constraints of the system, 

considering the stiffness of the bushings which is not attached to the ground and the stiffness of the springs. 

A set of six functions is written for each bushing that connects two different elements, so a bushing not 

constrained to the frame. The functions calculate the difference between the reaction force of the internal 

bushing and the resultant of the forces and moments calculated around the bushing, of one of the two elements 

chosen arbitrarily.  

𝑓 =∑𝐹𝑏[1 ∶ 3](𝑢𝑏) − 𝐹𝑏𝐼𝑛𝑡[1 ∶ 3](𝑢𝑏) 
(3.38) 

𝑓 =∑𝐹𝑏[4 ∶ 6](𝑢𝑏) +∑𝐹𝑏𝐼𝑛𝑡[1 ∶ 3](𝑢𝑏) × (𝑋 − 𝑋𝐼𝑛𝑡))

− 𝐹𝑏[4 ∶ 6](𝑢𝑏)
 

(3.39) 

𝐹𝑏𝐼𝑛𝑡 and 𝑋𝐼𝑛𝑡 represents the reaction forces and position of the bushing that connects the two elements, 𝐹𝑏 

represents the forces vector of the other bushings of the chose element. The deformation vector 𝑢𝑏 and the 

force vector 𝑓𝑏 are in the local reference system of the bushing. It is therefore necessary to first calculate the 

appropriate relative deformations of the bushings in the global reference system and then operate using the 

rotation matrices as described in (3.25). 

Finally, the lasts functions, described in the eq. 3.40, must be written to consider the axial stiffness of the spring 

rod elements. For each spring rod element, the function is written to calculate the difference between the axial 

force generated by the spring and the modulus of the reaction force vector of one of the two bushings of the 

element. For convenience, it is best to choose the bushing whose displacement vector 𝑢𝑏 also describes the 

displacement 𝑢 of the element. 

𝑓 = ‖𝐹𝑏(𝑢𝑏[1: 3])‖ − 𝐹𝑎(𝑢𝑎) 
(3.40) 

To consider the steering of the suspension by, for example, moving the frame side point of an element 

representing the trackrod, it is necessary to introduce a displacement vector 𝑑𝑅𝑎𝑐𝑘 that is used to translate the 

𝑋 vector that describes the position of the bushing in the equations. 

At this point, having written the equations as a function of the displacements 𝑢 that describe the position and 

rotation of the elements in space and the axial deformations 𝑢𝑎, it is possible to apply the solving algorithm to 

find the solution that represents the deformed configuration of the suspension. 
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3.3.2 Double Wishbone Suspension case study 

The equations described earlier were written in a very general way on purpose. For a better understanding of 

the method, it was therefore decided to build an example suspension and the equations for solving the 

elastokinematics of this configuration will be described below. 

A double wishbone front suspension was chosen. The two wishbones were modelled with rigid elements, as 

was the hub carrier. The trackrod was modelled with a spring rod element to also provide axial compliance. 

The spring was also modelled with a spring rod that connects the frame to the lower arm. The suspension 

scheme can be seen in Figure 34. 

 

Figure 34. Double Wishbone suspension scheme used in this work. “Spring rod” for trackrod and spring. “Rigid 

element” for upper arm, lower arm and upright. 

The elements are connected to each other and to the frame through deformable bushings. For compactness, we 

will call the names of the bushings that make up the suspension with acronyms: The front and rear bushings 

on chassis side of the upper arm are 𝑈𝐴𝐹𝑐 and 𝑈𝐴𝑅𝑐 respectively. 𝑈𝐴𝑤 is the bushing of the upper arm on 

wheel side. For the lower arm the bushing’s names are 𝐿𝐴𝐹𝑐, 𝐿𝐴𝑅𝑐 and 𝐿𝐴𝑤. For the trackrod the names are 

𝑇𝑅𝑐 and 𝑇𝑅𝑤 chassis side and wheel side respectively and for the spring bushing the names are 𝑆𝑐 and 𝑆𝑤. 

The external forces and moments are applied only in 𝑥𝐹𝑒𝑥𝑡 which is a point belonging to the rigid element 

that describes the upright. For the elements, the upper and lower arm is called 𝑈𝐴 and 𝐿𝐴 respectively, 𝑇𝑅, 𝑆 

and 𝑈𝑃 for trackrod, spring and upright. 𝑊𝐶 is the wheel centre. 

This suspension is modelled with three rigid elements and two spring rods for a total of 3 ∙ 6 + 2 ∙ 7 = 32 

degrees of freedom. 𝑈 is a 32x1 vector and the number of equations to solve is 32. These equations are reported 

below creating the function 𝑓(𝑈) which will subsequently be set equal to zero to find the solution of the system.  
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For simplicity of writing, we will establish that in the subsequent equations each 𝑢𝑏 and 𝐹𝑏 vector is referred 

to in the global reference system (GRS). However, we know that the 𝐹𝑏 function is defined in its local reference 

system as a function of the displacement vector 𝑢𝑏, also defined in LRS. So, only in the writing of the equations 

below, the change of reference system described in (2) is omitted to make them more readable. 

The first six functions represent the total equilibrium of the system. The first three functions in eq. 3.41, 

calculate the difference between the external forces and the reaction forces of the bushings which is attached 

to the chassis. 

𝑓[1: 3] = 𝐹𝑒𝑥𝑡[1: 3] −∑𝐹𝑏𝑗[1: 3](𝑢𝑏𝑗[1: 3])

𝑗

 
(3.41) 

The fourth to sixth function (3.42) calculate the difference between the moments generated by the external 

loads and the moments generated by the bushings on the chassis side. 

𝑓[4: 6] = 𝐹𝑒𝑥𝑡[4: 6] − 𝐹𝑒𝑥𝑡[1: 3] × 𝑋𝐹𝑒𝑥𝑡 −

∑𝐹𝑏𝑗[4: 6](𝑢𝑏𝑗[4: 6]) +∑𝐹𝑏[1: 3](𝑢𝑏𝑗[1: 3]) × 𝑋𝑏𝑗
𝑗𝑗

 

(3.42) 

Where 𝑗 = {𝑈𝐴𝐹𝑐, 𝑈𝐴𝑅𝑐, 𝐿𝐴𝐹𝑐, 𝐿𝐴𝑅𝑐, 𝑇𝑅𝑐, 𝑆𝑐} both for (3.41) and (3.42). 

As mentioned before, 𝑓 is a function of 𝑈 which is the vector which contains displacement of the elements 𝑢 

and not function of the bushing’s deformation 𝑢𝑏. So, it is necessary to redefine 𝑢𝑏 vectors in function of 𝑢. 

For each element attached to the chassis we set that the associated 𝑢 vector is equal to one of its bushing’s 

vectors.  The chosen one is called main bushing (3.43-46). If the element is not constrained to the chassis, this 

equality cannot be made, and the displacement of the element will be given by the deformation of the bushing 

added to the displacement and rotation in space of the bushing itself (3.47) (3.48). 

𝑢𝑈𝐴 = 𝑢𝑏𝑈𝐴𝐹𝑐 
(3.43) 

𝑢𝐿𝐴 = 𝑢𝑏𝐿𝐴𝐹𝑐 
(3.44) 

𝑢𝑇𝑅 = 𝑢𝑏𝑇𝑅𝑐 
(3.45) 

𝑢𝑆 = 𝑢𝑏𝑆𝑐 
(3.46) 

𝑢𝑈𝑃[1: 3] = 𝑢𝑏𝑈𝐴𝑤[1: 3] + 𝑋𝑏𝑈𝐴𝑤
𝑈𝐴 − 𝑋𝑏𝑈𝐴𝑤 

(3.47) 

𝑢𝑈𝑃[4: 6] = 𝑢𝑏𝑈𝐴𝑤[4: 6] + 𝑢𝑈𝐴[4: 6] 
(3.48) 

The upright is not attached to the chassis and 𝑋𝑏𝑈𝐴𝑤
𝑈𝐴  represents the new point of the 𝑋𝑏𝑈𝐴𝑤 bushing associated 

with the movement of the upper triangle. The understanding of this term will become clearer in later chapters. 

The functions (3.41) (3.42) refer to the vectors in the global reference system. It is now necessary to express 

the 𝑢𝑏 vectors of the other bushings of the element in terms of the 𝑢 vector of the element. For each element, 
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a reference system attached to the element is then created, oriented like the GRS, and centred on the main 

bushing previously chosen in (3.43-48) to describe the rotation and translation of the element itself. This 

reference system is called Element Reference System ERS. 𝑀 is therefore the transformation matrix, described 

in eq. 3.49, associated with ERS and attached to the element, and GRS. 

[𝑀(𝑋𝑏, 𝑢)] = [

𝑋𝑏[1] + 𝑢[1]

[𝑅(𝑢[4: 6])] 𝑋𝑏[2] + 𝑢[2]

𝑋𝑏[3] + 𝑢[3]
0 0 0 1

] 

(3.49) 

Where 𝑋𝑏 is the position vector of the main bushing and 𝑅(𝑢[4: 6]) is the rotation matrix and describe the 

rotation of the element (3.50). In the design configuration it is an identity matrix. In general, the rotation matrix 

is defined in a similar way to what is described in (3.26) with a Tait-Bryan transformation 𝑋1𝑍2𝑌3. 

[𝑅(𝑢[4: 6])] = 𝑟𝑜𝑡𝑥(𝑢[4]) ∙ 𝑟𝑜𝑡𝑧(𝑢[6]) ∙ 𝑟𝑜𝑡𝑦(𝑢[5]) 
(3.50) 

First, it is necessary to calculate the relative coordinates of the positions of the other bushings of the element 

in the ERS reference system. The transformation matrix 𝑀0(𝑋𝑏, 0) associated with ERS is then created, 

centred in 𝑋𝑏 but with a null 𝑢 vector, and it is described in eq. 3.51 

[𝑀0(𝑋𝑏, 0)] = [

1 0 0 𝑋𝑏[1]

0 1 0 𝑋𝑏[2]

0 0 1 𝑋𝑏[3]
0 0 0 1

] 

(3.51) 

It is now possible to calculate the relative coordinate 𝑋𝑏𝑅𝐸𝐿 of each other bushing of the element (3.52). 

[
 
 
 
𝑋𝑏[1]𝑅𝐸𝐿,𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑋𝑏[2]𝑅𝐸𝐿,𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑋𝑏[3]𝑅𝐸𝐿,𝐸𝑙𝑒𝑚𝑒𝑛𝑡

1 ]
 
 
 

= [𝑀0]−1 ∙ [

𝑋𝑏[1]
𝑋𝑏[2]
𝑋𝑏[3]
1

] 

(3.52) 

For the rigid element the 𝑢𝑏 bushing chassis side deformations are then expressed as a function of 𝑢 of the 

element. 

𝑢𝑏[1: 3] = 𝑋𝑏𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑢) − 𝑋𝑏 
(3.53) 

𝑢𝑏[4: 6] = 𝑢[4: 6] 
(3.54) 

(3.53) and (3.54) are true only for chassis side bushings. the displacement of the part constrained to the element 

is equal to the deformation of the bushing since the bushing is fixed to the chassis. 

The rotational deformation are equals for each bushing in the element. The translational deformations are 

calculated with the differences with the between the new position of the bushing 𝑋𝑏𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑢) attached on 

the element side and the position of the bushing 𝑋𝑏 on the fixed side where: 
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[
 
 
 
𝑋𝑏𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑢)[1]

𝑋𝑏𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑢)[2]

𝑋𝑏𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑢)[3]
1 ]

 
 
 

= [𝑀(𝑋𝑏, 𝑢)] ∙

[
 
 
 
𝑋𝑏[1]𝑅𝐸𝐿,𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑋𝑏[2]𝑅𝐸𝐿,𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑋𝑏[3]𝑅𝐸𝐿,𝐸𝑙𝑒𝑚𝑒𝑛𝑡

1 ]
 
 
 

 

(3.55) 

It is then now possible to write the equations for linking bushing deformations on the chassis with element 

deformations. For the upper arm: 

[𝑀0𝑈𝐴] = [

1 0 0 𝑋𝑏𝑈𝐴𝐹𝑐[1]

0 1 0 𝑋𝑏𝑈𝐴𝐹𝑐[2]

0 0 1 𝑋𝑏𝑈𝐴𝐹𝑐[3]

0 0 0 1

] 

(3.56) 

[[𝑋𝑏𝑈𝐴𝑅𝑐
𝑅𝐸𝐿,𝑈𝐴]

1
] = [𝑀0𝑈𝐴]

−1 ∙ [
[𝑋𝑏𝑈𝐴𝑅𝑐]

1
] 

(3.57) 

[𝑀𝑈𝐴] = [
[𝑅(𝑢𝑈𝐴)] [𝑋𝑏𝑈𝐴𝐹𝑐 + 𝑢𝑈𝐴]

0 0 0 1

] 

(3.58) 

[[
𝑋𝑏𝑈𝐴𝑅𝑐

𝑈𝐴 ]

1
] = [𝑀𝑈𝐴] ∙ [

[𝑋𝑏𝑈𝐴𝑅𝑐
𝑅𝐸𝐿,𝑈𝐴]

1
] 

(3.59) 

It is now possible to calculate the bushing deformation on the chassis side. 

𝑢𝑏𝑈𝐴𝑅𝑐[1: 3] = 𝑋𝑏𝑈𝐴𝑅𝑐
𝑈𝐴 (𝑢𝑈𝐴) − 𝑋𝑏𝑈𝐴𝑅𝑐 

(3.60) 

𝑢𝑏𝑈𝐴𝑅𝑐[4: 6] = 𝑢𝑈𝐴[4: 6] = 𝑢𝑈𝐴𝐹𝑐[4: 6] 
(3.61) 

This procedure is better illustrated in Figure 35. 

 

Figure 35. Upper Arm, scheme to identify the chassis side bushing deformations. 
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The same procedure is carried out for the lower arm. 

[[𝑋𝑏𝐿𝐴𝑅𝑐
𝑅𝐸𝐿,𝐿𝐴]

1
] = [𝑀0𝐿𝐴]

−1 ∙ [
[𝑋𝑏𝐿𝐴𝑅𝑐]

1
] 

(3.62) 

[
[𝑋𝑏𝐿𝐴𝑅𝑐

𝐿𝐴 ]

1
] = [𝑀𝐿𝐴] ∙ [

[𝑋𝑏𝐿𝐴𝑅𝑐
𝑅𝐸𝐿,𝐿𝐴]

1
] 

(3.63) 

𝑢𝑏𝐿𝐴𝑅𝑐[1: 3] = 𝑋𝑏𝐿𝐴𝑅𝑐
𝐿𝐴 (𝑢𝐿𝐴) − 𝑋𝑏𝐿𝐴𝑅𝑐 

(3.64) 

𝑢𝑏𝐿𝐴𝑅𝑐[4: 6] = 𝑢𝐿𝐴[4: 6] = 𝑢𝐿𝐴𝐹𝑐[4: 6] 
(3.65) 

For spring rod elements, this step is not necessary as there is always only one bushing constrained to the 

chassis.  

The first set of equations is now consistent, and we can move on to the second set. In these equations we will 

instead consider the "internal" bushing that connects the elements together as described in (3.38) and (3.39). 

Regarding the bushing 𝑈𝐴𝑤 that connects the upper arm to the upright the functions (3.66) are: 

𝑓[7: 12] = [𝑅𝑈𝐴] ∙ 𝐹𝑏𝑈𝐴𝑤([𝑅𝑈𝐴]
𝑇 ∙ 𝑢𝑏𝑈𝐴𝑤) − 𝑇𝐹𝑈𝐴 

(3.66) 

Where 𝑇𝐹𝑈𝐴 is the vector that contains the total forces and moments calculated in the bushings and generated 

by one of the elements. In this specific case, the arm was chosen as the element. 

𝑇𝐹𝑈𝐴[1: 3] = 𝐹𝑏𝑈𝐴𝐹𝑐(𝑢𝑏𝑈𝐴𝐹𝑐[1: 3]) + 𝐹𝑏𝑈𝐴𝑅𝑐(𝑢𝑏𝑈𝐴𝑅𝑐[1: 3]) 
(3.67) 

𝑇𝐹𝑈𝐴[4: 6] = 𝐹𝑏𝑈𝐴𝐹𝑐(𝑢𝑏𝑈𝐴𝐹𝑐[4: 6]) + 𝐹𝑏𝑈𝐴𝑅𝑐(𝑢𝑏𝑈𝐴𝑅𝑐[4: 6])

+𝐹𝑏𝑈𝐴𝐹𝑐(𝑢𝑏𝑈𝐴𝐹𝑐[1: 3]) × (𝑋𝑏𝑈𝐴𝐹𝑐 − 𝑋𝑏𝑈𝐴𝑤
𝑈𝐴 )

+𝐹𝑏𝑈𝐴𝑅𝑐(𝑢𝑏𝑈𝐴𝑅𝑐[1: 3]) × (𝑋𝑏𝑈𝐴𝑅𝑐 − 𝑋𝑏𝑈𝐴𝑤
𝑈𝐴 )

 

(3.68) 

𝑋𝑏𝑈𝐴𝑤
𝑈𝐴  is the new position of the bushing due to the deformation of the upper arm element. It is calculated in 

the same way of the other bushing in the rigid element (3.69) (3.70). 

[[
𝑋𝑏𝑈𝐴𝑤

𝑈𝐴 ]

1
] = [𝑀𝑈𝐴] ∙ [

[𝑋𝑏𝑈𝐴𝑤
𝑅𝐸𝐿,𝑈𝐴]

1
] 

(3.69) 

[[𝑋𝑏𝑈𝐴𝑤
𝑅𝐸𝐿,𝑈𝐴]

1
] = [𝑀0𝑈𝐴]

−1 ∙ [
[𝑋𝑏𝑈𝐴𝑤]

1
] 

(3.70) 

𝑅𝑈𝐴 is the rotation matrix associated with the upper arm, eq. 3.71. Since the 𝑢𝑏 vectors are referential to the 

GRS, it is necessary to return them to the local reference system since this bushing can rotate in space since it 

is constrained to the element and not to the frame. 

[𝑅𝑈𝐴] = 𝑟𝑜𝑡𝑥(𝑢𝑈𝐴[4]) ∙ 𝑟𝑜𝑡𝑧(𝑢𝑈𝐴[6]) ∙ 𝑟𝑜𝑡𝑦(𝑢𝑈𝐴[5]) 
(3.71) 

The bushing deformation 𝑢𝑏𝑈𝐴𝑤, is: 
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𝑢𝑏𝑈𝐴𝑤[1: 3] = 𝑢𝑈𝑃[1: 3] − (𝑋𝑏𝑈𝐴𝑤
𝑈𝐴 − 𝑋𝑏𝑈𝐴𝑤) 

(3.72) 

𝑢𝑏𝑈𝐴𝑤[4: 6] = 𝑢𝑈𝑃[4: 6] − 𝑢𝑈𝐴[4: 6] 
(3.73) 

Other elements of the function 𝑓 regarding the lower triangle can be written in a similar way in eq. 3.74. 

𝑓[13: 18] = [𝑅𝐿𝐴] ∙ 𝐹𝑏𝐿𝐴𝑤([𝑅𝐿𝐴]
𝑇 ∙ 𝑢𝑏𝐿𝐴𝑤) − 𝑇𝐹𝐿𝐴 

(3.74) 

[𝑅𝐿𝐴] = 𝑟𝑜𝑡𝑥(𝑢𝐿𝐴[4]) ∙ 𝑟𝑜𝑡𝑧(𝑢𝐿𝐴[6]) ∙ 𝑟𝑜𝑡𝑦(𝑢𝐿𝐴[5]) 
(3.75) 

In this case, the lower triangle is also constrained to the spring through a bushing, so we enter the 𝑇𝐹𝑆 vector 

that accounts for forces and moments generated by the spring. 

