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1. INTRODUCTION

The aim of the present tutorial is to give an introduction
to electromagnetic scattering. Electromagnetic scattering is a
wide topic that has been researched for more than a century.
We split the tutorial into two parts: in this first part, we present
the mathematical background needed to face the scattering
problems and we give the solution for two canonical problems:
the scattering by an infinite circular cylinder and by a sphere;
in the second part, we will present more general scattering
problems and some applications. In particular, in the present
part of the tutorial we use the boundary conditions method
in order to solve the electromagnetic scattering problem using
vector harmonics.

The historic origin of the scattering problem is connected to
the diffraction by either circular cylinders or spheres, which are
classical problems in both electromagnetism and acoustics.
According to [1], the scattering by a dielectric circular cylinder
was first solved by Rayleigh [2], while the scattering by a di-
electric sphere was first solved by Lorenz [3]. On the other
hand, the diffraction of waves by conducting bodies, both cir-
cular cylinder and sphere, was presented by Thomson [4].
Nevertheless, the theoretical solution of the scattering problem
by a sphere is widely known as Mie scattering, because of the
well-known solution published by Mie [5]. These canonical
scattering problems have been solved, in later years, with a
much simpler and more compact mathematical formulation,
and they are part of the topics presented by several textbooks,
for example, [1,6–10].

The formulation of a scattering problem requires two ele-
ments: the incident radiation and the object with which the
radiation interacts, called the scatterer. To solve the electromag-
netic problem, the boundary conditions on the scatterer’s surface
can be imposed. They require the continuity of the tangential
components of the electric and magnetic fields on the object’s
surface, having assumed the surface currents to be zero. For
an object of arbitrary shape, closed-form solutions of the fields
are not available, and the fields are usually represented in an in-
tegral form [10]. On the other hand, for some of the simplest
shapes, it is possible to compute analytical expressions for both
the scattered and the internal fields. The theoretical formulation
in such cases involves the decomposition of the total field in a
superposition of different contributions. The first contribution is
given by the incident field, defined in each point of the space as
the field that there would be if the obstacle was not there. It is
usually a plane wave, but it can also be a more complicated wave,
such as a cylindrical wave or a Gaussian beam. The second con-
tribution is given by the scattered field, with the value of the
scattered field in each external point to the obstacle being of par-
ticular interest. Finally, the internal field to the obstacle must be
considered. These fields are represented in series expansions of
suitable vector harmonics.

The crucial mathematical tools that allow one to simplify
the solution of any scattering problems are the vector harmon-
ics (or vector wave functions) [6–10]. These vector functions
are solutions of the vector wave equation, and any electromag-
netic field or potential can be expanded in series of these
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harmonics with suitable coefficients. The particular properties
of the vector harmonics allow one to easily compute the differ-
ent fields and, perhaps more important, to easily impose the
boundary conditions. As we will see later, using vector harmon-
ics we can express the electromagnetic fields in the same form
independently of the scatterer shape. Therefore, it will be pos-
sible to couple the spherical wave with the cylindrical one [11].

This theoretical approach allows us to solve the scattering
problem in several scenarios. In addition to the scattering by
a cylinder or a sphere in free space, several analytical solutions
for more complicated problems are presented in the literature.
An important classical example is the diffraction by planar sur-
faces or by apertures on a screen [9,12]. Also interesting are the
canonical scattering problems by other simple geometries in free
space, such as cylindrical wedges, elliptic cylinders, conical struc-
tures, or spheroids [9,13]. Another widely studied case is the
scattering by objects placed next to planar interfaces between
two or more media, i.e., stratified materials. Several solutions
are available in the literature, for both the circular cylinder and
the sphere, in the case of both lossless and lossy materials, or for
rough surfaces [14–20]. The presence of the planar interface
is taken into account with the plane-wave spectrum of the
vector wave functions, available for several geometries [21–23].
Another important improvement is given by considering an
alignment of objects with the same geometry, i.e., the scattering
by a certain number of cylinders or spheres with different radii in
an arbitrary arrangement [24–26]. Contrarily, the scattering by
several objects with different geometries is not so widely ad-
dressed in the literature, at least with closed-form solutions.
Recently, a closed-form solution for the scattering by a dielectric
sphere embedded in a circular cylinder has been proposed [11].
Finally, the scattering by cylinders and spheres with anisotropic
permittivity or permeability has been tacked on, too [27–32].

In Section 2, we introduce the concepts of extinction power
and of the scattering, absorption, and extinction cross sections:
quantities that are extremely important for the characterization
of a scatterer and for the comparison of the behaviors of differ-
ent scatterers. In Section 3, we introduce the concept of vector
harmonics, and derive their principal properties. In Section 4,
we derive the expressions of the cylindrical vector harmonics,
and apply them to the solution of the scattering of an elliptically
polarized plane wave obliquely incident on an infinitely long
circular cylinder. In Section 5, we compute the expressions
of the vector spherical harmonics, and apply them to the sol-
ution of the scattering of an elliptically polarized plane wave by
a sphere. Finally, in Section 6, the conclusions are drawn.

2. SCATTERING, EXTINCTION, AND
ABSORPTION CROSS SECTIONS

An important concept in scattering problems is the cross section
[8,23]. This term indicates a quantity with the dimensions of
an area related to the electromagnetic power scattered or
absorbed by the object interacting with the incident wave,
i.e., the scatterer. Let us call E i and H i the electric and mag-
netic fields of the incident wave, E s and H s the electric and
magnetic fields of the scattered wave, and E � E i � E s and
H � H i �H s the total electric and magnetic fields outside
the scatterer, where

E i � E0e�ik·r−iωt�, (1)

H i � H 0e�ik·r−iωt�, (2)

k is the wave vector appropriate to the surrounding medium,
and E0 and H 0 are the electric and magnetic polarization
vectors, respectively. Furthermore, as will be seen below, the
form of the scattered fields will depend on the scatterer shape.
A time dependence exp�−iωt� will be omitted throughout
the paper.

