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A B S T R A C T

New extremum principles in linear viscoelasticity are derived from general stationarity ones proposed in
Carini and Mattei (2015), exploiting suitable selections of the admissible fields in the associated convolutive
functionals. These new extremum principles have therefore a restricted validity. Analytical bounds to the
homogenized viscous kernels of linear viscoelastic composites are derived in the time domain. In the restricted
case of macroscopically isotropic composite materials, six new bounds are obtained from the new extremum
principles. These bounds can be derived exploiting the choice of Representative Volume Elements (RVEs)
loaded in a purely deviatoric way only. Two strict lower bounds to the homogenized viscous kernels, of the
Reuss type, are also derived. One of these was already proposed in Huet (1995), and is valid for generic
linear viscoelastic composites under general stress and strain states. The other Reuss-type strict lower bound
is new, but has the same limited validity as the first six ones. The new upper bounds for isotropic composites,
obtained both in terms of viscous kernels and of their time rates, as well as the strict lower bounds, are
extensions to viscoelasticity of the Voigt and Reuss bounds for linear elastic composites. The performance of
the obtained bounds is checked by comparison with numerical solutions. It is worth remarking that the use of
the new extremum theorems for the purpose of deriving bounds is not possible in a general RVE stress case,
i.e., deviatoric plus volumetric. As a consequence, the non-strict bounds holding for the case of deviatoric RVE
loading are not valid for the volumetric case. The reason for this difference is not yet fully understood.
1. Introduction

Let 𝛺 ⊂ R3 be the region occupied by a solid body made of a linear
viscoelastic material, possibly heterogeneous. 𝑉 denotes the volume of
the region 𝛺 and 𝛤 = 𝛤𝑢 ∪ 𝛤𝑝 its external surface, with unit outward
normals 𝑛𝑖(𝑥𝑟). The displacement, strain, and stress fields at point 𝑥𝑟 ∈
𝛺, at time 𝑡, are denoted by 𝑢𝑖(𝑥𝑟, 𝑡), 𝜀𝑖𝑗 (𝑥𝑟, 𝑡), and 𝜎𝑖𝑗 (𝑥𝑟, 𝑡), respectively.
The loading is given by a history of body forces 𝑏𝑖(𝑥𝑟, 𝑡), of surface
tractions 𝑝𝑖(𝑥𝑟, 𝑡) acting on the loaded region 𝛤𝑝 of the boundary, and
of prescribed displacements 𝑢0𝑖 (𝑥𝑟, 𝑡) acting on the constrained boundary
𝛤𝑢. The body is undisturbed for 𝑡 < 0 and the whole loading history is
supposed to be defined in the given time range 𝑡 ∈ [0, 𝑇 ], 𝑇 being the
end time of the loading process, an arbitrary value 𝑇 ∈ [0,∞).

The direct viscoelastic constitutive law, that relates a known strain
field 𝜀𝑖𝑗 (𝑥𝑟, 𝑡) to the corresponding stress field 𝜎𝑖𝑗 (𝑥𝑟, 𝑡), is written as
follows:

𝜎𝑖𝑗 (𝑥𝑟, 𝑡) = ∫

𝑡

0−
𝑅𝑖𝑗ℎ𝑘(𝑥𝑟, 𝑡 − 𝜏) 𝑑𝜀ℎ𝑘(𝑥𝑟, 𝜏) (1.1)

where the integral has to be meant in the Stieltjes sense, and 𝑅𝑖𝑗ℎ𝑘(𝑥𝑟, 𝑡),
with 𝑡 > 0, is the relaxation tensor, or kernel. We assume that the
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constitutive law (1.1) is invertible, to give the inverse stress–strain
equation written as:

𝜀𝑖𝑗 (𝑥𝑟, 𝑡) = ∫

𝑡

0−
𝐶𝑖𝑗ℎ𝑘(𝑥𝑟, 𝑡 − 𝜏) 𝑑𝜎ℎ𝑘(𝑥𝑟, 𝜏) (1.2)

in which 𝐶𝑖𝑗ℎ𝑘(𝑥𝑟, 𝑡) denotes the creep tensor, or kernel.
The main interest of this work is in the homogenization problem for

a heterogeneous viscoelastic solid. The studied body 𝛺 is restricted to
be a suitably defined Representative Volume Element (RVE), of volume
𝑉 and external surface 𝛤 = 𝛤𝑢 ∪ 𝛤𝑝. Henceforth, given any generic
function 𝑓 (𝑥𝑟, 𝑡), we adopt the notation ⟨𝑓 (𝑡)⟩ to denote the volume
average of 𝑓 (𝑥𝑟, 𝑡) over 𝛺, i.e.,:

⟨𝑓 (𝑡)⟩ = 1
𝑉 ∫𝛺

𝑓 (𝑥𝑟, 𝑡) 𝑑𝛺 (1.3)

Unless strictly necessary, from now on we will omit indicating the
dependence on the space coordinates 𝑥𝑟.

The homogenized counterparts of the viscous kernels, for a vis-
coelastic composite, allow one to relate the volume averages of both
vailable online 19 August 2023
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stress and strain tensors. For the direct constitutive law this involves
the tensor 𝑅ℎ

𝑖𝑗ℎ𝑘(𝑡), that will be assumed to be defined from

⟨𝜎𝑖𝑗⟩(𝑡) ∶= ∫

𝑡

0−
𝑅ℎ
𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑⟨𝜀ℎ𝑘⟩(𝜏) (1.4)

and for the inverse constitutive law the tensor 𝐶ℎ
𝑖𝑗ℎ𝑘(𝑡), assumed to be

defined from:

⟨𝜀𝑖𝑗⟩(𝑡) ∶= ∫

𝑡

0−
𝐶ℎ
𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑⟨𝜎ℎ𝑘⟩(𝜏) (1.5)

An exact expression of the homogenized viscous kernels is not usually
available, and it is customary to look either for estimates or for bounds.

In viscoelasticity, the lack of symmetry/positive definiteness of the
constitutive operators with respect to standard bilinear forms (see
for example Tonti, 1973, and Tonti, 1984) has severely hindered the
development of bounding techniques for the homogenized constitutive
operators, both direct and inverse. Some results have been obtained
in the past making reference to convolutive bilinear forms. The vis-
coelastic problem was proved in Gurtin (1963) to be symmetric with
respect to a convolutive bilinear form (see for example Tonti, 1973);
nevertheless, even exploiting this symmetry, and despite a rather in-
tense research activity (see for example Carini and Mattei, 2015, and
references quoted therein), no usable extremum formulation has ever
been obtained for linear viscoelasticity in the time domain,1 and only
few standard, explicit, analytical bounds in the time domain to the
homogenized viscous kernels for viscoelastic composites have been
obtained so far. To the best of our knowledge, the main contribution,
in this sense, has been given by Huet (1995), who obtained a strict
lower bound to the homogenized relaxation kernel, together with other
bounds, both lower and upper, to the rates of both the homogenized
creep and relaxation kernels. From these last, Huet (1995) obtained
bounds also for total quantities which, however, appear of difficult
practical application. Moreover, the same Huet (1995) points out, in
his conclusions, that ‘‘there are still classical results of the elasticity
theory that cannot be transferred through to the viscoelastic case (...)
For this, true viscoelasticity minimum theorems (...) are still needed’’.

Carini and Mattei (2015) were able to exploit older ideas by Staver-
man and Schwarzl (1952), and by Mandel (1966), to obtain several
new min-stat, or even minimum, formulations in viscoelasticity. None
of these, unfortunately, could be adopted directly to obtain bounds to
the homogenized viscous kernels.

Mattei and Milton (2016) proposed a new approach to derive time
domain bounds to the response of a two-component viscoelastic com-
posite under antiplane loading. The novelty, there, lies in the appli-
cation of the so-called ‘‘analytical method’’, previously exploited for
problems formulated in the frequency domain, to derive bounds in the
time domain. The results obtained with this method turn out to be very
accurate if sufficient information about the composite is available.

In the present work, new extremum principles for linear viscoelastic
RVEs are derived from the theory presented in Carini and Mattei
(2015), involving both finite and rate versions of the viscous kernels.
These extremum theorems can be obtained by selecting in a very
specific way the admissible fields in the functionals associated to the
stationarity principles of Carini and Mattei (2015).

1 Analytical minimum principles for linear viscoelasticity have been pro-
osed in Rafalski (1969), Reiss and Haug (1978), and Carini et al. (1995).
evertheless, none of these can be adopted to obtain bounds to the homog-
nized viscous kernels of viscoelastic composites in the time domain. The
ormulation proposed in Carini et al. (1995) can be adopted as a basis for time
ntegration, but not for analytical developments leading to homogenization,
hereas the other two can be adopted to obtain bounds only to the Laplace

ransforms of the homogenized viscous kernels. Cherkaev and Gibiansky
1994), and Milton (1990), formulated extremum principles for linear initial
alue problems, including the hereditary viscoelastic one, in the frequency
omain. The work by Milton (1990) can be extended to the time domain,
ven though it was not explicitly formulated with this purpose.
2

From these new minimum theorems, upper and lower first-order
bounds to the homogenized viscous kernels of macroscopically isotropic
viscoelastic composites with any number of isotropic phases are de-
rived. Two bounds are derived, following a similar strategy, also for
the rates of the viscous kernels.

These new bounds can be obtained only exploiting (i) the assumed
macroscopic isotropy of the viscoelastic composites and (ii) the loading
typical of RVEs. These bounds, moreover, are valid only for the special
case of RVEs subjected to a purely deviatoric loading, of both a purely
kinematic and a purely static nature. In this special circumstance only,
and under the other considered assumptions, in fact, it was possible
to individuate the admissible fields that cancel the terms that destroy
the minimum nature of the theorems of Carini and Mattei (2015). It is
not yet clear why the same terms remain important under a volumetric
type of loading of the RVE.

Two strict (non-optimal) lower bounds to the homogenized viscous
kernels, both of the Reuss type, are finally presented. One of them,
concerning the homogenized relaxation kernel, was already derived
in Huet (1995), and is obtained following a strategy which does not
require the availability of an extremum principle. This strict bound has
therefore a general validity, i.e., it holds for generic anisotropic com-
posites under both volumetric and deviatoric loading. The new strict
Reuss-type lower bound to the homogenized creep kernel, instead, is
valid only for macroscopically isotropic RVEs under deviatoric loading.

The performance of the bounds presented herein is finally checked
by comparison with reference to numerical solutions, concerning RVEs,
obtained by means of Finite Element analyses.

2. Stationarity theorems for linear viscoelastic RVEs

We start by recalling, also for future convenience, the original
Gurtin convolutive functionals, of the Total Potential Energy and Total
Complementary Energy type, respectively, which read as follows:

TPE𝐺[𝑢′𝑖] =
1
2 ∫𝛺

𝑅𝑖𝑗ℎ𝑘⋆ 𝑑𝜀′ℎ𝑘⋆ 𝑑𝜀′𝑖𝑗 𝑑𝛺−∫𝛺
𝑏𝑖⋆ 𝑑𝑢′𝑖 𝑑𝛺−∫𝛤𝑝

𝑝𝑖⋆ 𝑑𝑢′𝑖 𝑑𝛤

(2.1)

CE𝐺[𝜎′𝑖𝑗 ] =
1
2 ∫𝛺

𝐶𝑖𝑗ℎ𝑘 ⋆ 𝑑𝜎′ℎ𝑘 ⋆ 𝑑𝜎′𝑖𝑗 𝑑𝛺 − ∫𝛤𝑢
𝑛𝑖𝑢

0
𝑗 ⋆ 𝑑𝜎′𝑖𝑗 𝑑𝛤 (2.2)

in which 𝑢′𝑖 must respect compatibility, 𝜎′𝑖𝑗 must respect equilibrium,
and which are both stationary in the solution of a viscoelastic problem.
In these expressions use was made of the standard convolution symbol
⋆ between two functions 𝑓 (𝑥𝑟, 𝑡) and 𝑔(𝑥𝑟, 𝑡) (for this notation see, for
example, Gurtin and Sternberg, 1962), defined as follows:

𝑓 (𝑥𝑟, 𝑡) ⋆ 𝑑𝑔(𝑥𝑟, 𝑡) ∶= ∫

𝑡

0−
𝑓 (𝑥𝑟, 𝑡 − 𝜏) 𝑑𝑔(𝑥𝑟, 𝜏) (2.3)

Starting from these functionals, the relevant new ideas of Carini and
Mattei (2015) are re-interpreted here considering the addition, to the
time interval [0, 𝑇 ], of the subsequent time interval [𝑇 , 2𝑇 ]. The un-
knowns are thus formally doubled, by adding the variables defined over
the first sub-interval to those, fictitious, related to the second one.

This is motivated by an interesting observation, made independently
by Staverman and Schwarzl (1952) and Mandel (1966). Both these
authors remark that a more complete knowledge of the thermodynamic
viscous properties in the time interval [0, 𝑇 ] is obtained from infor-
mation concerning the subsequent time interval [𝑇 , 2𝑇 ]. In their own
words: ‘‘In simple relaxation or creep experiments the thermodynamic
functions at time 𝑡 depend on the relaxation or creep function at time
2𝑡’’ (Staverman and Schwarzl, 1952), and ‘‘... si la connaissance de
la matrice 𝑓𝑖𝑗 (ou 𝑟𝑖𝑗) entre 0 et 𝑡 suffit pour definir le comporte-
ment purement mecanique d’un corps viscoelastique (a temperature
constante) dans le meme intervalle de temps, elle ne definit pas son

comportement energetique. Ce dernier ne serait defini dans l’intervalle
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Mandel, 1966).

This observation helps indeed in extracting thermodynamically in-
eresting — i.e., endowed with special convexity properties — quanti-
ies (typically, the free energy) from a viscoelastic system.