𝑇𝐹𝐿𝐴[1: 3] = 𝐹𝑏𝐿𝐴𝐹𝑐(𝑢𝑏𝐿𝐴𝐹𝑐[1: 3]) + 𝐹𝑏𝐿𝐴𝑅𝑐(𝑢𝑏𝐿𝐴𝑅𝑐[1: 3]) + 𝑇𝐹𝑆[1: 3] 
(3.76) 

𝑇𝐹𝐿𝐴[4: 6] = 𝐹𝑏𝐿𝐴𝐹𝑐(𝑢𝑏𝐿𝐴𝐹𝑐[4: 6]) + 𝐹𝑏𝐿𝐴𝑅𝑐(𝑢𝑏𝐿𝐴𝑅𝑐[4: 6]) + 𝑇𝐹𝑆[4: 6]

+𝐹𝑏𝐿𝐴𝐹𝑐(𝑢𝑏𝐿𝐴𝐹𝑐[1: 3]) × (𝑋𝑏𝐿𝐴𝐹𝑐 − 𝑋𝑏𝑈𝐴𝑤
𝐿𝐴 )

+𝐹𝑏𝐿𝐴𝑅𝑐(𝑢𝑏𝐿𝐴𝑅𝑐[1: 3]) × (𝑋𝑏𝐿𝐴𝑅𝑐 − 𝑋𝑏𝑈𝐴𝑤
𝐿𝐴 )

+𝑇𝐹𝑆[1: 3] × (𝑋𝑏𝑆𝑤
𝐿𝐴 − 𝑋𝑏𝑈𝐴𝑤

𝐿𝐴 )

 

(3.77) 

[[𝑋𝑏𝐿𝐴𝑤
𝑅𝐸𝐿,𝐿𝐴]

1
] = [𝑀0𝐿𝐴]

−1 ∙ [
[𝑋𝑏𝐿𝐴𝑤]

1
] 

(3.78) 

[[
𝑋𝑏𝐿𝐴𝑤

𝐿𝐴 ]

1
] = [𝑀𝐿𝐴] ∙ [

[𝑋𝑏𝐿𝐴𝑤
𝑅𝐸𝐿,𝐿𝐴]

1
] 

(3.79) 

[[𝑋𝑏𝑆𝑤
𝑅𝐸𝐿,𝐿𝐴]

1
] = [𝑀0𝐿𝐴]

−1 ∙ [
[𝑋𝑏𝑆𝑤]
1

] 
(3.80) 

[
[𝑋𝑏𝑆𝑤

𝐿𝐴]

1
] = [𝑀𝐿𝐴] ∙ [

[𝑋𝑏𝑆𝑤
𝑅𝐸𝐿,𝐿𝐴]

1
] 

(3.81) 

Everything in (3.76) and (3.77) is very similar to what we saw in the previous set of equations (3.67) and 

(3.68). The only significative difference is the presence of the term 𝑢𝑏𝐿𝐴𝑤 representing the deformation of the 

bushing connecting hub carrier and lower arm. 

Again, as always, it is necessary to relate the bushing deformation back to the displacement vector of the 

element. In this case, to calculate the bushing deformation vector, it will be necessary to know the new position 

of the bushing constrained on the arm and constrained on the upright. the difference of these two vectors is the 

translational bushing deformation, eq. 3.82. 

𝑢𝑏𝐿𝐴𝑤[1: 3] = 𝑋𝑏𝐿𝐴𝑤
𝑈𝑃 (𝑢𝑈𝑃) − 𝑋𝑏𝐿𝐴𝑤

𝐿𝐴 (𝑢𝐿𝐴) 
(3.82) 

Regarding rotations, the bushing deformation is given by the difference between the rotation of the upright and 

the rotation of the lower arm (3.83) because the bushing connects these two elements 
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𝑢𝑏𝐿𝐴𝑤[4: 6] = 𝑢𝑈𝑃[4: 6] − 𝑢𝐿𝐴[4: 6] 
(3.83) 

Since the upright is a rigid element, the procedure is analogous to that seen for the two wishbones. 

[[𝑋𝑏𝐿𝐴𝑤
𝑅𝐸𝐿,𝑈𝑃]

1
] = [𝑀0𝑈𝑃]

−1 ∙ [
[𝑋𝑏𝐿𝐴𝑤]

1
] 

(3.84) 

[
[𝑋𝑏𝐿𝐴𝑤

𝑈𝑃 ]

1
] = [𝑀𝑈𝑃] ∙ [

[𝑋𝑏𝐿𝐴𝑤
𝑅𝐸𝐿,𝑈𝑃]

1
] 

(3.85) 

This procedure to identify the bushing deformation is also explained in the Figure 36. 

 

Figure 36. Lower Arm and Upright, scheme to identify wheel side bushing deformations 

For spring rod elements, the axial deformation 𝑢𝑎 of the element must also be considered. Once 𝑋�̂�2
𝐸𝑙𝑒𝑚𝑒𝑛𝑡 

has been calculated through the transformation matrix and the relative coordinates as with what we have 

already seen for the rigid element. An additional step is needed to calculate the new point 𝑋𝑏2
𝐸𝑙𝑒𝑚𝑒𝑛𝑡while also 

considering axial deformation. 

𝑋𝑏2
𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑋�̂�2

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 + 𝑢𝑎 ∘ 𝑐𝑜𝑠𝑑𝑖𝑟 
(3.86) 

Where ∘ is the element-by-element product and 𝑐𝑜𝑠𝑑𝑖𝑟 is the vector with the cosine directors (64) associated 

with the axial direction of the spring rod element. 

𝑐𝑜𝑠𝑑𝑖𝑟𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
(𝑋𝑏1

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑋�̂�2
𝐸𝑙𝑒𝑚𝑒𝑛𝑡)

‖𝑋𝑏1
𝐸𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑋�̂�2

𝐸𝑙𝑒𝑚𝑒𝑛𝑡‖
 

(3.87) 

𝑋𝑏1
𝐸𝑙𝑒𝑚𝑒𝑛𝑡 and 𝑋𝑏2

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 are the new position vector associated with two bushing of the spring rod element. 

This procedure is well described in Figure 37. 
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Figure 37. Spring Rod element, scheme to identify bushing deformations with axial displacement 

After explaining this procedure, we can then proceed to the calculation of 𝑋𝑏𝑆𝑤
𝑆  in eq. 3.92. 

𝑋𝑏𝑆𝑐
𝑆 = 𝑋𝑏𝑆𝑐 + 𝑢𝑆 

(3.88) 

[[𝑋𝑏𝑆𝑤
𝑅𝐸𝐿,𝑆]

1
] = [𝑀0𝑆]

−1 ∙ [
[𝑋𝑏𝑆𝑤]
1

] 
(3.89) 

[[
𝑋�̂�𝑆𝑤

𝑆 ]

1
] = [𝑀𝑆] ∙ [

[𝑋𝑏𝑆𝑤
𝑅𝐸𝐿,𝑆]

1
] 

(3.90) 

𝑐𝑜𝑠𝑑𝑖𝑟𝑆 =
(𝑋𝑏𝑆𝑐

𝑆 − 𝑋�̂�𝑆𝑤
𝑆 )

‖𝑋𝑏𝑆𝑐
𝑆 − 𝑋�̂�𝑆𝑤

𝑆 ‖
 

(3.91) 

𝑋𝑏𝑆𝑤
𝑆 = 𝑋�̂�𝑆𝑤

𝑆 + 𝑢𝑎𝑆 ∘ 𝑐𝑜𝑠𝑑𝑖𝑟𝑆 
(3.92) 

To complete the equations describing the balance of the lower arm, we calculate the vector  𝑇𝐹𝑆 (3.93) (3.94). 

𝑇𝐹𝑆[1: 3] = 𝐹𝑏𝑆𝑐(𝑢𝑏𝑆𝑐[1: 3]) 
(3.93) 

𝑇𝐹𝑆[4: 6] = 𝐹𝑏𝑆𝑐(𝑢𝑏𝑆𝑐[4: 6]) + 𝐹𝑏𝑆𝑐(𝑢𝑏𝑆𝑐[1: 3]) × (𝑋𝑏𝑆𝑐
𝑆 − 𝑋𝑏𝑆𝑤

𝑆 ) 
(3.94) 

It is now possible to write the new set of functions of 𝑓 to describe the equilibrium on the bushing connecting 

the spring with the lower arm, eq. 3.95. 

𝑓[19: 24] = [𝑅𝐿𝐴] ∙ 𝐹𝑏𝑆𝑤([𝑅𝐿𝐴]
𝑇 ∙ 𝑢𝑏𝑆𝑤) − 𝑇𝐹𝑆 

(3.95) 

Where: 

𝑢𝑏𝑆𝑤 = 𝑋𝑏𝑆𝑤
𝑆 (𝑢𝑆, 𝑢𝑎𝑆) − 𝑋𝑏𝑆𝑤

𝐿𝐴(𝑢𝐿𝐴) 
(3.96) 

  1

  2

  1 =         

         

  1
       

  2
       

  2
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The steering tie rod is now considered. The procedure is quite similar to what has already been seen. However, 

the possibility of moving the chassis-side bushing along the y-axis to simulate the translation of the rack is 

considered. So, a new vector 𝑑𝑇𝑅𝑐 is considered, eq. 3.97. 

𝑑𝑇𝑅𝑐 =

[
 
 
 
 
 

0
𝑑𝑅𝑎𝑐𝑘
0
0
0
0 ]

 
 
 
 
 

 

(3.97) 

Where 𝑑𝑅𝑎𝑐𝑘 is the rack displacement. 

The new set of functions associated to the trackrod attached to the upright is reported below in eq. 3.98 

𝑓[25: 30] = [𝑅𝑇𝑅] ∙ 𝐹𝑏𝑇𝑅𝑤([𝑅𝑇𝑅]
𝑇 ∙ 𝑢𝑏𝑇𝑅𝑤) − 𝑇𝐹𝑇𝑅 

(3.98) 

Where 𝑅𝑇𝑅 is the rotation matrix associated with the trackrod element displacement 𝑢𝑇𝑅. And 𝑢𝑏𝑇𝑅𝑤 is 

expressed in eq. 3.99 and eq. 3.100. 

𝑢𝑏𝑇𝑅𝑤[1: 3] = 𝑋𝑏𝑇𝑅𝑤
𝑈𝑃 (𝑢𝑈𝑃) − 𝑋𝑏𝑇𝑅𝑤

𝑇𝑅 (𝑢𝑇𝑅 , 𝑢𝑎𝑇𝑅) 
(3.99) 

𝑢𝑏𝑇𝑅𝑤[4: 6] = 𝑢𝑈𝑃[4: 6] − 𝑢𝑇𝑅[4: 6] 
(3.100) 

[[𝑋𝑏𝑇𝑅𝑤
𝑅𝐸𝐿,𝑈𝑃]

1
] = [𝑀0𝑈𝑃]

−1 ∙ [
[𝑋𝑏𝑇𝑅𝑤]

1
] 

(3.101) 

[
[𝑋𝑏𝑇𝑅𝑤

𝑈𝑃 ]

1
] = [𝑀𝑈𝑃] ∙ [

[𝑋𝑏𝑇𝑅𝑤
𝑅𝐸𝐿,𝑈𝑃]

1
] 

(3.102) 

And, like the spring, but also considering the rack displacement: 

𝑋𝑏𝑇𝑅𝑐
𝑇𝑅 = 𝑋𝑏𝑇𝑅𝑐 + 𝑢𝑇𝑅 + 𝑑𝑇𝑅𝑐 

(3.103) 

[[𝑋𝑏𝑇𝑅𝑤
𝑅𝐸𝐿,𝑇𝑅]

1
] = [𝑀0𝑇𝑅]

−1 ∙ [
[𝑋𝑏𝑇𝑅𝑤]

1
] 

(3.104) 

[
[𝑋𝑏𝑇𝑅𝑤

𝑇𝑅 ]

1
] = [𝑀𝑇𝑅] ∙ [

[𝑋𝑏𝑇𝑅𝑤
𝑅𝐸𝐿,𝑇𝑅]

1
] 

(3.105) 

𝑐𝑜𝑠𝑑𝑖𝑟𝑇𝑅 =
(𝑋𝑏𝑇𝑅𝑐

𝑇𝑅 − 𝑋�̂�𝑇𝑅𝑤
𝑇𝑅 )

‖𝑋𝑏𝑇𝑅𝑐
𝑆 − 𝑋�̂�𝑇𝑅𝑤

𝑆 ‖
 

(3.106) 

𝑋𝑏𝑇𝑅𝑤
𝑇𝑅 = 𝑋�̂�𝑇𝑅𝑤

𝑇𝑅 + 𝑢𝑎𝑇𝑅 ∘ 𝑐𝑜𝑠𝑑𝑖𝑟𝑇𝑅 
(3.107) 

𝑀0𝑇𝑅 is calculated similarly to all other elements. the matrix 𝑀𝑇𝑅, on the other hand, is calculated by also 

considering the frame-side bushing translation given by the steering (3.108). 
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[𝑀𝑇𝑅] = [
[𝑅(𝑢𝑇𝑅)] [𝑋𝑏𝑇𝑅𝑐 + 𝑢𝑇𝑅 + 𝑑𝑇𝑅𝑐]

0 0 0 1

] 

(3.108) 

To conclude this set of equations, we also define the force vector 𝑇𝐹𝑇𝑅 (3.109) (3.110). 

𝑇𝐹𝑇𝑅[1: 3] = 𝐹𝑏𝑇𝑅𝑐(𝑢𝑏𝑇𝑅𝑐[1: 3]) 
(3.109) 

𝑇𝐹𝑇𝑅[4: 6] = 𝐹𝑏𝑇𝑅𝑐(𝑢𝑏𝑇𝑅𝑐[4: 6]) +

𝐹𝑏𝑇𝑅𝑐(𝑢𝑏𝑇𝑅𝑐[1: 3]) × (𝑋𝑏𝑇𝑅𝑐
𝑆 + 𝑑𝑇𝑅𝑐[1: 3] − 𝑋𝑏𝑇𝑅𝑤

𝑆 )
 

(3.110) 

Finally, to complete the function 𝑓 we need to define the last two functions (3.111) (3.112). These take into 

account the axial stiffness of the spring and the trackrod. 

𝑓(31) = ‖𝐹𝑏𝑆𝑐(𝑢𝑏𝑆𝑐[1: 3])‖ − 𝐹𝑎𝑆(𝑢𝑎𝑆) 
(3.111) 

𝑓(32) = ‖𝐹𝑏𝑇𝑅𝑐(𝑢𝑏𝑇𝑅𝑐[1: 3])‖ − 𝐹𝑎𝑇𝑅(𝑢𝑎𝑇𝑅) 
(3.112) 

Where 𝑢𝑏𝑆𝑐 = 𝑢𝑆 and 𝑢𝑏𝑇𝑅𝑐 = 𝑢𝑇𝑅. 

Now that the function 𝑓 is totally defined, it is possible to calculate the displacement vector 𝑈 describing the 

deformed configuration of the suspension by means of the Newton-Raphson algorithm described earlier. 

All equations, including the function and solving algorithm were implemented in Matlab®. The suspension 

pickup points are reported in Table 1. It is specified that this is not a real suspension but only a model created 

for demonstration purposes for this work.  

Table 1. Suspension pickup points coordinates 

The reference system in question is a right-handed system, originating in the centre of the front axle. The X-

axis faces in the forward direction of the vehicle and the Z-axis faces upward. 

For the comparison, the same suspension has been designed using MathWorks Simscape® Multibody with the 

same pickup points, same bushing, and same forces. A screenshot of the suspension created in Simscape® 

Multibody can be seen in the Figure 38 and Figure 39. 

 𝑿 [𝒎𝒎] 𝒀 [𝒎𝒎] 𝒁 [𝒎𝒎] 
UAFc 50 400 480 

UARc -180 420 470 

UAw -30 660 450 

LAFc 0 300 210 

LARc -300 350 220 

LAw 30 700 200 

TRc 120 400 460 

TRw 100 660 450 

Sc 20 400 700 

Sw 0 600 180 

WC 0 750 320 
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Figure 38. Suspension model designed in Simscape® Multibody. 

 

Figure 39. Suspension model designed in Simscape® Multibody's 'Mechanics Explorer'  

Being a multibody software, the simulation also takes inertial and damping effects into account. For this reason, 

only the last values are taken as useful data for comparison, once the transient is exhausted and the whole 

system is at steady state, equilibrium is given only by the stiffnesses. For simplicity, in the design configuration 
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all bushings are oriented the same way and in particular the local axes of each bushing are oriented as the axes 

of the GRS.  

Unfortunately, Simscape® does not allow modelling of bushing with nonlinear stiffnesses. it is only possible 

to assign six stiffness values for each bushing and one axial stiffness. Therefore, linear stiffnesses are used for 

both bushing and axial compliance for models comparison purposes. 

 All frame-side bushings have the same stiffnesses, and their values are given in the Table 2. Same for wheel-

side bushing, which are all the same and have the same translational stiffnesses as frame-side bushing but one-

tenth the rotational stiffness. This is to avoid making the suspension too stiff during steering. It should be noted 

that again the stiffness values do not represent actual bushing, although an order of magnitude consistent with 

commercially available bushing is chosen. 

Table 2. Bushings translational and rotational stiffness 

 𝑲𝒙 [
𝑵

𝒎𝒎
] 𝑲𝒚 [

𝑵

𝒎𝒎
] 𝑲𝒛 [

𝑵

𝒎𝒎
] 𝑲𝒓𝒙 [

𝑵𝒎

𝒅𝒆𝒈
] 𝑲𝒓𝒚 [

𝑵𝒎

𝒅𝒆𝒈
] 𝑲𝒓𝒛 [

𝑵𝒎

𝒅𝒆𝒈
] 

UAFc 1000 2000 3000 1500 30000 30000 

UARc 1000 2000 3000 1500 30000 30000 

UAw 1000 2000 3000 150 3000 3000 

LAFc 1000 2000 3000 1500 30000 30000 

LARc 1000 2000 3000 1500 30000 30000 

LAw 1000 2000 3000 150 3000 3000 

TRc 1000 2000 3000 1500 30000 30000 

TRw 1000 2000 3000 150 3000 3000 

Sc 1000 2000 3000 1500 30000 30000 

Sw 1000 2000 3000 150 3000 3000 

Table 3. shows the general characteristics of the vehicle on which this idealized front suspension is mounted. 

The vehicle data are used to calculate the load cases that will be used later for the comparison. 

Table 3. Vehicle characteristics used for load cases calculation 

Wheelbase [mm] 2750 

Front track [mm] 1500 

Rear track [mm] 1500 

CG height [mm] 500 

Traction RWD 

Total mass [kg] 1600 

Total weight distribution [%] 60 

Non-suspended mass front [kg] 80 

Non-suspended mass rear [kg] 80 

Roll stiffness distribution [%] 60 

Wheel radius [mm] 320 

Braking forces distribution [%] 65 

Pneumatic trail [mm] 20 

Table 4. shows the load cases used to compare the model with the reference. Ten cases were chosen, containing 

braking, acceleration, lateral and combined loads. The last two load cases, on the other hand, want to recreate 

the suspension hitting a pothole while braking and the wheel hitting a curb sideways. 
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Table 4. List of load cases used for the comparison 

N Load case  𝑭𝒙 [𝑵] 𝑭𝒚 [𝑵] 𝑭𝒛 [𝑵] 𝑴𝒙 [𝑵𝒎] 𝑴𝒚 [𝑵𝒎] 𝑴𝒛 [𝑵𝒎] 

1 Static Weight 0 0 4709 0 0 0 

2 Static Weight * 1.5 g 0 0 7063.5 0 0 0 

3 Braking 0.5 g -2550.6 0 5422 0 0 0 

4 Braking 0.8 g -4080.96 0 5850 0 0 0 

5 Acceleration 0.4 g 3139.2 0 4138 0 0 0 

6 Cornering 0.7 g 0 -4630 6867 0 0 92.6 

7 Corn 0.7 g+ Acc 0.4 g 3139.2 -4630 4345 0 1004.544 92.6 

8 Corn 0.7 g+ Brk 0.8 g -4080.96 -4630 8009 0 0 92.6 

9 Pothole braking -8161.92 0 7563 0 0 0 

10 Curb sideways 0 -7500 4709 0 0 0 

The load cases are defined as three forces and three moments applied on the hub carrier. Loads were calculated 

by considering vehicle data and load transfers given by accelerations. It is not the purpose of this work to report 

the equations by which the loads were obtained. The points of load application vary according to the case and 

are given in the Table 5. together with the translation of the rack. 