We consider the Poynting vector of the total field:

S � 1

2
Re�E ×H ��: (3)

It can be written as a function of the fields of the incident
and scattered waves:

S � 1

2
Re�E i ×H �

i � �
1

2
Re�E s ×H �

s �

� 1

2
Re�E i ×H �

s � E s ×H �
i � � S i � S s � Se , (4)

where S i is the Poynting vector of the incident wave, S s is the
Poynting vector of the scattered wave, and Se is the term that
arises from the interaction between the incident and the scat-
tered fields. Another wave that we should consider is the one
inside the scatterer; let E p and H p be its electric and magnetic
fields. Then, if we consider the scatterer’s surface Ss, the
amount of energy absorbed by the object can be computed as

W a � −

Z
Ss
n̂ · SdS, (5)

where n̂ is the unit vector perpendicular to the surface. The
equality is due to the continuity of the tangential components
of the electric and magnetic fields on the scatterer’s surface. It
can be proved, applying the Green second vector theorem, that
the previous integral on the total field is equal to the integral
extended to a spherical surface, S, centered on the scatterer and
with an arbitrarily large radius [23]. As a consequence, we can
obtain an expression of the amount of the electromagnetic
energy absorbed by the scatterer as the following integral:

W a � −

Z
S
n̂ · SdS � W i −W s �W e , (6)

where

W i � −

Z
S
n̂ · S idS,

W s �
Z
S
n̂ · S sdS,

W e � −

Z
S
n̂ · SedS: (7)

The power associated with the incident wave is zero: in fact,
all the incident power is both incoming on and outgoing from
the surface; then W i vanishes identically for a non-absorbing
medium (for simplicity). Hence,

W e � W a �W s: (8)

At this point, we can give a physical interpretation to
the term W e . It is the sum of the energy absorbed by the scat-
terer and of the scattered energy, i.e., it is the amount of
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energy subtracted from the incident wave because of the inter-
action with the scatterer. For this reason, W e is called extinc-
tion power.

Now, we can introduce the concept of the cross section. The
scattering, absorption, and extinction cross sections are defined
as follows:

σs �
W s

jS ij
σa �

W a

jS ij
σe �

W e

jS ij
: (9)

From such definitions it is clear that the dimension of the
cross section is that of an area. Moreover, the relation between
the cross sections is the same as the one between the powers:

σe � σa � σs : (10)

The scattering cross section represents the amount of power
scattered by the object over the amount of power per unit area
carried by the incident wave. Similarly, the absorption cross sec-
tion represents the amount of power absorbed by the scatterer
over the amount of power per unit area carried by the incident
wave. Finally, the extinction cross section represents the amount
of overall power subtracted from the incident wave over the
amount of power per unit area carried by the incident wave.

Finally, we want to introduce the so-called efficiencies for
the scattering, absorption, and extinction:

Qs �
σs
G

Qa �
σa
G

Qe �
σe
G
, (11)

where G is the particle cross-sectional area projected onto a
plane perpendicular to the incident wave. Essentially, the effi-
ciencies normalize the cross sections with respect to the area
viewed by the incident field.

3. VECTOR WAVE FUNCTIONS FORMALISM

In this section, we present a procedure to solve the vector wave
equation. This procedure was first proposed by Hansen [6,33].

He showed that starting from Maxwell’s equations,

∇ × E� ∂B
∂t

� 0, (12)

∇ ×H� ∂D
∂t

� J, (13)

it was possible to describe any field or electromagnetic potential
through the Helmholtz equation. Indeed, if we consider the
generic field C , equal to either the electric field, magnetic field,
electric flux density, magnetic flux density, electric potential,
magnetic potential, or electric and magnetic Hertz–Debye
potentials, i.e., C � fE,H,D,B, F,A,Πe ,Πmg [6], then such
a field, in the absence of sources and in a linear, isotropic,
homogeneous medium, must satisfy the general homogeneous
wave equation in the time domain:

∇2C − με
∂2C
∂t2

− μσ
∂C
∂t

� 0, (14)

where ε is the electric permittivity, μ is the magnetic permeabil-
ity, and σ is the conductivity of the considered medium. The
equation can also be expressed in the frequency domain, i.e.,
the Helmholtz equation:

∇2C� k2C � 0, (15)

where it is placed k2 � ω2εcμ� iσω, remembering that a time
dependence exp�−iωt� is omitted here and throughout the pa-
per. This vector differential equation can be projected along the
unit vectors, q̂i, i � 1; 2, 3, of a generic reference system, be-
coming a system of three scalar differential equations. However,
such a system is not easy to solve in most of the coordinate
systems. Therefore, it can be very useful to get hold of a general
procedure in order to solve the vector equation.

While the solution of the vector Helmholtz equation is not a
simple task in several coordinate systems, it is easy to solve the
scalar Helmholtz equation:

∇2ψ � k2ψ � 0: (16)

This simple scalar differential equation has solutions in most
canonical coordinate systems. There are 11 coordinate systems
in which the scalar solution to the Helmholtz equation is
known [13,34]: orthogonal Cartesian, circular cylindrical, ellip-
tic cylindrical, parabolic cylindrical, spherical, prolate spheroi-
dal, oblate spheroidal, conical, ellipsoidal, paraboloidal, and
parabolic rotation.

At this point we define the vector harmonics as follows:

L � ∇ψ ; M � ∇ × �âψ�; N � 1

k
∇ ×M, (17)

where â is a typically constant unit vector, sometimes called the
pilot vector [6,8] (in general, it must be∇ × â � 0). It is easy to
demonstrate that these vectors satisfy the vector Helmholtz
equation. In fact, taking into account the previous definition
M � ∇ × �âψ�, that the divergence of the curl of any vector
function vanishes, ∇ ·M � 0, and considering the use of
the vector identities, we obtain

∇2M� k2M � ∇ × �â�∇2ψ � k2ψ��: (18)

Then,M satisfies the vector wave equation if ψ is a solution
to the scalar wave equation: ∇2ψ � k2ψ � 0. Similarly, the
other vectors, N and L, can be considered. Thus, the vectors
L, M, and N are suitable to represent the generic electromag-
netic field in a given coordinate system. These vectors have
other valuable properties [6,8], for example,

M � 1

k
∇ ×N; ∇ · L � ∇2ψ � −k2ψ : (19)

