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Abstract—Recent innovations in computer science and infor-
matics are driving the integration of AI into modern healthcare,
extending its applications to medical sectors previously reliant
on human expertise. Creating robust and clinically relevant AI
models requires extensive data, which can be challenging to
gather, particularly when dealing with rare diseases. Data sharing
among healthcare entities can address this issue, but legal,
privacy, and data ownership concerns hinder such approach.

To foster data sharing, in this paper we propose the GEmelli
GeNerator – Real World Data (GEN-RWD) Sandbox, that
provides a secure environment for data analysis without compro-
mising sensitive medical data. This modular architecture serves
as a research platform for various stakeholders, including clinical
researchers, policymakers, and pharmaceutical companies. Au-
thorized users submit research requests through the GUI, which
are processed within the hospital, and the results can be accessed
without revealing the original clinical data source. In the context
of this paper we present GEN-RWD Sandbox’s architecture
module in charge of executing the analysis requests, the Processor.
Processor’s code is openly shared as the GSProcessor R package
available at https://gitlab.com/benedetta.gottardelli/GSProcessor.

Index Terms—Privacy-preserving data sharing, Distributed
analytics, Open source, GEN-RWD Sandbox, GSProcessor.

I. INTRODUCTION

Recent advancements in computer science and informatics

are leading to the integration of artificial intelligence in

modern healthcare. The use of artificial intelligence is rapidly

expanding to many medical sectors previously considered

to be reserved to human expertise [1]. In order to create

robust and clinically relevant AI models, it is necessary to

leverage on large amount of data; this becomes challenging,

especially when exploring rare diseases. Sharing clinical data

between owners could ease these obstacles, but this is not

an actionable road in healthcare due to legal aspects, privacy

and data ownership issues. Consequently, multiple methods

and systems have been introduced to share data while en-

suring the full compliance with privacy regulations and legal

requirements. Well-known examples include Distributed data

analysis, Secure multi-party computation [2] and Homomor-

phic Encryption. In recent years, Distributed data analytics has

gained popularity due to its capability to conduct data analysis

in a distributed fashion, enabling multi-party cooperation in

collaborative research effort without requiring data relocation

[3]. In specific scenarios, distributed learning is preferred over

computationally intensive methods like the latters [4], and

it has gained popularity as it allows to train high-quality

global models through a central server and decentralized data.

Distributed data analysis requires trusted infrastructures and

frameworks that allow the performance of analysis requests to

be coordinated without the data being shared. In this paper

we discuss the GEmelli GeNerator – Real World Data (GEN-

RWD) Sandbox, a modular architecture that provides a secure

environment where safe interactions with data can be estab-

lished [5]. A sandbox is a controlled and safe environment

to experiment with data analysis without risks of leakage of

sensitive medical data. The architecture is designed to serve

as a research experimentation platform for medical research

stakeholders, from non-technicians to programmers, such as

clinical researchers, policy makers and pharmaceuticals in a
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distributed fashion [6]. GEN-RWD Sandbox is designed as a

3-module architecture: Graphical User Interface (GUI), Proxy,

and Processor. From a high-level perspective, authorized users

can submit their research requests through a GUI, which

are then processed within the hospital. Browsing the GUI,

users can select both a datamart and an algorithm to perform

the desired analysis. Once the analysis is performed, users

can view and download the resulting report, from which it

is not possible to trace back the original clinical data. The

Processor is the central component of the platform, and it is a

flexible task executor that performs the analysis by means of

R and Python scripts, or Docker images. The Proxy module

manages the interaction between the GUI and the Processor,

and its tasks are threefold: to check an monitor the GUI for

new tasks, to dispatch the logs produced by the Processor

to the GUI, and to forward the output results to the GUI.

To ensure data ownership and privacy, the Proxy and the

Processor are located on the same computer network within the

hospital premises, and the communication between these two

modules is allowed asynchronously through the filesystem.

The Processor module can run on an isolated system governed

by the hospital’s internal security policies. The only module

located outside the hospital walls is the GUI, and the Proxy

communicates with the GUI through pool requests via HTTP.

In this paper we focus on the Processor in detail, exploring its

main functionalities and functions, and a sample analysis on

real healthcare data.

II. PROCESSOR GENERAL DESCRIPTION

The Processor module is the cornerstone component of the

GEN-RWD Sandbox, responsible for executing tasks accord-

ing to a black box model that relies on a minimal core structure

(Figure 1). This structure comprises a token, an input folder,

the processing unit, and an output folder.

The Processor is associated with one or more input folders

and initiates the execution of a task when a token is inserted

in one of them (Figure 1A). While processed, the token

is removed from the input folder thus allowing any other

accumulated tokens to be evaded when the processing is

finished. Upon completion of the computation, the Processor

generates an output token, which is deposited into the output

folder (Figure 1B). Execution failures are handled by the

Processor modules and all the related logs are forwarded

to upper layers. This process is the core foundation of the

infrastructure and is essential to the successful execution of

any task or computation within the system.