Accordingly, the strain and stress fields are written, respectively, as:

𝑖𝑗 (𝑡) =
{

𝜀1𝑖𝑗 (𝑡) for 𝑡 ∈ [0, 𝑇 ]
𝜀2𝑖𝑗 (𝑡) for 𝑡 ∈ [𝑇 , 2𝑇 ]

(2.4)

𝜎𝑖𝑗 (𝑡) =
{

𝜎1𝑖𝑗 (𝑡) for 𝑡 ∈ [0, 𝑇 ]
𝜎2𝑖𝑗 (𝑡) for 𝑡 ∈ [𝑇 , 2𝑇 ]

(2.5)

where the subscript 1 refers to the quantities defined over the time
interval [0, 𝑇 ], i.e., the actual time interval of interest, and the subscript
2 indicates quantities defined over [𝑇 , 2𝑇 ]. The direct constitutive
law (1.1), by virtue of (2.4) and of (2.5), and thanks to Boltzmann’s
superposition principle, can be split as follows:

𝜎1𝑖𝑗 (𝑡) = ∫

𝑡

0−
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑𝜀1ℎ𝑘(𝜏) for 𝑡 ∈ [0, 𝑇 ] (2.6)

𝜎2𝑖𝑗 (𝑡) = ∫

𝑇

0−
𝑅𝑖𝑗ℎ𝑘(𝑡−𝜏) 𝑑𝜀1ℎ𝑘(𝜏)+∫

𝑡

𝑇
𝑅𝑖𝑗ℎ𝑘(𝑡−𝜏) 𝑑𝜀2ℎ𝑘(𝜏) for 𝑡 ∈ [𝑇 , 2𝑇 ]

(2.7)

hich can be expressed in a compact matricial form as follows:

= 𝐋 𝜺 (2.8)

with

𝜺 ∶=
[

𝜀1𝑖𝑗 (𝑡)
𝜀2𝑖𝑗 (𝑡)

]

(2.9)

𝝈 ∶=
[

𝜎2𝑖𝑗 (𝑡)
𝜎1𝑖𝑗 (𝑡)

]

(2.10)

𝐋 ∶=
[

𝐴 𝐵
𝐵 0

]

∶=

⎡

⎢

⎢

⎢

⎣

∫

𝑇

0−
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) ∫

𝑡

𝑇
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅)

∫

𝑡

0−
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) 0

⎤

⎥

⎥

⎥

⎦

(2.11)

so that one has

𝜎1𝑖𝑗 = 𝐵𝜀1ℎ𝑘 (2.12)

𝜎2𝑖𝑗 = 𝐴𝜀1ℎ𝑘 + 𝐵𝜀2ℎ𝑘 = 𝜎𝐴2𝑖𝑗 + 𝜎𝐵2𝑖𝑗 (2.13)

Considering a given point 𝑥𝑟 in 𝛺, the superimposed̃denotes an adjoint
operator in the sense that

𝐵𝜀′2ℎ𝑘 ∗ 𝑑𝜀′′1𝑖𝑗 = 𝐵𝜀′′1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗 (2.14)

The new symbol ∗ denotes a ‘‘partial convolution’’, different from the
standard one of Eq. (2.3) because the functions of time appearing in
the time integrals are defined over two different time intervals. More
precisely, given two functions 𝑓1(𝑡) and 𝑔2(𝑡) defined, respectively, over
the time intervals [0−, 𝑇 ] and [𝑇 , 2𝑇 ], in the sequel of this work we will
adopt the following definition of the partial convolution product of 𝑓1
by 𝑔2:

𝑓1 ∗ 𝑑𝑔2 ∶= ∫

2𝑇
𝑓1(2𝑇 − 𝑡) 𝑑𝑔2(𝑡) (2.15)
3

𝑇

and the following definition of the partial convolution product of 𝑔2 by
𝑓1:

𝑔2 ∗ 𝑑𝑓1 ∶= ∫

𝑇

0−
𝑔2(2𝑇 − 𝑡) 𝑑𝑓1(𝑡) (2.16)

t is important to observe that, in general, one has

1 ∗ 𝑑𝑔2 ≠ 𝑔2 ∗ 𝑑𝑓1 (2.17)

perator 𝐴 is symmetric (self-adjoint) in the sense that

𝜀′1ℎ𝑘 ∗ 𝑑𝜀′′1𝑖𝑗 = 𝐴𝜀′′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 (2.18)

It is important to observe that, as a consequence of the
non-commutativity expressed by Eq. (2.17), the following holds:

𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′′1𝑖𝑗 ≠ 𝜀′1ℎ𝑘 ∗ 𝑑𝐴𝜀′′1𝑖𝑗 (2.19)

As a consequence of Eqs. (2.14) and (2.18), the operatorial formulation
(2.8), equivalent to the constitutive laws (2.6)–(2.7), is symmetric in
the sense that

𝐋𝜺′ ∗ 𝑑𝜺′′ = 𝐋𝜺′′ ∗ 𝑑𝜺′ (2.20)

Operator 𝐴 is also, in general, positive semi-definite. In fact, the
following quadratic form

1
2
𝐴𝜀1ℎ𝑘 ∗ 𝑑𝜀1𝑖𝑗 =

1
2 ∫

𝑇

0− ∫

𝑇

0−
𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝜀1ℎ𝑘(𝜏) 𝑑𝜀1𝑖𝑗 (𝑡) (2.21)

as the physical meaning of the free energy per unit volume of the ma-
erial (see for example Mandel, 1966), a non-negative quantity, which
xplains the positive semi-definiteness of operator 𝐴 of Eq. (2.11). Note
hat the time integral in this operator has not the form of Eq. (1.1),
.e., of Eq. (2.3), owing to its upper integration limit. Therefore, even
hough we have assumed the constitutive operator (1.1) to be invert-
ble, nothing can be said, in general, about the invertibility of operator
.

From these ideas, in Carini and Mattei (2015) the following sta-
ionarity principles, derived directly from Gurtin’s approach, have been
roved.

tationarity principle of the Total Potential Energy type.

PE[𝑢1𝑖, 𝑢2𝑖] = min
𝑢′1𝑖

stat
𝑢′2𝑖

TPE[𝑢′1𝑖, 𝑢
′
2𝑖] (2.22)

where

TPE[𝑢′1𝑖, 𝑢
′
2𝑖] =

1
2 ∫𝛺

(

𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 + 2𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗

)

𝑑𝛺−

− ∫𝛺
𝑏2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛺 − ∫𝛺

𝑏1𝑖 ∗ 𝑑𝑢′2𝑖 𝑑𝛺−

− ∫𝛤𝑝
𝑝2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛤 − ∫𝛤𝑝

𝑝1𝑖 ∗ 𝑑𝑢′2𝑖 𝑑𝛤

(2.23)

Here, 𝑢1𝑖(𝑡) and 𝑢2𝑖(𝑡) are the exact solution of the problem, and 𝑢′1𝑖(𝑡),
𝑢′2𝑖(𝑡), 𝜀

′
1𝑖𝑗 (𝑡), and 𝜀′2𝑖𝑗 (𝑡) are arbitrary but compatible displacement and

strain fields.2

Stationarity principle of the Total Complementary Energy type.

TCE[𝜎1𝑖𝑗 , 𝜎2𝑖𝑗 ] = min
𝜎′1𝑖𝑗

stat
𝜎′2𝑖𝑗

TCE[𝜎′1𝑖𝑗 , 𝜎
′
2𝑖𝑗 ] (2.24)

2 Some comments about the adopted notation. The explicit form of the
ntegrand in the first volume integral in Eq. (2.23) can be obtained, according
o the definitions (2.15) and (2.16), and recalling the definition (2.11) of the
dopted operators, through the following passages:

𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 + 2𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗 =

(

𝐴𝜀′1ℎ𝑘 + 𝐵𝜀′2ℎ𝑘
)

∗ 𝑑𝜀′1𝑖𝑗 + 𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗 =
[

∫

𝑇

0−
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑𝜀′1ℎ𝑘(𝜏) + ∫

𝑡

𝑇
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑𝜀′2ℎ𝑘(𝜏)

]

∗ 𝑑𝜀′1𝑖𝑗 (𝑡)+
[ 𝑡

𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑𝜀′ (𝜏)
]

∗ 𝑑𝜀′ (𝑡) =
∫0−
1ℎ𝑘 2𝑖𝑗
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where

TCE[𝜎′1𝑖𝑗 , 𝜎
′
2𝑖𝑗 ] =

1
2 ∫𝛺

(

A𝜎′1ℎ𝑘 ∗ 𝑑𝜎′1𝑖𝑗 + 2B̃𝜎′1ℎ𝑘 ∗ 𝑑𝜎′2𝑖𝑗

)

𝑑𝛺−

− ∫𝛤𝑢
𝑛𝑖𝑢

0
2𝑗 ∗ 𝑑𝜎′1𝑖𝑗 𝑑𝛤 − ∫𝛤𝑢

𝑛𝑖𝑢
0
1𝑗 ∗ 𝑑𝜎′2𝑖𝑗 𝑑𝛤

(2.25)

in which

A ∶= ∫

𝑇

0−
𝐶𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) = −𝐵−1𝐴𝐵−1 (2.26)

̃ ∶= ∫

𝑡

0−
𝐶𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) = 𝐵−1 (2.27)

𝜎1𝑖𝑗 (𝑡) and 𝜎2𝑖𝑗 (𝑡) are the exact solution of the problem, and 𝜎′1𝑖𝑗 (𝑡) and
𝜎′2𝑖𝑗 (𝑡) are generic equilibrated stress fields.

From now on, the functionals and the stationarity principles pre-
ented in Carini and Mattei (2015) will be called ‘‘split Gurtin’’ func-
ionals and stationarity principles.

.1. Stationarity principles including rate viscous kernels

New stationarity principles in terms of rate viscous kernels can be
btained following a path quite similar to that adopted by Carini and
attei (2015), starting now from the rate forms of the viscoelastic

onstitutive equations.
Consider the constitutive Eq. (1.1), and rewrite it in rate form:

�̇�𝑖𝑗 (𝑡) = 𝑅0
𝑖𝑗ℎ𝑘�̇�ℎ𝑘(𝑡) + ∫

𝑡

0−
�̇�𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑𝜀ℎ𝑘(𝜏) (2.28)

here 𝑅0
𝑖𝑗ℎ𝑘 denotes the initial value of the relaxation kernel:

0
𝑖𝑗ℎ𝑘 = 𝑅𝑖𝑗ℎ𝑘(𝑡 = 0) (2.29)

nd a superimposed dot indicates a derivative with respect to time.
One can follow the same path summarized previously and double

he integration interval introducing, along with the variables with index
, defined in the time interval of interest 𝑡 ∈ [0, 𝑇 ], auxiliary ones, with
ndex 2, defined in the time interval 𝑡 ∈ [𝑇 , 2𝑇 ]. Correspondingly, the
ate problem (2.28) can be rewritten in the following split way:

⎡

⎢

⎢

⎢

⎣

∫

𝑇

0−
�̇�𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) 𝑅0

𝑖𝑗ℎ𝑘
𝜕
𝜕𝑡 (⋅) + ∫

𝑡

𝑇
�̇�𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅)

𝑅0
𝑖𝑗ℎ𝑘

𝜕
𝜕𝑡 (⋅) + ∫

𝑡

0−
�̇�𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) 0

⎤

⎥

⎥

⎥

⎦

×
[

𝜀1ℎ𝑘
𝜀2ℎ𝑘

]

=
[

�̇�2𝑖𝑗
�̇�1𝑖𝑗

]

(2.30)

=
[

∫

𝑡

0−
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑𝜀′ℎ𝑘(𝜏)

]

∗ 𝑑𝜀′1𝑖𝑗 (𝑡)

+
[

∫

𝑡

0−
𝑅𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑𝜀′1ℎ𝑘(𝜏)

]

∗ 𝑑𝜀′2𝑖𝑗 (𝑡) =

= ∫

𝑇

0−

[

∫

2𝑇−𝑡

0−
𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝜀′ℎ𝑘(𝜏)

]

𝑑𝜀′1𝑖𝑗 (𝑡)

+ ∫

2𝑇

𝑇

[

∫

2𝑇−𝑡

0−
𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝜀′1ℎ𝑘(𝜏)

]

𝑑𝜀′2𝑖𝑗 (𝑡) =

= ∫

2𝑇

0− ∫

2𝑇−𝑡

0−
𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝜀′ℎ𝑘(𝜏) 𝑑𝜀

′
1𝑖𝑗 (𝑡)

where the last passages have been introduced in order to express the result in
the same terms as the unsplit Gurtin original formulation.

The meaning of the partial convolutive product 𝑏2𝑖 ∗ 𝑑𝑢′1𝑖 in the second
integral of (2.23) (and of the analogous in all the other terms) is, according
to the definition (2.16), the following:

𝑏2𝑖 ∗ 𝑑𝑢′1𝑖 = ∫

𝑇

0−
𝑏2𝑖(2𝑇 − 𝜏) 𝑑𝑢′1𝑖(𝜏).
4

i

or, in compact form,

�̇� =
[

�̇�2𝑖𝑗
�̇�1𝑖𝑗

]

=
◦
𝐋
[

𝜀1ℎ𝑘
𝜀2ℎ𝑘

]

=
◦
𝐋𝜺 (2.31)

with

◦
𝐋 =

⎡

⎢

⎢

⎣

◦
𝐴

◦
𝐵

◦̃
𝐵 0

⎤

⎥

⎥

⎦

(2.32)

The main result, thus obtained, is to have introduced operator
◦
𝐴, which

is symmetric and negative semi-definite, because the following holds
(see, for example, Huet, 1995):
◦
𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 = ∫

𝑇

0−

◦
𝐴𝜀′1ℎ𝑘(2𝑇 − 𝑡) 𝑑𝜀′1𝑖𝑗 (𝑡) ≤ 0 ∀𝜀′1𝑖𝑗 ≠ 0 (2.33)

To better see this, one has to just write Eq. (2.33) in an explicit form,
accounting for the definition (2.30) of operator

◦
𝐴, as follows:

−
◦
𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 = −∫

𝑇

0− ∫

𝑇

0−
�̇�𝑖𝑗ℎ𝑘(2𝑇 − 𝑡− 𝜏) 𝑑𝜀′1ℎ𝑘(𝑡) 𝑑𝜀

′
1𝑖𝑗 (𝜏) ≥ 0 (2.34)

which (see Eq. (3.1) in Huet, 1995) is the dissipated power density per
unit volume, clearly non-negative, when 𝜀′1𝑖𝑗 (𝑡) coincides with the exact
solution.