Moreover, the following relations can easily be proved:
∇ × L � 0, ∇ ·M � 0, and ∇ ·N � 0; then, L is irrotational,
while M and N are solenoidal. As a consequence, an electro-
magnetic field in the absence of sources can be expressed only
by a superposition of M and N, while L must necessarily be
taken into account only when electromagnetic sources are con-
sidered. Finally, we note that the generic solution ψ�r� of the
Helmholtz equation is a set of solutions ψn (eigenvectors) that
will form a vector space basis L2 of square-summable functions
(Hilbert space). A set of vectors Ln, Mn, and Nn is associated
with this set of scalar solutions. If we consider the magnetic
vector potential A to be a solution of the vector Helmholtz
equation, it can be expressed as a linear combination of the
set of vectors Ln, Mn, and Nn:
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A � 1

iω

X�∞

n�0

�anMn � bnNn � cnLn�: (20)

Recalling the relation between the magnetic potential and
the electric field and applying the Maxwell equations and
the properties of Ln, Mn, and Nn, we can write the following
expressions of the electric and magnetic fields:

E �
X�∞

n�0

�anMn � bnNn�, (21)

H � k
iωμ

X�∞

n�0

�anNn � bnMn�: (22)

As we can see, the properties of Ln, Mn, and Nn make the
calculation of the fields extremely simple. Finally, we want to
show another important property of this formalism. In
Cartesian rectangular coordinates, as is well known, the solu-
tion of the Helmholtz scalar equation can be written, assuming
unitary amplitude, as follows:

ψ�r� � eik·r, (23)

where k · r � kxx � kyy � kzz. Then, considering Eq. (17),
L, M, and N can be written as follows [6,8,12]:

L � iψk; M � iψk × â; N � 1

k
ψ�k × a0� × k:

(24)

These expressions allow us to obtain the plane-wave expan-
sion of a generic vector electromagnetic field. In fact, if we
consider the plane-wave expansion of a generic solution of
the wave equation [6,12],

ψ�r� �
Z �∞

−∞

Z �∞

−∞
g�kx , ky�eik·rdkxdky

�
ZZ

g�α, β�eik·rdαdβ, (25)

where α and β are the angles, in spherical coordinates, that the
vector k of the elementary plane wave forms with the coordi-
nate axes, and g�α, β� is the plane-wave angular spectrum of the
function ψ�r�. In order to obtain the plane-wave expansion of
the vectors L, M, and N, we have only to insert Eq. (25) into
Eq. (24), obtaining the following expansions:

L � i
ZZ

g�α, β�k�α, β�eik·rdβdα,

M � i
ZZ

g�α, β�k�α, β� × âeik·rdβdα,

N � 1

k

ZZ
g�α, β��k�α, β� × â� × k�α, β�eik·rdβdα: (26)

As is well known, the plane-wave expansion is an important
tool for the solution of many electromagnetic problems.
However, the vectors L, M, and N allow us to obtain other
kinds of transformation between different coordinate systems.
As an example, in [35] the transformations between the vectors
in circular cylindrical and in spherical coordinate systems are
presented.

As we have seen, any solution of the vector Helmholtz equa-
tion can be written as a linear combination of the three vectors

L, M, and N, once the solution of the scalar differential equa-
tion is known. Such vectors have several useful properties that
make calculations involving the electromagnetic field and the
imposition of boundary conditions very simple. In the follow-
ing sections, we will apply these vector functions in the solution
of two canonical scattering problems.

4. SCATTERING BY A CYLINDRICAL OBJECT:
2D CASE

In this section, we determine the scattered electromagnetic field
by an infinitely long circular cylinder. The incident wave is an
elliptically polarized plane wave at oblique incidence with re-
spect to the cylinder’s axis. The electromagnetic field will be
expressed as a superposition of infinite vector cylindrical har-
monics (or cylindrical vector wave functions), solutions of the
vector Helmholtz equation in cylindrical coordinates. In the
present formulation an infinite cylinder with circular cross sec-
tion and axis coincident with the z-axis, with radius a, charac-
terized by a relative dielectric constant equal to ε2 (wavenumber
k2) is considered. The cylinder is immersed in a free space char-
acterized by a relative permittivity ε1 (wavenumber k1); see
Fig. 1. We consider the medium 1 homogeneous and isotropic,
without any source.

The first step is to determine the scalar function ψ , which is
the solution of the scalar Helmholtz equation in cylindrical
coordinates:

1

ρ

∂
∂r

�
r
∂ψ
∂ρ

�
� 1

ρ2
∂2ψ
∂φ2 � �k2 − k2z �ψ � 0: (27)

The solution of the differential equation can easily be ob-
tained applying the method of separation of variables, giving [6]

ψm�ρ,φ, z� � AeimφZm�kρρ�eikz z , (28)

where A is a complex constant, k2ρ � k2z � k2, with k2ρ �
k2x � k2y , and k2z are the squared transverse and longitudinal
components of the wave vector, respectively. The function
Zm�kρρ� represents the generic Bessel function of the first,
second, third, or fourth kind, i.e., Zm�kρρ� � fJm�kρρ�,
Y m�kρρ�,H �1�

m �kρρ�, H �2�
m �kρρ�}; in particular, the two last

functions are also known as the Hankel function of the first
and second kind, respectively [36]. Inserting Eq. (28) into

Fig. 1. Representation of an obliquely incident plane wave on a
dielectric infinite circular cylinder.
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Eq. (24), and taking as constant unit vector â � ẑ, the follow-
ing expressions for the vector cylindrical harmonics can be
obtained:

Lm�r� � lm�kρρ�eimφeikz z , (29)

Mm�r� � mm�kρρ�eimφeikz z , (30)

Nm�r� � nm�kρρ�eimφeikz z , (31)

where the radial-dependent vectors can be written as follows:

lm�kρρ��
∂Zm�kρρ�

∂ρ
ρ̂	 i

m
ρ
Zm�kρρ�φ̂� ikzZm�kρρ�ẑ, (32)

mm�kρρ� � im
Zm�kρρ�

ρ
ρ̂ − kρ

∂Zm�kρρ�
∂ρ

φ̂, (33)

nm�kρρ� � i
kzkρ
k

∂Zm�kρρ�
∂ρ

ρ̂ −
mkz
k

Zm�kρρ�
ρ

φ̂

� k2ρ
k
Zm�kρρ�ẑ: (34)