Table 5. Forces application points and rack displacement for each load cases 

N Load case 𝑿 [𝒎𝒎] 𝒀 [𝒎𝒎] 𝒁 [𝒎𝒎] 𝒅𝑹𝒂𝒄𝒌 [𝒎𝒎] 

1 Static Weight 0 750 0 0 

2 Static Weight * 1.5 g 0 750 0 0 

3 Braking 0.5 g 0 750 0 0 

4 Braking 0.8 g 0 750 0 0 

5 Acceleration 0.4 g 0 750 320 0 

6 Cornering 0.7 g 0 750 0 -20 

7 Corn 0.7 g+ Acc 0.4 g 0 750 0 -20 

8 Corn 0.7 g+ Brk 0.8 g 0 750 0 -20 

9 Pothole braking 0 750 0 0 

10 Curb sideways 0 750 200 0 

Figure 40 and Figure 41 show the schematic of the suspension in the design configuration and the deformed 

configuration after applying load case number 4 and 7, as an example. Two views of the suspension are shown 

in the Figures, and the deformed configuration calculated through the model and that calculated through 

Simscape® is shown. 
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Figure 40. Graphic view of the deformed suspension under load number 4. Design configuration (black), Model 

deformed configuration (red), Simscape® (blue) 

 

Figure 41. Graphic view of the deformed suspension under load number 7. Design configuration (black), 

Model deformed configuration (red), Simscape® (blue) 

To do the comparison, we chose to compare the values describing the position is the orientation of the wheel 

in space in the deformed configuration. Specifically,  
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Table 6. Calculation results of the model for each load case 

N  𝒅𝑪𝒂𝒎𝒃𝒆𝒓 [°] 𝒅𝑺𝑾𝑨 [°] 𝒅𝑻𝒐𝒆 [°] 𝒅𝑿 [𝒎𝒎] 𝒅𝒀 [𝒎𝒎] 𝒅𝒁 [𝒎𝒎] 

1 -0.75 -1.33 0.28 -1.28 1.57 4.69 

2 -1.21 -1.16 1.82 -0.52 -0.95 69.41 

3 -1.49 -5.72 0.15 -6.42 3.54 22.07 

4 -1.98 -8.33 -0.05 -9.73 4.23 33.04 

5 -0.63 -1.26 1.26 4.02 0.40 -9.18 

6 -0.91 -1.04 9.00 11.76 -6.71 70.52 

7 -0.17 -0.77 8.16 16.10 -5.11 -9.38 

8 -2.14 -8.50 6.33 -1.16 -11.86 109.51 

9 -3.80 -15.32 -1.39 -20.33 1.84 80.44 

10 0.99 0.00 -1.68 -0.57 -5.27 -17.45 

 

Table 7. Calculation results of Simscape® model for each load case 

N  𝒅𝑪𝒂𝒎𝒃𝒆𝒓 [°] 𝒅𝑺𝑾𝑨 [°] 𝒅𝑻𝒐𝒆 [°] 𝒅𝑿 [𝒎𝒎] 𝒅𝒀 [𝒎𝒎] 𝒅𝒁 [𝒎𝒎] 
1 -0.75 -1.32 0.28 -1.27 1.59 4.97 

2 -1.22 -1.14 1.83 -0.57 -1.00 69.84 

3 -1.48 -5.62 0.11 -6.43 3.50 22.27 

4 -1.96 -8.17 -0.12 -9.75 4.16 33.09 

5 -0.63 -1.27 1.27 4.04 0.44 -8.90 

6 -0.80 -0.95 8.49 11.05 -6.57 70.27 

7 -0.11 -0.75 7.84 15.68 -5.10 -9.88 

8 -2.02 -8.17 5.90 -1.70 -11.25 107.61 

9 -3.74 -14.91 -1.52 -20.27 1.98 78.52 

10 1.02 0.03 -1.89 -0.85 -5.36 -18.23 

Table 6. And Table 7. show the changes from the design configuration of the wheel centre coordinates and 

rotations about their axes, namely camber, toe and side view angle (SWA). Table 6. shows the calculation result 

of the model, Table 7. the of Simscape®. 

Table 8. shows the normalized root mean squared error (nRMSE) and The Pearson correlation coefficient (R) 

values calculated by the model compared with those calculated with Simscape®. 

Table 8. nRMSE and R between model and Simscape® results 

 𝒅𝑪𝒂𝒎𝒃𝒆𝒓 [°] 𝒅𝑺𝑾𝑨 [°] 𝒅𝑻𝒐𝒆 [°] 𝒅𝑿 [𝒎𝒎] 𝒅𝒀 [𝒎𝒎] 𝒅𝒁 [𝒎𝒎] 

nRMSE 

[%] 
3.7% 2.9% 5.9% 3.3% 4.0% 1.7% 

R 0.999 1.000 0.999 1.000 1.000 1.000 

The results shown in the Table 8. are also shown in the graphs in the Figure 42. for better visualization. 
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Figure 42. Model Results VS Simscape® results. wheel orientation (dCamber, dSWA, dToe) on the left side and 

position (dX,dY,dZ) on the right side 

Looking at the comparison with the multibody software, the model seems to compute the solution correctly 

with low errors. the correlation coefficients appear to be essentially unitary. Qualitatively, by graphing the 

deformed configuration for different loads these are always practically overlapping, as can be seen in the Figure 

40 and Figure 41. 

This section reports the results of elastokinematics computations using nonlinear bushings, spring and 

trackrod. The same suspension scheme seen in the previous chapter is used, with the same pickup points. 

However, nonlinear stiffnesses are used to better simulate the true behaviour of bushing. Specifically, each of 

the six force-displacement functions that characterize bushing are described by the function 𝐹𝑏𝑁𝐿(𝑢𝑏). Each 

of these functions is described by a fifth-degree polynomial with a first-degree term inside to describe the 

linear behaviour for small displacements. The shape of the function is graphed in Figure 43. Displacements 

and rotations are defined in millimetres and radians. 

𝐹𝑏𝑁𝐿(𝑢𝑏) = (𝑢𝑏 ∘ 𝑐𝑥)
∘5 + 1000 ∙ 𝑐𝑥 ∘ 𝑢𝑏) ∘ 𝑐𝑦 

(3.113) 

 

Where, for the bushings, the coefficients  𝑐𝑥 and 𝑐𝑦 are two 6x1 vectors associated with each of the six bushing 

stiffnesses. All bushings are oriented as described in the previous chapter, and the rotational stiffnesses of the 

wheel-side bushings are one-tenth of those on the chassis-side as can be seen from in (3.114-116). 

𝑐𝑥𝑐 = 𝑐𝑥𝑊 = [1 1 1 180/𝜋 180/𝜋 180/𝜋] 
(3.114) 

𝑐𝑦𝑐 = [1𝑁 2𝑁 3𝑁 1.5𝑁𝑚𝑚 30𝑁𝑚𝑚 30𝑁𝑚𝑚] 
(3.115) 

𝑐𝑦𝑤 = [1𝑁 2𝑁 3𝑁 1.5𝑁𝑚𝑚 30𝑁𝑚𝑚 30𝑁𝑚𝑚] 
(3.116) 
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Figure 43. Shape of the function (90), on X-axis the bushing deformation, on Y-axis per bushing reaction 

The axial stiffness of the trackrod (3.117) is also defined by a similar function of (3.113) where 𝑐𝑥𝑇𝑅 = 1 and 

𝑐𝑦𝑇𝑅 = 5. 

𝐹𝑎𝑇𝑅(𝑢𝑎𝑇𝑅) = (𝑢𝑎𝑇𝑅)
5 + 1000 ∙ 𝑢𝑎𝑇𝑅) ∙ 5 [𝑁] 

(3.117) 

Instead, the spring is described in (3.118) with a linear function and preload. However, the presence of a 

bumpstop with a clearance. The curve force-displacement of the bumpstop is analogous to (3.113). 

𝐹𝑎𝑆(𝑢𝑎𝑆) =

{
𝑘𝑠 ∙ 𝑢𝑎𝑠 𝑁, 𝑢𝑎𝑠 < 𝑐𝑙𝑟

𝑘𝑠 ∙ 𝑢𝑎𝑠 + ((𝑢𝑎𝑆 − 𝑐𝑙𝑟)
5 + 1000 ∙ (𝑢𝑎𝑠 − 𝑐𝑙𝑟)) ∙ 0.2 𝑁, 𝑢𝑎𝑠 ≥ 𝑐𝑙𝑟

 

(3.118) 

Where 𝑘𝑠 = 60 𝑁/𝑚𝑚 is the spring stiffness and 𝑐𝑙𝑟 = 40 𝑚𝑚 is the bumpstop clearance. 

These displacement force curves were chosen to make sure that for small displacements the suspension has 

stiffnesses quite similar to the one analysed in the previous chapter. Next, in fact, a comparison is made 

between the model with linear and nonlinear stiffnesses to understand how much the nonlinearity can affect 

the suspension deformation. We chose to compare them using probably what is the heaviest load case, number 

8 expressed in the Table 4. The schematic of the deformed suspension is shown in the Figure 44. and forces 

and moments generated by one of the bushings are shown instead in Figure 45. The rear bushing of the lower 

arm was chosen as an example. 
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Figure 44. Graphic view of the deformed suspension both for linear and non-linear model under the load N 8. Design 

configuration (black), Linear (red) and Non-linear(blue) 

 

Figure 45. Forces (left) and Moments (right) of the lower arm rear bushing under the load N 8 

Finally, the wheel motion was chosen to be observed to see the evolution of elastokinematics at various 

fractions of the load case. Always using load number 8 defined in Table 4., the calculation is carried out ten 

times starting first from 10% of the load, then 20% and so on until it reaches 100%. In addition to loads, rack 

displacement and spring preload are also made to vary progressively. The translations and rotations of the 

wheel centre are shown in Figure 46. comparing the suspension with linear and nonlinear stiffnesses. 
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Figure 46. Variation of wheel orientation (dCamber, dSWA, dToe) and position (dX,dY,dZ) at various percentages of the 

load case number 8 

3.4 Axial Stiffness Elasto-Kinematics 

This model for calculating suspension compliance, is somewhat complementary to the one explained in the 

chapter 3.2. In fact, in this model the joints are considered infinitely rigid, the suspension arms on the contrary 

are considered with compliance. In particular, axial stiffness is considered. This algorithm, unlike the previous 

two, is dedicated to racecar suspensions. 
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This model is also based on the load calculation algorithm explained in previous chapters. The wheel is 

constrained to the frame by 6 connecting rods subjected to axial force. As mentioned in previous chapters, 

connecting rods can be conFigured in different ways, matching some of their ends to create different 

suspension architectures.  

3.4.1 Model Description 

In this model, there are some cases that need to be simplified. Particularly those cases where the sixth 

connecting rod, that is, the pushrod is tied to one of the arms. In that case, as was explained in the previous 

chapter, the arm can no longer be considered as two connecting rods. 

To overcome this problem, an approximation is made, that is, the wheel-side point of the strut, if constrained 

to the arm, is made to coincide with the end of the arm, wheel side. This procedure is shown in the Figure 47 

for better understanding. 

 

Figure 47. Translation of the pushrod attachment point on the joint connecting the arm to the hub carrier. 

In this way, the arm is no longer subject to bending or shear actions and can be subjected only to axial forces. 

This simplification can be considered valid because generally, the pushrod attachment point is close enough to 

the arm joint precisely so as not to create bending in it. In this way, all suspension arms can be traced back to 

connecting rods, and it is then possible to calculate their axial load with the load calculation algorithm by 

simply solving the balance equations on the hub carrier. 

In addition, race cars often have the pushrod tied directly to the hub carrier, because this configuration allows 

for an extra parameter for vehicle setup by going to create steering-induced vertical wheel displacements, 

changing the load transfers and thus the balance of the car [52]. In this case, there is no approximation to be 

made. 

Solving this elasto-kinematics requires solving 12 equations. The first 6 equations represent the calculation of 

forces, then the balance of forces and moments on the hub carrier. The equation to be written are then the same 
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as those used in the eq. 3.1. The other 6 equations, on the other hand, represent the kinematics of the system, 

so the same functions used in 3DSusp's algorithm are used that impose a given length of the 6 connecting rods 

that make up the suspension, the difference being that in this case the length of the connecting rod will not 

have to be equal to the initial length but will be longer/shorter due to the deformation associated with the axial 

load. 

The following are the acronyms used to name the connecting rods: 

• TLF = Top Link Front 

• TLR = Top Link Rear 

• BLF = Bottom Link Front  

• BLF = Bottom Link Rear 

• TR = TrackRod  

• PR = PushRod/PullRod 

|𝑃𝑅| represents the length of the pushrod, while 𝐿𝑃𝑅 represents the axial force on the pushrod, positive in 

tension and negative in compression. 

The suspension is then defined via the coordinates of the joints, and the six axial stiffnesses for each 

connecting rod are defined. 𝑘𝑃𝑅 is, for example, the axial stiffness of the pushrod, expressed in 𝑁/𝑚𝑚. 

The equation to be solved is in the form 𝑓(𝑋) = 0 where 𝑓 is a vectorial function containing 12 scalar 

functions, described in the eq. 3.119. 

𝑓(𝑋) =

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 ∑𝐹𝑥(𝑋)

∑𝐹𝑦(𝑋)

∑𝐹𝑧(𝑋)

∑𝑀𝑥(𝑋)

∑𝑀𝑦(𝑋)

∑𝑀𝑧(𝑋)

|𝑇𝐿𝐹(𝑋)| − |𝑇𝐿𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙| −
𝐿𝑇𝐿𝐹
𝑘𝑇𝐿𝐹

|𝑇𝐿𝑅(𝑋)| − |𝑇𝐿𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙| −
𝐿𝑇𝐿𝑅
𝑘𝑇𝐿𝑅

|𝐵𝐿𝐹(𝑋)| − |𝐵𝐿𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙| −
𝐿𝐵𝐿𝐹
𝑘𝐵𝐿𝐹

|𝐵𝐿𝑅(𝑋)| − |𝐵𝐿𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙| −
𝐿𝐵𝐿𝑅
𝑘𝐵𝐿𝑅

|𝑇𝑅(𝑋)| − |𝑇𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙| −
𝐿𝑇𝑅
𝑘𝑇𝑅

|𝑃𝑅(𝑋)| − |𝑃𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙| −
𝐿𝑃𝑅
𝑘𝑃𝑅

 

(3.119) 
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𝑋 is the vector of unknowns, defined in the eq. 3.120, which contains: 

- The 3 angles that define the orientation of the wheel in space. 

- The 3 coordinates defining the position of the wheel. 

- The 6 axial forces each connecting. 

[𝑋 ] =

[
 
 
 
 
 
 
 
 
 
 
 
𝐶𝑎𝑚𝑏𝑒𝑟
𝑇𝑜𝑒
𝑆𝑉𝐴
𝑋𝑊ℎ𝑒𝑒𝑙
𝑌𝑊ℎ𝑒𝑒𝑙
𝑍𝑊ℎ𝑒𝑒𝑙
𝐿𝑇𝐿𝐹
𝐿𝑇𝐿𝑅
𝐿𝐵𝐿𝐹
𝐿𝐵𝐿𝑅
𝐿𝑇𝑅
𝐿𝑃𝑅 ]

 
 
 
 
 
 
 
 
 
 
 

 

(3.120) 

The Newton-Rapson algorithm (3.121) is used to solve this system of equations. 

𝑋𝑖𝑡𝑒𝑟+1 = 𝑋𝑖𝑡𝑒𝑟 − [𝐽(𝑋𝑖𝑡𝑒𝑟)]
−1 ∙ 𝑓(𝑋𝑖𝑡𝑒𝑟) 

(3.121) 

 Where the function is linearised by creating a 12x12 Jacobian matrix 𝐽 , eq. 3.122.  

[𝐽(𝑋)] =

(

 
 

𝜕𝑓1(X)

𝜕𝑋1
⋯

𝜕𝑓1(X)

𝜕𝑋12
⋮ ⋱ ⋮

𝜕𝑓𝑁(X)

𝜕𝑋1
⋯

𝜕𝑓12(X)

𝜕𝑋12 )

 
 

 

(3.122) 

 

3.4.2 Results and Comparison with Simulink® Simscape Multibody 

The algorithm was implemented in a Matlab® script. An example double wishbone suspension was created, 

with the arms having random axial stiffnesses in the order of 100kN/mm. The following forces were applied 

at the ground point of the tire: 𝐹𝑥 = −8000𝑁 𝐹𝑦 = 5000𝑁 𝐹𝑍 = 10000𝑁. 

The Figure 48 shows the output of the script, in particular a graphical display of the deformed configuration 

compared to the design configuration and then a histogram representing the axial forces on each connecting 

rod. Being a racecar suspension, compliance is very low, the deformation is not clearly visible to the naked 

eye, but even small variations can influence vehicle dynamics. 
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Figure 48. a) Suspension in design configuration (blue) and deformed (red). b) Histogram for axial loads on each 

connecting rod. 

To do some kind of validation, the suspension itself was modelled using Simulink® Simscape Multibody, a 

software included in the Mathworks® package for carrying out multibody simulations. The suspension itself 

was then created. A screenshot of Simulink can be seen in the Figure 49. 

 

Figure 49. Simulink screenshot showing the Simscape model of the suspension. 

The model consists of a rigid body, representing the wheel, to which the forces are applied, and bound to the 

frame by six connecting rods with axial rigidity. The connecting rods are connected to the frame and the wheel 

via ideal ball joints. Each connecting rod is modelled by 2 rigid bodies connected to each other via a prismatic 
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joint with a stiffness along its axis of translation, to model the axial compliance of the connecting rods, as can 

be seen on the left-hand side of the Figure 49. 

In addition, the Figure 50 shows a screenshot of the 'Mechanics Explorer', i.e. Simscape® Multibody's 

graphical viewer, where the modelled suspension is represented. 

 

Figure 50. Screenshot of Simscape®'s 'Mechanics Explorer', showing the modelled suspension. 

The same load cases mentioned above were then applied to both models. The results are shown in the Table 9 

and Table 10.  

Table 9. Comparison of results between the proposed model and Simscape® Multibody, wheel position and orientation. 

 𝑪𝒂𝒎𝒃𝒆𝒓[°] 𝑻𝒐𝒆[°] 𝑺𝑽𝑨[°] 𝑿𝑾𝒉𝒆𝒆𝒍[𝒎𝒎] 𝒀𝑾𝒉𝒆𝒆𝒍[𝒎𝒎] 𝒁𝑾𝒉𝒆𝒆𝒍[𝒎𝒎] 

 This 

Model 
-0.1051 -0.0395 0.2331 -0.4103 895.1044 266.3452 

Simscape® 

Multibody 
-0.1054 -0.0397 -0.2320 -0.4096 895.1044 266.3474 

Error % -0.284 -0.503 0.474 0.170 0 -0.001 

 

Table 10. Comparison of results between the proposed model and Simscape® Multibody, axial loads. 

 𝑳𝑻𝑳𝑭[𝑵] 𝑳𝑻𝑳𝑹[𝑵] 𝑳𝑩𝑳𝑭[𝑵] 𝑳𝑩𝑳𝑹[𝑵] 𝑳𝑻𝑹[𝑵] 𝑳𝑷𝑹[𝑵] 

 This 

Model 
-18505 -7463 39577 9967 1295 -22192 

Simscape® 

Multibody 
-18460 -7513 39490 10092 1294 -22262 

Error % 0.243 -0.665 0.220 -1.238 0.077 -0.314 

The results appear very similar to each other, and the percentage error was small. 
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3.5 Integration in ViCarRealTime® 

As described in chapter 2.3.1, ViCarRealTime offers the possibility of using its own solver in Simulink, with 

so-called co-simulation. It is possible using the Simulink® block of ViCarRealTime® and setting the input 

variables correctly. The Figure 51 shows a screenshot with the Simulink block of ViCarRealTime and some of 

the input variables used for integration. 