Following the same path taken in Carini and Mattei (2015), one
obtains the following max-stat theorem:
◦

TPE[𝑢1𝑖, 𝑢2𝑖] = max
𝑢′1𝑖

stat
𝑢′2𝑖

◦
TPE[𝑢′1𝑖, 𝑢

′
2𝑖] (2.35)

where
◦

TPE[𝑢′1𝑖, 𝑢
′
2𝑖] =

1
2 ∫𝛺

(

◦
𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 + 2

◦̃
𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗

)

𝑑𝛺−

− ∫𝛺
�̇�2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛺 − ∫𝛺

�̇�1𝑖 ∗ 𝑑𝑢′2𝑖 𝑑𝛺−

− ∫𝛤𝑝
�̇�2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛤 − ∫𝛤𝑝

�̇�1𝑖 ∗ 𝑑𝑢′2𝑖 𝑑𝛤

(2.36)

Operating now in terms of the rate inverse constitutive law, governed
by the rate creep kernel �̇�𝑖𝑗ℎ𝑘, it is possible to derive, in a way fully
analogous to the previous one, the following stationarity formulation
in terms of the rate kernel �̇�𝑖𝑗ℎ𝑘(𝑡):
◦

TCE[𝜎1𝑖𝑗 , 𝜎2𝑖𝑗 ] = min
𝜎′1𝑖𝑗

stat
𝜎′2𝑖𝑗

◦
TCE[𝜎′1𝑖𝑗 , 𝜎

′
2𝑖𝑗 ] (2.37)

where
◦

TCE[𝜎′1𝑖𝑗 , 𝜎
′
2𝑖𝑗 ] =

1
2 ∫𝛺

( ◦
A𝜎′1ℎ𝑘 ∗ 𝑑𝜎′1𝑖𝑗 + 2

◦̃
B𝜎′1ℎ𝑘 ∗ 𝑑𝜎′2𝑖𝑗

)

𝑑𝛺−

− ∫𝛤𝑢
𝑛𝑖�̇�

0
2𝑗 ∗ 𝑑𝜎′1𝑖𝑗 𝑑𝛤 − ∫𝛤𝑢

𝑛𝑖�̇�
0
1𝑗 ∗ 𝑑𝜎′2𝑖𝑗 𝑑𝛤

(2.38)

in which
◦
A ∶= ∫

𝑇

0−
�̇�𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) = −

◦
𝐵
−1 ◦
𝐴

◦̃
𝐵
−1

(2.39)

◦̃
B ∶= ∫

𝑡

0−
�̇�𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) =

◦̃
𝐵
−1

(2.40)

𝜎1𝑖𝑗 (𝑡) and 𝜎2𝑖𝑗 (𝑡) are the exact solution of the problem, and 𝜎′1𝑖𝑗 (𝑡) and
𝜎′2𝑖𝑗 (𝑡) are generic equilibrated stress fields.

. New extremum principles deriving from specific choices of the
dmissible fields in the split Gurtin functionals

Consider the Total Potential Energy type stationarity theorem of
qs. (2.22) and (2.23). It is well-known (and trivial to observe) that

f one inserts into the functional (2.23) the true solution in the second
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time interval, 𝑢2𝑖, one immediately obtains a minimum principle of the
ype

PE[𝑢1𝑖] = min
𝑢′1𝑖

TPE[𝑢′1𝑖, 𝑢2𝑖] (3.1)

where 𝑢′1𝑖 must be admissible, i.e., fulfilling compatibility. The true
solution 𝑢2𝑖(𝑡) in the second time interval is not available, in general,
and the principle (3.1) seems useless. Nevertheless, it is possible to
show that, by restricting the field of admissibility for 𝑢′1𝑖(𝑡) and 𝑢′2𝑖(𝑡), a
ully usable minimum principle can be recovered.

As a starting point, observe that, given any two admissible (com-
atible) strains 𝜀′1𝑖𝑗 and 𝜀′2𝑖𝑗 , and denoting by 𝜎′1𝑖𝑗 = 𝐵𝜀′1ℎ𝑘 the stress

of Eq. (2.12), the following holds, as a consequence of the divergence
theorem:

𝑉
⟨

𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗
⟩

= ∫𝛺
𝜎′1𝑖𝑗 ∗ 𝑑

𝜕𝑢′2𝑗
𝜕𝑥𝑖

𝑑𝛺 =

∫𝛺
𝜕
𝜕𝑥𝑖

(

𝜎′1𝑖𝑗 ∗ 𝑑𝑢′2𝑗
)

𝑑𝛺 − ∫𝛺

𝜕𝜎′1𝑖𝑗
𝜕𝑥𝑖

∗ 𝑑𝑢′2𝑗 𝑑𝛺 =

∫𝛤
𝜎′1𝑖𝑗𝑛𝑖 ∗ 𝑑𝑢′2𝑗 𝑑𝛤 − ∫𝛺

𝜕𝜎′1𝑖𝑗
𝜕𝑥𝑖

∗ 𝑑𝑢′2𝑗 𝑑𝛺 =

= ∫𝛤𝑝
𝑝′1𝑗 ∗ 𝑑𝑢′2𝑗 𝑑𝛤 + ∫𝛤𝑢

𝜎′1𝑖𝑗𝑛𝑖 ∗ 𝑑𝑢02𝑗 𝑑𝛤 + ∫𝛺
𝑏′1𝑗 ∗ 𝑑𝑢′2𝑗 𝑑𝛺 (3.2)

where the symbols 𝑝′1𝑗 and 𝑏′1𝑗 denote the surface tractions and body
orces, respectively, associated through equilibrium to the stress 𝜎′1𝑖𝑗 .
n obvious special case of this result is given by the real solution of
ny viscoelastic problem.

We now define as strictly admissible a pair of unknown displacements
′
1𝑖(𝑡) and 𝑢′2𝑖(𝑡) that, beside being admissible in the customary sense,
atisfy the following two conditions:
⟨

𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀2𝑖𝑗
⟩

= 𝑉
⟨

𝐵𝜀1ℎ𝑘 ∗ 𝑑𝜀2𝑖𝑗
⟩

⟨

𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗
⟩

= 𝑉
⟨

𝐵𝜀1ℎ𝑘 ∗ 𝑑𝜀′2𝑖𝑗
⟩

(3.3)

The next section proves that the identification of strictly admissible
displacements in the sense of Eq. (3.3) is practically feasible in the anal-
ysis of RVEs within the homogenization theory for linear viscoelastic
composites.

Upon replacing into the functional (2.23) the second of Eq. (3.3),
exploiting the identity (3.2) after simple passages one arrives at the
following result:

TPE[𝑢′1𝑖] =
1
2 ∫𝛺

𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 𝑑𝛺−

− ∫𝛺
𝑏2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛺 − ∫𝛤𝑢

𝜎1𝑖𝑗𝑛𝑖 ∗ 𝑑𝑢02𝑗 𝑑𝛤 − ∫𝛤𝑝
𝑝2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛤 (3.4)

in which the boundary integral over 𝛤𝑢 contains known functions and
can be neglected.

By adding and subtracting the two terms in the first of Eq. (3.3) to
this result, and exploiting the identity of Eq. (3.2), one arrives precisely
at reformulating the minimum principle of Eq. (3.1).

This argument allows one to establish the following

Minimum principle of the Total Potential Energy type:

TPE[𝑢1𝑖] = min
𝑢′1𝑖

TPE[𝑢′1𝑖] (3.5)

with functional TPE[𝑢′1𝑖] given by

TPE[𝑢′1𝑖] =
1
2 ∫𝛺

𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗 𝑑𝛺−∫𝛺
𝑏2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛺−∫𝛤𝑝

𝑝2𝑖 ∗ 𝑑𝑢′1𝑖 𝑑𝛤

(3.6)
5

in which the admissible displacement 𝑢′1𝑖(𝑡) must satisfy both requisites
of Eq. (3.3).

It is worth recalling that the split Gurtin functional of Eq. (2.23)
is fully equivalent to the original, unsplit Gurtin TPE-like convolutive
functional of Eq. (2.1). This last, in general, furnishes a stationarity
principle only; but if the admissible displacement, in it, satisfies the
Eq. (3.3), it becomes a minimum theorem itself, of the type

TPE𝐺[𝑢𝑖] = min
𝑢′𝑖

TPE𝐺[𝑢′𝑖] (3.7)

under the strict admissibility condition (3.3) for a displacement 𝑢′𝑖(𝑡)
defined in the whole time interval 𝑡 ∈ [0, 2𝑇 ].

Starting from the stationarity principle of Eq. (2.24), a fully similar
argument leads to establish the following

Minimum principle of the Total Complementary Energy type:

TCE[𝜎1𝑖𝑗 ] = min
𝜎′1𝑖𝑗

TCE[𝜎′1𝑖𝑗 ] (3.8)

where

TCE[𝜎′1𝑖𝑗 ] =
1
2 ∫𝛺

A𝜎′1ℎ𝑘 ∗ 𝑑𝜎′1𝑖𝑗 𝑑𝛺 − ∫𝛤𝑢
𝑢02𝑗 ∗ 𝑑𝜎′1𝑖𝑗𝑛𝑖 𝑑𝛤 (3.9)

for all the admissible (equilibrated) stress fields that also are strictly
admissible in the following sense:

𝑉
⟨

B̃𝜎′1ℎ𝑘 ∗ 𝑑𝜎2𝑖𝑗
⟩

= 𝑉
⟨

B̃𝜎1ℎ𝑘 ∗ 𝑑𝜎2𝑖𝑗
⟩

𝑉
⟨

B̃𝜎′1ℎ𝑘 ∗ 𝑑𝜎′2𝑖𝑗
⟩

= 𝑉
⟨

B̃𝜎1ℎ𝑘 ∗ 𝑑𝜎′2𝑖𝑗
⟩

(3.10)

In a way analogous to Eq. (3.7), also in the TCE case of Eq. (2.2) the
original Gurtin stationarity principle becomes a minimum principle of
the type

TCE𝐺[𝜎𝑖𝑗 ] = min
𝜎′𝑖𝑗

TCE𝐺[𝜎′𝑖𝑗 ] (3.11)

under the strict admissibility conditions (3.10) for a stress 𝜎′𝑖𝑗 (𝑡) defined
in the whole time interval 𝑡 ∈ [0, 2𝑇 ].

A similar reasoning allows one to obtain extremum principles,
starting from the stationarity ones of Eqs. (2.35), (2.36), (2.37), and
(2.38), containing the rates of the viscous kernels, and valid in the
presence of strictly admissible displacements or stresses. In the case of
these extremum theorems, containing the rates of the viscous kernels,
trivial to be obtained and omitted for brevity, the strict admissibility
of the main unknowns refers to operators different from 𝐵 and B̃,

and precisely to the operators
◦̃
𝐵 and

◦̃
B of Eqs. (2.32) and (2.40),

respectively.

4. Selection of strictly admissible fields in the special case of
deviatoric loading applied to macroscopically isotropic RVEs in
homogenization methods

In this section we show that, in the analysis of RVEs in the homoge-
nization theory for linear viscoelastic composites, and for the restricted
situation of a purely deviatoric macroscopic stress or strain state, it is
possible to individuate strictly admissible displacement and stress fields
in the sense of Eqs. (3.3) and (3.10), respectively.

Consider first the case in which one wants to make use of the Total
Potential Energy minimum principle of Eqs. (3.5) and (3.6) to obtain
bounds to the homogenized viscous kernels. Starting from the notation
of Eqs. (2.8) and (2.11), the sought homogenized direct constitutive law
is written in a split form as follows:
⟨

𝝈
⟩

= 𝐋ℎ ⟨𝜺
⟩

(4.1)

with

𝐋ℎ =

[

𝐴ℎ 𝐵ℎ

𝐵ℎ 0

]

=

⎡

⎢

⎢

⎢

∫

𝑇

0−
𝑅ℎ

𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅) ∫

𝑡

𝑇
𝑅ℎ

𝑖𝑗ℎ𝑘(𝑡 − 𝜏) 𝑑(⋅)
𝑡
𝑅ℎ (𝑡 − 𝜏) 𝑑(⋅) 0

⎤

⎥

⎥

⎥

(4.2)

⎣ ∫0−

𝑖𝑗ℎ𝑘
⎦
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which reduces the split homogenization problem to the determination
of the homogenized viscous kernel 𝑅ℎ

𝑖𝑗ℎ𝑘(𝑡). Bounds to 𝑅ℎ
𝑖𝑗ℎ𝑘(𝑡) could

e obtained exploiting the minimum principle of Eq. (3.5) if strictly
dmissible displacements could be precisely defined.