It is convenient to write the radial-dependent vectors as a
function of their three components:

lm�kρρ� � lρ�kρρ�ρ̂� lφ�kρρ�φ̂� l z�kρρ�ẑ, (35)

mm�kρρ� � mρ�kρρ�ρ̂� mφ�kρρ�φ̂, (36)

nm�kρρ� � nρ�kρρ�ρ̂� nφ�kρρ�φ̂� nz�kρρ�ẑ: (37)

An elliptically polarized plane wave, incident obliquely to
the cylinder’s axis, can be represented as a linear combination
of two components, with respect to the surface of the cylinder:
a vertical one and a horizontal one [10]. Hence, the incident
electric field can be written as follows:

Ei�r� � �Evi v̂�ϑi,φi� � Ehiĥ�ϑi,φi��eik1·r, (38)

where ϑi is the angle between the z-axis and the wave vector k1,
φi is the angle between the x-axis and the projection of vector
k1 on the �x, y� plane, and ĥ and v̂ are two unit vectors de-
fined as ĥ � ẑ × k̂1ρ and v̂ � k̂1 × ĥ. Here, we are indicating
with k̂1 the normalized wave vector with respect to the wave-
number, k̂1 � k1∕k1, and with k̂1ρ the radial unit vector de-
fined as k̂1ρ � cos φi x̂ � sin φi ŷ. Finally, the quantities Evi
and Ehi are complex constants. As we have seen in Section 3,
the electric field Eq. (38) can be expressed as a superposition
of cylindrical vector harmonics [37,38]:

Ei�r� �
X�∞

m�−∞
�amM�1��r� � bmN�1��r��, (39)

where

am � Ehi

k1ρ
im�1e−imφi bm � −

Evi

k1ρ
ime−imφi , (40)

k1z � k1 cos ϑi k1ρ � k1 sin ϑi : (41)

It is important to emphasize the particular type of harmonic
that has been chosen. In particular, for the incident field, we
have chosen a radial dependence as a Bessel function of the first

kind. This choice can be explained in different manners. First
of all, we can note that the incident field is the field that there
would be if the obstacle was not there; then it must exist in the
origin, and the Bessel function of the first kind is the only one
that is continuous when ρ approaches zero. From another per-
spective, an analogy can be drawn between the four Bessel func-
tions and with the sine and cosine functions. Looking at their
behavior for large values of the argument, the functions of the
first and the second kind are analogous to a cosine and a sine
function, respectively, while the functions of the third and the
fourth kind are analogous to imaginary exponential functions,
progressive and regressive, respectively. As a consequence, it is
natural to associate a plane wave in free space to a Bessel func-
tion of the first kind.

The scattered field (Esc) and the field inside the cylinder
(Ecy) can be expanded in cylindrical vector wave functions,
as well, obtaining

Esc�r� �
X�∞

m�−∞
�cmM�3�

m �r� � dmN
�3�
m �r��, (42)

Ecy�r� �
X�∞

m�−∞
�emM�1�

m �r� � f mN
�1�
m �r��: (43)

Again, the internal field includes the Bessel function of the
first kind, because it must be continuous in the origin, while
the scattered field includes the Bessel function of the third kind
because being the field emerging from the cylinder, it is natural
to consider it as a progressive wave, instead of a regressive one.
The fields (42) and (43) are unknown. The expansion in vector
harmonics makes the only unknowns of the problem the co-
efficients of the expansions: cm, dm, em, and f m.

To solve the scattering problem, we can impose the boun-
dary conditions on the cylinder’s surface determining the un-
knowns of the problem. The boundary conditions consist in
the continuity of the tangential components of the electric
and magnetic fields on the cylinder’s surface, and they can
be expressed as follows:

�Ei � Esc − Ecy� × ρ̂ � 0 for ρ � a, (44)

�∇ × �Ei � Esc − Ecy�� × ρ̂ � 0 for ρ � a: (45)

From Eqs. (33) and (34), considering Eqs. (32)–(37) and
Eqs. (17) and (19), the following equalities can be proved:

mm�kρρ� × ρ̂ � mφm�kρρ�ẑ, (46)

nm�kρρ� × ρ̂ � nφm�kρρ�ẑ − nzm�kρρ�φ̂, (47)

�∇ ×mm�kρρ�� × ρ̂ � knφm�kρρ�ẑ − knzm�kρρ�φ̂, (48)

�∇ × nm�kρρ�� × ρ̂ � −kmφm�kρρ�ẑ: (49)

Inserting these expressions into Eqs. (44) and (45), by ex-
ploiting the orthogonality properties of the exponential func-
tions, and by noting that the z dependence is common to all the
factors, and hence it can be elided, we obtain, for each value of
the index m, the following four scalar equations:
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8>>>>>>>>>>><
>>>>>>>>>>>:

cmm
�3�
φm�k1ρa� � dmn

�3�
φm�k1ρa� − emm�1�

φm�k2ρa�−
f mn

�1�
φm�k2ρa� � −amm

�1�
φm�k1ρa� − bmn�1�φm�k1ρa�

cmk1n
�3�
φm�k1ρa� − dmk1m

�3�
φm�k1ρa� − emk2n�1�φm�k2ρa��

f mk2m
�1�
φm�k2ρa� � −amk1n

�1�
φm�k1ρa� � bmk1m

�1�
φm�k1ρa�

dmn
�3�
zm�k1ρa� − f mn

�1�
zm�k2ρa� � −bmn

�1�
zm�k1ρa�

cmk1m
�3�
zm�k1ρa� − emk2m�1�

zm�k2ρa� � −amk1m
�1�
zm�k1ρa�:

The solution of this linear system of equations gives the co-
efficients of the expansions (42) and (43). We avoid giving here
the explicit expressions of the coefficients because they cannot
be written in a compact form, but they can be found in many
textbooks, such as [1].

