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Abstract: In order to overcome the complexities encountered in sensing devices with data collection,
transmission, storage and analysis toward condition monitoring, estimation and control system
purposes, machine learning algorithms have gained popularity to analyze and interpret big sensory
data in modern industry. This paper put forward a comprehensive survey on the advances in the
technology of machine learning algorithms and their most recent applications in the sensing and
condition monitoring fields. Current case studies of developing tailor-made data mining and deep
learning algorithms from practical aspects are carefully selected and discussed. The characteristics
and contributions of these algorithms to the sensing and monitoring fields are elaborated.
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1. Brief Introduction

Machine learning algorithms can be very useful for knowledge discovery [1], with the
building of models based on training data The knowledge discovery process of machine
learning algorithms usually involves feedback at each iteration with the goal that further
improvement can be achieved. While the feedback can be made by humans, this can be
time consuming and labor intensive. Data mining algorithms are developed to automate
the feedback process to overcome the disadvantages of manual feedbacks, with the goal of
discovery of unknown features in the data, while machine learning usually needs known
features learned in the training process for prediction. Machine learning includes, for
example, supervised learning such as classification and regression, and unsupervised
learning such as clustering, and dimensionality reduction. Clustering algorithms are
used to group data without any pre-defined classes. These methods can be employed to
extract valuable information from the datasets [2]. Other machine learning approaches
include semi-supervised learning, reinforcement learning, self-learning, robot learning and
association rule learning, which are not covered in this review for sensor applications. Deep
learning refers to machine learning algorithms with multi-layer structures for processing
higher-level characters from the input dataset.

This review paper is organized as follows. In Section 2, a review is undertaken
for supervised machine learning. In Section 3, a review is undertaken for unsupervised
machine learning, more specifically, clustering. In Section 4, a review is undertaken for
deep learning.

2. Supervised Machine Learning

In order to build robust learning systems, in many cases, only the relevant features
of the dataset are needed. This selection process is called feature selection. For cases that
need optimal feature selection, this involves the exhaustive search of all possible feature
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combinations. Indeed, this can be a NP-hard problem and become impossible to compute
for large datasets. To overcome the computational difficulties, greedy algorithms are
constructed. The benefits of feature selection include overcoming the difficulties associated
with high dimension, improving algorithm speed, and better ability for generalizing. In
other words, feature selection can enable focusing only on important features in the machine
learning process [3,4].

Fu and Gao et al. [5] focused on the diagnosis of fault and its classification for ac-
tuators and sensors in turbines. They employed a transforming method (fast Fourier
transform) and a principal component method to develop data-driven fault diagnosis and
fault classification strategies.

Chu and Li et al. [6] used principal component analysis to extract the features from a
sensor array comprising four gas sensors for detecting 11 types of mixtures of NO2 and CO.
The extracted features were then processed by c-means clustering and a back-propagation
neural network (BPNN) to identify gases.

Video surveillance systems need help from human activity recognition tools. Ince et al. [7]
presented a novel biometric system that can detect human activities using the Haar wavelet
transform (HWT), a highly effective tool in time-series data processing, for preserving the
information of the features before reducing the data dimension. This biometric system used
angles between skeletal joints to recognize human activities in 3D space based on RGB-depth
sensor data. Dimension reduction was achieved with an averaging algorithm for decreasing
the computational cost. A faster performance while maintaining high accuracy was obtained.

Yang and Chen et al. [8] utilized the time-series datasets obtained from sensors for
classifying sensors. Three transformation methods were employed to translate the data
into images. The proposed framework succeeded in encoding source data into desired
images with convolutional network employed in the classifying process.

The problem of detecting ships can be challenging and may involve the analysis of
images from remote sensors. Nie and Han et al. [9] utilized the transformation tool (Fourier
transform) to build a detection algorithm for locating meaningful regions. This approach
was shown to be helpful for the next discrimination process for panchromatic images.

New advances in sensors generate more and more datasets that may need new al-
gorithms to handle them efficiently. Liu and Kong et al. [10] studied the additive man-
ufacturing process with online sensors. Feature extraction methods were employed in
the monitoring process. Their proposed learning approach, called MKML-ISOMAP, was
deployed for handling online high-dimensional data produced by sensors. Experimental
results showed that the approach achieved a high accuracy of prediction efficiently.

Machine learning methods can extract meaningful and valuable outputs from the
patterns in the data. Machine learning includes methods based on statistical analysis,
mathematical modeling, control theory and computational intelligence. Inductive logic,
evolutionary computing, artificial neural networks, the Bayesian approach, and Markov
chains are only a few examples. Despite the diverse background difference, these ap-
proaches usually have the following common procedures [1]. Firstly, a comparison engine
is employed for checking the input data with the underlying model. Secondly, the results
from the comparison engine are utilized for assigning modifications to the underlying
model. Thirdly, the new results from the modified model are evaluated with the pre-defined
conditions. If these conditions are not satisfied, these three procedures will be iterated until
the conditions are met. Recently, the authors in [11] proposed an integration of RBF neural
networks and a passivity control framework based on the sliding mode theory for offshore
dock cranes, modeled as non-linear systems. Then, adaptive control theory is utilized for
the convergence in finite time for application in sliding mode dynamics with disturbances
and non-linearity issues.