It is possible to show that

1. for macroscopically isotropic viscoelastic composites,
2. with the selection of the admissible displacements 𝑢′1𝑖 and 𝑢′2𝑖 as

arbitrary functions of time but independent of space, and
3. under a deviatoric loading applied to the RVE,

he condition of strict admissibility of Eq. (3.3) always holds.
The following selection for the admissible displacements and strains

ill accordingly be made:
′
1𝑖(𝑥𝑘, 𝑡) = �̂�1𝑖𝑗 (𝑡)𝑥𝑗 → 𝜀′1𝑖𝑗 (𝑥𝑘, 𝑡) = �̂�1𝑖𝑗 (𝑡)

′
2𝑖(𝑥𝑘, 𝑡) = �̂�2𝑖𝑗 (𝑡)𝑥𝑗 → 𝜀′2𝑖𝑗 (𝑥𝑘, 𝑡) = �̂�2𝑖𝑗 (𝑡) (4.3)

n which both the strains �̂�1𝑖𝑗 and �̂�2𝑖𝑗 are independent of space.
Consider the left hand side in the second of the Eq. (3.3), and insert

nto it the kinematic quantities of Eq. (4.3). The following passages can
e followed, using the divergence theorem and denoting by �̂�1𝑖𝑗 the

stress produced by the admissible strain �̂�1𝑖𝑗 (𝑡) (see Eq. (2.12)):

𝑉
⟨

𝐵�̂�1ℎ𝑘 ∗ 𝑑�̂�2𝑖𝑗
⟩

= ∫𝛺
�̂�1𝑖𝑗 ∗ 𝑑 𝜕

𝜕𝑥𝑖

(

�̂�2ℎ𝑗𝑥ℎ
)

𝑑𝛺 =

∫𝛺
𝜕
𝜕𝑥𝑖

(

�̂�1𝑖𝑗 ∗ 𝑑�̂�2ℎ𝑗𝑥ℎ
)

𝑑𝛺 − ∫𝛺

𝜕�̂�1𝑖𝑗
𝜕𝑥𝑖

∗ 𝑑�̂�2ℎ𝑗𝑥ℎ 𝑑𝛺 =

∫𝛤
�̂�1𝑖𝑗𝑛𝑖 ∗ 𝑑�̂�2ℎ𝑗𝑥ℎ 𝑑𝛤 − ∫𝛺

𝜕�̂�1𝑖𝑗
𝜕𝑥𝑖

∗ 𝑑�̂�2ℎ𝑗𝑥ℎ 𝑑𝛺 =

=
[

∫𝛤
�̂�1𝑗𝑥ℎ 𝑑𝛤 + ∫𝛺

�̂�1𝑗𝑥ℎ 𝑑𝛺
]

∗ 𝑑�̂�2ℎ𝑗 (4.4)

where the symbols �̂�1𝑗 and �̂�1𝑗 denote the non-zero surface tractions and
ody forces, respectively, associated to �̂�1𝑖𝑗 . The last passage exploits
he assumed and crucial space independence of the selected admissible
train.

This term can be proved to identically vanish if the RVE is macro-
copically isotropic and loaded in a purely deviatoric way, and only in this
ase.

To examine in a complete way a purely deviatoric kinematic loading
n the RVE it is sufficient to consider �̂�12 = �̂�21 as the only non-zero
dmissible strain (�̂�2𝑖𝑗) components in the RVE. All the other possible
ases could be approached in the same way. The expression in Eq. (4.4)
educes then to the following:
⟨

𝐵�̂�1ℎ𝑘 ∗ 𝑑�̂�2𝑖𝑗
⟩

=
[

∫𝛤
�̂�1,1𝑥2 𝑑𝛤 + ∫𝛺

�̂�1,1𝑥2 𝑑𝛺
]

∗ 𝑑�̂�21+

+
[

∫𝛤
�̂�1,2𝑥1 𝑑𝛤 + ∫𝛺

�̂�1,2𝑥1 𝑑𝛺
]

∗ 𝑑�̂�12 (4.5)

In this, both integrals in the square brackets have the meaning of
couples, denoted hereafter as 𝑀12 and 𝑀21 respectively, so that one
as:
⟨

𝐵�̂�1ℎ𝑘 ∗ 𝑑�̂�2𝑖𝑗
⟩

= 𝑀12 ∗ 𝑑�̂�21 +𝑀21 ∗ 𝑑�̂�12 (4.6)

pon a 90 degrees rotation of the reference system around the 𝑥3
xis, which leaves the integrals in Eq. (4.6) unchanged, the couples
𝑖𝑗 , scalars, do not change, while the shear strain components simply

hange their signs, producing the following result:
⟨

𝐵�̂�1ℎ𝑘 ∗ 𝑑�̂�2𝑖𝑗
⟩

= −
[

𝑀12 ∗ 𝑑�̂�21 +𝑀21 ∗ 𝑑�̂�12
]

(4.7)

he comparison of the last two results, in the case of a macroscopically
omogeneous RVE, shows that, under the given conditions, the left
and side in the second of Eq. (3.3) is identically equal to zero.
6

One applies next this same reasoning to the right hand side in the
irst of the Eq. (3.3), containing the real solution. By Hill’s lemma one
an write:

𝐵𝜀1ℎ𝑘 ∗ 𝑑𝜀2𝑖𝑗
⟩

=
⟨

𝐵𝜀1ℎ𝑘
⟩

∗ 𝑑
⟨

𝜀2𝑖𝑗
⟩

=

=
⟨

𝐵𝜀1ℎ𝑘
⟩

∗ 𝑑𝜀𝑎𝑣𝑒2𝑖𝑗 =
⟨

𝐵𝜀1ℎ𝑘 ∗ 𝑑𝜀𝑎𝑣𝑒2𝑖𝑗
⟩

(4.8)

Since 𝜀𝑎𝑣𝑒2𝑖𝑗 does not depend on space, one can repeat the same passages
of Eqs. (4.4) to (4.7). This shows that also the right hand side in the
first of the Eq. (3.3) is identically equal to zero under the selection of
Eq. (4.3).

The right hand side in the second of Eq. (3.3) is also identically
equal to zero under the said assumptions and choices, because the same
passages of Eqs. (4.4) to (4.7) can be repeated.

Finally, the left hand side of the first of Eq. (3.3) can be rewritten
as follows:
⟨

𝐵𝜀′1ℎ𝑘 ∗ 𝑑𝜀2𝑖𝑗
⟩

=
⟨

𝐵𝜀2ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗
⟩

(4.9)

after which, exploiting the form of the selection (4.3), the same pas-
sages of Eqs. (4.4) to (4.7) lead to conclude that also this term, under
the said assumption and choices, is identically equal to zero. This
completes the proof that the selection of Eq. (4.3) is strictly admissible
in the sense of Eq. (3.3).

Rather surprisingly, affine displacements of the type of Eq. (4.3) but
possessing a volumetric component are not strictly admissible in the
sense of Eq. (3.3). More comments on this point will be given later on
and in Appendix.

The identification of a strictly admissible stress field for making use
of the TCE stationarity theorem of Eq. (3.8) follows a path similar to
the previous one. The following choice for the admissible stresses in the
RVE can be adopted, and proved to be strictly admissible in the sense
of Eq. (3.10):

𝜎′1𝑖𝑗 (𝑥𝑘, 𝑡) = �̂�1𝑖𝑗 (𝑡)

𝜎′2𝑖𝑗 (𝑥𝑘, 𝑡) = �̂�2𝑖𝑗 (𝑡) (4.10)

The analytical passages illustrated here above, adopted now to prove
the validity of the conditions (3.10), can be repeated in the same way
by expressing the admissible stresses in the following way:

̂ 𝑖𝑗 =
1
2

(

𝜕𝑤𝑖
𝜕𝑥𝑗

+
𝜕𝑤𝑗

𝜕𝑥𝑖

)

(4.11)

which is easily obtained by using the following definition:

𝑤𝑖 = �̂�𝑖𝑘𝑥𝑘 (4.12)

Through this little stratagem, the procedure illustrated for the TPE
functional can be applied identically to the TCE one. The details are
omitted for brevity.

A similar reasoning may allow one to individuate strictly admissible
displacement or stress fields in the functionals (2.36) and (2.38), in
order to produce the corresponding extremum theorems containing the
rates of the viscous kernels. The choices of Eqs. (4.3) and (4.10) turn
out to be strictly admissible also in these cases. The relevant passages
and extremum principles are omitted for brevity.

5. Derivation of analytical bounds to the homogenized viscoelas-
tic kernels

When studying RVEs for deriving estimates of or bounds to the
homogenized viscous kernels of viscoelastic composites, it is customary,
and especially convenient, to load them either by so-called ‘‘affine’’
displacements, prescribed on the constrained boundary 𝛤𝑢 ≡ 𝛤 of the
RVE, or by surface tractions on 𝛤𝑝 ≡ 𝛤 corresponding to uniform
stresses in the homogenized solid. For both these loading conditions,
in which there are no body forces, a unit-step time history is usually

considered, as will always be done in the sequel of this work.
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5.1. Voigt-type upper bounds derived from functionals (3.6) and (3.9)

Consider the Total Potential Energy type functional of Eq. (3.6).
Consider the kinematic loading typical of a relaxation test, i.e., affine
prescribed displacements on 𝛤𝑢 ≡ 𝛤 , of the type

𝑢0𝑖 (𝑥𝑟, 𝑡) = ⟨𝜀𝑖𝑗 (𝑥𝑟, 𝑡)⟩𝑥𝑗 = 𝜀0𝑖𝑗 (𝑡)𝑥𝑗 , 0 ≤ 𝑡 ≤ 2𝑇 (5.1)

and zero body forces 𝑏𝑗 in 𝛺. This loading produces a known strain
𝜀0𝑖𝑗 (𝑡), independent of space, in the homogenized RVE.

The definition of the loading terms is completed by assuming the
following unit-step time history for the loading strain:

⟨𝜀𝑖𝑗 (𝑥𝑟, 𝑡)⟩ = 𝜀0𝑖𝑗 (𝑡) = 𝜀𝑖𝑗H(𝑡), 0 ≤ 𝑡 ≤ 2𝑇 (5.2)

𝜀𝑖𝑗 being a prescribed constant strain tensor, and H(𝑡) the Heaviside
function.

The TPE functional of Eq. (3.6), reduced to the single first integral
y the assumed loading condition, and evaluated in the solution of the
VE problem, is explicitly written as follows:

TPE[𝑢1𝑖] = TPEsol =
1
2 ∫𝛺 ∫

𝑇

0− ∫

𝑇

0−
𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝜀1ℎ𝑘(𝜏) 𝑑𝜀1𝑖𝑗 (𝑡) 𝑑𝛺

(5.3)

he argument of the volume integral, in Eq. (5.3), is identical with
2.21) and denotes the free energy density for this problem; exploiting
ill’s lemma one can therefore write:
1
𝑉
TPEsol =

1
2
𝜀𝑖𝑗𝑅

ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜀ℎ𝑘 (5.4)

Select, as a strictly admissible displacement in the RVE, the same choice
of Eqs. (5.1) and (5.2), clearly a special case of Eq. (4.3), which satisfies
the requisites of Eq. (3.3).

The minimum theorem of Eq. (3.5), accounting for the adopted
loading condition, reduces to:

𝜀𝑖𝑗𝑅
ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜀ℎ𝑘 ≤

⟨

𝐴𝜀′1ℎ𝑘 ∗ 𝑑𝜀′1𝑖𝑗
⟩

∀𝜀′1𝑖𝑗 strictly admissible (5.5)

rom this, recalling the definition (2.11) of operator 𝐴 and exploiting
he choice (5.2) for 𝜀′1𝑖𝑗 (𝑡), one obtains finally the desired upper bound
o the homogenized relaxation kernel:

𝜀𝑖𝑗𝑅
ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜀ℎ𝑘 ≤ 𝜀𝑖𝑗

⟨

𝑅𝑖𝑗ℎ𝑘(2𝑇 )
⟩

𝜀ℎ𝑘 (5.6)

which, taking 𝑇 as an arbitrary time, becomes valid for a generic time
𝑇 ∈ [0,∞).

One must now recall that the result of Eq. (5.6), a consequence
of the choice (5.2) for the strictly admissible strain field 𝜀′1𝑖𝑗 in the

VE, holds only for the case of macroscopic isotropy and for a RVE
oaded in a deviatoric way. Therefore, the obtained upper bound to
he homogenized viscous relaxation tensor refers only to its scalar
eviatoric (shear) component, hereafter simply denoted by 𝑅ℎ(𝑡).

In order to write the explicit result in this situation, consider a
acroscopically isotropic composite material with 𝑁 isotropic vis-

oelastic phases, denote by 𝑐𝑖 the volume fraction of each phase (𝑖),
nd denote by 𝑅(𝑖)(𝑡) and 𝐶 (𝑖)(𝑡) the scalar shear relaxation and creep
ernel component of phase (𝑖) respectively. The explicit expression of
ound (5.6) then reads as follows:

ℎ(𝑡) ≤
𝑁
∑

𝑖=1
𝑐𝑖𝑅

(𝑖)(𝑡) ∀𝑡 ∈ [0,∞) (5.7)

ne can produce an upper bound to the homogenized creep kernel
ℎ
𝑖𝑗ℎ𝑘(𝑡) in a similar way, and under the same restricting assumptions,
tarting from the functional TCE of Eq. (3.9). The loading condition on
he RVE is now defined in terms of prescribed surface tractions, of the
ollowing type

(𝑥 , 𝑡) = ⟨𝜎 (𝑥 , 𝑡)⟩𝑛 = 𝜎0 (𝑡)𝑛 in 𝛤 ≡ 𝛤 0 ≤ 𝑡 ≤ 2𝑇 (5.8)
7

𝑗 𝑟 𝑖𝑗 𝑟 𝑖 𝑖𝑗 𝑖 𝑝
ith
0
𝑖𝑗 (𝑡) = 𝜎𝑖𝑗H(𝑡) (5.9)

nd zero body forces in the RVE.
Next, one proceeds in a way analogous to the one illustrated for the

PE case. One chooses also for 𝜎′1𝑖𝑗 in the whole RVE, in Eq. (3.9), the
xpression given by Eq. (5.9) on the RVE boundary, a special case of
q. (4.10), therefore strictly admissible in the sense of Eq. (3.10). After
assages similar to those leading to Eq. (5.6), omitted for brevity, the
ollowing upper bound to the homogenized creep function is obtained:

𝜎𝑖𝑗𝐶
ℎ
𝑖𝑗ℎ𝑘(𝑡)𝜎ℎ𝑘 ≤ 𝜎𝑖𝑗

⟨

𝐶𝑖𝑗ℎ𝑘(𝑡)
⟩

𝜎ℎ𝑘 (5.10)