A compact expression of the coefficients can be obtained in
the simple case of a perfect electric conductor (PEC) cylinder.
In this particular situation, the internal field to the cylinder is
not present, and the boundary conditions reduce to

�Ei � Esc� × ρ̂ � 0 for ρ � a: (50)

In this case, solving the linear system, simple expressions of
the two unknowns can be obtained:8><
>:

cm � −am
m�1�

φm�k1ρa�
m�3�

φm�k1ρa�
− bm

h
n�1�φm�k1ρa�
m�3�

φm�k1ρa�
−

n�1�zm �k1ρa�n�3�φm�k1ρa�
n�3�zm �k1ρa�m�3�

φm�k1ρa�

i

dm � −bm
n�1�zm �k1ρa�
n�3�zm �k1ρa�

:
(51)

If now we consider the simplest case of normal incidence
(ϑi � π∕2,φi � 0), we see, from Eqs. (34) and (41), that
nφ � 0; hence,

8<
:

cm � −am
M �1�

φm�k1ρa�
M �3�

φm�k1ρa�

dm � −bm
N �1�

zm �k1ρa�
N �3�

zm �k1ρa�
:

(52)

Making explicit the dependence on the Bessel functions, the
following well-known expressions can be obtained:8<

:
cm � −am

_Jm�k1ρa�
_H �1�
m �k1ρa�

dm � −bm
Jm�k1ρa�
H �1�

m �k1ρa�
:

(53)

These are the scattering coefficients in the case of normal
incidence on a PEC cylinder, very well known in the literature
[39]. In particular, we consider, instead of an elliptically polar-
ized wave, two linearly polarized waves, one in H (TE) polari-
zation, and the other one in E (TM) polarization, i.e., with
either the magnetic or the electric field directed along the
cylinder’s axis. In the former case, bm � 0, and the only
non-zero scattering coefficient is cm, while in the latter case,
am � 0, and the only non-zero scattering coefficient is dm.

Now, we can compute the cross sections of a cylinder as a
function of the scattering coefficients. Because of the two-
dimensional nature of the cylinder, we must change the
definition of the cross section, computing it not on a sphere
of arbitrary radius, but on a circumference, on a plane
perpendicular to the cylinder’s axis, of arbitrary radius. For this
reason, this quantity is often called scattering width instead of
cross section [40]. The Poynting vectors for the incident and

scattered waves can be computed and integrated from their
analytical expressions. We omit the analytical procedure here
for the sake of brevity, but, thanks to an important property
of the Bessel functions reported in Appendix A, the scattering
cross section takes the following simple form [41]:

Cs �
4π

k1

X�∞

m�1

����� cmam
����
2

�
���� dm

bm

����
2
�
: (54)

Similarly, the extinction cross section is

Ce �
4π

k1

X�∞

m�1

Re

����� cmam
����
2

�
���� dm

bm

����
2
�
: (55)

In Fig. 2, the scattering cross section for a PEC cylinder with
radius 0.25 m is shown; the plane wave, at normal incidence, is
linearly TM-polarized, in the range of frequencies from
0.1 MHz to 8.0 GHz. The cross section is computed both

Fig. 2. Scattering cross section of a PEC cylinder with radius
0.25 m, when the plane wave at normal incidence is linearly TM-
polarized in the range of frequencies from 0.1 MHz to 8.0 GHz. The
cross section is computed (solid line) implementing on MATLAB the
formula (54) and (dashed line) simulating the scattering problem on a
software based on the finite-element method.

Fig. 3. Scattering cross section of a PEC cylinder with radius
0.25 m, when the plane wave at normal incidence is linearly TE-
polarized in the range of frequencies from 0.1 MHz to 8.0 GHz.
The cross section is computed (solid line) implementing on MATLAB
the formula (54) and (dashed line) simulating the scattering problem
on a software based on the finite-element method.
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implementing Eq. (54) on MATLAB and computing the
scattering scenario on a software based on the finite-element
method. In Fig. 3, the scattering cross section is shown, in the
same scenario of Fig. 2, but with a TE-polarized incident wave.

5. SCATTERING BY A SPHERICAL OBJECT:
3D CASE

In this section, we address the electromagnetic scattering by a
sphere. The first step is to determine the expressions of the
spherical harmonics (or spherical vector wave functions)
Mmn�r� and Nmn�r�. The scalar Helmholtz equation in spheri-
cal coordinates can be written as follows:

1

r2
∂
∂r

�
r2
∂ψ
∂r

�
� 1

r2 sin ϑ

∂
∂ϑ

�
sin ϑ

∂ψ
∂ϑ

�
�

1

r2 sin2 ϑ
∂2ψ
∂φ2 � k2ψ � 0: (56)

The solution of this differential equation is well known in
the literature [6]:

ψ�r� � Azn�kr�Pm
n �cos ϑ�eimφ, (57)

where A is a complex constant; zn�kr� represents a spherical
Bessel function of the first, second, third, or fourth kind,
i.e., zn�kρρ� � fjn�kρρ�, yn�kρρ�, h�1�n �kρρ�, h�2�n �kρρ�g [36];
and Pm

n �cos ϑ� represents the associated Legendre function
[36]. At this point, we should apply the definition of the har-
monics in Eq. (17) in order to obtain the expressions of the
spherical vector wave functions. However, unlike the case of
cylindrical coordinates, it is not easy to recognize a pilot vector
â to insert into such definitions. In fact, the three coordinate
unit vectors r̂, ϑ̂, and φ̂ are not constant. This difficulty can be
avoided by considering, instead of the constant unit vector â,
the vector r r̂. Most often the choice of pilot vector is dictated
by whatever symmetry may exist in the problem. However, in
other cases, the choice of pilot vector is somewhat less obvious.
It can be proved that the vector harmonic [6,8,10],

Mmn�r� � ∇ × �rr̂ψmn�r��, (58)

is a solution of the vector Helmholtz equation, and then this
definition can be implemented instead of the definition given
in Eq. (17).