Mathematical equations can be employed to find the relationship between variables
and are helpful in investigating the effects among the variables on the target subjects. A
simple linear regression model is suitable for applications of continuous variables with a
linear relationship. These linear models may not perform well for applications with a binary
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target variable, as their underlying assumptions are different. Logistic transformation and
logistic regression models are often employed for this type of application.

In gesture recognition and communication, sensors such as flex sensors and accelerom-
eters are attached to a glove, and machine learning models are employed to predict the
gesture by obtaining the values from the sensors. Krishnan and Vijay et al. [12] used logistic
regression models to perform the classification of gestures from values of these sensors.

Li and Cock [13] focused on detecting the cognitive load of a user from the reading
obtained by the smart wrist-band sensors. Feature selection was employed, and the machine
learning algorithms used in their applications included logistic regression, a decision tree
model, and support vector machines.

A decision tree can be employed to form more homogeneous smaller sets for particular
target variable. Decision rules are defined in order to split the records in the original dataset
into smaller sets. Many classification and prediction problems can be handled satisfactorily
by decision tree algorithms [14]. The underlying procedures for the various decision
tree models are as follows: the data records are repeatedly split into smaller subsets.
The objective is to achieve greater purity in the newly formed subsets than its ancestors.
The performance of a split is measured by the degree of purity obtained by that split.
Measures such as Gini, information gain, or chi-square can be used for applications with
categorical target variable. Measures such as variance reduction and F-test are for cases
with numerically continuous variables.

How to recognize new types of attacks in the intrusion detection systems is an important
topic for the security of wireless sensor networks. Nancy and Muthurajkumar et al. [15]
showed a new intrusion detection system, employing a decision tree classification algorithm
to find attacks. Their proposed fuzzy temporal decision tree algorithm was integrated
with convolution neural networks for locating intruders. The experiment results clearly
supported that the detection performance and efficiency are satisfactory.

The cleaning of rice is an important function of a combine harvester. Chen and
Lian et al. [16] developed sensors for checking rice grain impurity in harvesters. High-
quality images are recorded during harvesting. The morphological features of the particles
extracted from the images served as the inputs to the decision tree model for the later
classifying process. The output in their application is the visualized tree, which is useful
for the classification of the particles labeled in the binary image.

Inductive-based learning refers to the learning process by instances. The system tries
to induce general rules from the input examples [17]. In inductive methods, relational
learners are employed to achieve the partial ordering among the hypotheses concerned.

Problems of missing data values are common in sensor applications. Elhassan and
Abu-Soud et al. [18] developed an inductive learning algorithm for dealing with the missing
data values problem. They focused on enhancing the existing inductive learning algorithm
to deal with datasets with missing values and showed a new algorithm that can have the
added ability to deal with noise data.

Enormous amounts of spatial data are generated from remote sensing of geographical
information system and computer cartography, etc. Mihai and Mocanu [19] focused on
spatial data mining with the decision tree classifier algorithm. Information theory and an
inductive learning method were used to construct a decision tree, which can in turn extract
relevant relationships in a set of labeled input data.

Artificial neural networks (ANN) are well known for their high performance in tasks
involving filtering and prediction. This process usually involves the filtering of noises from
the source dataset and prediction based on the filtered dataset. Filtering of the noises can
also refer to the extraction of essential patterns from the input. Based on some function
approximation assumptions, the filtered data can be used for the prediction of future values
of the target variables. The artificial neural network is a popular advanced tool because
of its proven robustness. Feedforward networks refer to a network with more than one
neuron but with no feedback paths in its structure. Multi-layer feedforward networks refer
to a network with an input layer, a hidden layer and an output layer.
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Machine vision technology can capture visual information by frame-based cameras,
etc., and convert the images into a digital format and process afterwards using machine
learning algorithms. Mennel and Symonowicz et al. [20] showed an image sensor with a
built-in ANN that can sense and process optical images at the same time without latency.
The sensor can conduct the classifying and encoding of images optically projected onto the
chip at a rate of 20 million bins per second.

Falls in the elderly can cause serious consequences and are of major public health
concern. Wearable inertial sensors, accelerometers and gyroscopes, can generate large
datasets of various falls and activities of daily living (ADL). Yu and Qiu et al. [21] deployed
three deep learning models for detecting falls from the large dataset obtained by wearable
inertial sensors. These models are a convolutional neural network, long short-term memory,
and a hybrid model integrating both convolution and long short-term memory. The
prediction of a fall during its descent may lead to a safety mechanism that can prevent fall-
related injuries. Chen and Zhang et al. [22] proposed a cuffless blood pressure estimation
framework using a CNN-based Receptive Field Parallel Attention Shrinkage Network
by capturing the long-term dynamics in the photoplethysmography signal with no long
short-term memory.