A. Token

The Processor module is an automatic task executor. A task

request in our framework is represented by a token which is

designed to be a collection of zipped files. The token includes

details of the algorithm to be used, such as hyperparameters

or the script file, and the data to be processed. A token must

contain at least one XML describing the task to run and the

contents of the token itself, referred to as XML Descriptor.

Additional data or processing files that would be needed for

the task, can be included in the token in order for them to be

processed.

XML Descriptor. This is an XML file that lists the content

of the token and provides instructions on how the token is

to be processed. Inside the token is the XML Descriptor file

is called ”description.xml” (all lowercase). It consists of the

following sections:

• XMLheader: where the date of creation of the token, the

user, the nature of the token, how it is to be processed,

etc. is declared.

• XMLobj: where the list of the elements zipped as part of

the token is provided, indicating the nature and intended

use of such elements.

In the XMLheader section, a Token instance Unique Iden-

tifier (tokenIstanceUID tag), a Run Unique Identifier (runUID

tag) and a creation datetime (creationDateTime tag) must be

specified. The tokenInstanceUID uniquely identifies the token,

while the runID uniquely identifies the token run that was

launched.

XMLheader section example

<XMLheader>
<tokenInstanceUID>421</tokenInstanceUID>
<runUID>0</runUID>
<creationDateTime>10/31/2023, 12:04:50
</creationDateTime>

</XMLheader>

Within an XML Descriptor there could be multiple XM-
Lobj sections. An XMLobj could be of different types, i.e.

dataSource, script, run or other, according to the described

object.

A dataSource XMLobject, describing data to be used by

the process, must contain a dataSourceType tag where a data

source is specified, a dataSourceFileName tag where the data

identifier within the source is specified and an alias for the

dataset itself (alias tag).

dataSource XMLobject section example

<XMLobj objType=’dataSource’>
<dataSourceType>csv</dataSourceType>
<dataSourceFileName>data.csv</dataSourceFileName>
<alias>data01</alias>

</XMLobj>

A script XMLobject includes details of the script to be

executed, and where to find it. As the processor can run both

attached script files and docker images, in the scriptType tag it

is mandatory to specify either ”docker” or ”script”. If the script

type is ”docker” then a dockerImageName tag must be filled

with the name of the docker image to be run. If the script type

is ”script” then a corresponding programming language, i.e.

”R” or ”Python”, must be specified in scriptProgrammingLan-
guage tag. Additionally, the scriptFileName tag must provide

the script file name. For both script types, an object alias must

be provided in the dedicated alias tag.

script XMLobject section example for Docker images
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Fig. 1. The fundamental architecture of the Processor module. The Processor monitors one or more input folders, and upon the post of a token into an input
folder, it processes and executes the script contained within the token (A). The Processor then reports the result of the execution to the designated output
folder in the form of a new token (B).

<XMLobj objType=’script’>
<scriptType>docker</scriptType>
<dockerImageName>clustering</dockerImageName>
<alias>clustering</alias>

</XMLobj>

script XMLobject section example for script files

<XMLobj objType=’script’>
<alias>clustering</alias>
<scriptType>script</scriptType>
<scriptProgrammingLanguage>Python
</scriptProgrammingLanguage>
<scriptFileName>clustering.py</scriptFileName>

</XMLobj>

Another XMLobj can be used to describe any additional

resources stored in the token. In the event, for instance, that a

python script is placed in the token, the package file required

for execution (”requirements.txt”) can also be provided. When

such a file is provided, the processor creates an ad hoc python

environment for execution of the script, otherwise the script

is executed in the general environment of the machine where

the processor is installed.

other XMLobject section example

<XMLobj objType=’other’>
<alias>requirementFile</alias>
<filename>requirements.txt</filename>

</XMLobj>

A run XMLobj describes the nature of the association between

the script and the data source(s) and, in addition, provides

instructions on how processing should take place for that

specific run.

run XMLobject section example

<XMLobj objType=’run’>
<alias>01</alias>
<scriptAlias>clustering</scriptAlias>
<otherAlias>requirementFile</otherAlias>
<dataSourceAlias>data01</dataSourceAlias>

</XMLobj>

B. Processing unit

The Processing unit of the Processor module is an open

source R package, named GEN-RWD Sandbox - Processor

(GSProcessor), available as GitLab repository at https://gitlab.

com/benedetta.gottardelli/GSProcessor.git. The R package is

compatible with R (v4.0.4) and Linux OS.