Thanks to the new definition ofMmn, in Eq. (58), and with
the standard definition of Nmn, in Eq. (17), we are able to
calculate the following expressions:

Mmn�r� �
im
sin ϑ

zn�kr�Pm
n �cos ϑ�eimφϑ̂

− zn�kr�
∂Pm

n �cos ϑ�
∂ϑ

eimφφ̂, (59)

Nmn�r� �
zn�kr�
kr

n�n� 1�Pm
n �cos ϑ�eimφr̂

� 1

kr
∂�rzn�kr��

∂r
∂Pm

n �cos ϑ�
∂ϑ

eimφϑ̂

� 1

kr
∂�rzn�kr��

∂r
im
sin ϑ

Pm
n �cos ϑ�eimφφ̂: (60)

Expressions (59) and (60) can be considerably simplified by
introducing two scalar functions, widespread in the literature

and called scalar tesseral functions, related to the associated
Legendre function [6,8,23,42,43]:

πmn�ϑ� � m
Pm
n �cos ϑ�
sin ϑ

, (61)

τmn�ϑ� �
dPm

n �cos ϑ�
dϑ

: (62)

Inserting Eqs. (61) and (62) into Eqs. (59) and (60), the
following expressions can be obtained:

Mmn � zn�kr��iπmn�cos ϑ�ϑ̂ − τmn�cos ϑ�φ̂�eimφ, (63)

Nmn �
�
n�n� 1� zn�kr�

r
Pm
n �cos ϑ�r̂�

1

kr
∂�rzn�kr��

∂r
�τmn�cos ϑ�ϑ̂� iπmn�cos ϑ�φ̂�

�
eimφ: (64)

At this point, three important vector functions can be
introduced:

mmn�ϑ,φ� � eimφ�iπmn�cos ϑ�ϑ̂ − τmn�cos ϑ�φ̂�, (65)

nmn�ϑ,φ� � eimφ�τmn�cos ϑ�ϑ̂� iπmn�cos ϑ�φ̂�, (66)

pmn�ϑ,φ� � eimφn�n� 1�Pm
n �cos ϑ�r̂: (67)

These functions have several important properties presented
in Appendix A, including the orthogonality relations. They are
known in the literature as vector tesseral (or sectorial) harmon-
ics and they depend only on the angular variables. These har-
monics are so called because the curves on which they vanish
are the parallels and the meridians of a sphere of arbitrary ra-
dius, splitting the surface of the sphere into quadrangles [44].
As a consequence, the vector tesseral harmonics are indepen-
dent of the wave type: stationary, progressive, or regressive,
i.e., they are independent of the particular spherical Bessel
function involved in the vector harmonics.

By comparing Eqs. (63), (64), and (65)–(67), the spherical
vector wave functions assume their final and simpler
expressions:

Mmn�r, ϑ,φ� � zn�r�mmn�ϑ,φ�, (68)

Nmn�r, ϑ,φ� �
zn�r�
r

pmn�ϑ,φ� �
1

r
∂�rzn�r��

∂r
nmn�ϑ,φ�:

(69)

At this point, all the functions needed to solve the scattering
problem have been introduced and the fields can be expressed
as in Eq. (21). In the three-dimensional case, we prefer to start
the analysis with the simplest case of a PEC sphere, with radius
a, placed in the origin of a reference frame and immersed in a
linear, homogeneous, and isotropic medium with electric
relative permittivity ε1, with wavenumber k1; see Fig. 4. We
consider an elliptically polarized plane wave incident on the
sphere [16,23,45]:

Ei�r� � epoleiki ·r � �Eϑiϑ̂i � Eφiφ̂i�eiki ·r, (70)

where epol is the polarization vector of the plane wave. The
vectors ϑ̂i and φ̂i are the unit vectors of the local spherical
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coordinate frame with respect to the wave vector of the plane
wave:

ki � k1k̂i � k1�sin ϑi cos φi x̂ � sin ϑi sin φi ŷ � cos ϑi ẑ�,
(71)

φ̂i �
ẑ × k̂i
jẑ × k̂ij

� −sin φi x̂ � cos φi ŷ, (72)

ϑ̂i � φ̂ × k̂i � cos ϑi cos φi x̂ � cos ϑi sin φi ŷ − sin ϑi ẑ:
(73)

The azimuthal angle ϑi is the angle between the wave vector
and the z-axis, while the equatorial angle φi is the angle be-
tween the projection of the wave vector on the �x, y� plane
and the x-axis. The incident plane wave can be expanded in
spherical harmonics as follows:

Ei�r� �
X�∞

n�1

Xn
m�−n

�amnM�1�
mn�r� � bmnN

�1�
mn�r��, (74)

with [45]

amn � �−1�min 2n� 1

n�n� 1�
�n − m�!
�n� m�! epol ·m

�
mn�ϑi,φi�, (75)

bmn � �−1�min−1 2n� 1

n�n� 1�
�n − m�!
�n� m�! epol · n

�
mn�ϑi ,φi�: (76)

As in the cylindrical case the superscript (1) in the vector
harmonics indicates that the radial dependence follows the
spherical Bessel function of the first kind, typical for stationary
waves. The scattered field can be expanded in spherical vector
wave functions as well:

Es�r� �
X�∞

n�1

Xn
m�−n

�cmnM�3�
mn�r� � dmnN

�3�
mn�r��: (77)

The superscript (3) in the vector harmonics indicates that
the radial dependence follows the spherical Bessel function
of the third kind, i.e., the spherical Hankel function of the first
type, typical for progressive waves. The coefficients cmn and dmn
in Eq. (77) are the unknowns of the problem and they would be

determined applying the boundary conditions, i.e., the cancel-
lation of the tangential components of the electric fields on the
sphere’s surface:

�Ei � Es� × r̂ � 0 for r � a: (78)

Applying Eqs. (65)–(67), the dependence on the coordi-
nates in Eqs. (74)–(77) can be made explicit:

Ei�r� �
X�∞

n�1

Xn
m�−n

h
amnmmn�ϑ,φ�jn�k1r�

� bmnnmn�ϑ,φ�_jn�k1r�� bmnpmn�ϑ,φ�
jn�k1r�
k1r

�
, (79)

Es�r� �
X�∞

n�1

Xn
m�−n

�
cmnmmn�ϑ,φ�h�1�n �k1r�

� dmnnmn�ϑ,φ�_h�1�n �k1r� � dmnpmn�ϑ,φ�
h�1�n �k1r�

k1r

�
,

(80)

where

_zn�kr� �
1

kr
∂�xzn�kx��

∂x

����
x�r

(81)

having indicated with zn a generic Bessel function: jn or yn
or h�1�, �2�n . From Eqs. (65)–(67), the following relations can
be deduced:

mmn�ϑ,φ� × r̂ � −nmn�ϑ,φ�, (82)

nmn�ϑ,φ� × r̂ � mmn�ϑ,φ�, (83)

pmn�ϑ,φ� × r̂ � 0: (84)