A multi-layer perceptron neural network was employed in [23] to identify the working
condition of a mechanical indexing system, using data acquired by accelerometers, with
the aim to prevent the onset of vibratory phenomena or failures. The extraction of features
from the raw data represents a very important phase of the diagnostic process, allowing to
reduce the dimensionality of the problem and, therefore, of the networks. Different features
used in [24], based on the power spectral density, the Fourier transform (FT), the wavelets,
the probability density function, the higher-order spectra (HOS), have been compared for
case study of an indexed rotating table. From the study, it emerged that all the considered
pre-processing techniques permitted obtaining acceptable classifications, but two of them
(the FT and the HOS) allowed better results.

Online fault detection of an aircraft becomes possible with the advances of actuator and
sensor technologies. Taimoor and Aijun et al. [25] increased fault detection capabilities by
employing the Extended Kalman Filter for the weight updating parameters of a multi-layer
perceptron (MLP) neural network. With the online adaptation of weighting parameters of
MLP, the preciseness of the fault detection is found to increase.

In 1965, Lotfi Zadeh proposed the concept of fuzzy logic, which is multi-valued logic
that can handle reasoning approximately (Zadeh et al. [26]). The truth of a statement is no
longer limited to the two traditional values “true” and “false”. In fuzzy logic, the degree of
truth has any value in the interval from zero to one. Fuzzy systems may have problems
such as how to define the fuzzy operators for real-world applications.

Cooperative cargo transportation studies the management of unmanned aerial systems,
by utilizing information obtained by sensors. Teixeira and Neves-Jr. et al. [27] presented a
fuzzy model to avoid the drones from colliding themselves or with other objects. A new
approach was developed to evaluate potential fields with fuzziness measure for collisions
avoidance. Four intelligent controllers were employed to monitor the motion of the drones
for avoiding collisions.

Portable, wearable gait analysis system with signal obtained from the pressure sensors
can be used for accurate gait phase recognition and gait cycle segmentation. Yang and
Gao et al. [28] applied fuzzy logic inference to achieve continuous and smooth gait phase
recognition. Then, gait cycle segmentation was performed using gait phases by fully
considering the internal difference among different people.

The evolution of the biological species is the inspiration for the development of
evolution computing (Jong, [29]). Evolutionary computational algorithms have iterative
procedures concerning about the growth or shrinking of a population. In each iteration, the
population is chosen randomly with the objective to get closer to the desired result. Meta-
heuristic optimization methods such as genetic algorithms, evolution strategy, ant colony
optimization and particle swarm optimization are popular among evolutionary computing.
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During the deployments of wireless sensor networks (WSNs), clustering and routing
are two major issues that need to be addressed, and yet these two problems are both
NP-hard. Kuila et al. [30] employed genetic algorithm, particle swarm optimization and
differential evolution for solving clustering and routing problems in WSNs. Comparison as
well as strengths and weaknesses of the algorithms were highlighted.

In mobile wireless sensor networks (MWSNs), the sensor nodes are movable within a
certain area. It becomes more and more important to prolong the lifetime of the sensors for
real-time and effective information. Zhang et al. [31] employed five evolutionary computing
algorithms to achieve a MWSN lifetime optimization model.

Computational learning methods focus on utilizing induction for understanding the
common methodology among efficient learning algorithms, and to find the hindrance for
learning effectively (Kearns and Vazirani [32]). Mathematical analysis is often needed.
There are learning algorithms that can forecast based on the values of past events. There
are also algorithms that can improve with the advice from experts or teachers. When an
algorithm can be finished in polynomial time, it is called feasible. Probably approximately
correct learning, Vapnik–Chervonenkis theory, Bayesian inference, and algorithmic learning
theory are common efficient methods of computational learning theory.

Nowadays, many manufacturing systems achieve monitoring jobs with the help of
appropriate sensors. How to transfer the industrial input data from sensors to knowledge-
based automatic execution with no need of human interference can be challenging.
Kozłowski et al. [33] developed a new approach to determine the remaining useful life
of machine tools at an early stage and to classify the conditions of the machine tools. It
utilized the support vector machine for classifying the machine tool conditions. Autore-
gressive and integrated moving average-based identification is also employed to act as
expert during normal operation.

Remote sensing image captioning is about producing natural semantic descriptions
of images remotely. Shen et al. [34] developed a two-stage multi-task learning model for
accomplishing this task. The proposed transformer generated the text to describe image
from the spatial and semantic attributes. The sentence descriptions were further improved
with the reinforcement learning.