The explicit expression of this bound in terms of the scalar deviatoric
component of the homogenized creep viscous kernel only, 𝐶ℎ(𝑡), reads
as follows:

𝐶ℎ(𝑡) ≤
𝑁
∑

𝑖=1
𝑐𝑖𝐶

(𝑖)(𝑡) ∀𝑡 ∈ [0,∞) (5.11)

5.2. Bounds to the homogenized rate viscous kernels, derived from function-
als (2.36) and (2.38)

It is possible to exploit the rate counterparts of the extremum
formulations of Eqs. (3.5) and (3.8) to obtain, respectively, a lower
bound to the homogenized rate relaxation kernel, �̇�ℎ

𝑖𝑗ℎ𝑘(𝑡), and an upper
bound to the homogenized rate creep kernel, �̇�ℎ

𝑖𝑗ℎ𝑘(𝑡).
We consider a homogenized rate viscous kernel, say for example the

creep one, �̇�ℎ
𝑖𝑗ℎ𝑘(𝑡), as defined in Huet (1995), i.e., the time derivative

of the homogenized creep kernel:

�̇�ℎ
𝑖𝑗ℎ𝑘(𝑡) =

𝑑𝐶ℎ
𝑖𝑗ℎ𝑘(𝑡)

𝑑𝑡
(5.12)

he path to be followed to obtain bounds to the homogenized rate
iscous kernels is the same illustrated in the previous subsection, just
tarting from the functionals containing the kernel rates instead of those
ontaining the total kernels. Similar considerations apply, which allow
ne to write the following results:

• lower bound to �̇�ℎ
𝑖𝑗ℎ𝑘(𝑡):

𝜀𝑖𝑗�̇�
ℎ
𝑖𝑗ℎ𝑘(𝑡)𝜀ℎ𝑘 ≥ 𝜀𝑖𝑗

⟨

�̇�𝑖𝑗ℎ𝑘(𝑡)
⟩

𝜀ℎ𝑘 (5.13)

• upper bound to �̇�ℎ
𝑖𝑗ℎ𝑘(𝑡):

𝜎𝑖𝑗 �̇�
ℎ
𝑖𝑗ℎ𝑘(𝑡)𝜎ℎ𝑘 ≤ 𝜎𝑖𝑗

⟨

�̇�𝑖𝑗ℎ𝑘(𝑡)
⟩

𝜎ℎ𝑘 (5.14)

which both hold for macroscopically isotropic RVEs under deviatoric
loading only.

Analogous results, but involving strict inequalities only, have been
found in Huet (1995) following a different path, not based on the
availability of extremum formulations. As a consequence, Huet’s strict
bounds have a fully general validity, i.e., they hold for possibly
anisotropic viscoelastic composites subjected to both a deviatoric and
a volumetric macroscopic stress or strain state.

5.3. Optimal lower bounds derived from functionals (3.6) and (3.9)

It is possible to obtain analytical lower bounds in the time domain
for both the homogenized viscous kernels starting from the extremum
theorems of Eqs. (3.5) or (3.8) but considering, in them, a loading dual
than the one considered previously, i.e., prescribed surface tractions
of the type (5.8) and (5.9) for the TPE case, and prescribed boundary
displacements of the type (5.1) and (5.2) for the TCE case.

The validity of these lower bounds is limited, as for the previous
upper bounds, to the case of macroscopically isotropic viscoelastic
composites under deviatoric loading only.
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The procedure adopted to obtain a lower bound to the homogenized
creep kernel will be illustrated in detail; the one necessary to derive a
lower bound to the homogenized relaxation kernel is fully analogous
and will be omitted for brevity.

We remark that for this analysis we will start from the TPE func-
tional of Eq. (3.6) in which the loading applied to the RVE is of the
static type, given by Eqs. (5.8) and (5.9).

One observes first that, as is well known (Huet, 1995), the func-
tional (3.6), with this type of loading and evaluated in the exact solu-
tion of the problem, yields the following result, an absolute minimum
for the functional itself:

TPE[𝑢1𝑖] =
1
2 ∫𝛺

𝐴𝜀1ℎ𝑘 ∗ 𝑑𝜀1𝑖𝑗 𝑑𝛺 − ∫𝛤
𝑝2𝑖 ∗ 𝑑𝑢1𝑖 𝑑𝛤 = −1

2
𝜎𝑖𝑗𝐶

ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜎ℎ𝑘

(5.15)

t is now necessary to evaluate the functional (3.6) in correspondence to
strictly admissible solution that makes it as small as possible, in order

o obtain an optimal lower bound to the homogenized creep kernel.
As already indicated, for the present purposes one selects the load-

ng condition of Eqs. (5.8) and (5.9), and chooses the strictly admissible
isplacement field of Eq. (4.3).

In order to proceed further, though, it is convenient to restart from
he complete Total Potential Energy-type Gurtin functional of Eq. (2.1),
hat must be specialized to the considered case of a static loading on the
oundary of the RVE. In Section 3 it was proved that if one inserts, in it,
strictly admissible displacement, such as the selected one of Eq. (4.3),

he Gurtin functional becomes fully equivalent to the reduced one of
q. (3.6), in the sense that the displacement which makes it stationary
oincides with the displacement which makes stationary the reduced
unctional of Eq. (3.6) (see Eq. (3.7)).

Inserting into the complete TPE functional of Eq. (2.1) both the
tatic loading of Eqs. (5.8) and (5.9) and the chosen strictly admissible
train fields of Eq. (4.3) in both time intervals, and writing it in an
xplicit form with the time 𝑡 spanning the complete interval 𝑡 ∈ [0, 2𝑇 ]
see also Eq. (2.1)), one can proceed in the following way:

PE𝐺[𝑢′𝑖] = 𝑉
{

1
2 ∫

2𝑇

0− ∫

2𝑇−𝑡

0−

(

1
𝑉 ∫𝛺

𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝛺
)

𝑑𝜀′ℎ𝑘(𝑡) 𝑑𝜀
′
𝑖𝑗 (𝜏)−

−∫

2𝑇

0−

1
𝑉 ∫𝛤

𝑝𝑖(2𝑇 − 𝑡)𝑑𝑢′𝑖(𝑡) 𝑑𝛤
}

=

= 𝑉
{

1
2 ∫

2𝑇

0− ∫

2𝑇−𝑡

0−

⟨

𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏)
⟩

𝑑�̂�ℎ𝑘(𝑡) 𝑑�̂�𝑖𝑗 (𝜏)−

− ∫

2𝑇

0−
𝜎𝑖𝑗H(2𝑇 − 𝑡)

(

1
𝑉 ∫𝛤

𝑛𝑖𝑥𝑘𝑑𝛤
)

𝑑�̂�𝑘𝑗 (𝑡)
}

(5.16)

which, recalling that the last surface integral in round brackets is equal
to the Kronecker Delta 𝛿𝑖𝑘, can be rewritten as follows:

TPE𝐺[𝑢′𝑖] = 𝑉
{

1
2 ∫

2𝑇

0− ∫

2𝑇−𝑡

0−

⟨

𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏)
⟩

𝑑�̂�ℎ𝑘(𝑡) 𝑑�̂�𝑖𝑗 (𝜏)−

− ∫

2𝑇

0−
𝜎𝑖𝑗H(2𝑇 − 𝑡)𝑑�̂�𝑖𝑗 (𝑡)

}

= 𝑉
{

1
2 ∫

2𝑇

0− ∫

2𝑇−𝑡

0−

⟨

𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏)
⟩

𝑑�̂�ℎ𝑘(𝑡) 𝑑�̂�𝑖𝑗 (𝜏) − 𝜎𝑖𝑗 �̂�𝑖𝑗 (2𝑇 )
}

(5.17)

The value of this functional, evaluated for any strictly admissible strain
of the type of Eq. (4.3), is a minimum, in such a way as to provide
the best possible lower bound to the homogenized creep kernel that
appears in Eq. (5.15), if

2𝑇−𝑡
⟨

𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏)
⟩

𝑑�̂�ℎ𝑘(𝜏) = 𝜎𝑖𝑗 (5.18)
8

∫0−
a Volterra integral equation always possessing a unique solution that
can be found, for example, by means of the Laplace transform tech-
nique.

Let us denote by

�̂�𝑜𝑝𝑡1𝑖𝑗 (𝑡) = 𝜎𝑖𝑗𝑓 (𝑡) (5.19)

the solution of Eq. (5.18) in the first time interval, i.e., the strictly
admissible strain function �̂�1𝑖𝑗 (𝑡) that minimizes both functionals (5.16)
and (3.6). Applying the Laplace transform technique to solve Eq. (5.18),
denoting by 𝑠 the Laplace transformation parameter and by L(⋅) and
L−1(⋅) the direct and inverse Laplace transform, respectively, the func-
tion 𝑓 (𝑡) can be easily shown to be equal to

𝑓 (𝑡) = L−1
(

1
𝑠2

[⟨

L(𝑅𝑖𝑗ℎ𝑘(𝑡))
⟩]−1

)

(5.20)

The functional (5.17), in correspondence to this solution which makes
it a minimum with respect to the chosen strictly admissible strains,
becomes

1
𝑉
TPE𝐺,𝑜𝑝𝑡 = 1

2 ∫

2𝑇

0− ∫

2𝑇−𝑡

0−
⟨𝑅𝑖𝑗ℎ𝑘(2𝑇−𝑡−𝜏)⟩ 𝑑�̂�

𝑜𝑝𝑡
1ℎ𝑘(𝑡) 𝑑�̂�

𝑜𝑝𝑡
1𝑖𝑗 (𝜏)−𝜎𝑖𝑗 �̂�

𝑜𝑝𝑡
1𝑖𝑗 (2𝑇 )

(5.21)

hich, recalling that the strain �̂�𝑜𝑝𝑡1𝑖𝑗 solves Eq. (5.18), is rewritten as

1
𝑉
TPE𝐺,𝑜𝑝𝑡 = 1

2 ∫

2𝑇

0−
𝜎𝑖𝑗 𝑑�̂�𝑜𝑝𝑡1𝑖𝑗 (𝑡) − 𝜎𝑖𝑗 �̂�

𝑜𝑝𝑡
1𝑖𝑗 (2𝑇 )

= −1
2
𝜎𝑖𝑗 �̂�

𝑜𝑝𝑡
1𝑖𝑗 (2𝑇 ) = −1

2
𝜎𝑖𝑗𝑓 (2𝑇 )𝜎𝑖𝑗 (5.22)

The comparison of this result with Eq. (5.15), considering the time
𝑇 as an arbitrary time, leads to the following lower bound to the
homogenized creep kernel:

𝜎𝑖𝑗𝐶
ℎ
𝑖𝑗ℎ𝑘(𝑡)𝜎ℎ𝑘 ≥ 𝜎𝑖𝑗𝑓 (𝑡)𝜎𝑖𝑗 (5.23)

The explicitation of result (5.23) depends on the possibility of cal-
culating the inverse transform in Eq. (5.20). In any case, if needed,
numerical results for the inverse Laplace transform could always be
obtained. Recall also that the minimum principle of Eq. (3.5), at the
basis of the preceding reasoning, for the strictly admissible strain fields
selected in this work is valid only for the case of purely deviatoric
loading on a RVE. Therefore, one needs to deal with the scalar shear
components 𝑅(𝑖)(𝑡) and 𝐶 (𝑖)(𝑡) of each phase (𝑖) only, as was done to
write Eqs. (5.7) and (5.11) previously.

In order to produce an explicit result that can be compared to the
numerical solutions of the following Section 6, one may consider, as
an example, a composite RVE with viscous kernels defined so that the
volume average of the scalar shear relaxation kernel has the following
form:

⟨

𝑅(𝑡)
⟩

=
𝑁
∑

𝑖=1
𝑐𝑖𝑅

(𝑖)(𝑡) = 𝑎 + 𝑏 exp(𝛼𝑡) (5.24)

which includes, among others, the case deriving from the study of a
two-phase RVE having an elastic and a viscous phase, this last being
governed by the expression of Eq. (6.1), a three-parameter Kelvin–
Voigt, or Zener, viscoelastic solid.

Inserting this volume average expression into Eq. (5.20) and cal-
culating the various transforms, one obtains the following explicit
expression for the function 𝑓 (𝑡) in result (5.19), for a viscoelastic
composite with relaxation kernels satisfying Eq. (5.24):

𝑓 (𝑡) =
[

1
𝑎
− 𝑏

𝑎(𝑎 + 𝑏)
exp

(

𝛼𝑎
𝑎 + 𝑏

𝑡
)]

(5.25)

hich, inserted into the result (5.23), gives the following explicit lower
ound to the homogenized creep kernel:

ℎ(𝑡) ≥
[

1 − 𝑏 exp
(

𝛼𝑎 𝑡
)]

(5.26)

𝑎 𝑎(𝑎 + 𝑏) 𝑎 + 𝑏
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A similar path can be taken to obtain a lower bound to the homogenized
relaxation kernel. One must restart from the TCE-type functional of
Eq. (3.9) and consider, in it, a RVE loading of a purely kinematic type
on the boundary 𝛤𝑢 ≡ 𝛤 , of the type defined by Eqs. (5.1) and (5.2).
After passages similar to those illustrated for the TPE functional, and
denoting by �̂�𝑜𝑝𝑡1𝑖𝑗 (𝑡) = 𝜀𝑖𝑗𝑔(𝑡) the stress field that minimizes the TCE-
type functional within the range of the strictly admissible stresses, one
arrives at the following results:

𝑔(𝑡) = L−1
(

1
𝑠2

[⟨

L(𝐶𝑖𝑗ℎ𝑘(𝑡))
⟩]−1

)

(5.27)

and

𝜀𝑖𝑗𝑅
ℎ
𝑖𝑗ℎ𝑘(𝑡)𝜀ℎ𝑘 ≥ 𝜀𝑖𝑗𝑔(𝑡)𝜀𝑖𝑗 (5.28)

An example of an explicit solution for the case of a two-phase composite
having the viscous phase governed by the same three-parameter solid
considered previously, i.e., having a scalar shear creep kernel given by
Eq. (6.2) of Section 6, can be worked out as for the previous case. If
the volume average of the creep kernels in the two-phase RVE can be
written as

⟨

𝐶(𝑡)
⟩

=
𝑁
∑

𝑖=1
𝑐𝑖𝐶

(𝑖)(𝑡) = 𝑣 +𝑤 exp(𝛽𝑡) (5.29)

then the following lower bound to the homogenized shear kernel 𝑅ℎ(𝑡)
an be arrived at:

ℎ(𝑡) ≥
[

1
𝑣
− 𝑤

𝑣(𝑣 +𝑤)
exp

(

𝛽𝑣
𝑣 +𝑤

𝑡
)]

(5.30)

5.4. Reuss-type general strict lower bound to 𝑅ℎ
𝑖𝑗ℎ𝑘(𝑡) (Huet, 1995) and

Reuss-type strict lower bound to 𝐶ℎ
𝑖𝑗ℎ𝑘(𝑡)

Two strict lower bounds to the viscous kernels, one having a general
alidity, the other restricted to the case of macroscopically isotropic
omposites under deviatoric loading, are derived next.

