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Abstract. This paper proposes an algorithm for velocity estimationusing theposi-
tion and acceleration signals obtained respectively from a resistive potentiometric
displacement sensor and a MEMS accelerometer. The algorithm is composed of
two processing chains that independently estimate velocity starting from position
and acceleration signals. Velocity estimation from position is obtained through an
adaptive windowing differentiator while the estimation from acceleration is based
on a leaky integrator low-pass filter. Such two estimations are fused together by
means of a tailored weighted average. The proposed algorithm is first simulated
in MATLAB and then experimentally implemented and tested. Both simulations
and experimental results show that velocity estimation given by the fusion of the
outputs of the two processing chains has a lower estimation error compared to the
output of each single chain.
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1 Introduction

Velocity estimation obtained from signals provided by motion sensors, without specif-
ically using velocity sensors, plays a crucial role within the industrial field e.g., for
servomotor controllers in closed-loop control systems and motion control of mechanical
machines, including robot manipulators [1]. A basic approach involves differentiating
the signal from a position sensor to obtain a velocity signal. Nevertheless, the high-
frequency noise included in such position signal is amplified by the differentiation [2].
The width of the differentiation window rules the trade-off between the estimation noise
and its delay. Several methods have been developed to estimate velocity from posi-
tion data while reducing estimation errors and minimizing delay. For example, adaptive
algorithms can be exploited to dynamically adjust the differentiation window [3].

Within the scopes of multivariable sensor and data fusion, there are techniques and
methods that allow to estimate velocity by combining position and acceleration data
coming from different sensing elements [4]. In this context, this work investigates a new
technique for velocity estimation designed for a custom multivariable motion sensor,
suitable for implementation in embedded systems based on simple microcontrollers
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thanks to its low computational complexity. This paper is organized as follows: Sect. 2
presents the working principle and the block diagram of the proposed algorithm; Sect. 3
discusses the blocks and the simulation results, experimental results are shown in Sect. 4,
while conclusions are reported in Sect. 5.

Fig. 1. (a) Multivariable motion sensor: resistive potentiometric displacement sensor (GEFRAN
PK) equipped with an accelerometer (Analog Devices ADXL1002) mounted on the cursor. (b)
Multivariable sensor linked to the rod-crank mechanism.

2 Multivariable Motion Sensor and Proposed Estimation
Algorithm

A multivariable motion sensor prototype has been realized by combining a resistive
rod-less potentiometric displacement sensor (Gefran PK) with electrical stroke length
of 100 mm and a single-axis MEMS accelerometer (Analog Devices ADXL1002)
with measurement range of ± 50 g coupled to the respective evaluation board EVAL-
ADXL1002 fixed on the cursor. A mechanical adapter ensures the alignment of the
accelerometer sensitive axis with the direction of the cursor displacement. A picture of
the assembled multivariable sensor and the motion testing equipment is shown in Fig. 1.

The proposed estimation algorithm is composed of two processing chains acting
on the position and acceleration signals coming from the two sensors, respectively, as
shown in Fig. 2. The first chain is composed of a preprocessing section, consisting of the
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series of a median filter and a low-pass filter to reduce noise on the position signal pos.
In this chain, velocity estimation is based on the differentiation of two position samples
whose relative distance is dynamically adjusted according to the trend of the position
signal. The block End-Fit FOAW implements an adaptive windowing differentiation to
estimate velocity vel as shown is Eq. (1). The term T indicates the sampling period;
yk and yk-N represent two generic position samples while N indicates the number of
samples in the differentiation window. The regulation criterion of N, as reported in [3],
is based on searching the maximum value assumed by N such that the straight line Lyk-i
passing through yk and yk-N intersects each of the uncertainty bands d associated to the
position samples inside the window as shown in Eq. (2). The straight line Lyk-i is defined
in Eq. (3) while its parameters are reported in Eqs. (4) and (5).

vel = (yk − yk−N )/NT (1)

∣
∣
∣yk−i −L yk−i

∣
∣
∣ ≤ d∀i ∈ {1, . . . ,N } (2)

Lyk−i = an + bn(k − i)T (3)

an = (kyk−N + (N − k)yk)/N (4)

bn = (yk − yk−N )/NT (5)

The estimated velocity vel is median- and low-pass filtered in the postprocessing
section to output velocity estimation velp.

Fig. 2. Block diagram of the velocity estimation algorithm.

The secondprocessing chain acts on the acceleration signalacc. First, the acceleration
is preprocessed by amedian filter to remove spikes. Then, theDCBlocker block removes
the DC component of acceleration due to the 0-g offset of the accelerometer and to any
residual misalignment between its sensitive axis and the cursor direction.