In order to further enhance the prediction capability of individual machine learning
methods, ensemble modeling is often employed for applications involving both forecast-
ing and classification. Many experimental results support that ensemble modeling can
further improve the forecasting capability of the individual models in the whole system
(Opitz and Maclin [35]). Even though previous research results support that the perfor-
mance of an ensemble can be better than its individual component, it has also been high-
lighted that the ensemble model can work better if its individual component is chosen
carefully with high prediction accuracy.

A simple example of ensemble model is the combining of individual machine learn-
ing methods with linear weightings. Studies by Maqsood et al. [36] supported that with
ensemble model the system could achieve better prediction capability than its individ-
ual algorithm. It has been shown that this ensemble model can work better than its
individual methods.

Abubakr et al. [37] proposed a classification method to monitor the failure of tool con-
dition in machine operations. The input data are the signals obtained by sensors monitoring
the current, vibration and acoustic emission. The random forest method was employed
for feature reduction. The authors illustrated that an ensemble of individual methods can
further improve its performance and the approach has the potential applications in tool
condition monitoring application.

At AT&T Bell Laboratories, Vapnik and colleagues, Boser and Guyon, initiated the
studies of the support vector machines (SVMs) algorithms [38]. The development of the
SVMs algorithms has clearly focused on industrial applications (Smola and Scholkopf [39].
Support vector machines for classification (SVC) and support vector regression (SVR) are
the two main types of SVM algorithms. The mathematical properties of the SVM algorithms
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are found to be robust (Brown et al. [40]). The advantages include for example sparseness
of solution, flexibility for large feature spaces, and outlier handling capabilities. With these
mathematical properties, SVM algorithms can handle even large datasets well. Structural
risk minimization with statistics and learning methods is the foundation of the SVM
algorithms. Minimization of the empirical risk with the prevention of the “over-fitting”
problem can be achieved in the structural risk minimization process. SVM algorithms deal
with the mapping of input data of low dimension into targets of much higher dimension
through kernel function. Quadratic programming is often employed for solving the global
optimization problem involved.

A wireless sensor system was developed by Liu et al. [41] to monitor the water quality
in real time. The system can handle the problem of delay of data transmission well with
robust comparability for water quality forecasting. A wireless sensor network with a
ZigBee protocol were employed to detect the quality of the water in the basin with the
help of various indicators such as amounts of nitrogen and phosphorus in the water. SVM
algorithms were deployed in this system for automatic detection of the quality of water.

Useful information such as the status of the objects is obtained by methods for the
monitoring of the conditions. The information can be helpful in the prevention of catas-
trophic failures. Gómez et al. [42] developed a monitoring system for the conditions of
railway axles dynamically. Wavelet Packet Transform energy and support vector machine
diagnosis model were deployed satisfactorily in their proposed system.

Hybrid artificial intelligent system refers to system that combine several artificial
intelligence methods to work together to achieve the target. Individual methods such
as neural networks, evolutionary computing, fuzzy logic, and SVM, Bayesian networks,
statistical learning are often deployed to form hybrid systems such as hybrid multi-agent
models, knowledge-based artificial neural networks, and hybrid optimization algorithms.

A common goal of hybrid artificial intelligent systems is to improve the performance
of the individual methods in the machine learning process. In [43], hybrid neural network
regression models were combined with fuzzy clustering technique, and clustering non-
parametric regression models were developed. The neural network regression models
worked iteratively with optimal fuzzy membership values for each object, with the goal to
minimize the total error of the neural network regression models. This hybrid system was
shown to have the capability to cope with situations cases that the individual methods, i.e.,
the K-means and Fuzzy C-means methods, could not perform satisfactorily.

Mustafa et al. [44] developed a hybrid artificial intelligent system for the species
recognition and the herb disease detection at early stage with computer intelligent vision
technologies and electronic nose. The hybrid system employed fuzzy logic, naïve Bayes, an
artificial neural network and the SVM algorithm to perform the tasks of specie recognition
and disease detection. The proposed hybrid technique combined with these three machine
learning approaches has a recognition and detection rate of almost 99%.

In recent years, emerging technologies in the fields of cloud computing, robotic com-
puting algorithms, wireless sensor networks and communication help the advance of cloud
robotics in smart cities. Kumaran et al. [45] developed a cloud robotic system using hybrid
artificial intelligent algorithms. The proposed system was shown to perform the crowd
control in smart cities satisfactorily. The integrated framework can arrange the robotics to
move efficiently to accomplish various tasks.

Swarm intelligence is useful in optimization problems to find optimal goal. The
homing behavior of pigeon is the inspiration for the development of swarm intelligence.
Sun et al. [46] proposed a hybrid algorithm, combining transformation technique, evo-
lutionary computing technique and swarm intelligence technique together. This hybrid
system can address the problem of trapping in local optimum in the optimization process.
The system was further integrated into the Distance Vector–Hop algorithm in application
to locate the nodes of wireless sensor networks.

A synthetic summary of the advances in supervised machine learning for sensing and
condition monitoring is presented in Table 1.
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Table 1. Summary of the advances in supervised machine learning for sensing and
condition monitoring.