 

Figure 51. Screenshot with the Simulink block of ViCarRealTime and some of the input variables used for integration. 

The following is then a list of input variables to be provided, for each parameter (Variation of wheelbase and 

track, Toe, Camber and SVA) to the Vi-CarRealTime® solver to externally manage the compliance of a single 

wheel: 

• ComplianceInternalFlag 

• ComplianceDisplacement 

• ComplianceVelocity 

• ComplianceAcceleration 

• ComplianceDerivativeWrtSwa 

• ComplianceDerivativeWrtJside 

• ComplianceDerivativeWrtJopp 
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Where ComplianceInternalFlag is simply a boolean value to turn internal computation on or off. 

ComplianceDisplacement is the value of the parameter at that instant, and Velocity and Acceleration represent 

the first and second derivatives of that value, respectively, with respect to time. The other values represent first 

derivative with respect to different values where Jside represents the jounce of the wheel itself, Jopp represents 

the jounce of the opposite wheel of the same axle, Swa represents the steering wheel angle. Wrt means "With 

respect to." Since it is still independent wheel suspension, there will be no dependence on the jounce of the 

opposite wheel, so the value ComplianceDerivativeWrtJopp will be set equal to 0. 

As seen in the chapter for the integration of kinematics Integration with Vi-CarRealTime®2.3, it is sufficient 

to create, from the script of the elasto-kinematics algorithm, a Matlab® function to be inserted into Simulink®. 

In this way, it is possible to manage compliance using one of the developed algorithms, having more control 

over the suspension parameters. 

Vi-CarRealTime in fact offers the possibility, in one's own vehicle model, in the subsystem 'Suspension' to 

enter the elasto-kinematics of the suspension, in the tab called 'Compliance'. 

In Vi-CarRealTime the wheel orientation is implemented using the effect superposition principle. Given that 

the kinematic position and orientation being defined by the dependency on suspension jounce and eventually 

steering wheel angle the effect of external loads on a given suspension property (track or base variation, toe, 

camber, side view angle) is computed as the sum of the effect given by all active loads taken singularly. 

The aim of the work explained below is to compare the model based on the superposition of effects with the 

proposed model by means of some vehicle dynamics simulations. Trying to point out that, the method based 

on the superposition of effects has its limitations when dealing with non-linear systems, especially because of 

rubber bushing. 

3.5.1 Comparison with superposition principle model 

A generic model of a double wishbone suspension was created, featuring nonlinear, force-displacement 

bushing characteristics defined with a fifth-degree polynomial to recreate their typically progressive, stiffening 

behaviour. The model used is the one described in Chapter 3.3. 

The suspension model was implemented as a Matlab® function and transferred to Simulink®. This second 

function was then linked to ViCarRealTime®. A mix of dynamic simulations such as Step Steer, DLC and 

Braking in Turn, were then carried out as a case study, their purpose being the comparison of the above model 

with a simpler one based on the superposition principle, where the effect of each force or moment on the 

suspension is considered as orthogonally decomposed. 

This kind of approach is typically used for K&C rig testing results: the suspension deflection is calculated as 

a simple summation of all effects of each external action. Indeed, one of the goals of this work is to show that 

the proposed model can deal with strong nonlinearities in the system more accurately. A basic vehicle model 
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was therefore used. To creating the “superposition” model, using the proposed algorithm, a series of 3-

dimension look-up tables were generated in as a function of wheel travel, steer and external force, each 

describing the effect that each external force has on the suspension's 6 degrees of freedom. 

 

 

Figure 52. Time history of front wheel assembly motion during a simulated cornering maneuver followed by heavy 

braking. Variations are shown with respect to the design position. Proposed model (red) vs model based on the 

superposition principle (blue). 

Figure 52 reports wheel displacement data obtained with the two models during the simulation of a complex 

maneuver with a passenger car: the vehicle initially travels in a straight line. It is then prompted into a constant 

radius curve. Finally heavy braking is applied, achieving deceleration levels up to 1g. To decouple kinematics 

and compliance, wheel forces were applied to a suspension model equipped with a very stiff spring. 

In this first comparison, the two methods are compared "offline" by providing the two models with the forces 

and moments acting on the wheels as input. 

In the second comparison, the two models are directly implemented in the dynamic simulation. This simulation 

is a corner-braking test where the vehicle starts from a speed of 108 𝑘𝑚/ℎ and enters in a cornering with a 

radius of 75m. A virtual driver model controls the steering. After 2 seconds the driver brakes following a target 

deceleration of 10 
𝑚

𝑠2
.The purpose is the comparison of the above model with a simpler one based on the 

superposition principle, where the effect of each force or moment on the suspension is considered as 

orthogonally decomposed. The suspension deflection is calculated as a simple summation of all effects of each 

external action. 
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The simulation has been carried out in the Vi-CarRealTime® environment with Simulink® co-simulation, with 

an integration step of 0.001s. Only the compliance of the front axle was considered. To ensure that the 

simulation worked in real time, the algorithm calculating the elastokinematics has been compiled in C and has 

been run at 500Hz, assigning the calculation of each wheel in parallel to one core of an Intel® Xeon Gold 6134 

CPU. 

 

Figure 53. Simulation results for left-hand wheel movements: camber, toe, caster, wheelbase variation and wheel travel. 

In red the comprehensive proposed model, in blue the model based on lookup-table and superposition. 

Figure 53 shows the simulation results for the movements of the left wheel (i.e. the most loaded as it is a right-

hand bend): camber, toe, caster, wheelbase variation and wheel travel, comparing the two models. 

 

Figure 54. Steering wheel angle over time in the simulation. In red the comprehensive proposed model, in blue the 

model based on lookup-table and superposition. 

Figure 54 represents the steering wheel angle over time. This is different between the two simulations as the 

test is in closed loop, i.e. virtual driver maintains an imposed trajectory and target deceleration. 
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By using typical, strongly nonlinear force-displacement curves for the bushings, the difference between the 

two models becomes particularly apparent, as previously seen in Figure 52 and Figure 53, where large 

differences in track variation can be observed, even with opposite signs. The differences seen in camber, caster, 

and toe can significantly influence the handling and performance of the vehicle. This is also reflected in the 

varying values of steering angle, which alters the feedback for the driver. 

Separating the effects of the various actions and combining them through the superposition principle does not 

lead to an accurate solution when large deformations occur, and large forces act on the wheel. In normal 

driving, the differences between the two models tend to be negligible. Even when examining the inner wheel 

during a turn, the differences are less significant. 

For performance applications, the need arises for an appropriate solver to accurately calculate compliance 

effects, enabling an effective design and simulation process without limitations. Elasto-kinematic properties 

can be computed for any combination of wheel jounce and steering rack position, with the flexibility to change 

hardpoints or bushing stiffness curves at any time. 

Unlike a multi-body model, the proposed model is a quasi-static solver that is well-suited for real-time 

applications, such as in a driving simulator. In this context, each solution of the problem is close to that of the 

previous instant, allowing the Newton-Raphson algorithm to converge in negligible time. 

However, compared to a multi-body solver, dynamic features of rubber bushings, such as damping and 

hysteresis effects, are not accounted for. Another limitation of this model is the lack of an anti-roll bar model, 

which can transfer forces onto the suspension system and affect its elastokinematics.  

In this work, the proposed model has been implemented in the simulation with its calculation frequency limited 

to 500Hz, so that the vehicle model could operate at 1000Hz, which is considered the minimum frequency for 

real-time. Lowering the update frequency of the elastokinematics does not significantly influence the vehicle 

model, as the dynamic effects of the suspension are not accounted for here. It is expected that with more 

powerful hardware, the suspension model frequency can also be increased to 1000Hz. 

In the author's opinion, an analytical approach suitable for both design and real-time operation is the best 

solution in the initial design phase of a vehicle with its suspension and steering systems. Additionally, with the 

proposed model, it is possible to calculate the constraint reactions on each individual bushing, which is useful 

for FEM analyses, for example something that cannot be done with a model based on look-up tables or an 

artificial neural network. 
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4 Vehicle Side Slip Angle estimation 

One of the topics the author worked on during his PhD was precisely the comparison of the two main methods 

for Vehicle Side Slip Angle (VSA) estimation found in the literature, usually classified as Kalman Filter-based 

and Neural Network-based. 

The Vehicle Side Slip Angle (VSA), often identified with the letter 𝛽, is a key quantity for evaluating vehicle 

and tire behaviour. VSA is defined as the angle between the vehicle's longitudinal axis and its velocity, the 

vector tangent to the vehicle's trajectory, Figure 55. 

 

Figure 55. Vehicle Side Slip Angle, the angle in blue between the longitudinal axis of the vehicle and its velocity vector, 

tangent to the trajectory (red). 

However, devices required to obtain a direct measure of the vehicle sideslip angle are not robust to adverse 

environmental conditions and very expensive as well, therefore they are suitable for R&D rather than for 

production vehicles. These sensors are usually optical sensors, like the one shown in Figure 56. 
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Figure 56. Optical sensor for Vehicle Side Slip Angle measurement, Kistler® S-Motion mounted on Fiat 124 by 

Megaride Applied Vehicle Research®. 

The VSA hence requires estimation on the basis of conventional measurements such as lateral/longitudinal 

acceleration, yaw rate, and steer angle. An estimate of vehicle speed is also required, to be based in turn on 

wheel angular speeds. 

All the above calls for an innovative approach where traditional mechanical engineering skills for chassis 

design are integrated with digital knowledge, and the use of innovative tools makes for a research framework 

where subjective factors are also taken into account, thus making it also suitable for the development of 

Advanced Driver Assistance Systems (ADAS). On top of that, such an approach recalls what is usually defined 

as model-based design, where digital models are the key to product definition. In this case the models related 

to VSA estimation strategies can be used for functional simulations at the same time. 

4.1 Comparison of The Two Most Used Vehicle Sideslip Angle Estimation Methods 

Vehicle sideslip angle estimation is still one of the most challenging research topics in the automotive industry. 

Many papers can be found on this topic, where authors propose varied methods to reach the goal. After an 

extensive literature review, two very different methods have been identified as the most used: Extended 

Kalman Filter with dynamic model and Artificial Neural Network. In this chapter a comparison among these 

methods is presented. A fully instrumented car has been used to gather typical vehicle dynamics data and feed 

the models required for a model-based design approach. Results showed that each method has either positive 

aspects or drawbacks. 

4.1.1 Kalman Filter-based estimation 

It is well known that the Kalman filter (KF) provides optimal state estimation of linear systems. When 

dealing with nonlinear systems, as it is often the case in practice, a possible solution to the state estimation 

problem is offered by the Extended Kalman Filter (EKF). The EKF is based on a recursive linearization of 
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the system model around the estimated state so that the KF equations can be applied. A complete dissertation 

about the EKF is beyond the scope of this work and the reader may conveniently refer to [7]. Nevertheless, 

in order to make the present work more self-contained, the EKF equations required to estimate the state of a 

given nonlinear system are reported. Generally speaking, KF (and its variants) addresses the general problem 

of trying to estimate the state vector 𝑥 ∈  ℜ𝑛 of a discrete-time controlled process that is governed by the 

generic set of equations [6]. The following system can be considered: 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) 
(4.1) 

𝑧𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘) 
(4.2) 

where 𝑥 is the state vector, 𝑢 the system input, 𝑧 the system output (the measured variables) and 𝑣,𝑤 given 

Gaussian white noise. 𝑄 and 𝑅 are defined as the system noise w covariance matrix and the measurement noise 

v covariance matrix, respectively. Now if the system is linear, equations 4.1 and 4.2 can be written in the form: 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐹𝑢𝑘−1 +𝑤𝑘−1 
(4.3) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 
(4.4) 

 

Denoting with 𝑥�̂�
−

 the state estimate at step k according to the dynamic evolution of the system (4.3), the KF 

estimation is: 

𝑥�̂� = 𝑥�̂�
− + 𝐾(𝑧𝑘 −𝐻𝑥�̂�

−) 
(4.5) 

 

One form of K is given in [6]: it depends upon Q and R. For example, if R approaches zero i.e. for an extremely 

reliable measurement, then  𝐾 ≈ 𝐻−1 hence 𝒙�̂� ≈ 𝐻
−1𝒛𝒌. If the system is not linear i.e. it can be described 

only in the general form (4.1 and 4.2), it can be linearized and written in a form similar to (4.3 and 4.4). Such 

an approach is known as an EKF. The vehicle model provides a detailed description of its dynamic behaviour, 

as it is based on the equilibrium equations. Considering the vehicle as a rigid body, the following is a generic 

set of equilibrium equations: 

𝑚𝑎𝑥 = 𝑚(�̇� − 𝑣𝑟) =∑𝐹𝑥,𝑖

𝑝𝑥

𝑖=1

 
(4.6) 

𝑚𝑎𝑦 = 𝑚(�̇� + 𝑢𝑟) =∑𝐹𝑦,𝑖

𝑝𝑦

𝑖=1

 

(4.7) 

𝐽𝑧�̇� = ∑𝑀𝑖

𝑝𝑧

𝑖=1

 

(4.8) 
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 where m is the vehicle mass, 𝐽𝑧 is the polar moment of inertia, 𝐹𝑥,𝑖 and 𝐹𝑦,𝑖 are the generic force contributions 

along the longitudinal and lateral direction respectively, and 𝑀𝑖 is the generic yaw moment contribution. A 

dynamic model can feature different levels of detail and complexity and adopt various assumptions, all these 

factors affecting the estimation accuracy. For the purpose of this work, a standard four-wheel model has been 

used (see Figure 57), while the three equilibrium equations can be found in [50]. 

 

 

Figure 57. Dynamic model of a vehicle with road-tire interaction force. 

4.1.2 Neural Network based estimation 

The Artificial Neural Network (ANN) approach is the same adopted in [53], using the Levenberg-Marquardt 

back-propagation (BP) algorithm along with the mean squared error (MSE) performance index, as seen in [54]. 

This BP optimization algorithm updates weights and biases of the network as presented in [55]. See Figure 58 

for the high-level schematics. 

 

 

Figure 58. ANN estimation high-level schematics. 

The ANN performance is then determined by the MSE which is: 
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𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑡𝑖)

2

𝑁

𝑖=1

 

(4.9) 

 

where 𝑦𝑖  and 𝑦𝑘𝑖 are the predicted and target value of the i-th pattern respectively and 𝑁 is the number of 

patterns. The real-world dataset required to train and test the ANN is composed of input data patterns together 

with corresponding targets. In this case 90% of the dataset has been used to train the network while the 

remaining 10% has been used to test the capability of the network. This is a common procedure as reported in 

[56]. The mathematical background along with testing and training procedures can be found in [55], [56]. For 

this application inputs (which determine the ANN’s input layer neuron number) are vehicle speed (Vx), steering 

angle (), lateral acceleration (ay), longitudinal acceleration (ax) and yaw rate (𝑟). The output is the VSA (), 

hence the ANN has only one neuron in its output layer. Real-time estimation capabilities of ANNs strictly 

depend on the number of neurons in the hidden layer, to be carefully chosen: 10 in this case. 

The most challenging part of this work was the identification of an appropriate set of maneuvers to be used for 

training. In order to be effective, the training data set should be able to represent the system and its dynamics 

in any possible conditions. When this criterion is met, the neuron number of the hidden layer can be minimized, 

thus resulting in a simple and light ANN structure [50], [57]. 

A comprehensive set of demanding maneuvers was designed according to the authors’ experience and also 

with an eye on ISO vehicle test standards, and performed as reported earlier: Step steer from 30° to 120° 

steering wheel angle with speed ranging from 60 to 150 kph; 2Hz constant frequency sine steering (amplitude 

60° and 90°) at 60 and 90 kph; 60m and 90m radius steering pad, with acceleration rate of 5 kph/s. Such data 

set was employed to train/feed the ANN thus meeting all the above-mentioned criteria. Therefore, the network 

can be considered ready for testing with a generic data set. 

4.1.3 Results and discussion 

The car selected for this test was a high-performance road car. All the tests were performed with a help of a 

professional test driver at the Nardò proving ground (Figure 59) on a flat and dry tarmac surface with a 

consistent friction coefficient. 
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Figure 59. Nardò (LE) proving ground. 

Every maneuver was repeated at least three times for statistical purposes. Both EKF- and ANN-based methods 

are fed with the basic but critical data set related to vehicle dynamics. In order to prove the effectiveness of 

each method, a measurement of the VSA (β) is required as well, to be used as a reference and for the purpose 

of ANN training. Therefore, a custom set of sensors was designed (see Table 11) and used in conjunction with 

a motorsport data logger. 

 

Table 11. List of sensors. 

Sensor  Type Range Accuracy 

GPS  MoTeC L10 n.a. 0.1 m/s 

Accelerometer  Bosch AM600 ±5 G 0,01 G 

Yaw rate sensor  YRS3 ±210 deg/s 0,1 deg/s 

Steering (rotary 

pot.) Gefran PZR20 ±720 deg 0,1 deg 

VSA sensor  Correvit S-400 ±60 deg 0,1 deg 

This Section reports the comparison between the two VSA estimation methods. Each Figure refers to a different 

maneuver and includes the time histories of real-world VSA measured with the optical sensor (red) and VSA 

estimation with ANN (blue) and with EKF (green). Figure 60 and Figure 61 represent two of the so-called 

steering pad maneuvers in steady state and with different final speed, while Figure 62, Figure 63, Figure 64 

and Figure 65 represent four different step-steer maneuvers with different combinations of speed and target 

steering wheel angle. 

First of all, as far as the EKF estimation method is concerned, the overall VSA estimation is considerably 

accurate. Potential drawbacks are related to the fact that tire/road force interactions should be modelled through 
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accurate experimental data processed with Pacejka’s well-known magic formula [50], but unfortunately data 

available from tire manufacturers might not be accurate enough quite often. Moreover, the computational effort 

required by the EKF is fairly high. 

Furthermore, it is worth to point out that EKF estimation is quite good in lateral steady state conditions, while 

the error in transient conditions is larger. This is related to a state-space vehicle model composed of four state 

variables only, in order to limit the computational burden required: yaw rate, lateral acceleration, lateral forces 

on front and rear axles [50]. Hence transient maneuvers where combined lateral and longitudinal forces act on 

the vehicle at the same time are not fully modelled. 

Finally, the ANN method appears to be the most accurate on both steady-state and transient maneuvers. This 

method is also lighter in computational terms since it is based on simple math operations only. However, ANN 

estimation performances are strictly related to training quality, which in turn might be highly time and cost 

demanding. Moreover, the ANN is not able to consider heavy environmental and system changes such as tires 

wear and abrupt transition from dry to wet road surface if they are not explicitly included in the training. 

 

 

Figure 60. 90m radius steering pad manoeuvre, speed increasing from 60 to 120 kph. 
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Figure 61. 90m radius steering pad manoeuvre, speed increasing from 60 to 100 kph. 

 

 

Figure 62. 70° step steer manoeuvre @ 125 kph. 
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Figure 63. 90° step steer manoeuvre @ 125 kph. 

 

Figure 64. 70° step steer manoeuvre @ 125 kph. 
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Figure 65. 90° step steer manoeuvre @ 150 kph. 

4.2 Integration of ANN in Wintax® 

The next step in the work was the integration of the neural network into Wintax®, a data analysis software 

used in motorsport produced by Marelli, Figure 66. 

 

Figure 66. Screenshot of Wintax® data analysis software. 
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This software makes it possible to visualise data both in real time and in post-processing and allows the creation 

of different mathematical channels. The aim of this work is to report the mathematical function describing the 

neural network, created in Matlab®, within Wintax®. 