Hence, substituting Eqs. (74)–(77) in Eq. (78), and apply-
ing Eqs. (82)–(84), the following equation can be obtained:

X�∞

n�1

Xn
m�−n

fmmn�ϑ,φ��bmn_jn�k1a� � dmn
_h�1�n �k1a��

− nmn�ϑ,φ��amnjn�k1a� � cmnh
�1�
n �k1a��g � 0: (85)

We can apply now the orthogonality properties of the vector
sectorial harmonics. Two scalar equations can be obtained: the
former by dot multiplying Eq. (85) times m�

m 0n 0 sin ϑ and in-
tegrating in ϑ and φ between �0, π� and �0; 2π�, respectively, and
the latter by dot multiplying times n�m 0n 0 sin ϑ and integrating
again in ϑ and φ, in the same intervals. As a result, the following
equations can be derived:�

amnjn�k1a� � cmnh
�1�
n �k1a� � 0

bmn_jn�k1a� � dmn
_h�1�n �k1a� � 0

, (86)

obtaining two simple expressions for the scattering coefficients:8<
:

cmn � −amn
jn�k1a�
h�1�n �k1a�

dmn � −bmn
_jn�k1a�
_h�1�n �k1a�

:
(87)

These coefficients are known as Mie scattering coefficients
for a PEC sphere. It is interesting to emphasize how the proper-
ties of the vector tesseral functions make simple the imposition
of the boundary conditions.

Fig. 4. Representation of a plane wave incident on a sphere.
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Let us now consider the scattering by a dielectric sphere with
electric permittivity ε2 and wavenumber k2. Similarly to the
case of the dielectric cylinder, we have to consider an internal
field to the sphere:

Ep�r� �
X�∞

n�1

Xn
m�−n

�emnM�1�
mn�r� � f mnN

�1�
mn�r��: (88)

As in the case of the scattering by a dielectric cylinder, the
superscript of the spherical harmonics is (1), indicating a radial
dependence connected to the spherical Bessel function of the
first kind. In this case, the boundary conditions can be written
as follows:

�Ei � Es − Ep� × r̂ � 0 for r � a, (89)

�∇ × �Ei � Es − Ep�� × r̂ � 0 for r � a: (90)

Applying the properties of the harmonics given in Eqs. (17)
and (19), and recalling the properties of the vector tesseral
functions (82)–(84), the two vector equations can be written
as follows:

X�∞

n�1

Xn
m�−n

fmmn�ϑ,φ��bmn_jn�k1a� � dmn
_h�1�n �k1a�

− f mn
_jn�k2a�� − nmn�ϑ,φ��amnjn�k1a�

� cmnh
�1�
n �k1a� − emnjn�k2a��g � 0, (91)

X�∞

n�1

Xn
m�−n

fmmn�ϑ,φ��k1amn_jn�k1a� � k1cmn _h
�1�
n �k1a�

− k2emn_jn�k2a�� − nmn�ϑ,φ��k1bmnjn�k1a�
� k1dmnh

�1�
n �k1a� − k2f mnjn�k2a��g � 0: (92)

By a dot product of Eqs. (91) and (92) times m�
m 0n 0 sin ϑ

and a double integration in ϑ and φ between �0, π� and �0; 2π�,
respectively, a first set of two scalar equations can be obtained,
whereas, by a dot multiplication of Eqs. (91) and (92) times
n�m 0n 0 sin ϑ and a double integration in ϑ and φ between
�0, π� and �0; 2π�, respectively, a second set of two scalar equa-
tions can be obtained. As a result, the following system of equa-
tions can be computed:8>>>>><

>>>>>:

amnjn�k1a� � cmnh
�1�
n �k1a� − emnjn�k2a� � 0

bmn_jn�k1a� � dmn
_h�1�n �k1a� − f mn

_jn�k2a� � 0

k1amn_jn�k1a� � k1cmn _h
�1�
n �k1a� − k2emn_jn�k2a� � 0

k1bmnjn�k1a� � k1dmnh
�1�
n �k1a� − k2f mnjn�k2a� � 0:

(93)

Introducing the dielectric contrast χ � k2
k1

and solving the
linear system of equations, we get

cmn � −amn
_jn�k1a�jn�k2a� − χjn�k1a�_jn�k2a�

_h�1�n �k1a�jn�k2a� − χh�1�n �k1a�_jn�k2a�
, (94)

dmn � −bmn
jn�k1a�_jn�k2a� − χ_jn�k1a�jn�k2a�

h�1�n �k1a�_jn�k2a� − χ _h�1�n �k1a�jn�k2a�
, (95)

which are the most general expressions of the Mie scattering
coefficients for the scattering by a dielectric sphere.

Now, we can compute the cross sections of a sphere as a
function of the scattering coefficients. Computing the scattered
power as in Eq. (7), we must cross multiply the electric and
magnetic fields. On physical grounds, we know that the scat-
tered power is independent of the polarization; then we can
suppose that the incident wave is linearly polarized along x,
i.e., ϑi � 0 and φi � π∕2. In this case, as we can see from
Eqs. (75) and (76), only the terms with m � 1 are different
from zero; see Appendix A. At this point, thanks to the orthog-
onality properties of the vector tesseral functions and to an im-
portant property of the spherical Bessel functions reported in
Appendix A, the scattering cross section takes the following
simple form [8]:

Cs �
2π

k21

X�∞

n�1

�2n� 1�
����� c1na1n

����
2

�
���� d 1n

b1n

����
2
�
: (96)

Fig. 5. Scattering cross section of a PEC sphere with radius 0.25 m
for an incident plane wave in the range of frequencies from 0.1 MHz
to 10.0 GHz. The cross section is computed (solid line) implementing
on MATLAB the formula (96) and (dashed line) simulating the scat-
tering problem on a software based on the finite-element method. As
we can see, the asymptotic limit of the graph is 2, meaning that in the
large particle limit, twice as much energy is removed as expected based
on the geometric cross section. This is contrary to intuition and is
referred to as the extinction paradox.