Ref. First
Author Year Model Application

Field Dataset Accuracy Details

[5] Fu 2020

Transforming
model, based on

the Fourier
transform and

principal
component

analysis (PCA)

Actuators and
sensors for

turbine condition
monitoring

Wind turbine
benchmark dataset

Comparison
studies confirm a

good method
effectiveness

Combining the
Fourier transform
and uncorrelated
multi-linear PCA

[6] Chu 2021 Neural network
Condition

monitoring via
gas sensor array

Dataset, comprising
from 6 types of CO
and NO2 mixtures
under 4 levels of
relative humidity

Estimate of
monitoring

accuracy is 100%

The PCA is used to
extract features, and
c-means clustering

and
BPNN are used to

monitor gases

[7] Ince 2020 The Haar wavelet
transform (HWT)

Human activity
monitoring

RGB-depth sensor
dataset by

Kyungsung
University

Monitoring
accuracy is 86.1%

The HWT is used for
feature dimension

reduction, and k-NN
is used for

a monitoring

[8] Yang 2020
Convolutional
neural network

model
Sensor

monitoring
Datasets by
Olszewski

Monitoring error
probability is
between 0.4%
and 0.6% for

Wafer dataset

Three transformation
methods are used to
encode time series
into images, and

ConvNet is used for
image classification

[9] Nie 2020
The hyper-complex
Fourier transform

and the SVM

Ship detection
and condition

monitoring

Images from the
satellites GF-2 and

ZY-3 with a 2 m
resolution

Monitoring
accuracy is up

to 92.8%

The hyper-complex
Fourier transform of
a quaternion is used
to locate ROIs; false

alarms are eliminated
by SVM training

[10] Liu 2021 MKML-ISOMAP
model

Additive
manufacturing

Online
multi-dimensional

sensor dataset

Very good
prediction

performance

MKML-ISOMAP
model is used for
feature dimension

reduction and
feature extraction

[11] Jiang 2022

Passivity-based
sliding mode
control and

monitoring and
RBF neural

network model

Dock cranes
Numerical dataset,

obtained via
simulation

Satisfactory
system

performance

RBF neural network
is used for an

adaptive control
and monitoring

[12] Krishnan 2020 Logistic regression Gesture
monitoring

Dataset, obtained by
flex sensors and
accelerometers,

attached to a glove

Effective
prediction via
audio module

Prediction of the
gesture via

logistic regression

[13] Li 2020
Machine learning,
based on the Gini

impurity

Cognitive load
detection and

monitoring

Dataset from
UbiTtention 2020

workshop of
UbiComp 2020

Low detection
accuracy, 63%

Feature selection is
based on the Gini

impurity and
multiple ML

techniques are used
for training
ML models

[15] Nancy 2020 Fuzzy temporal
decision tree

Intrusion
detection and

monitoring

KDD‱99 cup
dataset

Monitoring
accuracy is

99.6%

Combination of
dynamic recursive
feature selection
algorithm and a
fuzzy temporal

decision
tree algorithm

[16] Chen 2020 Decision tree
model

Grain impurity
monitoring

Image datasets with
different grain

impurities

Low monitoring
accuracy,

76%

Machine vision
method is used for

grain impurity
monitoring, and a

decision tree
algorithm is used for

a classification
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Table 1. Cont.