The ANN is the same as described in the previous chapter, i.e. a simple network characterised by a middle 

layer with 10 neurons; a graphic representation of the neural network can be seen in the Figure 67. 

 

Figure 67. Graphical representation of the artificial neural network (ANN). 

 

The network as input has 5 inputs: 

• Vehicle Speed 

• Steering Angle 

• Lateral Acceleration 

• Longitudinal Acceleration 

• Yaw Rate 

The output is the side slip angle (beta). 

In order to be able to recreate the network on Wintax®, it was necessary to write the mathematical functions 

describing it and then transfer them into a VBscript. The equation 4.10 represents the mathematical function 

describing the ANN. 
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𝑌 =

𝑊2 ∙ (
2

1 + 𝑒
−2(𝑏1+𝑊1∙((𝑋−𝑥𝑜)𝑥𝑔+𝑥𝑏))

− 1) + 𝑏2 − 𝑦𝑏

𝑦𝑔
+ 𝑦0 

(4.10) 

Where 𝑌 is the output, in this case the slide slip angle. X is instead a 5x1 vector containing the input variables 

of the network.  

𝑥𝑜, 𝑥𝑔, 𝑥𝑏 and 𝑦𝑜, 𝑦𝑔, 𝑦𝑏 are the offset, gain and bias vectors referring to input 𝑋 and output 𝑌 respectively. 

𝑊1 and 𝑊2 are the weights of each neuron associated with each input and output respectively. Specifically, 

𝑊1 is a 10x5 matrix, representing 10 weights for each of the 5 inputs. 𝑊2, on the other hand, is a 10x1 vector. 

The part of the equation in brackets represents the so-called activation function and is represented by a function 

described in equation 4.11 assuming  𝑛 = 𝑏1 +𝑊1 ∙ ((𝑋 − 𝑥𝑜)𝑥𝑔 + 𝑥𝑏). 

2

1 + 𝑒−2(𝑛)
− 1 

(4.11) 

Equation 4.11 represents a sigmoid, its characteristic graph is shown in the Figure 68. 

 

Figure 68. Graph of the sigmoid function used as an activation function in ANN. 

As mentioned above, the mathematical model of the neural network was implemented in a VisualBasic script 

(VBs) in order to be handled as it works by Wintax®. The neural network was previously created using a 

proprietary Matlab® toolbox, which contains the algorithms required for training the network. 

To make the translation between the 2 languages easier, a script was created in Matlab® that creates a text file 

containing all the network parameters (weights, bias, gain, offset) that can be easily pasted into VBscript. 

Two neural networks were created to do a little validation. The first network was trained with real data from a 

GT-type car, having a sensor (Datron) for reading the side slip angle. The second network was instead trained 

by creating a virtual model of the vehicle with the available data. With this model, a series of manoeuvres and 
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laps were carried out in order to extend the domain as far as possible. The data collected was used to train the 

second network as the slide slip angle is a known state of the vehicle during the simulation. 

Shown below are the slide slip angle values for one lap of the Barcelona circuit, superimposing the side slip 

angle calculated with the Datron sensor and those estimated with the two neural networks. (Figure 69 and 

Figure 70) 

 

Figure 69. Vehicle Side Slip Angle measured by sensor (yellow), estimated with ANN trained with model (orange), 

estimated with ANN trained with real data (blue) during a qualifying lap. 
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Figure 70. Vehicle Side Slip Angle measured by sensor (yellow), estimated with ANN trained with model (orange), 

estimated with ANN trained with real data (blue) during a race lap. 

The results are also quite satisfactory in this case, and it was found that the neural network was correctly 

implemented in Wintax®. 

Finally, the Figure 71 also shows the Wintax® screenshot where it is possible see the channel created with the 

neural network for estimating the slide slip angle, superimposed on the channel coming from the sensor. 

 

Figure 71. Screenshot of Wintax with the mathematical channel of VSA estimation via ANN. 



92 

 

5 Vehicle Subsystem Integration 

This chapter presents the development of two vehicle subsystems, both modelled in Matlab Simulink®: the 

“inboard” part of a suspension and a limited-slip differential. 

5.1 External Inboard Suspension in Simulink® 

This work is the result of a research project in collaboration with YCOM, an Italian company that deals with 

the design and manufacturing of racing cars.  

The aim of this work was to create a Simulink® model to manage the inboard part of a suspension in co-

simulation with ViCarRealTime®. Inboard suspension refers to all those elements (elastic and/or damping) 

that make up the inner part of the suspension, i.e. not the arms. The anti-roll bar, heave element, roll element, 

etc. are part of the inboard suspension.  

The need to create an external model arises mainly for two reasons: the first is that ViCarRealTime allows the 

modelling of a limited number of elements that make up the suspension inboard. The second reason is in order 

to be able to manage an active suspension, in particular this suspension must be equipped with an active Heave 

Element capable of dynamically changing the ride height of the axle. 

Shown in the Figure 72 a 3DSusp screenshot is the front suspension in question, equipped with Heave Element, 

Roll Element and C-Shape Antiroll bar. 

 

Figure 72. 3DSusp screenshot of the front suspension mentioned. 

Figure 73 shows a screenshot of the rear suspension. 
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Figure 73. 3DSusp screenshot of the rear suspension mentioned. 

5.1.1 Model Description 

In order to be able to manage suspension externally, one must first deactivate the internal computation of all 

helical or damping elements in ViCarRealTime®. After that, four inputs must be provided to the solver: 

• Auxiliary_vertical.force.L1 

• Auxiliary_vertical.force.R1 

• Auxiliary_vertical.force.L2 

• Auxiliary_vertical.force.R2 

These four channels represent the four vertical forces, one for each wheel of the vehicle, that the suspension 

exerts as a reaction on the suspended mass. These forces are then virtually applied to the vehicle chassis and 

applied at the point whose coordinates correspond to the wheel centre, for each wheel. 

Instead, five channels are read from the solver: 

• Suspension.Jounce.L1 

• Suspension.Jounce.R1 

• Suspension.Jounce.L2 

• Suspension.Jounce.R2 

• Driver_demands.steering 

The first four channels represent the jounce of each individual wheel, that is the vertical displacement. The last 

channel, on the other hand, is the steering wheel angle imposed by the driver, since the suspension kinematics 

are also influenced by the steering for the front axle. 
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A screenshot of the Simulink® file can be seen in the Figure 74 to better understand how it is set up. 

 

Figure 74. Screenshot of the Simulink® file handling inboard suspension. 

The two sub-systems on the right contain the actual inboard suspension model for the front and rear axles 

respectively. The set of inputs linked to constants equal to zero serve to deactivate ViCarRealTime® internal 

computation of the elements. 

The objective is to calculate the equivalent force at wheel centre, exerted by the suspension elements, as a 

function of jounce and steering.  

The equivalent vertical force applied by the element applied at the wheel centre, i.e. that required by the 

ViCarRealTime® solver, is described in Eq. 6.1. 

𝐹𝑎𝑡 𝑤ℎ𝑒𝑒𝑙 =
𝐹𝑎𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑀𝑅𝑒𝑙𝑒𝑚𝑒𝑛𝑡/𝑟𝑜𝑐𝑘𝑒𝑟 ∙ 𝑀𝑅𝑟𝑜𝑐𝑘𝑒𝑟/𝑤ℎ𝑒𝑒𝑙
 

(5.1) 

Where 𝑀𝑅𝑒𝑙𝑒𝑚𝑒𝑛𝑡/𝑟𝑜𝑐𝑘𝑒𝑟 is the motion ratio between the element and the rocker, calculated as the differential 

ratio between the deformation of the element and the angle of the rocker relative to the corner being considered. 

𝑀𝑅𝑟𝑜𝑐𝑘𝑒𝑟/𝑤ℎ𝑒𝑒𝑙, on the other hand, is the motion ratio between the rocker and the respective wheel.  

In order to know the force at the element, it is necessary to calculate the deformation if it is an elastic element 

or the deformation rate if the element has a damping part. Obviously, stiffness and damping must be known. 

Element deformation is a function of the jounce and steer of the individual suspension, and particularly the 

angles of the two rockers of the axle. For this, a lookup table was created in 2 dimensions to calculate the 

deformation of the element, which describes the deformation of the element as a function of the rocker angles. 

Knowing the deformation, it is possible to calculate the force of the helical element simply by multiplying it 

by the stiffness or by using a lookup-table if the stiffness is non-linear. If the element has a damping component, 

strain rates are used by simply deriving the newly calculated strain value with respect to time. 
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A screenshot of the Simulink® file for calculating the deformation of element, the forces on it and the 

equivalent vertical force on the wheel centre can be seen in the Figure 75, where the heave element is given as 

an example. 

 

Figure 75. Screenshot of the Simulink® file for calculating the deformation of element, the forces on it and the 

equivalent vertical force on the wheel centre 

The 2 input channels on the left can be seen which are the 2 rocker angles, in this case relating to the front axle 

as we are referring to the heave element of the front axle as an example. The way in which angles and rockers 

are calculated is explained later.  

It can be seen that the two rocker angles enter the first lookup-table describing the deformation of the heave 

element. This lookup-table is shown as a surface in the Figure 76. 
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Figure 76. Screenshot of the surface representing the deformation of the heave element as a function of the two rocker 

angles. 

Again, analysing the Figure 75, the deformation of the element becomes the input of 3 blocks representing the 

elastic and damping components of the heave element. The first block represents the damper, the second the 

bumpstop and the third the spring. In the Figure 77, these three components are shown in detail. 

 

Figure 77. Screenshots of the 3 components of the heave element, in order: Damper, Bumpstop, Spring. 
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In the damper, it can be seen that the deformation is derived with respect to time and enters a lookup-table that 

describes the damping force as a function of deformation velocity. 

In the bumpstop, the deformation instead enters a lookup-table that describes the force in a particularly non-

linear manner. One can also note the possibility of adding an offset representing the clearance of the bumpstop. 

In the spring, the deformation of the heave element is simply multiplied by its stiffness to calculate the force. 

A constant force can also be added as preload. 

Looking at the Figure 75 again, it can be seen that the 3 component forces are added together and then divided 

by the product of the two motionratios to obtain the equivalent vertical force applied at the wheel centre. 

The motionratios between element and rocker are 2 and are described by the other 2 lookup-tables shown in 

the Figure 75. The motionratios between element and rocker are 2 and are described by the other 2 lookup-

tables shown in the Figure 75. They are a function of the 2 rocker angles. In the Figure 78, the surface 

describing the motionratio between element and left rocker of the heave element is shown as an example. 

 

Figure 78. Screenshot of the surface describing the motionratio between element and left rocker of the heave element 

Finally, in the Figure 75 we can also see the presence of an input called “dHeave”, this represents an offset on 

the deformation of the element and is the variable that is used by any active suspension logic. In this way it is 
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possible, via an actuator, to change the length of the heave element at will by changing the ride height of the 

axle. 

The Figure 79 shows the inside of the Simulink block that manages the entire front suspension. On the right, 

it can be seen the blocks that manage all the suspension elements: heave element, roll element, ARB Cbar and 

torsion bar. 

 

Figure 79. Screenshot of the inside of the Simulink® block that handles the front suspension. 

The roll element is entirely analogous to the heave element just described. The deformation of the anti-roll bar, 

on the other hand, is calculated in a slightly different way, and the Figure 80 shows the inside of the Simulink® 

block that handles it. 
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Figure 80. Screenshot of the Simulink® block that manages the c-shape anti-roll bar of the front suspension. 

The main difference is the fact that the rotations of the two ends of the bar are calculated, each according to 

the relative rocker. To calculate the bar torsion, the difference between the two rotations is made. The 

subsequent calculation to find the equivalent vertical force is analogous to that seen above, with the difference 

that not the force on the element is calculated but the torque. Finally, it can be seen that the two motion ratios 

between element and rocker have opposite signs, precisely because the torque to which the anti-roll bar is 

subjected applies two forces of opposite signs to the wheels. 

The calculation of the torsion bars, on the other hand, is rather easy since their torsion is equivalent to the angle 

of rotation of the rockers, so the torque exerted on the torsion bar is simply calculated by multiplying the angle 

of the respective rocker by the torsional rigidity of the bar. As it can be seen in the Figure 81. 

 

Figure 81. Screenshot of the Simulink® block that handles the calculation of forces exerted by torsion bars. 

To calculate the equivalent vertical force, simply divide the torque of the torsion bar by the motion ratio 

between rocker and wheel. 

Finally, on the left-hand side of the Figure 79 are the 2 blocks that manage the 2 rockers of the front suspension, 

each of which calculates the rotation of the rocker and the motion ratio with respect to the wheel, depending 
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on the jounce and steer of the corresponding wheel. The block that operates the left rocker is shown as an 

example in Figure 82. 

 

Figure 82. Simulink block managing the left rocker of the front suspension. 

The 2 lookup-tables are both functions of jounce(bump) and steer. The two surfaces describing the rocker angle 

and its motion ratio, respectively, are shown in the Figure 83. 

 

Figure 83. a) Surface representing the rotation angle of the left rocker as a function of bump and steer. b) Surface 

representing the motion ratio between rocker and left wheel as a function of bump and steer. 

For reasons of space and compactness, the rear suspension is not shown as it is like what just seen before. 

All the lookup tables used in the Simulink® file presented in this chapter were calculated using the same 

algorithms used in 3DSusp and presented in the first chapter. 

The vectors and matrices that populate these tables are generated by a script created in Matlab® that has as 

input the points representing the kinematics of the two suspensions, rewriting it in MATLAB language. 
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In addition, external model management allows suspension parameters to be changed in real-time while driving 

on the simulator. Without having to stop and restart the simulator each time. 

With this model, it was therefore possible to manage the inboard part of a suspension externally with a 

Simulink® file. This also made it possible to develop active suspension logic together with YCOM to 

dynamically manage the ride height of the vehicle. As an example, two simulations of the vehicle in a straight 

line are shown. The first simulation is carried out with passive suspension. In the second simulation, after 5 

seconds the heave element is shortened instantly by 5 mm, causing the front axle to lower. The heights of the 

vehicle's front and rear axle from the ground for the two simulations are shown in the Figure 84. In red is the 

simulation with active suspension. 

 

Figure 84. Front and rear ride height of the vehicle. In red the simulation with active suspension. In blue the simulation 

with passive suspension. 

As the heave element shortens, the vehicle at the front lowers. Since the change in length of the heave element 

is instantaneous, the dynamic effects on the simulation are clearly visible from the oscillations. The stiffness 

of the suspension is not changed, as the curves remain parallel. 
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5.2 External Limited Slip Differential in Simulink® 

A limited slip differential (LSD) is a differential that allows the two axle shafts to be connected in certain 

situations, to solve the classic driveability problem of an open differential and to distribute torque between the 

two wheels of the same axle to improve vehicle performance [58] . 

An LSD generally consists of a clutch pack that connects the two axle shafts or one of the axle shafts with the 

carrier. The Figure 85 shows the clutch discs on a generic LSD. 

 

Figure 85. Clutch discs on a generic LSD. 

In a passive differential, the clutch packs are usually preloaded and there is a system that uses a pin and ramps 

to exert a force on the clutch plates depending on the torque input to the differential. In the Figure 86 it is 

possible to see a passive limited slip differential with the ramps to exert pressure on the clutch plates and 

change the differential lock.  

 

Figure 86. Mechanical LSD with pin and ramps. 

Detailed information on the mechanical functioning of LSD and its effects on vehicle dynamics can be found 

in [58], [59], [60], [61]. 

With a hydraulic system that applies variable pressure on the clutch plates, an active LSD can be achieved 

instead. 
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This work was also the result of a research project with YCOM, a company involved in the design and 

manufacturing of racing cars. The aim is to externally manage a limited slip differential model to actively 

control it. In addition, the limited slip differential of ViCarRealTime® basic model, which was only passive, 

also presented instability problems. 

5.2.1 Model Description 

Similar to the previous chapter, the model was created in Simulink® to be used in co-simulation. In order to 

manage a subsystem externally, it is necessary to provide the ViCarRealTime® solver with the appropriate 

inputs: 

• Differential_Rear.wheel_rear_left_torque 

• Differential_Rear.wheel_rear_right_torque 

• Differential_Rear.diff_central_rear_outputshaft_angle 

• Differential_Rear.diff_central_rear_outputshaft_omega 

• Differential_Rear.diff_central_rear_outputshaft_alpha 

These channels refer in this case to a rear differential, but it is of course possible to do the same with a front 

differential by changing 'rear' to 'front'. The first two channels are the torques on the two semi-axes output to 

the differential. The other three channels refer to the alabaster input to the differential and are angle, angular 

velocity, and angular acceleration, respectively. 

Instead, some output from the solver is taken as input to the model: 

• Differential_Rear.wheel_rear_left_angle 

• Differential_Rear.wheel_rear_left_omega 

• Differential_Rear.wheel_rear_left_alpha 

• Differential_Rear.wheel_rear_right_angle 

• Differential_Rear.wheel_rear_right_omega 

• Differential_Rear.wheel_rear_right_alpha 

• Differential_Rear. diff_central_rear_outputshaft_torque 

The first three channels refer to the left semi-axis and represent angle, angular velocity, and angular 

acceleration respectively. The second three channels are analogous to the first three but refer to the right semi-

axis. The last channel is the shaft torque input to the differential. A screenshot of the Simulink® file is shown 

in the Figure 87 to display the inputs and outputs just explained. 
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Figure 87. Screenshot of the Simulink® file of the LSD model. 

The mathematical modelling of the differential, without considering the locking part, is quite simple and is 

described below. 

The angle of rotation 𝜃𝐼𝑁, the velocity 𝜔𝐼𝑁, and acceleration 𝛼𝐼𝑁 of the shaft input to the differential are 

described by the equations 5.1, 5.2 and 5.3. 

𝜃𝐼𝑁 = 𝑟 ∙
𝜃𝐿 + 𝜃𝑅
2

 

(5.1) 

𝜔𝐼𝑁 = 𝑟 ∙
𝜔𝐿 +𝜔𝑅

2
 

(5.2) 

𝛼𝐼𝑁 = 𝑟 ∙
𝛼𝐿 + 𝛼𝑅

2
 

(5.3) 

Where subscripts L and R refer to the left and right axle shafts respectively, and 𝑟 represents the bevel gear 

ratio of the differential. 

The input torque acting on the differential carrier is calculated by multiplying the input shaft torque by the 

drive ratio 𝑟. If the differential were of the open type, the torque on the 2 semi-axles would be equal and would 

be described by the equation 5.4. 

𝑇𝐿 = 𝑇𝑅 = 𝑟 ∙
𝑇𝐼𝑁
2

 

(5.4) 
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In fact, in an open differential, torque is divided equally between the two wheels. The Simulink® screenshot 

is shown in the Figure 88, displaying the above. 

 

Figure 88. Simulink® screenshot describing the kinematic behaviour of the differential. 

The subsystem called 'LSD' handles the differential lock instead, and a screenshot of its interior is shown in 

the Figure 89. 

 

Figure 89. Screenshot of the 'LSD' subsystem that manages the locking of the two axle shafts. 

The big difficulty in modelling locking is to find a correct mathematical model to describe the behaviour of 

the clutch. To overcome this problem, we chose to use Simulink's Simscape® Driveline library, which allows 

mechanical transmissions to be modelled intuitively. Furthermore, the solver used integrates seamlessly with 

the Vi-CarRealTime® simulation environment and Simulink®, and it can also be used in real-time simulations. 

In particular, Simscape® driveline offers a differential block, and a block that allows a clutch pack actuated 

by a certain pressure. This made it possible to create a Simscape® model of the differential using an ideal 
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torque generator to provide the input torque to the differential, which is known. In addition, two ideal speed 

generators, which is known, were used to supply it to the two semi-axles, which were connected by a clutch 

pack. A screenshot of the differential model created with Simscape® Driveline can be seen in the Figure 90. 

 

Figure 90. Screenshot of the differential model created with Simscape® Driveline. 