The package consists of a single main function, ’bckGnd-

Processor()’, which launches, in the background on the host

machine, an instance of a Processor module. The input argu-

ments of this function comprise paths of Processor’s folders

(Figure 2) and execution parameters. The detailed meanings

of these function options are as follows.
input_folder.dir: A string containing a physical lo-

cation on the file-system accessible by the GSProcessor. A

GSProcessor instance continuously monitors its input folder

and, when a token is deposited, it takes the token, opens it,

and processes it in accordance with its contents. In doing so,

it removes the token from the input folder.
output_folder.dir: A string containing a physical

location on the file-system accessible by the GSProcessor. It

serves as the destination folder where the processor stores the

computation results in the form of tokens. As the result of the

computation itself is considered a token, it contains an XML

file for its identification, along with other specified output files.
tmp_folder.dir: A string containing a physical lo-

cation on the file-system accessible by the GSProcessor. It

indicates a local folder that the processor uses for temporary

storage of files. It is typically cleaned before processing a new

token or when it has finished processing one.
sync_folder.dir: A string containing a physical lo-

cation on the file-system accessible by the GSProcessor. It

is a local folder that the processor uses for storing logs and

handling parallel execution of multiple tokens.
override.repeated.tUID: Boolean value. If TRUE if

two processes have the same unique ID, temporary files and

logs are overwritten. By default it is set to FALSE.
stopAfterExecution: Integer number. Number of pro-

cesses handled after which the GSProcessor instance stops.

By default it is set to Inf. This parameter is useful when

you don’t want the GSProcessor to run infinitely but to run a

specific number of processes and then to be stopped.

Fig. 2. Extended architecture of a GG-RWD Sandbox Processor (GSProces-
sor) instance.

The Processor module, encapsulated in the GSProcessor R

package, is designed as a flexible task executor. It is indeed
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able to run not only R and Python scripts attached to the

input token but also Docker images. Moreover, the Processor

is able to process tasks in parallel launching, through system

calls, each execution in background and keeping track to each

one’s log.

C. GEN-RWD Sandbox integration and load balancing

The Processor module is the cornerstone of the GEN-

RWD Sandbox, as it is in charge of actually executing user’s

requests. User requests are collected by the GUI module,

whose task is to interact with the users. The GUI, being located

on the internet and highly exposed, does not interact with

data that must remain within the hospital walls, but passes on

the request to underlying module, the Proxy (Figure 3). One

of Proxy’s main tasks is to communicate with the Processor

module, via file-system. In fact, the Proxy forwards user

requests to the Processor module by creating the corresponding

input token and dropping it in the Processor’s input folder.

By constantly monitoring the Processor’s output and sync

folder, the Proxy returns to the GUI output results and process

logs. The Proxy module enables the processor to execute

a predetermined list of permitted scripts contained within

Docker images. This functionality ensures, within the Sandbox

ecosystem, that only scripts deemed safe for the privacy of

data and other resources on the host machine are executed.

The list is administered at the Proxy level, and therefore, by

the Sandbox manager, which is the data provider.

Fig. 3. GEN-RWD Sandbox’s general architecture. The data is located and
processed within the hospital walls, all that goes outside are aggregated results
from which it is not possible to trace back to the given patient. In this way,
the privacy and ownership of the data is maintained.

The modules of the GEN-RWD Sandbox can be combined

in various configurations. Specifically, the Proxy module can

handle multiple instances of the Processor (Figure 4A) and

at the same time also multiple GUIs (Figure 4B). The latter

configuration is meant for having customized GUI for different

kind of users while the former is designed to further parallelize

and balance the computational workload that may result from

high request traffic from the GUI(s). The Proxy monitors the

number of forwarded, completed, and ongoing requests for

each instance of the Processor and assigns a new task to the

processor with the least load. The Proxy is also able to evaluate

if the task requires special computation resources (i.e. a GPU)

and forward it to the Processor instance located to a machine

that meets the specific requirements.

III. INTRODUCTORY EXAMPLE USING RECTAL PATIENT

DATA

We are now in the position to present an example of how

to run an analysis with the GEN-RWD Sandbox Processor

module. The example reproduces the process mining analysis

presented in [7]. The aim of the analysis conducted by Savino

et al. in [7] was to evaluate the adherence of a real-word cohort

of rectal cancer patients to the European Society of Medical

Oncology (ESMO) guidelines using pMineR software [8].

1) Analysis: Data included 1, 895 events referring to 453
non-metastatic rectal cancer patients treated at the Fondazione

Policlinico Universitario A. Gemelli IRCCS, between Jan-

uary 2017 and December 2021. The ESMO guidelines [9],

published in 2017, propose specific recommendations for

rectal cancer treatment according to the TNM staging risk

groups (early, intermediate, locally advanced and advanced):

a) Neoadjuvant chemoradiotherapy followed by TEM surgery

or conservative approach (Long-course branch). b) Neoadju-

vant radiotherapy at 25 Gy followed by TME surgery (Short-

course branch). c) Neoadjuvant radiotherapy at 25 Gy followed

by Folfox chemotherapy and TME surgery. The example uses

Pseudo-Workflow, a formalism in pMineR software, to trans-

late clinical guidelines into a computer-interpretable format.