The general one has already been presented in Huet (1995), and
e will here give a summary of the procedure followed to obtain it.
onsider once again the same type of affine loading of Eqs. (5.1) and
5.2), and restart from Eq. (2.23) specialized to the considered loading
ype. Owing to the fact that the relaxation kernel is a monotonically
ecreasing function of time (Huet, 1995), the following holds:

1
𝑉
TPEsol =

1
2
⟨

∫

𝑇

0− ∫

𝑇

0−
𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝜀1𝑖𝑗 (𝜏) 𝑑𝜀1ℎ𝑘(𝑡)

⟩

>

> 1
2
⟨

∫

𝑇

0− ∫

𝑇

0−
𝑅𝑖𝑗ℎ𝑘(2𝑇 ) 𝑑𝜀1𝑖𝑗 (𝜏) 𝑑𝜀1ℎ𝑘(𝑡)

⟩

=

= 1
2
⟨

𝑅𝑖𝑗ℎ𝑘(2𝑇 )𝜀1𝑖𝑗 (𝑇 )𝜀1ℎ𝑘(𝑇 )
⟩

(5.31)

in which the strain is the exact one.
The last term in Eq. (5.31) is now fully elastic, governed by the

relaxation kernel evaluated at time 2𝑇 . In it, the strain 𝜀1𝑖𝑗 (𝑇 ) is the
iscoelastic strain reached, during the actual time history, at time
, and it can therefore be considered as an admissible (compatible)

train field in a fully elastic theory. Therefore, the standard theorem of
inimum of the Total Potential Energy in elasticity allows one to write

lso the following inequality:
1
2
⟨

𝑅𝑖𝑗ℎ𝑘(2𝑇 )𝜀1𝑖𝑗 (𝑇 )𝜀1ℎ𝑘(𝑇 )
⟩

≥ 1
𝑉
TPE𝑒𝑙(𝜀𝑒𝑙𝑖𝑗 ) (5.32)

in which the symbol 𝜀𝑒𝑙𝑖𝑗 denotes the real elastic solution in a homog-
enized RVE having constant elastic moduli defined by the values of
𝑅ℎ,𝑒𝑙
𝑖𝑗ℎ𝑘(2𝑇 ).

One thus concludes that the following strict inequality can be
established:

TPE > TPE𝑒𝑙(𝜀𝑒𝑙) (5.33)
9

sol 𝑖𝑗 a
This, rewritten exploiting the choice (5.2) for the loading history,
becomes:

𝜀𝑖𝑗𝑅
ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜀ℎ𝑘 > 𝜀𝑖𝑗𝑅

ℎ,𝑒𝑙
𝑖𝑗ℎ𝑘(2𝑇 )𝜀ℎ𝑘 (5.34)

Finally, one can replace in the r.h.s. of Eq. (5.34), a purely elastic
quantity, any elastic lower bound, i.e., a quantity not larger than the
r.h.s. itself — let us call it ELBR (Elastic Lower Bound to 𝑅), arriving
at the following bound to 𝑅ℎ

𝑖𝑗ℎ𝑘(2𝑇 ):

𝜀𝑖𝑗𝑅
ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜀ℎ𝑘 > ELBR (5.35)

the same general strict inequality obtained in Huet (1995) (his eq.
(5.7)) by adopting the same argument.

In the case of macroscopically isotropic composites, in order to write
explicit and usable expressions of this bound for both the homogenized
scalar deviatoric and volumetric components 𝑅𝑑,ℎ(𝑡) and 𝑅𝑣,ℎ(𝑡) only,
one can choose in Eq. (5.35), for the quantity ELBR, Reuss’ lower bound
to the elastic moduli of the direct constitutive law, obtaining thus

𝑅𝑑,ℎ(𝑡) > 1
𝑁
∑

𝑖=1

𝑐𝑖
𝑅𝑑,(𝑖)(𝑡)

∀𝑡 ∈ [0,∞); 𝑅𝑣,ℎ(𝑡) > 1
𝑁
∑

𝑖=1

𝑐𝑖
𝑅𝑣,(𝑖)(𝑡)

∀𝑡 ∈ [0,∞)

(5.36)

here 𝑅𝑑,(𝑖)(𝑡) and 𝑅𝑣,(𝑖)(𝑡) denote the deviatoric and volumetric relax-
tion kernels of the individual phases (𝑖), respectively.

The derivation of an analogous lower bound to the homogenized
reep kernel cannot start from Eq. (2.25), since the creep kernels are
ot monotonically decreasing functions of time. Therefore, considering
nstead that the creep rate kernel is a monotonically decreasing function
f time, one is lead to start from the functional of (2.38) the same
easoning followed in the above paragraphs.

Assuming the same loading as in Eqs. (5.8) and (5.9), writing in
n explicit form the functional

◦
TCE of Eq. (2.38), and accounting

or the said property of function �̇�𝑖𝑗ℎ𝑘(𝑡), i.e., of being monotonically
ecreasing with time, one can reach the following result:

1
𝑉

◦
TCEsol =

1
2
⟨

∫

𝑇

0− ∫

𝑇

0−
�̇�𝑖𝑗ℎ𝑘(2𝑇 − 𝑡 − 𝜏) 𝑑𝜎1𝑖𝑗 (𝜏) 𝑑𝜎1ℎ𝑘(𝑡)

⟩

>

1
2
⟨

∫

𝑇

0− ∫

𝑇

0−
�̇�𝑖𝑗ℎ𝑘(2𝑇 ) 𝑑𝜎1𝑖𝑗 (𝜏) 𝑑𝜎1ℎ𝑘(𝑡)

⟩

=

= 1
2
⟨

�̇�𝑖𝑗ℎ𝑘(2𝑇 )𝜎1𝑖𝑗 (𝑇 )𝜎1ℎ𝑘(𝑇 )
⟩

(5.37)

hich, by the same reasoning explained for the relaxation rate kernel,
nd accounting for the theorem of the Total Complementary Energy in
lasticity, leads to the following strict inequality:

𝜎𝑖𝑗 �̇�
ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜎ℎ𝑘 > 𝜎𝑖𝑗

(

�̇�𝑒𝑙
𝑖𝑗ℎ𝑘(2𝑇 )

)ℎ𝜎ℎ𝑘 (5.38)

where the symbol
(

�̇�𝑒𝑙
𝑖𝑗ℎ𝑘(2𝑇 )

)ℎ denotes a homogenized creep kernel
computed operating on the fixed values taken by the individual creep
rate kernels evaluated at time 2𝑇 . This quantity is not a true rate of a
omogenized creep kernel, of course. This result, a strict, general lower
ound to the rate of the homogenized creep kernel, was also obtained
n Huet (1995), Eq. (6.3). Unfortunately, the integration in time of this
nequality, as done in Huet (1995), does not lead to a lower bound to
he homogenized total creep kernel easy to be written in an explicit,
sable form.

We could obtain a usable lower bound to the homogenized creep
ernel without integrating Eq. (5.38), but only exploiting once again
he reduced minimum principles of Section 3. Clearly, in this case the
ound that can be produced returns to have only a restricted validity,
he same holding for the theorems of Section 3.

In order to obtain this new lower bound, it is possible to exploit, in

way less general than done in Section 5.3, the reduced Total Potential
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Energy theorem of Eq. (3.5), considering in it a static loading on the
RVE boundary of the type defined by Eqs. (5.8) and (5.9). In this case,
recalling Eqs. (3.6) and (5.15), one can write the following inequality:

1
2
𝜎𝑖𝑗𝐶

ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜎ℎ𝑘 ≥ −1

2 ∫

𝑇

0− ∫

𝑇

0−
⟨𝑅𝑖𝑗ℎ𝑘(2𝑇 − 𝑡− 𝜏)⟩ 𝑑�̂�1ℎ𝑘(𝑡) 𝑑�̂�1𝑖𝑗 (𝜏) + 𝜎𝑖𝑗 �̂�1𝑖𝑗 (𝑇 )

(5.39)

here �̂�1𝑖𝑗 (𝑡) indicates a strictly admissible strain field of the type of
q. (4.3). One can adopt the following specific choice for �̂�1𝑖𝑗 (𝑡):

�̂�1𝑖𝑗 (𝑡) =
⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘H(𝑡) (5.40)

clearly less ‘‘optimal’’ than the one deriving from the solution of
Eq. (5.18) but still belonging to the type of Eq. (4.3), strictly admissible.
Inserting this expression into the inequality (5.39) and recalling the
meaning of a Stieltjes integral, the following result is obtained:

1
2
𝜎𝑖𝑗𝐶

ℎ
𝑖𝑗ℎ𝑘(2𝑇 )𝜎ℎ𝑘 ≥ −1

2
⟨𝑅𝑖𝑗ℎ𝑘(2𝑇 )⟩

⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘

⟨

𝐶−1
ℎ𝑘𝑙𝑚(2𝑇 )

⟩−1
𝜎𝑙𝑚+

+ 𝜎𝑖𝑗
⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘 (5.41)

This already is a new, non-strict lower bound to the homogenized creep
kernel, having the same reduced range of validity as the minimum
principles of Section 3. If one wants to derive a lower bound involving
only the individual creep kernels of the single phases of the composite,
one can recall the following general property of the viscous kernels:

𝑅𝑖𝑗ℎ𝑘(𝑡)𝐶𝑖𝑗ℎ𝑘(𝑡) < 1 ∀𝑡 (5.42)

and then transform the r.h.s of the result (5.41) as follows:

−1
2
⟨𝑅𝑖𝑗ℎ𝑘(2𝑇 )⟩

⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘

⟨

𝐶−1
ℎ𝑘𝑙𝑚(2𝑇 )

⟩−1
𝜎𝑙𝑚 + 𝜎𝑖𝑗

⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘 >

> −1
2

⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘

⟨

𝐶−1
ℎ𝑘𝑙𝑚(2𝑇 )

⟩−1
𝜎𝑙𝑚 + 𝜎𝑖𝑗

⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘 =

1
2
𝜎𝑖𝑗

⟨

𝐶−1
𝑖𝑗ℎ𝑘(2𝑇 )

⟩−1
𝜎ℎ𝑘 (5.43)

Recalling the inequality (5.41) and considering the time 2𝑇 as a generic
time, this allows one to produce the following new strict lower bound
to the homogenized creep kernel:

𝜎𝑖𝑗𝐶
ℎ
𝑖𝑗ℎ𝑘(𝑡)𝜎ℎ𝑘 > 𝜎𝑖𝑗

⟨

𝐶−1
𝑖𝑗ℎ𝑘(𝑡)

⟩−1
𝜎ℎ𝑘 (5.44)

which holds only for a macroscopically isotropic composite under
deviatoric loading.

The explicit expression of this bound for the shear (deviatoric) scalar
component of the homogenized creep kernel, for a composite having 𝑁
omogeneous viscoelastic phases, reads as follows:

ℎ(𝑡) > 1
𝑁
∑

𝑖=1

𝑐𝑖
𝐶 (𝑖)(𝑡)

∀𝑡 ∈ [0,∞) (5.45)

6. Numerical (FEM) checks

In this section we examine the performance of the obtained bounds
by means of numerical tests concerning a variety of plane strain RVEs.
The considered bounds are those given by Eqs. (5.7), (5.11), (5.26),
(5.30), (5.36), and (5.45). In the case of the general, strict lower
bound of Eq. (5.36), only the results for the deviatoric (shear) kernel
components have been considered. Numerical calculations performed
on 3D RVEs loaded in a volumetric way, not shown here for brevity,
have confirmed the validity of the general strict lower bound (5.36)
also for the volumetric case.

We recall that both the upper bounds (5.7) and (5.11), as well
as both the non-strict (hereafter called ‘‘optimal’’) lower bounds of
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Eqs. (5.26) and (5.30), together with the strict lower bound (5.45),
are valid only for the purely deviatoric behavior of macroscopically
isotropic viscoelastic composites. Only the strict lower bound of Eq.
(5.36), found by Huet (1995), has a general validity. Moreover, the
optimal lower bounds of Eqs. (5.26) and (5.30) have been expressed
in an explicit form for the special case, considered in the majority
of the examples of this section, of a two-phase composite with a
three-parameter Kelvin–Voigt (or Zener) viscous kernel.

It may be interesting to observe here that the bounds (5.7) and
(5.11) become, in the limit case when all the phases are linear elastic,
identical with the Voigt upper bounds in linear elasticity. Both lower
bounds (5.36) and (5.45), adding to them the equality sign, become, in
the same limit case, identical with the Reuss lower bounds in linear
elasticity. Therefore, all these results can be considered extensions,
albeit with a limited validity, to linear viscoelasticity of these two basic,
first-order bounds in elasticity. For the linear viscoelastic case, both at
the initial time 𝑡 = 0 and for 𝑡 → ∞, they should therefore coincide
with the elastic Voigt and Reuss bounds, and, for intermediate times,
they can be expected to be affected by errors having the same order of
magnitude as the Voigt and Reuss ones in elasticity.