Ref. First
Author Year Model Application

Field Dataset Accuracy Details

[19] Mihai 2021 Decision tree
model

Geographic
information

system

Dataset is
Cadastre

A very good
monitoring

accuracy

C4.5 decision tree
algorithm is used for

monitoring

[20] Mennel 2020 Neural network Ultrafast
machine vision

Image dataset,
projected onto a chip
with throughput of
20 million bins per

second

Good efficiency

ANN that
simultaneously

senses and processes
optical images

[21] Yu 2020 Deep neural
network

Prediction of
a fall

SisFall, a fall and
movement dataset

with various falls and
ADLs

Prediction
accuracies are
93.2%, 93.8%,
and 96% for

non-fall,
pre-impact fall

and fall,
respectively

Hybrid ConvLSTM
model

[25] Taimoor 2022 MLP neural
network

Actuators and
sensors for fault

detection and
condition

monitoring of an
aircraft

Dataset from
non-linear dynamics

of Boeing 747
100/200

Good accuracy

Extended Kalman
filter makes the

weight updating
parameters of MLP

adaptive

[27] Teixeira 2020 Quadral-Fuzzy
approach

Monitoring of
drone flight
formation

Simulated dataset
from experiments

using Virtual Robot
Experimentation

Platform

Most of the time,
a safe distance

between drones
is preserved

Quadral-Fuzzy
approach ensures
that drone flight
formation helps

avoiding a collision

[28] Yang 2020 Fuzzy logic
inference model

Gait phase
monitoring and

gait cycle
segmentation

Dataset, obtained
from 8 pressure

sensors
Recognition

accuracy is 97.2%

Fuzzy logic inference
is used for gait phase

monitoring

[30] Kuila 2020 Evolutionary
algorithms

Clustering and
routing problems

for WSNs

Dataset from
sensor nodes

Comparison
table highlights
strengths and
weaknesses of

algorithms

Evolutionary
algorithms are used

for solving clustering
and routing problems

[31] Zhang 2020 Evolutionary
algorithms

Life-time
optimization of
mobile wireless
sensor networks

Simulated dataset

Presenting
advantages and

disadvantages of
five evolutionary

algorithms

Evolutionary
algorithms are used
for MWSN lifetime
optimization model

[33] Kozłowski 2020 The SVM

Predictive
maintenance and

condition
monitoring, RUL

prediction

Dataset from a CNC
machine monitoring

system

Effective
monitoring and

prediction

The SVM constructs a
classifier and a RUL
prediction method

[34] Shen 2020
Variational

autoencoder and
reinforcement

learning model

Remote sensing
and monitoring

and image
captioning

Remote sensing
image caption

dataset
NWPU-RESISC45

Model is effective
in a learning

Variational
autoencoder and

reinforcement
learning based

two-stage multi-task
learning model

[37] Abubakr 2021 Ensemble of
ML models

Tool fault
detection and

condition
monitoring

Dataset from
Matsuura machining

center
MC-510V

Classification
accuracy is up

to 0.96%
Single-sensor-based

TCCM

[41] Liu 2020 The SVM

Sewage
condition

monitoring and
water quality

prediction

Datasets from
laboratory

environment, and
sewage

monitoring site

Average
prediction

accuracy error is
less than 2%

Support vector
machine algorithm is
used for a prediction
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Table 1. Cont.

Ref. First
Author Year Model Application

Field Dataset Accuracy Details

[42] Gómez 2020 The wavelet packet
transform (WPT)

Real-time
condition-

monitoring for
railway axles

Dataset from axles
with multiple

crack conditions

Monitoring false
alarm rate is less

than 10%

The WPT is
combined with SVM

diagnosis model

[45] Kumaran 2020
Hybrid

intelligent generic
algorithm (HIGA)

Crowd
monitoring in

smart cities

WSN is used for a
dataset creation in

smart city
environment

Effective crowd
monitoring

Cloud-based robotic
system for crowd

monitoring in smart
cities using HIGA

3. Unsupervised Machine Learning (Clustering)

Clustering algorithms focus on searching for similarities in feature vectors of the
data, and then grouping similar vectors [47]. Another name for clustering approach is
unsupervised pattern learning, while in supervised pattern learning training dataset is
needed. Supervised learning such as classification needs the information obtained from the
training dataset to guide the learning process. Clustering algorithms are deployed in many
real-world applications in engineering and science.

Clustering algorithms are based on how to arrange the data points into clusters
optimally. This combinatorial task is found to be NP-hard. To solve this combinatorial
problem efficiently, it is leaded to the development of various clustering algorithms. The
common goal is to restrict the total number of combinations of the clusters to be investigated.
Hierarchical clustering, partition clustering and spectral clustering are the three main types
of clustering methods. Various clustering approaches may lead to results of various clusters,
and the nature of the problem may provide some guide about the clustering approach to
be chosen.

The determination of similarities between two feature vectors of the data is a chal-
lenging task. Employing a suitable measure for comparing the similarity is essential for
clustering algorithms. The procedure of how to cluster the vectors, based on the chosen
measure, is the next issue in designing clustering algorithms. Different cluster outputs are
often obtained with different clustering measure and procedure. For solving real-world
tasks efficiently and accurately, opinions from experts may be very helpful.

Agglomerative clustering and divisive clustering are the two different types of hier-
archical clustering algorithms. Agglomerative clustering algorithms use the bottom-up
procedure. Firstly, each data object is regarded as individual cluster. Then, the data objects
are iteratively merged into larger clusters. For the divisive clustering algorithms, the top-
down procedure is employed. Firstly, the whole set of data objects are treated as a single
cluster. Then, the large clusters are iteratively divided into smaller ones. Co-clustering
algorithms focus on the clustering of both the data objects as well as their features.

Centralized entities, for example cloud or edge, can allow automated decision making
for the applications in fields such as Internet of Things when fed with data from several
sensors. Nevertheless, malicious outliers among the data obtained by sensors may affect this
automation process. Shukla and Sengupta [48] developed an expandable outlier detection
algorithm based on hierarchical clustering together with an artificial neural network. In
this system, the hierarchical clustering algorithm can ensure expandability of the outlier
detection algorithm from correlated sensors, while an artificial neural network worked
together with statistical methods for detecting outliers from the time series obtained by
the sensors.