Between the shafts and the torque generators, springs and rotational dampers, both of which are very stiff, 

were inserted in series, only with the intention of making the system mathematically stable and derivable, to 

'help' the Simscape solver. The stiffnesses and damping values are very high and have negligible effects on the 

torque and rotational values of the differential. The differential used in this model has a drive ratio equal to 1, 

since the torque already present on the carrier is used as input. The data characterising the clutch pack is chosen 

arbitrarily. In fact, the input to the LSD will be the preload value and locking percentage, not the clutch or 

ramp parameters. It is therefore necessary to calculate before the pressure to be supplied to the clutch packs 

according to the required inputs. The pressure calculation is described in the equation 5.5. 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝑇𝐿𝑜𝑐𝑘

2 ∙ 𝑟𝑒 ∙ 𝜇𝑑𝑖𝑠𝑐 ∙ 𝑁𝑑𝑖𝑠𝑐 ∙ 𝐴𝑝𝑖𝑠𝑡𝑜𝑛
 

(5.5) 

Where 𝑟𝑒 is the effective radius of the friction discs, 𝜇𝑑𝑖𝑠𝑐 is the coefficient of friction between the friction 

discs, 𝑁𝑑𝑖𝑠𝑐 is the number of discs and 𝐴𝑝𝑖𝑠𝑡𝑜𝑛 is the area of the pistons on which pressure acts. 𝑇𝐿𝑜𝑐𝑘 is the 

differential locking torque and is defined in equation 7.6. 

𝑇𝐿𝑜𝑐𝑘 = {
𝐶1 ∙ |𝑟 ∙ 𝑇𝐼𝑁|      𝑖𝑓      𝐶1 ∙ |𝑟 ∙ 𝑇𝐼𝑁| > 𝐶0

𝐶0     𝑖𝑓      𝐶1 ∙ |𝑟 ∙ 𝑇𝐼𝑁| ≤ 𝐶0
 

(5.6) 

Where 𝐶0 is the preload torque of the differential and 𝐶1 is the locking percentage of t\he differential, which 

in reality depends on the inclination of the ramps and the clutch plates. 𝐶1  can take on different values during 

acceleration or during release, depending on the ramps. therefore, the value of 𝐶1 also depends on the sign of 
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the 𝑇𝐼𝑁. A screenshot of the subsystem handling the pressure calculation in Simulink® is shown in the Figure 

91. 

 

Figure 91. Screenshot of the subsytem handling the pressure calculation in Simulink®. 

5.2.2 Results and comparison with ViCarRealTime® 

The self-locking differential model developed proved particularly useful for the creation of active logic. By 

controlling the pressure pressing on the clutch plates, an active LSD can be created. 

Furthermore, the model proved to be robust, and the stability problems observed with ViCarRealTime® built-

in LSD differential were overcome. As an example, graphs are given below to show the differences between 

the LSD model created and that of ViCarRealTime®. The basic model, as explained above, often has instability 

problems due to friction modelling. Figure 92 shows the torques of the two differential semi-axles over time. 

The simulation represents a track lap on the Hockenheim circuit. An LSD model with a preload of 100Nm is 

used in both simulations, and a locking percentage of 65% in power and 25% in coasting. 
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Figure 92. Torques on the axle shafts of the LSD diff in a simulated track lap. In blue the original ViCarRealTime® 

model, in orange the model created in Simulink®. 

For high locking values, the original LSD vibrates, and torque continues to pass quickly from one axle to the 

other. The macroscopic effect of this phenomenon has no effect on the vehicle dynamics, as the average torque 

value remains correct, but these vibrations are annoying when the model is driven in the driving simulator. A 

further graph, often used to observe the behaviour of a self-locking differential, which shows the torque of one 

axle shaft as a function of the other, is shown in the Figure 93. 
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Figure 93. Left differential torque as a function of right differential torque. In blue the original ViCarRealTime® model, 

in orange the model created in Simulink®. 

Also, in the Figure 94, one can see the instability of the differential and the continuous transition of torque 

from one semi-axis to the other. However, this effect does not manifest itself in the differential model created. 

For completeness, the Figure instead shows the trends of the angular velocities of the wheels as a function of 

time. 
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Figure 94. Wheel angular velocities as a function of time during a simulated lap. In blue the original ViCarRealTime® 

model, in orange the model created in Simulink®. 

As far as the angular speeds of the wheels are concerned, there is no difference in the two models and the two 

curves are practically superimposed. 
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6 Exploring the Capabilities of the Driving Simulator 

In this final chapter, which is somewhat more qualitative than the others, other parallel projects explored during 

the PhD are described. These projects investigate the various capabilities of the driving simulator to integrate 

with the vehicle and its components, as well as the opportunities that arise for their development. 

In particular, the integration with hardware components such as dashboards and tactile pads is showed. Finally, 

Vi-WorldSim® is explored, which allows the development of ADAS logics in a fully virtual environment. 

6.1 Tactile Pads 

Another work carried out during the PhD course was the hardware and software implementation of Tactile 

Pads, shift paddles sensitive to finger touch. These paddles are also patented by the Automotive Engineering 

and Design research group of the University of Brescia.  

The basic concept is to create a transition mode between manual and automatic mode shifting. If the paddles 

are not touched, the vehicle simply proceeds with the automatic transmission, however, from the moment one 

of the paddles is touched (without actuating it) it switches to manual mode and the automatic transmission 

logic stops working. When the paddles are released for longer than 500ms then the vehicle returns to automatic 

mode. 

This control can be used, for example, to decide how to downshift gears when braking and then use the 

automatic transmission when accelerating. Or it is possible, for example, to upshift a gear (without the 

automatic transmission intervening) simply by keeping the hand resting on one of the two paddles. 

 

Figure 95. Tactile Pads mounted on the driving simulator. 

The paddles are made of carbon fibre, an LED and a vibrodine is mounted on top of them, and a capacitive 

sensor has been linked to the carbon fibre, which is conductive, to detect the actual touch on the paddle. Shown 

in the Figure 95 are photos of the paddles mounted on the steering wheel of the driving simulator. 
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The LED lights up and stays on while the paddle is being touched, the vibrodine on the other hand vibrates for 

a few milliseconds to give haptic feedback and let the driver know that contact has been made. 

6.1.1 Hardware and Software Implementation 

Vibrodine feedback, LED switching and capacitive sensor reading are handled by a specially programmed 

Arduino® controller. The Arduino also sends a digital signal to the simulator, signalling whether or not the 

paddles are touched. In the Figure 96 it can see the microcontroller inserted in a special 3D printed box with 

the appropriate connectors. 

 

Figure 96. 3D printed box containing the Arduino microcontroller, capacitive sensor, and connectors to operate the 

Tactile Pads. 

The driving simulator is equipped with an acquisition board capable of reading both digital and analogue 

inputs. In this case, two digital inputs are used to signal the contact between a finger and the right and left 

paddle respectively. 

Software management was instead developed using Simulink®. ViCarRealTime®'s vehicle models do not 

allow switching between automatic and manual gearboxes during simulation, so it was necessary to create an 

externally managed gearbox model on Simulink®. 

To manage the gearbox externally, it is first necessary to deactivate the gearbox model computation of 

ViCarRealTime and interface with the solver with appropriate inputs and outputs. Below is a list of the inputs 

that the solver needs to manage the gearbox externally: 

• InternalGearboxActivity, to activate or deactivate internal gearbox computation. 

• ClutchOutputplateAngle, angle of rotation of the gearbox input shaft connected to the clutch. 

• ClutchOutputplateOmega, rotational speed of the gearbox input shaft connected to the clutch. 

• ClutchOutputplateAlpha, rotational acceleration of the gearbox input shaft connected to the clutch. 

• DiffCenterinputshaftTorque, torque of the gearbox output shaft, connected to the differential. 

Below is the list of outputs to be taken from the solver and entered into the logic to manage the vehicle's 

gearbox: 
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• GearDemand, gear desired by the driver. 

• DiffCenterInputAngle, rotation angle of the gearbox output shaft, connected to the differential. 

• DiffCenterInputOmega, rotational speed of the gearbox output shaft, connected to the differential 

• DiffCenterInputAlpha, rotation acceleration of the gearbox output shaft, connected to the differential 

• ClutchOutputTorque, torque of the gearbox input shaft connected to the clutch. 

In the Figure 97 it is possible to see a screenshot of the Simulink that manages the gearbox, the different ratios 

are managed by a lookup-table. 

 

Figure 97. Screenshot of the Simulink® that manages the gearbox. 

The logic to manage the transition between automatic and manual gearbox and vice versa takes the logic signals 

from the microcontroller installed on the steering wheel and processes them in a NOR logic port. In addition, 

a block (red box in Figure 97) was created to manage the transition from manual to automatic in a special way, 

so that the hands have to be detached from the paddles for a certain time value in milliseconds. The transition 

from automatic to manual, on the other hand, occurs instantaneously as soon as either hand makes contact with 

the paddles. 
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Figure 98. Simulink® screen showing the logic part for managing the transition between manual and automatic 

gearbox. 

The logic of the automatic gearbox, which can be seen in the subsystem on the right-hand side of the Figure 

98, is represented in its entirety in Figure 99. 

 

Figure 99. Simulink screen representing the management logic of the automatic gearbox. 

Shift management is handled by two two-dimensional lookup-tables dependent on RPM and throttle 

percentage. The two lookup tables manage downshift and upshift separately. There is also a further control 

logic, which can be seen at the top right of the Figure 99, which prevents the logic from making 

upshift/downshift that are too close together; it is possible to vary the minimum number of milliseconds that 

must elapse between one gearbox and the next. Finally, logic was also created to avoid going over the RPM 

limiter when downshifting. This is done by simply calculating the RPM the engine would have if the gear is 

downshifted; if these exceed a threshold value, the shift is not accepted. Obviously, this logic works in the case 

of using manual gearbox mode. 
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6.1.2 Dashboard 

A dashboard was also created, on a screen on the driving simulator in front of the driver, to display certain 

gearbox variables during the use of Tactile Pads. The dashboard consists of a screen like the one shown in the 

Figure 100. 

 

Figure 100. Dashboard screen dedicated to the use of Tactile Pads on the driving simulator. 

In the dashboard, vertical bars on the left show the accelerator and brake values. On the right is the steering 

wheel angle, and in the centre the engine RPM and vehicle speed. The horizontal bar at the top visually shows 

the engine RPM value scaled appropriately to the limiter value, the bar changes colour when approaching the 

threshold value, turning first orange and then red, indicating to the driver that it is necessary to change gearbox. 

In addition, the engaged gear is displayed by the letter M or A, respectively, to indicate if gearbox mode is 

manual or automatic. Finally, the two-coloured squares, normally red, turn green when the right or left paddle 

is touched respectively. 

The dashboard has been created created using Microsoft® VisualStudio software using the VB.Net language. 

Figure 101 shows a screenshot of the VisualStudio software with part of the dashboard project. 
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Figure 101. Screenshot of the Microsoft® VisualStudio software with part of the code for the dashboard. 

To make the simulator communicate with the PC managing the dashboard, the CAN bus protocol was chosen. 

CAN bus is an asynchronous communication protocol used extensively in the automotive field and allows very 

efficient communication by being able to send digital signals up to 64bit in size.  

The driving simulator is equipped with a programmable CAN board, so it was possible to choose which 

simulation channels to transmit. The PEAK-System's CAN-USB adaptor such as the one in the Figure 102 was 

used to make the PC that runs the dashboard read the channels coming from the CAN bus. This adapter makes 

it possible to translate the CAN signal into a serial signal that can be easily read by the PC. 

 

Figure 102. CAN-USB adapter from PEAK-System. 

6.2 ADAS and ViWorldSim® 

This work started with a research project with the company Adas Mobile, which offers services for the 

recalibration of ADAS sensors, for example after an accident. The aim of this work is not strictly scientific, 

but it allowed the author to explore the potential of ADAS systems through the driving simulator. 

The author's request was to be able to create some situations, on the driving simulator, in which users could 

have the opportunity to drive a vehicle equipped with ADAS under normal conditions and subsequently under 

conditions in which the ADAS sensor was misaligned (see Figure 103), in order to be able to make people 

understand the importance of having correctly calibrated radars and cameras. 
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Figure 103. Vehicle with virtual camera misaligned by 3°. 

Part of the simulator hardware was purchased by Adas Mobile, this equipment was then taken to the 

Autopromotec® trade fair in Bologna, where guests had the opportunity to test the vehicle equipped with 

calibrated and uncalibrated ADAS under the supervision of the author. Shown in the Figure 104 is the driving 

simulator set up at the fair. 

 

Figure 104. Simulator set up on the Adas Mobile stand at the Autopromotec trade fair in Bologna. 

As a global public health issue, road safety has always been a subject of debate. Statistics from the World 

Health Organisation show that in 2016 there were 1.35 million deaths due to road accidents. More than 90 per 

cent of accidents are attributable to the human factor and 40 per cent of them are caused by distracted driving 

and high speed. With a view to reducing accidents attributable to human error of judgement, ADAS were 

introduced and developed and, as technology developed and sensors became cheaper, they became 

indispensable devices in a vehicle. ADAS (advanced driver assistance systems) are a group of electronic 

technologies that assist the driver in driving and parking manoeuvres. Through a safe human-machine 

interface, ADAS increase vehicle and road safety. They use automated technologies such as sensors and 

cameras to detect nearby obstacles or driver errors and respond or send alarms accordingly. 
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For this work in particular, a virtual vehicle model equipped with three ADAS systems was used: 

• LKA (Lane Keeping Assistance) 

• ACC (Adaptive Cruise Control) 

• AEB (Active Emergency braking) 

 The LKA is able to keep the vehicle on track by autonomously controlling the steering wheel and providing a 

vibration on it to alert the driver. ACC is a cruise control, i.e. a controller that manages the speed of the vehicle 

but is able to detect vehicles ahead and adjust speed according to them to maintain a safe distance. AEB, on 

the other hand, is a system that detects possible collisions and prevents them by promptly acting on the braking 

system. The AEB is generally capable of detecting pedestrians, vehicles, or others, whether they are ahead of 

the vehicle or coming from the side. 

The logics used were not developed from scratch but started from ADAS logics that are provided as an example 

in the ViWorldSim® software. 

6.2.1 ViWorldSim® 

 

Figure 105. ViWorldSim® software. 

ViWorldSim® (Figure 105) is a software produced by Vi-Grade, the same company that produces 

ViCarRealTime® and the simulator at the University of Brescia. 

ViWorldSim® allows the creation of scenarios in which different vehicles with autonomous driving 

capabilities can be placed and traffic situations can be created. If desired, it is also possible to make vehicles 

perform certain manoeuvres, such as pulling out of a stop sign or crossing an intersection, the same can be 

done for pedestrians or cyclists. Routines can be created and executed, for example, when the vehicle we are 

driving passes through a virtual 'portal'. All this, together with very realistic graphics, provides an environment 

for testing and developing ADAS systems in a completely virtual manner. There are different environments, 

there is a 3D scan of a city section of the city of Wolfsburg, motorway sections with also entrance and exit 
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ramps, or simpler scenarios representing residential districts. Shown in Figure 106 is a screenshot of the 

ViWorldSim® tool for creating scenarios. 

 

Figure 106. Screenshot of the ViWorldSim® tool for creating scenarios. 

ViWorldSim® integrates with ViCarRealTime®, so it is possible to drive a vehicle model created with 

ViCarRealTime® in the ViWorldSim® environment. The Simulink® environment is used to run simulations 

with ViWorldSim®, both for offline and online simulations (using the simulator). 

Thanks to Simulink®, it is therefore possible to manage the logics in a comprehensive manner. 

There are blocks that allow to manage virtual sensors. In particular, used in this work are Virtual Cameras, 

which are able to read the environment in the ViWorldSim® scenario and provide synthetic outputs with which 

ADAS logic can be constructed. A matrix of points indicating the presence of objects in front of the camera is 

used, through which it is possible to recognise the presence of any obstacles and their relative speed with 

respect to the vehicle. In addition, the virtual cameras can read the stripes on the asphalt and provide as output 

a polynomial function describing them, also to consider possible curvatures. A screenshot of the Simulink® 

block that manage virtual camera is shown in the Figure 107. 
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Figure 107. Screenshot of the Simulink blocks operating the virtual camera. 

6.2.2 Work Description 

About the ADAS logics used, ViWorldSim® offers a few already functioning examples; as the purpose of this 

work is purely demonstrative, no major developments have been made on these logics, apart from a few 

parameter adjustments. The point just made applies mainly to ACC and AEB.  

The LKA logic provided by default was instead developed from scratch, as the one provided by ViWorldSim® 

is designed to work with the Vi-Grade simulator steering wheel, which allows it to be position controlled. The 

Adas Mobile simulator station was instead set up with another steering wheel, a Fanatec DD1®. The motor of 

this steering wheel does not allow it to be controlled directly in position, but only through the torque. It was 

therefore necessary to create a logic to manage lane keeping by controlling the steering wheel torque. 

As mentioned earlier, one of the outputs of the virtual camera are two fifth-degree polynomial functions 

capable of fitting road stripes. This makes it possible to calculate the distance of the centre of the car from the 

two stripes. The calculation of the distance is not done at the point where the car is, but at a point that is 10 

metres in front, so that an eventual curve can somehow be predicted. Obviously, as the purpose of this work is 

demonstration, we have not gone any further in predicting curve trajectories. 

The logic created takes as input these two distances, i.e. the distances of the road stripes, from the right and 

left side. As output, a steering wheel torque is generated as a function of several parameters: 

• Vehicle Speed, torque applied to the steering wheel is directly proportional to speed. 

• Stripe distance, the torque applied to the steering wheel is quadratically proportional to the distance 

from the strip. 

• Stripe approaching speed 
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The stripe approaching speed is the time-derivative of the stripe distance. Steering wheel torque is applied 

more or less quickly depending on speed and to make this, transfer functions with a negative pole has been 

used. In this way, the control action can be more aggressive or smoother. 

Logic always takes the nearest strip into account and torque is delivered according to that. The model features 

several gains so that the logic can be calibrated in real-time via the driving simulator. Some tests in the driving 

simulator revealed some criticalities. For example, when a line is overtaken by the vehicle, the steering wheel 

torque instantly reverses, creating an unpleasant effect on the driver. For this reason, an additional control was 

induced to understand when the vehicle is moving away from the nearest strip, thus when it passes it, in order 

to deactivate the control logic. 

Finally, when the vehicle is too close to the line, a low-amplitude sine wave is generated to make the driver 

feel a vibration on the steering wheel. A screenshot of the Simulink® handling the LKA logic just described is 

shown in the Figure 108. 

 

Figure 108. Screenshot of the Simulink® file that handles the LKA logic by controlling the steering wheel torque. 

Two scenarios were therefore created for the demonstration. One set in a random traffic scenario in Wolfsburg 

and one set in a particularly busy motorway section. The Figure 109 represents the Wolfsburg scenario. The 

Figure 110 represents the motorway scenario. 
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Figure 109. Wolfsburg scenario created with ViWorldSim®. 

 

Figure 110. Motorway scenario created with ViWorldSim®. 

Each of the two scenarios was driven first with the camera correctly calibrated, then with the camera misaligned 

by 3 degrees. The cameras can be positioned and oriented in the scenario tool changing their yaw value. 

In addition to the screen showing the pilot's view, the simulator setup has been designed with three other 

screens. Two screens were positioned to the side of the driving position so that other people could watch the 

simulation. The first screen was simply a view from outside the vehicle. The second screen displayed, via the 

ROS software, some of the parameters of the simulation and in particular what the virtual camera was able to 

pick up, show any obstacles and the stripes on the asphalt. This screen was particularly useful for visualising 

the effect that sensor misalignment had on the camera's output. What has just been said is clearly visible in 

Figure 111 and Figure 112, where the 4 screens displayed during the simulation are shown respectively, the 

first corresponding to a scenario with the camera correctly calibrated, and the second with the sensor 

misaligned by 3 degrees. 
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Figure 111. Screenshots of the 4 screens displayed during the simulation with the sensor correctly aligned. Top left the 

pilot's view. Bottom left the view from the outside. Top right the view from ROS with the output of the virtual camera. 