In order to obtain numerical results, we consider viscoelastic phases
governed by a standard three-parameter solid rheologic model of the
Kelvin–Voigt (or Zener) type, for which, for a generic phase (𝑖), the
shear relaxation kernel is written as follows (Bland, 1960):

𝑅(𝑖)(𝑡) = (𝐺(𝑖)
𝐸 + 𝐺(𝑖)

𝑉 ) − 𝐺(𝑖)
𝑉

[

1 − exp
(

−
𝐺(𝑖)
𝑉 𝑡

𝜂(𝑖)𝑉

)]

(6.1)

here 𝐺(𝑖)
𝐸 and 𝐺(𝑖)

𝑉 are the shear moduli of the viscoelastic material,
and 𝜂(𝑖)𝑉 is the viscosity coefficient.

The corresponding shear creep kernel reads as follows (Bland,
1960):

𝐶 (𝑖)(𝑡) = 1
(𝐺(𝑖)

𝐸 + 𝐺(𝑖)
𝑉 )

+
𝐺(𝑖)
𝑉

𝐺(𝑖)
𝐸 (𝐺(𝑖)

𝐸 + 𝐺(𝑖)
𝑉 )

[

1−exp
(

−
𝐺(𝑖)
𝐸 𝐺(𝑖)

𝑉 𝑡

𝜂(𝑖)𝑉 (𝐺(𝑖)
𝐸 + 𝐺(𝑖)

𝑉 )

)]

(6.2)

he performance of all the obtained bounds to the homogenized viscous
ernels was checked against Finite Element results obtained by means
f the commercial code ABAQUS (Hibbitt et al., 2018). ABAQUS allows
he modeling of linear viscoelastic materials through the definition of
aterial parameters associated to the Prony series for relaxation only;

his, for a Kelvin–Voigt material and for each phase (𝑖), is written in
BAQUS in the following form:

(𝑖)(𝑡) = 𝐺(𝑖)
0 ∫

𝑡

0

{

1−
𝐺(𝑖)
1

𝐺(𝑖)
0

[

1−exp
(

−
𝐺(𝑖)
1 𝜏

𝜂(𝑖)1

)]}

�̇� (𝑖) 𝑑𝜏, 𝑖 = 1,… , 𝑁 (6.3)

nd requires in input the values of 𝐺(𝑖)
0 , 𝐺(𝑖)

1 ∕𝐺(𝑖)
0 , and 𝜂(𝑖)1 ∕𝐺(𝑖)

1 , 𝑖 =
1,… , 𝑁 . A match between Eqs. (6.3) and (6.1) shows immediately
that, in order to establish an equivalence between ABAQUS and the
analytical results, one needs to set 𝐺(𝑖)

0 = 𝐺(𝑖)
𝐸 + 𝐺(𝑖)

𝑉 , 𝐺(𝑖)
1 = 𝐺(𝑖)

𝑉 , and
𝜂(𝑖)1 = 𝜂(𝑖)𝑉 .

Several square RVEs with unit sides have been constructed, with
different microstructures, each possessing at least a 10 × 10 array of
inclusions of different shapes. A plane strain simple shear problem
was considered, applying, in the case of relaxation, boundary displace-
ments corresponding to a constant value equal to 1 for the average
in-plane shear strain, and, for creep, boundary tractions correspond-
ing to a value equal to 1 for the average in-plane shear stress. This
setup represents of course a transversely isotropic problem, not a fully
isotropic one; nevertheless, the considered loading conditions allow one
to obtain information about the homogenized shear viscous kernels of
a macroscopically isotropic material under deviatoric loading.

Both loading conditions were applied as unit-steps at 𝑡 = 0. Quadri-
lateral 8-noded plane strain elements with reduced integration (CPE8R

in ABAQUS notation) were always adopted. At least 100 elements per
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Fig. 1. Figure (a), left: normalized homogenized uniaxial shear relaxation kernel 𝑅ℎ(𝑡)∕𝐺𝑒𝑙 as a function of the normalized time 𝑡∕𝑡𝑉 for a two-phase composite. The solid thick
curves with white symbols plot strict lower (squares, Eq. (5.36)) and upper (diamonds, Eq. (5.7)) bounds; the thin lines plot FEM solutions. Figure (b), right: comparison between
the strict (Eq. (5.36)) and the optimal (Eq. (5.30)) lower bounds to the homogenized relaxation kernel.
each side of the RVE were adopted, arriving at 1000 per side in the
case of the most complex microstructures.

The first set of analyses was run considering a two-phase material,
the first (𝑖 = 1) linear elastic and the second (𝑖 = 2) linear viscoelastic.
The material data have been taken equal to those adopted in Lahellec
and Suquet (2007), i.e.,

𝑐1 = 0.4; 𝐺(1) = 𝐺𝑒𝑙 = 166650 MPa

𝑐2 = 0.6; 𝐺(2)
𝐸 = 26920 MPa; 𝐺(2)

𝑉 = 𝐺𝑉 = 13460 MPa; 𝜂(2)𝑉 = 𝜂𝑉 = 10000 MPa s

The bulk modulus of the elastic phase plays no role (𝜈(1) = 0 was always
adopted), and that of the viscous phase has been set equal to zero.

We first checked the performance of the bounds of Section 5 with
this set of data for five different RVE microstructures all referred to the
same composite. This also allowed us to have an idea of the influence
of the adopted RVE on the numerical solutions. Figs. 1 and 2 report
the relevant results, the first for relaxation and the second for creep.
In both Figures the time has been normalized by the relaxation time
𝑡𝑉 = 𝜂𝑉 ∕𝐺𝑉 ; the curves of Fig. 1 plot the homogenized relaxation
kernel normalized by the elastic shear modulus 𝐺𝑒𝑙, and those of Fig. 2
plot the homogenized creep kernel normalized once again by 𝐺𝑒𝑙. All
the considered RVEs yield both families of curves lying within the
respective bounds, and all tend to furnish similar relaxation and creep
curves. In the rest of the examples we have considered just one of these
RVEs, with the most (quasi) random microstructure.

Fig. 1(b) is meant to illustrate the difference between the strict and
the optimal lower bounds to 𝑅ℎ(𝑡), given by Eqs. (5.36) and (5.30)
respectively. Two facts are apparent: (i) the optimal lower bound never
lies below the strict one, as it should be and (ii) the two curves are
definitely very close to each other, the difference between them being
of the order of — actually, definitely smaller than — the difference
produced, in the FEM solutions, by choosing different RVEs. Both
features (i) and (ii) were found to be valid for all the cases studied
in this section.

On account of these negligible differences between the two lower
bounds, in all the next figures only the strict ones, Eqs. (5.36) and
(5.45), will be plotted, in order to keep the images reasonably readable.
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Fig. 2. Normalized homogenized uniaxial shear creep kernel 𝐶ℎ(𝑡)𝐺𝑒𝑙 as a function of
the normalized time 𝑡∕𝑡𝑉 for a two-phase composite. The solid thick curves with white
symbols plot the optimal lower (squares, Eq. (5.26)) and upper (diamonds, Eq. (5.11))
bounds; the thin lines plot FEM solutions.

A second group of analyses keeps fixed the volume fractions of the
two phases, 𝑐1 = 0.4 and 𝑐2 = 0.6, and explores the sensitivity to the
contrast between the elastic shear moduli of the two phases. Denoting
this contrast by 𝑘 = 𝐺𝑒𝑙∕(𝐺

(2)
𝐸 + 𝐺(2)

𝑉 ), the starting data of the previous
Figures have all 𝑘 = 4.1271. Three more cases have been studied next,
with 𝑘 = 0.1, 𝑘 = 1, and 𝑘 = 10, respectively. Figs. 3 and 4 plot now,
again as a function of the normalized time, the relative differences
between the bounds to the homogenized viscous kernels and the FEM
results. Fig. 3 refers to the relaxation, and Fig. 4 to the creep kernel.
Here all the white symbols are lower bound differences, and all the
black symbols refer to upper bound differences. Both figures show that
all the bounds lie in their proper portion of the plane, and that the
best results, as obvious, occur for 𝑘 = 1. The differences remain for all
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Fig. 3. Relative difference curves for the homogenized uniaxial shear relaxation kernel
𝑅ℎ(𝑡) as a function of the normalized time 𝑡∕𝑡𝑉 for a two-phase composite, for various
values of the contrast parameter 𝑘 = 𝐺𝑒𝑙∕(𝐺

(2)
𝐸 +𝐺(2)

𝑉 ). The white symbols denote lower
bound differences (results of the strict bound (5.36) minus FEM results divided by FEM
results); the black symbols denote upper bound relative differences. Other parameters
as indicated in the text.

Fig. 4. Relative difference curves for the homogenized uniaxial shear creep kernel
𝐶ℎ(𝑡) as a function of the normalized time 𝑡∕𝑡𝑉 , for a two-phase composite, for various
values of the contrast parameter 𝑘 = 𝐺𝑒𝑙∕(𝐺

(2)
𝐸 +𝐺(2)

𝑉 ). The white symbols denote lower
bound differences (results of the strict bound (5.45) minus FEM results divided by FEM
results); the black symbols denote upper bound relative differences. Other parameters
as indicated in the text.

times of the same order of magnitude (±80% in the worst cases) as the
differences on the instantaneous, (elastic, time 𝑡 = 0) moduli, and in
some cases increase by a small amount for increasing time, in others
decrease.

Figs. 5 and 6 show results concerning the sensitivity to the volume
fractions, keeping the contrast equal to that of the first case, i.e., 𝑘 =
4.1271. Four cases of volume fractions have been considered, namely
𝑐1 = 0.4 as before, 𝑐1 = 0.1, 𝑐1 = 0.6, and 𝑐1 = 0.9. This forced the
adoption of different meshes for each case, with very dense ones for
the case 𝑐1 = 0.9. Figs. 5 and 6 plot, as a function of the normalized
time, the relative differences between the bounds to the viscous kernels
and the FEM results, Fig. 5 for the relaxation and Fig. 6 for the creep
kernel. Both Figures show once again that all the bounds lie in their
proper portion of the plane. The differences are now generally smaller
than in the previous two figures, even for extreme values of the volume
fractions; this is probably due to the value of the contrast 𝑘. The
differences are always of the same order of magnitude as the initial,
purely elastic ones. The next figures, 7 and 8, plot once again relative
12
Fig. 5. Relative difference curves for the homogenized uniaxial shear relaxation kernel
𝑅ℎ(𝑡) as a function of the normalized time 𝑡∕𝑡𝑉 , for a two-phase composite, for various
values of the volume fraction of the elastic phase 𝑐1. The white symbols denote lower
bound differences (results of the strict bound (5.36) minus FEM results divided by FEM
results); the black symbols denote upper bound relative differences. Other parameters
as indicated in the text.

Fig. 6. Relative difference curves for the homogenized uniaxial shear creep kernel
𝐶ℎ(𝑡) as a function of the normalized time 𝑡∕𝑡𝑉 , for a two-phase composite, for various
values of the volume fraction of the elastic phase 𝑐1. The white symbols denote lower
bound differences (results of the strict bound (5.45) minus FEM results divided by FEM
results); the black symbols denote upper bound relative differences. Other parameters
as indicated in the text.

differences between analytical bounds and FEM results considering
variations of the ratio 𝑔1 = 𝐺(2)

𝑉 ∕(𝐺(2)
𝐸 +𝐺(2)

𝑉 ) in which the value of 𝐺(2)
𝑉

has been always kept fixed to its starting value 𝐺(2)
𝑉 = 13460 MPa, so

as to consider also limit cases of both absence of elasticity and very
high elasticity in the viscous phase. Figs. 9 and 10, which still plot
relative differences, refer to varying the relaxation time 𝑡𝑉 = 𝜂𝑉 ∕𝐺𝑉 in
the viscous phase, considering 4 different values 𝜂𝑉 = 10, 1000, 10000,
and 1000000 MPa s, and keeping all the other parameters fixed at their
basic values reported above. Note that the nondimensional time axes
are now in log scale, since the adoption of relaxation times covering a
wide range of values — from 𝑡𝑉 = 7.429 × 10−4 s to 𝑡𝑉 = 74.2942 s —
produces viscous kernels so different from each other that they can be
plotted superimposed only by using such a scale.

All these results confirm the effectiveness of the bounds derived in
this work in their field of application.

Finally, four more analyses — two relaxation and two creep —
have been run for the case of a material having one elastic and three
viscoelastic phases, in order to check the performance of the bounds
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Fig. 7. Relative difference curves for the homogenized uniaxial shear relaxation kernel
𝑅ℎ(𝑡) as a function of the normalized time 𝑡∕𝑡𝑉 , for a two-phase composite, for various
values of the ratio 𝑔1 = 𝐺(2)

𝑉 ∕(𝐺(2)
𝐸 + 𝐺(2)

𝑉 ) between the shear modulus of the viscous
phase and the global one. The white symbols denote lower bound differences (results
of the strict bound (5.36) minus FEM results divided by FEM results); the black symbols
denote upper bound relative differences. Other parameters as indicated in the text.

Fig. 8. Relative difference curves for the homogenized uniaxial shear creep kernel 𝐶ℎ(𝑡)
as a function of the normalized time 𝑡∕𝑡𝑉 , for a two-phase composite, for various values
of the ratio 𝑔1 = 𝐺(2)

𝑉 ∕(𝐺(2)
𝐸 +𝐺(2)

𝑉 ) between the shear modulus of the viscous phase and
the global one. The white symbols denote lower bound differences (results of the strict
bound (5.45) minus FEM results divided by FEM results); the black symbols denote
upper bound relative differences. Other parameters as indicated in the text.

also in the presence of a more complicated microstructure. A first group
concerns a high volume fraction of the elastic phase, with 𝑐1 = 0.9; a
second group the opposite case, with 𝑐1 = 0.1.