A biosensor platform can be used for detection of drug contaminants in hormone drugs
and antibiotics. M13 bacteriophage-based colorimetric sensors are found to be able to detect
extremely small amounts of target molecules, while further works are needed to enhance
their capability of formulating the groupings of target molecules. Kim et al. [49] proposed
a statistical approach to classify the types of target molecules with high computational
performance even for very large dataset. The proposed method can analyze pattern of



Appl. Sci. 2022, 12, 12392 10 of 23

change in color by a reaction among sensors and foreign materials. Hierarchical cluster
algorithm is employed for separating the target materials.

A common property of partition clustering algorithms is that all the clusters can be
estimated at one time. Renowned partition clustering algorithms include k-means cluster-
ing algorithms and fuzzy c-means clustering algorithms. k-means clustering algorithms
start with k clusters that are randomly generated. The center of a cluster is computed with
the average of all the data points within that cluster. Subsequently each point is allocated
to its closest cluster center. All the new centers of the clusters need to be evaluated again.
These procedures are iterated till the pre-defined criterion is satisfied. Fuzzy clustering
algorithms utilize the concept of fuzzy logic. Data point no longer needs to belong to a
single cluster. Instead, the data point can belong to clusters to some degrees. This is the
main difference for the fuzzy c-means algorithms and the k-means algorithms.

Clustering algorithms have been employed in applications involving wireless sensor
networks. A common difficulty is that the clustering process may be trapped in local
minima. This can result in inaccurate cluster partitions. Kotary and Nanda [50] developed
hybrid clustering techniques combined with evolutionary computing such that the global
optima may be obtained. For the monitoring of outliers, a weight system was proposed,
based on the volume and density of the data points. In this case, outliers are the ones with
larger weights.

There are many difficulties in the deployment of wireless underwater sensor networks
(WUSNs), such as the high loss rate of transmission powers in the data transfer process.
Clustering may address this issue by combining wireless sensors into cluster with local
base station one hop away. As the sensor nodes are now close to the local base station,
the transmitting power can be reduced significantly. Omeke et al. [51] proposed a novel
k-means clustering scheme for local base station selection. It was found to be able to
prolong the lifetime of WUSNs. The proposed algorithm can decide the optimal number of
clusters in real time. The experimental results support that it can outperform the traditional
clustering algorithms by more than 90%.

A common property of the spectral clustering algorithm is the reduction in the di-
mension for the source data before measuring the similarity among the data. Shi-Malik
algorithm is a spectral clustering algorithm which is popular in the segmentation process
of images.

Gao and Shi [52] developed a novel clustering algorithm to monitor the behavior
pattern of the handling of ships. Ship information is obtained from the array of sensors,
and then feeds into the identification system with trajectory data. The sliding window
algorithm was employed to extract information from the data given by this sensor system.
The trajectories were divided and generated sub-trajectories, and a spectral clustering
algorithm was utilized for the clustering of sub-trajectories in order to discover the patterns
of behavior. This method can help understanding the behavior patterns during the process
of handling ships. The proposed method can also increase the efficiency of the learning
process for planning of ship routes and collision avoidance decision making, etc.

Sensors for hyperspectral imaging (HSI) have the capability to handle source dataset
of wide spectrum of wavelengths. Yet, HSI classification can be a challenging task because
of the high-dimensional feature space. Sellami et al. [53] developed a new HSI classification
method, combining spectral technique with a deep neural network to the classification
task of HSI. The issue about the redundancy between spectral groups were addressed
with unsupervised selection algorithm. Spectral-spatial features were extracted from the
different groups of selected bands for improving the accuracies of classification. A 3D CNN
model was applied to associate and fuse each group with the target for further enhancing
the accuracies of classification.

A synthetic summary of the advances in unsupervised machine learning for sensing
and condition monitoring is presented in Table 2.
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Table 2. Summary of the advances in unsupervised machine learning for sensing and condition
monitoring.

Ref. First
Author Year Model Application

Field Dataset Accuracy Details

[48] Shukla 2020 Hierarchical
clustering

IoT
applications with

data from
sensors

Dataset, related to
vehicular traffic

count, and
environmental

pollutant CO level

Accuracy is more
than 90%

Combination of a
hierarchical
clustering

and an LSTM
neural network

[49] Kim 2020 Hierarchical
clustering

M13
bacteriophage-

based
colorimetric

sensors

Dataset from sensing
experiments at four

different
temperatures

Effective
classification

Hierarchical
clustering is used to

classify types of
medical chemicals

[51] Omeke 2021

Distance-and en-
ergy-constrained

k-means
clustering

Lifetime of
WUSNs

AUV-based dataset
from underwater

clusters

Essentially
outperformed

LEACH protocol

Distance- and
energy-constrained
k-means clustering
scheme is used for

cluster head selection

[52] Gao 2020 Sub-trajectory
clustering

Ship-handling
behavior

monitoring

Trajectory dataset
from multiple

sensors

Effective
monitoring

Ship-handling
behavior monitoring

with multi-step
sub-trajectory

clustering analysis

[53] Sellami 2020 Spectral
clustering

Hyperspectral
image

classification and
monitoring

Indian Pines and
Salinas datasets

Effective
classification and

monitoring

Unsupervised band
selection technique
with a hierarchical

clustering

4. Deep Learning

Deep learning (DL) is a machine learning (ML) framework, developed from tradi-
tional neural networks, approximately since 2006. Deep learning is actually based on
large-sized deep neural networks (DNNs), and can be referred as neural networks with
a deep structure (Zhao and Zheng et al. [54]). Deep models have outperformed conven-
tional techniques in recent decades and are now a common tool for data representation
(Yuan and Shen et al. [55]).