Bottom right the dashboard. 

 

Figure 112. Screenshots of the 4 screens displayed during the simulation with the sensor misaligned. Top left the pilot's 

view. Bottom left the view from the outside. Top right the view from ROS with the output of the virtual camera. Bottom 

right the dashboard. 

The last screen was placed on the driver's seat, visible to the pilot, as in the Figure 104, is a dashboard showing 

some parameters of the ADAS logics. This dashboard was developed in the VB.Net environment and 
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communicates with the simulator via the CAN protocol, the same as described in the chapter 4.2. An example 

layout of the dashboard is shown in the Figure 113. 

 

Figure 113. Dashboard layout to display ADAS logic parameters. 

The dashboard shows some parameters related to ACC, in particular bars are shown between the two vehicles 

representing four different possible distances that the ACC logic must maintain from the vehicle in front. By 

means of a button mapped on the steering wheel of the simulator, it is possible to change the distance. When 

the bars are green, it means that the ACC logic has detected the vehicle in front and is trying to maintain the 

set distance. If the bars turn yellow, the vehicle is not detected, and the logic behaves like normal cruise control 

also shows the target speed in the dashboard. As far as the logic of LKA is concerned, two vertical lines 

representing the road stripes are displayed, the lines move in real-time during the simulation. While when AEB 

is activated, a warning signal appears on the dashboard. 
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7 Conclusion and further developments 

The driving simulator proved to be a very powerful tool as it allows one to go beyond vehicle dynamics 

simulations, being able to evaluate subjective aspects and driver sensations. It also allows complex manoeuvres 

to be performed faster, though certainly less repeatable. 

Several methodologies for system integration through driving simulator through driving simulator has been 

explored in this thesis. Most of the work was done trying to integrate algorithms for the modelling of 

suspensions, focusing on the elasto-kinematics aspects. The models were also validated using other software 

such as Shark®, for the calculation of constraint reactions, and Simscape® Multibody. These algorithms can 

be used both for the creation of subsystems of the virtual vehicle model and for the design of the vehicle itself; 

indeed, one of the future developments is the integration of these mathematical models into the 3DSusp 

software, giving the possibility to use these calculation models in a user-friendly manner. In future, 3DSusp 

will be equipped with a module for calculating loads and a module for calculating suspension compliance, 

giving the user the option of including bushings and its characteristics. Other future developments for 3DSusp 

are the inclusion of the two axles simultaneously to simulate more complex vehicle movements such as pitch, 

roll and combinations of both. 

The complete model described in 3.3 proved particularly powerful for the purpose of assessing the non-linear 

characteristics of a suspension. Reviewing the literature, it was found to be one of the most comprehensive, 

since it takes into account mainly nonlinear stiffnesses and the possibility of using wheel-side bushings as well. 

In addition, the calculation is done iteratively and takes into account the kinematics of the suspension, unlike 

many works that simply calculate the stiffness matrix of the system, which is practically useless when large 

deformations occur. Considering stiffnesses as linear can only be a sensible approximation for small loads and 

small displacements.  

The mathematical model is capable not only of calculating the deformed configuration of the suspension, but 

also of returning the constrained reactions on each bushing of the suspension. This is useful for suspension 

design process as an input to FEM models. Compared with a model created using multibody software, the 

computation time is essentially negligible; code written in Matlab® takes one or two tenths of a second to 

converge to the solution. The model has also proven to be particularly useful just to perform kinematic analysis 

of the suspension by appropriately modifying the stiffness of the bushings and elements. 

Once it is understood how to write the equations depending on how the various elements are linked together, 

any type of independent-wheel suspension can be created. This makes this model particularly powerful in 

developing the elastokinematics of suspension quickly. In fact, the force-displacement curves that characterize 

bushings and elements can also be changed easily as a key feature in the design phase. The presented 

methodology proved to be particularly effective, especially for the possibility of handling the non-linear force-

deformation curves of the joints.  Most models in the literature do not consider these effects, but they make a 
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substantial difference. Designing suspension compliance correctly can have macroscopic effects, both on 

driving feel and vehicle balance, with implications for safety and performance as well. 

It can be stated that this algorithm represents a kind of virtual K&C. Having a validated model can lead, at an 

early stage of the design, to saving time and money spent at a test bench. In addition, several combinations of 

forces and moments can be tested through simulations that are difficult to achieve with a K&C test rig. 

As this method has a high computing speed, it can be combined with optimisation or sensitivity analysis 

algorithms to speed up the design process as much as possible. For example, having a function written in 

Matlab®, it is possible to use the proprietary 'Optimisation Toolbox' with relative ease. Future developments 

could include the use of optimization algorithms such as those based on Levenberg-Marquardt or genetic 

algorithms. 

The algorithm is intended to be a substitute for a multibody solver, but only in an initial design phase. In fact, 

this method is based on the search for the equilibrium position, it is therefore a quasi-static solver where 

dynamic effects such as inertia of the suspension elements or damping of the joints are not considered. Thus, 

a limitation of this algorithm is precisely the dynamic analyses, such as the evaluation of eigenfrequencies. 

The inclusion of these effects can be a future development, for example by including forces dependent on the 

time derivatives of the element's deformations. 

The method is designed to solve any type of independent wheel suspension. However, there are no elements 

connecting the wheels of the same axle together, such as anti-roll bars, which would in any case influence the 

compliance of the suspension during cornering. A future development will be the introduction of these elements 

into the algorithm. Finally, it is not possible to model suspensions with linkage and rockers, such as pushrods 

and pullrods, even though they are rather rare architectures in passenger cars. Much work can still be done on 

the real time performance of the elasto-kinematic model, which with the hardware in possession can be run at 

no more than 500Hz for now, but with optimisations and adjustments it is possible to go up in frequency. 

Methodologies for the integration of sub-systems were presented; this was made possible by the vehicle 

dynamics simulation software ViCarRealTime®, which allows co-simulation with the Simulink® 

environment, where the development possibilities are almost endless. Particularly about the creation of active 

logic, for example for suspensions or a lockable differential. 

Furthermore, the driving simulator, which allows the so-called driver in the loop, is an essential tool for the 

development of a vehicle and its subsystems also thanks to the possibility of interfacing it with different 

hardware, as seen in the chapter 6.1. Thanks to the management of a CAN bus, it is possible to make any type 

of sensor/actuator communicate during simulation. It also makes it possible to create customised dashboards, 

which are very useful from a human-machine interface point of view. 

This thesis also proposed a comparison of two main methods for estimating the vehicle side sleep angle, one 

of the fundamental parameters for understanding vehicle behaviour: Kalman filter and artificial neural network 
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(ANN). All of them have positive aspects and drawbacks: the ANN method can give the best overall estimation 

with a low computational burden, but it needs a very demanding training procedure, moreover it is not able to 

deal with changes of the system and boundary conditions that were not included in the training. The EKF itself 

can give a good VSA estimation as well but the computational burden increases with the accuracy of the vehicle 

model, which requires in turn many parameters (i.e. tire data) that might be difficult to get. This makes it 

difficult to use in key applications such as the typical model-based design approach required by real time 

operations in state-of-the-art driving simulators. 

As far as ANNs are concerned, this has only scratched the surface; in fact, one of the future developments is 

precisely the development of much more complex neural networks for estimating the side slip angle. Focusing 

on neural networks that also take into account the input and output values of previous time steps. The 

development of these more advanced logics may also give the possibility of creating more reliable control 

logics, such as torque vectoring, electronic stability control or rear wheel steering. 

Finally, an exploration of the ViWorldSim® environment is presented in this work, thanks to a research project 

with Adas Mobile®. It shows that it is possible via the driving simulator to integrate ADAS logic. This 

exploration was only superficial, as the aim of the work was demonstrative; the possibilities this software 

offers are still to be explored. In any case, the research project ended with excellent results, hundreds of people 

at the fair were able to drive the simulator by trying out some simple ADAS logics both with the sensors 

aligned and not. Everyone was able to appreciate the difference, and the importance of calibrating these 

systems, which was the goal of this work. 

 

  



128 

 

List of Figures 

Figure 1. Vi-Grade® Dynamic Simulator DiM400 ........................................................................................... 6 

Figure 2. Vi-Grade® static driving simulator at University of Brescia. ............................................................ 8 

Figure 3. a) Uniballs used in motorsport application. b) Rubber bushings used in passenger cars. .................. 9 

Figure 4. 3Dsusp software screenshot representing a double wishbone suspension of an F4 race car............ 14 

Figure 5. Comparison of software graphics now a) and just finished master's degree b), 4 four years ago. ... 15 

Figure 6. A schematic of a C-shaped anti-roll bar. a) ARB attached through the wishbones. b) ARB attached 

through the rockers. In red the torsion "C" bar and in green the links. ........................................................... 16 

Figure 7. Schematic of the C-shaped anti-roll bar with reference systems. a) Bar attached to the rocker. b) Bar 

attached to the lower wishbone. ...................................................................................................................... 17 

Figure 8. C-Shaped ARB torsion angle vs roll angle in 3DSusp interface. ..................................................... 19 

Figure 9. A schematic of a T-shaped anti-roll bar. a) ARB without third element. b) ARB with third element. 

In red the torsion "T" bar, in green the links and in blue the third element. .................................................... 19 

Figure 10. Schematic of the T-shaped anti-roll bar with reference systems. ................................................... 20 

Figure 11. T-Shaped ARB torsion angle vs roll angle in 3DSusp interface. .................................................... 21 

Figure 12. Heave element and roll element installed on a race car. ................................................................ 22 

Figure 13. Schematic of the heave element and roll element .......................................................................... 22 

Figure 14. Heave element and roll element length vs bump travel in 3DSusp interface ................................. 23 

Figure 15. Heave element and roll element length vs roll angle in 3DSusp interface ..................................... 23 

Figure 16. Stewart-Gough platform................................................................................................................. 24 

Figure 17. Integral suspension with link connecting arm and upright on real cars. a) Ferrari 488 rear suspension. 

b) Tesla Model 3 rear suspension .................................................................................................................... 25 

Figure 18. Integral link (vertical red link) in 3DSusp connecting the lower arm (blue) with the upright (green).

 ......................................................................................................................................................................... 25 

Figure 19. a) Vi-CarRealTime® graphic interface. b). Vi-Grade compact driving simulator. ........................ 26 

Figure 20. Available suspension model in Vi-SuspensionGen®. .................................................................... 27 

Figure 21. Screenshot showing the formatting of the readable .sgs file in Vi-SuspensionGen®. ................... 28 

Figure 22. Screenshot of a corner of the Simulink® showing how the Matlab-function containing the 3DSusp 

algorithm is integrated into the Vi-CarRealTime® solver. .............................................................................. 30 



129 

 

Figure 23. Schematic of the model with PR constrained to the hub carrier, the yellow arrows represent the axial 

forces of each connecting rod. ......................................................................................................................... 32 

Figure 24. Components along the axis of rotation of the wishbone to which the hub carrier is attached. ...... 34 

Figure 25. Schematic of the model with PR constrained to upper arm, the yellow arrows represent constraint 

reaction forces. In low the three direct axial actions like connecting rods. On top three orthogonal reactions on 

the connection with the upper wishbone. ........................................................................................................ 35 

Figure 26. Diagram of the forces acting on the upper arm, in light blue the constraint reactions given by the 

frame-side joints and the pushrod. In yellow the wheel-side constraint reactions. ......................................... 36 

Figure 27. Graphical interface of the output of the calculation algorithm for loads on the suspension. ......... 38 

Figure 28. Screenshot representing the loads acting on the same suspension. a) Lotus Shark®. b) Algorithm 

presented visualized in Matlab®. .................................................................................................................... 39 

Figure 29. Model of the bushing in this algorithm. Characterized by three stiffnesses along the axes. .......... 39 

Figure 30. Simplified flowchart of the algorithm for calculating elastokinematics with translational stiffnesses.

 ......................................................................................................................................................................... 42 

Figure 31. Matlab® interface screenshot showing the deformed configuration of the suspension, superimposed 

on the design configuration, after external forces are applied. In bold the deformed configuration ............... 43 

Figure 32. General "spring rod" and "rigid element" of the suspension model. .............................................. 44 

Figure 33. Bushing model with linear and rotational stiffnesses. .................................................................... 45 

Figure 34. Double Wishbone suspension scheme used in this work. “Spring rod” for trackrod and spring. “Rigid 

element” for upper arm, lower arm and upright. ............................................................................................. 49 

Figure 35. Upper Arm, scheme to identify the chassis side bushing deformations. ........................................ 52 

Figure 36. Lower Arm and Upright, scheme to identify wheel side bushing deformations ............................ 55 

Figure 37. Spring Rod element, scheme to identify bushing deformations with axial displacement .............. 56 

Figure 38. Suspension model designed in Simscape® Multibody. ................................................................. 59 

Figure 39. Suspension model designed in Simscape® Multibody's 'Mechanics Explorer' ............................. 59 

Figure 40. Graphic view of the deformed suspension under load number 4. Design configuration (black), 

Model deformed configuration (red), Simscape® (blue) ................................................................................ 62 

Figure 41. Graphic view of the deformed suspension under load number 7. Design configuration (black), 

Model deformed configuration (red), Simscape® (blue) ................................................................................ 62 

Figure 42. Model Results VS Simscape® results. wheel orientation (dCamber, dSWA, dToe) on the left side 

and position (dX,dY,dZ) on the right side ....................................................................................................... 64 



130 

 

Figure 43. Shape of the function (90), on X-axis the bushing deformation, on Y-axis per bushing reaction .. 65 

Figure 44. Graphic view of the deformed suspension both for linear and non-linear model under the load N 8. 

Design configuration (black), Linear (red) and Non-linear(blue) ................................................................... 66 

Figure 45. Forces (left) and Moments (right) of the lower arm rear bushing under the load N 8 ................... 66 

Figure 46. Variation of wheel orientation (dCamber, dSWA, dToe) and position (dX,dY,dZ) at various 

percentages of the load case number 8 ............................................................................................................ 67 

Figure 47. Translation of the pushrod attachment point on the joint connecting the arm to the hub carrier. .. 68 

Figure 48. a) Suspension in design configuration (blue) and deformed (red). b) Histogram for axial loads on 

each connecting rod. ........................................................................................................................................ 71 

Figure 49. Simulink screenshot showing the Simscape model of the suspension. .......................................... 71 

Figure 50. Screenshot of Simscape®'s 'Mechanics Explorer', showing the modelled suspension. ................. 72 

Figure 51. Screenshot with the Simulink block of ViCarRealTime and some of the input variables used for 

integration. ....................................................................................................................................................... 73 

Figure 52. Time history of front wheel assembly motion during a simulated cornering maneuver followed by 

heavy braking. Variations are shown with respect to the design position. Proposed model (red) vs model based 

on the superposition principle (blue). .............................................................................................................. 75 

Figure 53. Simulation results for left-hand wheel movements: camber, toe, caster, wheelbase variation and 

wheel travel. In red the comprehensive proposed model, in blue the model based on lookup-table and 

superposition.................................................................................................................................................... 76 

Figure 54. Steering wheel angle over time in the simulation. In red the comprehensive proposed model, in blue 

the model based on lookup-table and superposition. ....................................................................................... 76 

Figure 55. Vehicle Side Slip Angle, the angle in blue between the longitudinal axis of the vehicle and its 

velocity vector, tangent to the trajectory (red). ................................................................................................ 78 

Figure 56. Optical sensor for Vehicle Side Slip Angle measurement, Kistler® S-Motion mounted on Fiat 124 

by Megaride Applied Vehicle Research®. ....................................................................................................... 79 

Figure 57. Dynamic model of a vehicle with road-tire interaction force. ....................................................... 81 

Figure 58. ANN estimation high-level schematics. ......................................................................................... 81 

Figure 59. Nardò (LE) proving ground. .......................................................................................................... 83 

Figure 60. 90m radius steering pad manoeuvre, speed increasing from 60 to 120 kph. ................................. 84 

Figure 61. 90m radius steering pad manoeuvre, speed increasing from 60 to 100 kph. ................................. 85 

Figure 62. 70° step steer manoeuvre @ 125 kph. ............................................................................................ 85 



131 

 

Figure 63. 90° step steer manoeuvre @ 125 kph. ............................................................................................ 86 

Figure 64. 70° step steer manoeuvre @ 125 kph. ............................................................................................ 86 

Figure 65. 90° step steer manoeuvre @ 150 kph. ............................................................................................ 87 

Figure 66. Screenshot of Wintax® data analysis software. ............................................................................. 87 

Figure 67. Graphical representation of the artificial neural network (ANN). ................................................. 88 

Figure 68. Graph of the sigmoid function used as an activation function in ANN. ........................................ 89 

Figure 69. Vehicle Side Slip Angle measured by sensor (yellow), estimated with ANN trained with model 

(orange), estimated with ANN trained with real data (blue) during a qualifying lap. ..................................... 90 

Figure 70. Vehicle Side Slip Angle measured by sensor (yellow), estimated with ANN trained with model 

(orange), estimated with ANN trained with real data (blue) during a race lap. ............................................... 91 

Figure 71. Screenshot of Wintax with the mathematical channel of VSA estimation via ANN. ..................... 91 

Figure 72. 3DSusp screenshot of the front suspension mentioned. ................................................................. 92 

Figure 73. 3DSusp screenshot of the rear suspension mentioned. .................................................................. 93 

Figure 74. Screenshot of the Simulink® file handling inboard suspension. ................................................... 94 

Figure 75. Screenshot of the Simulink® file for calculating the deformation of element, the forces on it and 

the equivalent vertical force on the wheel centre ............................................................................................ 95 

Figure 76. Screenshot of the surface representing the deformation of the heave element as a function of the 

two rocker angles. ............................................................................................................................................ 96 

Figure 77. Screenshots of the 3 components of the heave element, in order: Damper, Bumpstop, Spring. .... 96 

Figure 78. Screenshot of the surface describing the motionratio between element and left rocker of the heave 

element ............................................................................................................................................................ 97 

Figure 79. Screenshot of the inside of the Simulink® block that handles the front suspension. .................... 98 

Figure 80. Screenshot of the Simulink® block that manages the c-shape anti-roll bar of the front suspension.

 ......................................................................................................................................................................... 99 

Figure 81. Screenshot of the Simulink® block that handles the calculation of forces exerted by torsion bars.