The adopted data are as follows:

• case with 𝑐1 = 0.9:
𝐺(1) = 𝐺𝑒𝑙 = 166650 MPa
𝑐2 = 0.05; 𝐺(2)

𝐸 = 26920 MPa; 𝐺(2)
𝑉 = 13460 MPa; 𝜂(2)𝑉 =

20000 MPa s
𝑐3 = 0.03333; 𝐺(3)

𝐸 = 5384 MPa; 𝐺(3)
𝑉 = 48456 MPa; 𝜂(3)𝑉 =

35998 MPa s
𝑐4 = 0.01667; 𝐺(4)

𝐸 = 13056.2 MPa; 𝐺(4)
𝑉 = 403.8 MPa; 𝜂(4)𝑉 =

150.01 MPa s
• case with 𝑐1 = 0.1:
𝐺(1) = 𝐺𝑒𝑙 = 166650 MPa
𝑐2 = 0.5; 𝐺(2)

𝐸 = 13056.2 MPa; 𝐺(2)
𝑉 = 403.8 MPa; 𝜂(2)𝑉 =

150.01 MPa s
𝑐 = 0.3; 𝐺(3) = 5384 MPa; 𝐺(3) = 48456 MPa; 𝜂(3) = 35998 MPa s
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Fig. 9. Relative difference curves for the homogenized uniaxial shear relaxation kernel
𝑅ℎ(𝑡) as a function of the normalized time 𝑡∕𝑡𝑉 , for a two-phase composite, for various
values of the relaxation time 𝑡𝑉 = 𝜂(2)𝑉 ∕𝐺(2)

𝑉 . The white symbols denote lower bound
differences (results of the strict bound (5.36) minus FEM results divided by FEM
results); the black symbols denote upper bound relative differences. Other parameters
as indicated in the text.

Fig. 10. Relative difference curves for the homogenized uniaxial shear creep kernel
𝐶ℎ(𝑡) as a function of the normalized time 𝑡∕𝑡𝑉 , for a two-phase composite, for various
values of the relaxation time 𝑡𝑉 = 𝜂(2)𝑉 ∕𝐺(2)

𝑉 . The white symbols denote lower bound
differences (results of the strict bound (5.45) minus FEM results divided by FEM
results); the black symbols denote upper bound relative differences. Other parameters
as indicated in the text.

𝑐4 = 0.1; 𝐺(4)
𝐸 = 26920 MPa; 𝐺(4)

𝑉 = 13460 MPa; 𝜂(4)𝑉 =
20000 MPa s

These data cover a rather wide range of both relaxation times and of
contrasts between elasticity of the elastic and the viscous phases, and
are expected to provide a significantly severe test for the bounding
equations. Figs. 11 and 12 plot directly the normalized relaxation and
creep kernels, in the same plot, as functions of a time 𝑡 normalized
with respect to the relaxation time 𝑡𝑉 ,𝑚 of the viscous phase with the
highest volume fraction. Fig. 11 refers to the case 𝑐1 = 0.1 (small elastic
fraction), and Fig. 12 to the case 𝑐1 = 0.9 (high elastic fraction). In
Fig. 12 all the relaxation curves have been amplified by a factor of
10 in order to better show them, otherwise they would all appear as
superimposed around a horizontal line at the zero value of the vertical
axis.

All these results confirm once again the effectiveness of the newly
obtained bounds, with differences of the same order of magnitude as
the previous ones.



European Journal of Mechanics / A Solids 102 (2023) 105108A. Carini et al.
Fig. 11. Normalized homogenized uniaxial shear kernels as a function of the normal-
ized time 𝑡∕𝑡𝑉 for a four-phase composite, with 𝑐1 = 0.9 (elastic), and 𝑐2 = 0.05, 𝑐3 =
0.03333, 𝑐4 = 0.01667 (all viscoelastic). The thin curves with white symbols plot strict
lower (right triangles, Eq. (5.45)) and upper (squares, Eq. (5.11)) bounds to the
normalized homogenized creep kernel 𝐶ℎ(𝑡)𝐺𝑒𝑙 ; the thin curves with black symbols
plot strict lower (right triangles, Eq. (5.36)) and upper (squares, Eq. (5.7)) bounds
to the normalized homogenized relaxation kernel 𝑅ℎ(𝑡)∕𝐺𝑒𝑙 ; the thick lines plot FEM
solutions. Other parameters as indicated in the text.

Fig. 12. Normalized homogenized uniaxial shear kernels as a function of the normal-
ized time 𝑡∕𝑡𝑉 for a four-phase composite, with 𝑐1 = 0.1 (elastic), and 𝑐2 = 0.5, 𝑐3 =
0.3, 𝑐4 = 0.1 (all viscoelastic). The thin curves with white symbols plot strict lower
(right triangles, Eq. (5.45)) and upper (squares, Eq. (5.11)) bounds to the normalized
homogenized creep kernel 𝐶ℎ(𝑡)𝐺𝑒𝑙 ; the thin curves with black symbols plot strict lower
(right triangles, Eq. (5.36)) and upper (squares, Eq. (5.7)) bounds to the normalized
homogenized relaxation kernel 𝑅ℎ(𝑡)∕𝐺𝑒𝑙 ; the thick lines plot FEM solutions. Other
parameters as indicated in the text.

7. Discussion and conclusions

Extremum principles for linear viscoelastic solids have been pre-
sented, valid for specific choices of the admissible functions in the
associated functional, functions that were called strictly admissible. In
the case of macroscopically isotropic, linear viscoelastic RVEs subjected
to deviatoric loading, it was possible to identify some strictly admissible
displacement and stress fields. Exploiting the new extremum theorems,
analytical upper and lower bounds to the homogenized viscous kernels
of macroscopically isotropic viscoelastic composites have been obtained
in the time domain.
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A similar theory based on extremum principles but holding for
generic viscoelastic composites, i.e., non macroscopically isotropic un-
der any type of stress or strain, could not be produced yet. The
restriction to deviatoric loading only looks surprising enough, but it can
be easily confirmed by means of counterexamples. Appendix illustrates
analytical calculations for a simple uniaxial case, in which the new
upper bounds are not valid. More FEM results for 3D RVEs loaded in
a volumetric way, omitted here for brevity, also show that in this case
the obtained upper bounds do not work.

The reasons for this basic difference between volumetric and devia-
toric situations in macroscopically isotropic viscoelastic RVEs remain
still to be understood. From the practical viewpoint, however, con-
sidering that often, when studying viscoelastic materials, viscosity is
introduced only in the deviatoric part of the stress–strain equations, it
is felt that even results holding only for the deviatoric components of
the homogenized viscous kernels could be of interest.

We recall once again that all the obtained new bounds suffer from
this limitation because they have all been derived from reduced ex-
tremum theorems holding in a restricted situation. The strict lower
bound of Huet (1995) (Eq. (5.35) in the present work), instead, has a
general validity. This is another fairly puzzling observation, that might
deserve future attention in order to further develop this theory.

Both the strict lower bounds presented in Section 5.4 are not opti-
mal. The new non-strict lower bounds, instead, are optimal within their
range of underlying choices. In fact, as shown by Fig. 1b, they always
stay above the strict ones, i.e., closer to the real solutions.

In the strict lower bound of Eq. (5.35) it is possible to adopt, for
the elastic bound ELBR, more refined expressions, such as, for example,
Hashin–Shtrikman’s results. This might produce a tighter bound to the
homogenized viscous kernels.
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Appendix

Consider the problem of Fig. A.1, a fully fixed rod with constant uni-
tary cross-section area, of total length 𝑙, with an elastic and a viscoelas-
tic phase arranged in series. The rod is subjected to a displacement 𝑢(𝑡)
prescribed to its right extremity, defined as:

𝑢(𝑡) = 𝑢 H(𝑡) (A.1)

where 𝑢 is a given constant and H(𝑡) is the Heaviside function. Phase
1 of the composite is viscoelastic, with length 𝑙1 and volume fraction
𝑐1, governed by a standard two-parameter solid rheologic model of the
Maxwell type. Its uniaxial relaxation kernel is written as follows (Bland,
1960):

𝑅(1)(𝑡) = 𝐸1 exp
(

−
𝐸1𝑡

)

(A.2)

𝜂1
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Fig. A.1. Uniaxial rod problem with elastic and viscoelastic phases arranged in series.

Fig. A.2. Normalized homogenized relaxation kernel 𝑅ℎ(𝑡)∕𝐸2 as a function of the time
𝑡 (solid line); hypothetical upper bound of Eq. (A.4) (dot-dashed line).

Phase 2 of the composite is elastic, with volume fraction 𝑐2 and Young
modulus 𝐸2. The numerical values used in this example are:

𝑐1 = 0.7; 𝐸1 = 12000 MPa; 𝜂1 = 20000 MPa s
𝑐2 = 0.3; 𝐸2 = 6000 MPa

The homogenized relaxation kernel for this example can be obtained
in closed form using the Laplace transform L(⋅) technique:

𝑅ℎ(𝑡) =L−1

⎛

⎜

⎜

⎜

⎝

1
𝑐1

L(𝑅(1))
+

𝑐2
L(𝐸2)

⎞

⎟

⎟

⎟

⎠

=
𝐸1𝐸2exp

(

−
𝐸1𝐸2𝑐1𝑡

𝐸1𝜂1𝑐2 + 𝐸2𝜂1𝑐1

)

𝐸1𝑐2 + 𝐸2𝑐1

(A.3)

The bounding term in the upper bound of Eq. (5.7), for this case,
becomes:
2
∑

𝑖=1
𝑐𝑖𝑅

(𝑖)(𝑡) = 𝐸1exp
(

−
𝐸1𝑡
𝜂1

)

𝑐1 + 𝐸2𝑐2 (A.4)

The curves of Fig. A.2 plot the exact homogenized relaxation function
of Eq. (A.3) superimposed to the curve of Eq. (A.4), both normalized by
the elastic Young modulus 𝐸2. It is apparent that the result of Eq. (5.7)
is not valid for this example. This counterexample confirms that, in gen-
eral, the contribution of the term in Eq. (4.4) to the functional (2.23)
cannot be neglected. The same holds for most of the other bounds
presented in Section 5 whose validity, therefore, must be restricted to
the deviatoric loading case only. Other counterexamples were found
numerically for 2D and 3D RVEs, which confirm the generality of this
conclusion.
15
Fig. A.3. Normalized homogenized relaxation kernel 𝑅ℎ(𝑡)∕𝐸2 as a function of the time
𝑡. Comparison among the homogenized value, the invalid bounding expression (A.4),
and the valid bounding expression of Eqs. (A.9) and (A.10).

On the other hand, it may be interesting to verify, for this simple rod
example, that if one has available the exact solution for 𝜀2𝑖𝑗 and inserts
it into functional (2.23) one obtains a minimum principle in 𝜀1𝑖𝑗 . In this
case an upper bound analogous to (5.7), with suitable modifications,
returns to be valid, as shown by the following calculations.

The functional TPE of Eq. (2.23), particularized to this example,
reads as follows:

TPE =
𝑙2
2

[

𝐸2𝜀
′2
1,2(0) + 2𝐸2𝜀

′
1,2(0)∫

𝑇

0

𝜕𝜀′1,2
𝜕𝑡

𝑑𝑡

+ 𝐸2 ∫

𝑇

0

𝜕𝜀′1,2
𝜕𝜏

𝑑𝜏 ∫

𝑇

0

𝜕𝜀′1,2
𝜕𝑡

𝑑𝑡

]

+

+
𝑙1
2

[

𝑅(1)(2𝑇 )𝜀′21,1(0) + 2𝜀′1,1(0)∫

𝑇

0
𝑅(1)(2𝑇 − 𝑡)

𝜕𝜀′1,1
𝜕𝑡

𝑑𝑡+

+∫

𝑇

0 ∫

𝑇

0
𝑅(1)(2𝑇 − 𝑡 − 𝜏)
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𝑑𝜏𝑑𝑡

]

+

+𝑙2

[

𝐸2𝜀
′
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+
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𝜀′1,1(0)∫

2𝑇

𝑇
𝑅(1)(2𝑇 − 𝑡)

𝜕𝜀′2,1
𝜕𝑡

𝑑𝑡

+ ∫

2𝑇

𝑇 ∫

2𝑇−𝑡

0
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(A.5)

Now we adopt for the admissible strain 𝜀′1, in the first time subinterval
and for both the rod phases, the following expression:

𝜀′1,𝑖 = 𝜀 H(𝑡) 𝑖 = 1, 2 (A.6)

with

𝜀 = 𝑢
𝑙

(A.7)

recalling that 𝑢 is the given value of the right extremity displacement
of the rod. In the second time subinterval we choose the exact solution
of the problem, that can be computed using the Laplace transform
technique. Denoting by 𝑢𝑀 the exact viscoelastic displacement at the
boundary between the two rod phases, one then has:

𝜀2,1 =
𝑢𝑀 ; 𝜀2,2 =

𝑢(𝑡) − 𝑢𝑀 (A.8)

𝑙1 𝑙2
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Inserting these selections into the functional (A.5) it is possible to
express the result as

TPE =1
2
𝑙 𝜀2𝑅TPE(2𝑇 ) (A.9)

where 𝑅TPE(2𝑇 ) denotes the factor of the constant term 1
2 𝜀

2𝑙 at the end
of the calculations. Fig. A.3 finally shows that, for this example, the
following holds:
1
2
𝑅ℎ(2𝑇 )𝜀2 ≤ 1

2
𝑅TPE(2𝑇 )𝜀2 ⇒ 𝑅ℎ(2𝑇 ) ≤ 𝑅TPE(2𝑇 ) (A.10)

inally, it is easy to check that for this example the general lower bound
5.36), given also in Huet (1995), remains valid, as confirmed also by
umerical tests on 2D and 3D Finite Element RVEs loaded in a complete
ay.
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