Fig. 6. Scattering cross section of a dielectric sphere with radius
0.25 m and relative permittivity ε2 � 4 for an incident plane wave
in the range of frequencies from 0.1 MHz to 10.0 GHz.
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Similarly, the extinction cross section is

Ce �
2π

k21

X�∞

n�1

�2n� 1�Re
����� c1na1n

����
2

�
���� d 1n

b1n

����
2
�
: (97)

In Fig. 5, the scattering cross section for a PEC sphere with
radius 0.25 m is shown, in the range of frequencies from
0.1 MHz to 10.0 GHz, computed by implementing Eq. (96)
on MATLAB and by an electromagnetic simulation obtained
from a software implementing a finite-element method.

In Fig. 6, the scattering cross section of a dielectric sphere
with radius 0.25 m and relative permittivity ε2 � 4 is shown,
in the range of frequencies from 0.1 MHz to 10.0 GHz, com-
puted by a software implementing a finite-element method.

6. CONCLUSIONS

In this first part of the tutorial, the basic theoretical formulation to
approach any scattering problem has been presented. The con-
cept of cross section has been defined and its relation with the
electromagnetic power has been clarified. The vector harmonics
have been defined, their physical meaning has been pointed out,
and their application to the representation of the electromagnetic
field in different reference frames has been presented. The solu-
tions to the two canonical problems of scattering by an infinitely
long circular cylinder and by a sphere have been illustrated.
The analytical expressions of all the involved fields have been
given and the expressions of the scattering coefficients have
been presented. Finally, the scattering and extinction cross sec-
tions for both the cylinder and the sphere have been shown as
a function of the scattering coefficients. Moreover, some compar-
isons between such expressions and electromagnetic full-wave
simulations have been reported. In the following part of the tuto-
rial, some practical aspects of the scattering problems will be
faced, and the theoretical formulation of more complicated sce-
narios will be presented. In particular, we will compare the
scattering by N spheres and N cylinders. By doing this, we can
model any three-dimensional and two-dimensional geometric
shape with a cluster of such canonical shapes.

APPENDIX A

1. Properties of the Bessel Functions

The Wronskian of the Bessel functions of the first and second
kind assumes the following expression [36]:

Jn�z�Y 0
n�z� − J 0n�z�Y n�z� �

2

πz
: (A1)

2. Properties of Tesseral Vector Functions

Orthogonality properties of the vector tesseral functions
[6,46,47] are as follows:Z

2π

0

Z
π

0

mmn · n�m 0n 0 sin ϑdϑdφ � 0, (A2)

Z
2π

0

Z
π

0

pmn ·m
�
m 0n 0 sin ϑdϑdφ � 0, (A3)

Z
2π

0

Z
π

0

pmn · n
�
m 0n 0 sin ϑdϑdφ � 0, (A4)

Z
2π

0

Z
π

0

mmn ·m�
m 0n 0 sin ϑdϑdφ

� 4π
n�n� 1�
2n� 1

�n� m�!
�n − m�! δmm 0δnn 0 , (A5)

Z
2π

0

Z
π

0

nmn · n�m 0n 0 sin ϑdϑdφ

� 4π
n�n� 1�
2n� 1

�n� m�!
�n − m�! δmm 0δnn 0 , (A6)

Z
2π

0

Z
π

0

pmn · p
�
m 0n 0 sin ϑdϑdφ

� 4π
�n�n� 1��2
2n� 1

�n� m�!
�n − m�! δmm 0δnn 0 : (A7)

The vectorsmmn�0,φ� and nmn�0,φ� are zero for any m ≠ 1
and φ. In fact,

lim
ϑ→0

πmn�cos ϑ� � lim
ϑ→0

m
Pm
n �cos ϑ�
sin ϑ

: (A8)

The limit is zero when m � 0. For m ≠ 0, we recall that

Pm
n �cos ϑ� � �−1�m sinm ϑ

dmPn�cos ϑ�
d�cos ϑ�m : (A9)

For m � 1 the sine function is simplified, while for m > 1,
it remains a multiplication by the sine function that is zero
when ϑ → 0. Now, we can recall the following relations [36]:

lim
ϑ→0

dmPn�cos ϑ�
d�cos ϑ�m � lim

x→1

dmPn�x�
dxm

�

1 · 3 ·… · �2m − 1�lim
x→1

C �m−12�
n−m �x�

� �n� m�!
�n − m�! , (A10)

which is a quantity always different from zero. Here, the func-
tion C �α�

n �x� is the Gegenbauer polynomial.
On the other hand,

lim
ϑ→0

τmn�cos ϑ� � lim
ϑ→0

dPm
n �cos ϑ�
dϑ

: (A11)

By the definition of the associate Legendre function in
Eq. (A9), when m � 0, we obtain

lim
ϑ→0

τmn�cos ϑ� � lim
ϑ→0

− sin ϑ
dPn�cos ϑ�
d�cos ϑ� � 0, (A12)

because the sine is zero and Eq. (A10) holds. When m � 1,
we get

lim
ϑ→0

τmn�cos ϑ� � −lim
ϑ→0

�
cos ϑ

dPn�cos ϑ�
d�cos ϑ�

− sin2 ϑ
d2Pn�cos ϑ�
d�cos ϑ�2

�
� n�n� 1�: (A13)

When m > 1, taking into account Eq. (A10), we obtain

lim
ϑ→0

τmn�cos ϑ� � �−1�m lim
ϑ→0

�
m sinm−1 ϑ cos ϑ

dmPn�cos ϑ�
d�cos ϑ�m

− sinm�1ϑ
dm�1Pn�cos ϑ�
d�cos ϑ�m�1

�
� 0: (A14)
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As a consequence, the following equalities hold:

lim
ϑ→0

πmn�cos ϑ� � lim
ϑ→0

τmn�cos ϑ� � n�n� 1�δ1m: (A15)

3. Properties of the Spherical Bessel Functions

The Wronskian of the spherical Bessel functions of the first and
second kind assumes the following expression [36]:

jn�z�_yn�z� − _jn�z�yn�z� �
1

z2
: (A16)
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