 ......................................................................................................................................................................... 99 

Figure 82. Simulink block managing the left rocker of the front suspension. ............................................... 100 

Figure 83. a) Surface representing the rotation angle of the left rocker as a function of bump and steer. b) 

Surface representing the motion ratio between rocker and left wheel as a function of bump and steer. ....... 100 



132 

 

Figure 84. Front and rear ride height of the vehicle. In red the simulation with active suspension. In blue the 

simulation with passive suspension. .............................................................................................................. 101 

Figure 85. Clutch discs on a generic LSD. .................................................................................................... 102 

Figure 86. Mechanical LSD with pin and ramps. .......................................................................................... 102 

Figure 87. Screenshot of the Simulink® file of the LSD model. .................................................................. 104 

Figure 88. Simulink® screenshot describing the kinematic behaviour of the differential. ........................... 105 

Figure 89. Screenshot of the 'LSD' subsystem that manages the locking of the two axle shafts. .................. 105 

Figure 90. Screenshot of the differential model created with Simscape® Driveline. ................................... 106 

Figure 91. Screenshot of the subsytem handling the pressure calculation in Simulink®. ............................. 107 

Figure 92. Torques on the axle shafts of the LSD diff in a simulated track lap. In blue the original 

ViCarRealTime® model, in orange the model created in Simulink®. .......................................................... 108 

Figure 93. Left differential torque as a function of right differential torque. In blue the original 

ViCarRealTime® model, in orange the model created in Simulink®. .......................................................... 109 

Figure 94. Wheel angular velocities as a function of time during a simulated lap. In blue the original 

ViCarRealTime® model, in orange the model created in Simulink®. ........................................................... 110 

Figure 95. Tactile Pads mounted on the driving simulator. ............................................................................ 111 

Figure 96. 3D printed box containing the Arduino microcontroller, capacitive sensor, and connectors to operate 

the Tactile Pads. .............................................................................................................................................. 112 

Figure 97. Screenshot of the Simulink® that manages the gearbox. .............................................................. 113 

Figure 98. Simulink® screen showing the logic part for managing the transition between manual and automatic 

gearbox. .......................................................................................................................................................... 114 

Figure 99. Simulink screen representing the management logic of the automatic gearbox. .......................... 114 

Figure 100. Dashboard screen dedicated to the use of Tactile Pads on the driving simulator. ....................... 115 

Figure 101. Screenshot of the Microsoft® VisualStudio software with part of the code for the dashboard. . 116 

Figure 102. CAN-USB adapter from PEAK-System. .................................................................................... 116 

Figure 103. Vehicle with virtual camera misaligned by 3°. ............................................................................ 117 

Figure 104. Simulator set up on the Adas Mobile stand at the Autopromotec trade fair in Bologna. ............ 117 

Figure 105. ViWorldSim® software. .............................................................................................................. 118 

Figure 106. Screenshot of the ViWorldSim® tool for creating scenarios. ..................................................... 119 



133 

 

Figure 107. Screenshot of the Simulink blocks operating the virtual camera. .............................................. 120 

Figure 108. Screenshot of the Simulink® file that handles the LKA logic by controlling the steering wheel 

torque. ............................................................................................................................................................ 121 

Figure 109. Wolfsburg scenario created with ViWorldSim®. ....................................................................... 122 

Figure 110. Motorway scenario created with ViWorldSim®. ....................................................................... 122 

Figure 111. Screenshots of the 4 screens displayed during the simulation with the sensor correctly aligned. Top 

left the pilot's view. Bottom left the view from the outside. Top right the view from ROS with the output of the 

virtual camera. Bottom right the dashboard. ................................................................................................. 123 

Figure 112. Screenshots of the 4 screens displayed during the simulation with the sensor misaligned. Top left 

the pilot's view. Bottom left the view from the outside. Top right the view from ROS with the output of the 

virtual camera. Bottom right the dashboard. ................................................................................................. 123 

Figure 113. Dashboard layout to display ADAS logic parameters. ............................................................... 124 

 

  



134 

 

References 

[1] C. Himmels, J. Venrooij, A. Parduzi, M. Peller, and A. Riener, “The bigger the better? Investigating the 

effects of driving simulator fidelity on driving behavior and perception,” Transp Res Part F Traffic 

Psychol Behav, vol. 101, pp. 250–266, Feb. 2024, doi: 10.1016/J.TRF.2024.01.007. 

[2] “Within- and Between-Subject Designs in DrivingSimulator Validation: A Case Study - Driving 

Simulation Proceedings.” Accessed: Nov. 28, 2024. [Online]. Available: https://proceedings.driving-

simulation.org/proceeding/dsc-2023/within-and-between-subject-designs-in-drivingsimulator-

validation-a-case-study/ 

[3] A. Soltani and F. Assadian, “A Hardware-in-the-Loop Facility for Integrated Vehicle Dynamics Control 

System Design and Validation,” IFAC-PapersOnLine, vol. 49, no. 21, pp. 32–38, 2016, doi: 

10.1016/J.IFACOL.2016.10.507. 

[4] G. Lukianov, “Vehicle Steering and Suspension Kinematics/Compliance and Their Relationship to 

Vehicle Performance©,” CISM International Centre for Mechanical Sciences, Courses and Lectures, 

vol. 603, pp. 61–138, 2022, doi: 10.1007/978-3-030-75884-4_2. 

[5] M. Von Der Ohe, “Front and rear suspension of the new mercedes model W201,” SAE Technical 

Papers, 1983, doi: 10.4271/831045. 

[6] J. E. Andersson, O. Bane, and A. Larsson, “Volvo 760 GLE multi-link rear axle suspension,” SAE 

Technical Papers, 1989, doi: 10.4271/890082. 

[7] T. Kasahara, N. Morioka, M. Satou, T. Yagi, and K. Muraoka, “Development of a New Multi-link 

Suspension,” SAE Technical Papers, Mar. 2000, doi: 10.4271/2000-01-0092. 

[8] R. Koide, Y. Kawabe, K. Nakajima, and K. Kazuhiro, “Development of a New Multi-link Rear 

Suspension,” SAE International Journal of Passenger Cars - Mechanical Systems, vol. 5, no. 2, pp. 

974–980, 2012, doi: 10.4271/2012-01-0978. 

[9] D. Jung, J. K. Lee, B. K. Lee, and S. P. Kim, “The Development of FR-Based 4WD Multi-Link 

Suspension,” SAE Technical Papers, vol. 2013-April, 2013, doi: 10.4271/2013-01-1235. 

[10] P. Zandbergen and A. Girelli Consolaro, “Ford motor company’s new rear suspension architecture for 

the global CD platform,” Lecture Notes in Electrical Engineering, vol. 198 LNEE, no. VOL. 10, pp. 9–

20, 2013, doi: 10.1007/978-3-642-33795-6_2/FIGURES/11. 

[11] G. Legnani, Irene. Fassi, and Antonio. Visioli, “Robotica industriale : modellazione, pianificazione, 

controllo, programmazione, componentistica, normativa e sicurezza,” 2018. 



135 

 

[12] W. A. Cao, H. Ding, and D. Yang, “A method for compliance modeling of five degree-of- freedom 

overconstrained parallel robotic mechanisms with 3T2R output motion,” J Mech Robot, vol. 9, no. 1, 

Feb. 2017, doi: 10.1115/1.4035270/473080. 

[13] S. Huang and J. M. Schimmels, “Planar Compliance Realization with Two 3-Joint Serial Mechanisms,” 

J Mech Robot, vol. 14, no. 5, Oct. 2022, doi: 10.1115/1.4053284/1129388. 

[14] M. Arredondo-Soto, E. Cuan-Urquizo, A. Gómez-Espinosa, A. Roman-Flores, P. D. U. Coronado, and 

M. Jimenez-Martinez, “The compliant version of the 3-RRR spherical parallel mechanism known as 

‘Agile-Eye’: Kinetostatic analysis and parasitic displacement evaluation,” Mech Mach Theory, vol. 

180, Feb. 2023, doi: 10.1016/J.MECHMACHTHEORY.2022.105160. 

[15] G. Yu, L. Wang, J. Wu, D. Wang, and C. Hu, “Stiffness modeling approach for a 3-DOF parallel 

manipulator with consideration of nonlinear joint stiffness,” Mech Mach Theory, vol. 123, pp. 137–

152, May 2018, doi: 10.1016/J.MECHMACHTHEORY.2018.01.005. 

[16] C. Yang, Q. Li, and Q. Chen, “Analytical elastostatic stiffness modeling of parallel manipulators 

considering the compliance of the link and joint,” Appl Math Model, vol. 78, pp. 322–349, Feb. 2020, 

doi: 10.1016/J.APM.2019.10.024. 

[17] M. B. Gerrard, “Roll centres and jacking forces in independent suspensions - A first principles 

explanation and a designer’s toolkit,” SAE Technical Papers, 1999, doi: 10.4271/1999-01-0046. 

[18] M. B. Gerrard, “Kinematic suspension linkages - A model for their behaviour and a procedure for their 

design,” SAE Technical Papers, 2002, doi: 10.4271/2002-01-0281. 

[19] K. P. Balike, S. Rakheja, and I. Stiharu, “Kinematic Analysis and Parameter Sensitivity to Hard Points 

of Five-Link Rear Suspension Mechanism of Passenger Car,” Proceedings of the ASME Design 

Engineering Technical Conference, vol. 5, pp. 755–764, Jul. 2009, doi: 10.1115/DETC2008-49243. 

[20] P. A. Simionescu and D. Beale, “Synthesis and analysis of the five-link rear suspension system used in 

automobiles,” Mech Mach Theory, vol. 37, no. 9, pp. 815–832, Sep. 2002, doi: 10.1016/S0094-

114X(02)00037-X. 

[21] P. A. Simionescu, “A unified approach to the kinematic synthesis of five-link, four-link, and double-

wishbone suspension mechanisms with rack-and-pinion steering control,” 

http://dx.doi.org/10.1177/0954407016672775, vol. 231, no. 10, pp. 1374–1387, Nov. 2016, doi: 

10.1177/0954407016672775. 

[22] F. P. Marchesin, R. S. Barbosa, M. Gadola, and D. Chindamo, “High downforce race car vertical 

dynamics: aerodynamic index,” https://doi.org/10.1080/00423114.2017.1413196, vol. 56, no. 8, pp. 

1269–1288, Aug. 2017, doi: 10.1080/00423114.2017.1413196. 



136 

 

[23] F. P. Marchesin, R. S. Barbosa, M. A. L. Alves, M. Gadola, D. Chindamo, and C. Benini, “Upright 

mounted pushrod: The effects on racecar handling dynamics,” The Dynamics of Vehicles on Roads and 

Tracks - Proceedings of the 24th Symposium of the International Association for Vehicle System 

Dynamics, IAVSD 2015, pp. 543–552, 2016, doi: 10.1201/B21185-59/SIGNIFICANCE-HIGH-

ORDER-DYNAMICS-LAP-TIME-SIMULATIONS-LOT-DAL-BIANCO. 

[24] F. Marchesin, R. S. Barbosa, M. Gadola, and D. Chindamo, “A Road-Holding Index Based on Ride 

Dynamics for High-Downforce Racing Cars,” IOP Conf Ser Mater Sci Eng, vol. 538, no. 1, p. 012069, 

May 2019, doi: 10.1088/1757-899X/538/1/012069. 

[25] M. Gadola, D. Chindamo, G. Legnani, and M. Comini, “Teaching automotive suspension design to 

engineering students: Bridging the gap between CAD and CAE tools through an integrated approach,” 

International Journal of Mechanical Engineering Education, vol. 47, no. 1, pp. 23–43, Jan. 2019, doi: 

10.1177/0306419018762803/ASSET/IMAGES/LARGE/10.1177_0306419018762803-FIG9.JPEG. 

[26] E. Bonera, M. Gadola, D. Chindamo, S. Morbioli, and P. Magri, “Integrated Design Tools for Model-

Based Development of Innovative Vehicle Chassis and Powertrain Systems,” Lecture Notes in 

Mechanical Engineering, pp. 118–128, 2020, doi: 10.1007/978-3-030-31154-4_11/COVER. 

[27] J. Knapczyk and S. Dzierżek, “Displacement and Force Analysis of Five-Rod Suspension With Flexible 

Joints,” Journal of Mechanical Design, vol. 117, no. 4, pp. 532–538, Dec. 1995, doi: 

10.1115/1.2826715. 

[28] J. Knapczyk and S. Dzierzek, “Elastokinematic Analysis of Five-rod Suspension with Flexible Joints, 

Including Effects of Shock Absorber,” vol. 29, no. SUPPL., pp. 270–279, 2007, doi: 

10.1080/00423119808969564. 

[29] J. Knapczyk and M. Maniowski, “Elastokinematic modeling and study of five-rod suspension with 

subframe,” Mech Mach Theory, vol. 41, no. 9, pp. 1031–1047, Sep. 2006, doi: 

10.1016/J.MECHMACHTHEORY.2005.11.003. 

[30] Jü. Knapczyk and M. Maniowski, “Optimization Of 5-Rod Car Suspension For Elastokinematic and 

Dynamic Characteristics,” Archive of Mechanical Engineering, vol. 57, no. 2, pp. 133–147, 2010, doi: 

10.2478/V10180-010-0007-X. 

[31] X. Yang, “Effects of bushings characteristics on suspension ball joint travels,” 

https://doi.org/10.1080/00423110903166300, vol. 49, no. 1–2, pp. 181–197, Jan. 2009, doi: 

10.1080/00423110903166300. 

[32] P. Zhao, G. F. Yao, M. Wang, X. Wang, and J. Li, “A new method to calculate the equivalent stiffness 

of the suspension system of a vehicle,” Structural Engineering and Mechanics, vol. 44, no. 3, pp. 363–

378, 2012, doi: 10.12989/SEM.2012.44.3.363. 



137 

 

[33] G. F. Yao, J. Hou, and P. Zhao, “A new methodology to calculate the equivalent stiffness matrix of the 

suspension structure with flexible linkages,” Advances in Mechanical Engineering, vol. 9, no. 7, Jul. 

2017, doi: 10.1177/1687814017700548/ASSET/IMAGES/LARGE/10.1177_1687814017700548-

FIG6.JPEG. 

[34] M. B. Gerrard, “The equivalent elastic mechanism: A tool for the analysis and the design of compliant 

suspension linkages,” SAE Technical Papers, 2005, doi: 10.4271/2005-01-1719. 

[35] J. S. Kang, J. R. Yun, J. M. Lee, and T. O. Tak, “Elastokinematic analysis and optimization of suspension 

compliance characteristics,” SAE Technical Papers, 1997, doi: 10.4271/970104. 

[36] J. S. KANG, “ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR 

RECURSIVE FORMULA,” International Journal of Automotive Technology, vol. 6, no. 4, pp. 375–

381, 2005. 

[37] E. D. Morales, “Sensitivity study of front suspension parameters in elastokinematics and handling 

behavior of a vehicle,” SAE Technical Papers, vol. Part F127082, no. October, Oct. 2016, doi: 

10.4271/2016-36-0182. 

[38] J. Meissonnier, J. C. Fauroux, G. Gogu, and C. Montezin, “Geometric Identification of an 

Elastokinematic Model in a Car Suspension,” http://dx.doi.org/10.1243/09544070JAUTO239, vol. 220, 

no. 9, pp. 1209–1220, Sep. 2006, doi: 10.1243/09544070JAUTO239. 

[39] E. Rocca and R. Russo, “A feasibility study on elastokinematic parameter identification for a multilink 

suspension,” http://dx.doi.org/10.1243/0954407021528995, vol. 216, no. 2, pp. 153–160, Feb. 2002, 

doi: 10.1243/0954407021528995. 

[40] L. Tang, W. Bin Shangguan, and L. Dai, “A calculation method of joint forces for a suspension 

considering nonlinear elasticity of bushings,” http://dx.doi.org/10.1177/1464419312452214, vol. 226, 

no. 4, pp. 281–297, Aug. 2012, doi: 10.1177/1464419312452214. 

[41] M. J. Burgess, N. P. Fleming, M. Wootton, and S. J. Williams, “A tool for rapid vehicle suspension 

design,” SAE Technical Papers, 2004, doi: 10.4271/2004-01-3543. 

[42] J. Knapczyk and S. Dzierzek, “Elastokinematic Analysis of Five-rod Suspension with Flexible Joints, 

Including Effects of Shock Absorber,” Vehicle System Dynamics, vol. 29, no. SUPPL., pp. 270–279, 

1998, doi: 10.1080/00423119808969564. 

[43] D. Ammon, M. Gipser, J. Rauh, and J. Wimmer, “High Performance System Dynamics Simulation of 

the Entire System Tire-Suspension-Steering-Vehicle,” Vehicle System Dynamics, vol. 27, no. 5–6, pp. 

435–455, 1997, doi: 10.1080/00423119708969341. 



138 

 

[44] Y. Duan, Y. Zhang, J. Wu, and T. Lv, “A data-driven suspension kinematics and compliance model 

considering multi-axis coupling effects,” Proceedings of the Institution of Mechanical Engineers, Part 

D: Journal of Automobile Engineering, 2023, doi: 10.1177/09544070231207160. 

[45] J. Park, J. Yi, D. Lee, J. Park, J. Yi, and D. Lee, “Investigation into Suspension Dynamic Compliance 

Characteristics Using Direct Measurement and Simulation,” SAE Technical Papers, Mar. 2004, doi: 

10.4271/2004-01-1065. 

[46] A. T. Van Zanten, “Bosch ESP Systems: 5 Years of Experience,” SAE Technical Papers, May 2000, 

doi: 10.4271/2000-01-1633. 

[47] C. Crema et al., “Smartphone-based system for the monitoring of vital parameters and stress conditions 

of amatorial racecar drivers,” 2015 IEEE SENSORS - Proceedings, Dec. 2015, doi: 

10.1109/ICSENS.2015.7370521. 

[48] D. Chindamo, M. Gadola, and F. P. Marchesin, “Reproduction of real-world road profiles on a four-

poster rig for indoor vehicle chassis and suspension durability testing,” Advances in Mechanical 

Engineering, vol. 9, no. 8, pp. 1–10, Aug. 2017, doi: 

10.1177/1687814017726004/ASSET/IMAGES/LARGE/10.1177_1687814017726004-FIG11.JPEG. 

[49] D. Chindamo and M. Gadola, “What is the Most Representative Standard Driving Cycle to Estimate 

Diesel Emissions of a Light Commercial Vehicle?,” IFAC-PapersOnLine, vol. 51, no. 5, pp. 73–78, Jan. 

2018, doi: 10.1016/J.IFACOL.2018.06.213. 

[50] D. Chindamo, B. Lenzo, and M. Gadola, “On the vehicle sideslip angle estimation: a literature review 

of methods, models and innovations,” Appl. Sci., vol. 8, no. 3, p. 355, Mar. 2018, doi: 

10.3390/app8030355. 

[51] M. J. Burgess, N. P. Fleming, M. Wootton, and S. J. Williams, “A Tool for Rapid Vehicle Suspension 

Design,” 2018. 

[52] F. P. Marchesin, R. S. Barbosa, M. A. L. Alves, M. Gadola, D. Chindamo, and C. Benini, “Upright 

mounted pushrod: The effects on racecar handling dynamics,” The Dynamics of Vehicles on Roads and 

Tracks - Proceedings of the 24th Symposium of the International Association for Vehicle System 

Dynamics, IAVSD 2015, pp. 543–552, 2016, doi: 10.1201/B21185-59. 

[53] D. Chindamo and M. Gadola, “Estimation of Vehicle Side-Slip Angle Using an Artificial Neural 

Network,” MATEC Web of Conferences, vol. 166, p. 02001, Apr. 2018, doi: 

10.1051/MATECCONF/201816602001. 

[54] G. G., “Motor vehicle dynamics: modeling and simulation,” 1997, World Scientific. 



139 

 

[55] L. K., “A Method for the Solution of Certain Problems in Least-Squares,” Quarterly Applied Math., 

vol. 2, pp. 164–168, 1944. 

[56] M. D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM Journal Applied 

Math., vol. 11, pp. 431–441, 1963. 

[57] E. G., “Data assimilation,” 2009, Springer-Verlag. 

[58] M. Gadola, D. Chindamo, and B. Lenzo, “Revisiting the mechanical limited-slip differential for high-

performance and race car applications,” Engineering Letters, vol. 29, no. 3, pp. 824–839, Sep. 2021. 

[59] G. Mastinu and E. BATTISTINI, “THE INFLUENCE OF LIMITED-SLIP DIFFERENTIALS ON 

THE STABILITY OF REAR- WHEEL-DRIVE AUTOMOBILES RUNNING ON EVEN ROAD 

WITH DRY SURFACE,” International Journal of Vehicle Design, vol. 14, no. 2/3, 1993. 

[60] H. Huchtkoetter and H. Klein, “The Effect of Various Limited-Slip Differentials in Front-Wheel Drive 

Vehicles on Handling and Traction,” SAE Technical Papers, Feb. 1996, doi: 10.4271/960717. 

[61] “Race Car Vehicle Dynamics - Milliken, William F.; Milliken, Douglas L.: 9781560915263 - 

AbeBooks.” Accessed: Apr. 10, 2024. [Online]. Available: 

https://www.abebooks.it/9781560915263/Race-Vehicle-Dynamics-Milliken-William-1560915269/plp 

  

 