The DC component is recursively estimated by a third-order elliptical low-pass filter.
Finally, the leaky integrator with transfer functionH(z) reported in Eq. (6) integrates the
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acceleration accfilt to obtain velocity estimation vela. The pole in H(z) is determined by
the stability factor α. In order to obtain asymptotical stability, it must be 0< α <1. The
term T stands for the sampling period of the acceleration signal acc.

H (z) = zT/(z − α) (6)

The overall velocity estimation velmix is obtained by the weighted average of velp
and vela, calculated according to Eq. (7). To minimize the estimation error and its delay,
two different pairs of weights are designed: the first pair is named exponential weights
and is indicated as [w1e, w2e] in Eq. (8), while the second pair is named linear weights
and is indicated as [w1l, w2l] in Eq. (9). From the rod-crank mechanism kinematics of
Fig. 1b, the motion law is sinusoidal with fundamental frequency f rd which can be set.
Weights are calculated for a given frequency f rd, depending on the tuning parameters A,
B, m, q.

velmix = (w1velp + w2vela)/2 (7)

[w1e = 2e−frd+A/(e−frd+A + efrd−B),w2e = 2efrd−B/(e−frd+A + efrd−B)] (8)

[w1l = 2(−mfrd + q)/q,w2l = 2mfrd/q] (9)

3 Simulation Results

The proposed algorithm has been simulated in MATLAB by supplying position posref
and acceleration accref input signals, both generated numerically according to the
kinematic model of the rod-crank mechanism, as reported in Eqs. (10), (11), (12).

posref = r(1 − cos(2π frd t) + μ − (μ2 − sin2(2π frd t))
1/2 (10)

velref = 2π frd r(sin(2π frd t) + sin(4π frd t)/2(μ
2 − sin2(2π frd t))

1/2)1/2 (11)

accref = (r(2π frd )
2)(cos(2π frd t) + cos(4π frd t)/μ) (12)

The block parameters adopted in the algorithmare listed below.The cut-off frequency
of the low-pass filters LP1 and LP2 is f c=100 Hz; the uncertainty band of End-Fit FOAW
differentiator is set to d = 30μm; the third-order elliptic low-pass filter relative to DC
Blocker has a normalized bandwidth equal to 10−4 and the leaky integrator stability
factor is α = 0.999. For the two weighted averaging methods, Fig. 3 compares the
maximum relative errors of velocity estimations for different signal frequencies f rd in
the range [1, 10] Hz. The estimation errors of velp and vela respectively increase and
decrease with f rd because of the frequency responses of the differentiator End-Fit FOAW
and the leaky integrator block. For each value of the test frequency f rd, the error of the
velocity estimation velmix is the lowest between those of velp and vela. In particular, the
weighted average with linear weights typically produces the lower estimation error.
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Maximum Relative Error Comparison
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Fig. 3. Maximum relative error for different velocity estimations versus test frequency f rd in the
range [1, 10] Hz.

4 Experimental Results

Experimental results have been obtained by fixing the multivariable motion sensor to the
rod-crankmechanism as shown in Fig. 1b. The instrumentation setup is reported in Fig. 4.
Sensors are powered at 5 V by PL303-P Power Supply and the position and acceleration
signals are sampled by means of a NI USB-6212 DAQ with sampling frequency fs =
1 kHz and a resolution of 16 bits. The algorithm has been implemented in MATLAB,
using the same block parameters used in simulation.

Fig. 4. Schematic instrumental setup, adopted to acquire position and acceleration signals.

Figure 5 shows the position and acceleration signals obtained when themultivariable
sensor cursor is linked to the rod-crank mechanism, rotating at f rd = 2.8 Hz. From these
two signals the algorithm computes the velocity estimations velp, vela and velmix. The
corresponding estimation errors, calculated as |velref − vel|, are shown in Fig. 6.



Algorithm for Velocity Estimation 165

5 Conclusions

An algorithm for velocity estimation from position and acceleration signals composed of
two parallel processing chains producing respectively two velocity estimations, velp and
vela was presented. Such estimations are fused through a weighted average operation to
produce a single combinedvelocity estimation velmix.Both simulations and experimental
results show the effectiveness of the proposed algorithmwhereby the combined estimated
velocity velmix has lower errors with respect to both single estimations velp and vela.
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Fig. 5. Measured position and acceleration signals obtained from the multivariable motion sensor
linked to the rod-crank mechanism at rotation frequency f rd = 2.8 Hz.

Fig. 6. Experimentally obtained estimation error of velmix compared with those of velp and vela.
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