This method describes guidelines’ recommendations in terms

of nodes and rules, updating patient status based on condition.

The pMineR software engine generates a workflow diagram,

comparing the real event logs to the Pseudo-Workflow version.

2) Token preparation & Processor execution launch: We

generated a token folder where we collected the data in csv

format, the algorithm script file and the XML Descriptor

compiled as below.

XML Descriptor

<xml>
<XMLheader>

<tokenInstanceUID>0001</tokenInstanceUID>
<runUID>0001</runUID>
<creationDateTime>2023-10-17</creationDateTime>

</XMLheader>
<XMLobj objType=’dataSource’>

<dataSourceType>csv</dataSourceType>
<dataSourceFileName>rectalCancerEventLogs.csv
</dataSourceFileName>
<alias>EventLogs</alias>
</XMLobj>

<XMLobj objType=’script’>
<alias>ConfChecking</alias>
<scriptType>script</scriptType>
<scriptProgrammingLanguage>R
</scriptProgrammingLanguage>
<scriptFileName>ConformanceChecking.r
</scriptFileName>
<processorConformanceClass>R
</processorConformanceClass>

</XMLobj>
<XMLobj objType=’run’>

<alias>0001</alias>
<scriptAlias>ConfChecking</scriptAlias>
<dataSourceAlias>EventLogs</dataSourceAlias>

</XMLobj>
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Fig. 4. GEN-RWD Sandbox’s possible configurations.

</xml>

The Conformance Checking algorithm was encapsulated

in an R script (ConformanceChecking.r) that we adapted for

compatibility with the Processor, as described in the ”token-

Templates” folder in the GitLab repository. Once the token was

complete, we zipped it and launched a GSProcessor instance

using:

library(GSProcessor)

objS <- bckGndProcessor(
input_folder.dir = "./inputFolder/",
output_folder.dir = "./outputFolder/",
tmp_folder.dir = "./tmpFolder/",
sync_folder.dir = "./syncFolder/",
override.repeated.tUID = TRUE
)

objS$start()

The token was then dropped into ./inputFolder/ and the

execution started.

3) Results: Figures 5 shows the report obtained in the

GSProcessor output folder. The results indicate the same

adherence to the ESMO guidelines as described in the previous

work. In the ‘Early’ risk group only 11 (23.91%) patients

underwent TME surgery and were compliant to the ESMO

guidelines (Fig. 5A). The ‘Intermediate’ risk group presents

20 (18.18%) patients fully compliant to the ESMO guidelines

following the short-course, long-course and TME surgery

branches (Fig. 5B). In the ‘Locally Advanced’ risk group 5

(7.94%) patients completed the short-course or the long-course

branches as prescribed by the ESMO guidelines (Fig. 5C), and

finally, the ‘Advanced’ risk group has the highest percentage

of non-compliant patients with only 4 (1.71%) patients fully

adhering to the guidelines (Fig. 5D).

More token examples with synthetic data are publicly avail-

able in the ”tokenExamples” folder of the GitLab repository.

IV. DISCUSSION

We presented the code and functionality of the Processor

module within the GEN-RWD Sandbox architecture, a plat-

form designed to facilitate privacy preserving data sharing

between hospitals and external entities. The transparency and

open-source nature of this module, which is made available

through the R package GSProcessor, is instrumental in promot-

ing trust and collaboration in the medical data-sharing domain.

The Processor module stands out as a versatile task executor

that possesses the capability to seamlessly execute both R

and Python scripts, in addition to handling Docker images.

This inherent flexibility plays a pivotal role in enhancing the

overall adaptability of the GEN-RWD sandbox, ensuring that

it can cater to a wide array of user requirements. At its

core, the architecture of the Processor module comprises a

processor unit and a few folders. This simplicity in design

not only makes it easy to integrate at higher levels but also

renders it highly adaptable for various purposes. Hospitals,

in particular, stand to benefit from the Processor module’s

ability to automate data extraction and data quality pipelines,

especially in environments where data are collected on a daily

basis. One critical consideration for the Processor module is

load balancing, as it plays a pivotal role in ensuring that

computational requests are handled efficiently and effectively.

Recognizing the significance of this aspect, we our future work

will focus on enhancing the Processor module by exploring the

possibility of adapting the package to support distributed com-

puting. This development would be a game-changer, enabling

the platform to efficiently distribute computational tasks across

multiple local resources, thereby optimizing performance and

scalability.
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