The main advantage of deep learning over traditional ML is the automatic identi-
fication of features, learned through a general purpose learning procedure (LeCun and
Bengio et al. [56]). Classic methods of machine learning starting from raw data require
a pre-processing work, based on the identification and selection of feature vectors or of
a suitable internal representation to be provided as input to the neural network. This
work of data targeting is intensive and time-consuming and must be carried out by expert
engineers. Otherwise, raw data can be directly supplied to a deep neural network and,
from the composition of a number of levels consisting of simple but non-linear modules,
progressive transformations are obtained with gradually increasing levels of abstraction,
leading to learn even very complex functions. In deep learning for classification purpose,
the elements of the inputs, which are crucial for discrimination, are amplified by higher
level of representation, while the irrelevant ones are neglected.

High-level and abstract features are automatically extracted from a large variety
and quantity of data, captured from various sources. Typical feature extraction methods
are unable to obtain similar results (Samaras and Diamantidou et al. [57]). Hinton and
Salakhutdinov in [58] firstly demonstrated this superiority. As clearly expressed by LeCun
and Bengio et al. [56], deep learning methods are, in short, representation-learning methods
with multiple levels of representation. Each layer representation is computed from the
representation in the previous layer; the computation is based on internal parameters which
are updated through a back-propagation algorithm. With multiple non-linear layers even an
intricate structure in a large dataset can be discovered. Multi-layer learning allows very high
performance in complex function approximation, image, video, speech or audio processing,
classification problems, multi-sensor data aggregation, with extraordinary results in many
fields as speech or visual object or signals recognition, natural language processing, face
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or object, or pedestrian detection, human activity identification, fault diagnosis, drug
discovery, genomics, multi-task and transfer learning, domain adaptation, etc.

Input data quality is fundamental for a good functioning of deep learning. Conse-
quently, the tools that enable data acquisition also play a key role. Depending on the field of
application and the purpose, the nature of the data and of the sensors/acquisition devices is
different. The use of data from sensors/sources of different nature is increasingly frequent
and therefore data fusion, which merges complementary information, as spatial–temporal–
spectral resolution data, often occurs. DL models extract abstract features from multiple
input streams and can establish robust relationships between dissimilar input signals, not
influenced by sensor type and spatial scale. Moreover, DL is robust even in cases of missing
or corrupted sensor data.

Starting from the classical NNs, such as the back-propagation feedforward NN (BPNN)
or the radial basis type known as a generalized regression neural network (GRNN), dif-
ferent DL architectures have been developed to address different kinds of problems. The
mainstream deep neural models are the deep belief network (DBN), a convolutional neural
network (CNN), autoencoder (AE), recurrent NN (RNN) and the long short-term memory
network (LSTMN). In the following, these architectures will be treated, referring to some
specific applications, focusing attention on the input data and the types of sensors adopted
for datasets creation.

Among the most commonly used deep learning model in recognition and detection
tasks is the CNN. In order to extract features which are resistant to distortion, CNNs use
interconnected network architectures.

A convolutional neural network (CNN) is a deep learning method that can use images
as input, assign weight/importance to objects in the images and classify them. For simple
application, a 1D convolutional neural network may be used. More sophisticated classi-
fication models, CNN-Net, Encoded-Net, and CNN-LSTM, will have more complicated
architectures such as denser layers and larger kernel size than 1D CNN. Medical care
benefits from automatic prediction of routine human activity. For the purpose of recog-
nizing human activity, Mukherjee et al. [59] created the EnsemConvNet ensemble, which
combines CNN-Net, Encoded-Net, and CNN-LSTM classification models. Each model can
accept time-series data as a 2D matrix, and the EnsemConvNet model’s classification result
is created by combining different classifiers using techniques including majority voting,
sum rules, product rules, and score fusion approaches. The suggested EnsemConvNet
model outperforms the following deep learning models, according to the evidence: long
short-term memory, multi-headed CNN, and CNN hybrid models.

Input data are structured in multiple arrays, which may have different dimensions,
depending on the signal type (language-based signals and sequences are 1D; 2D pictures or
audio spectrograms; and 3D video or volumetric images.). CNN is a feedforward network,
formed in the early stages by a sequence of convolution, pooling, non-linear activation
layers and in the final stages by fully connected layers. In convolutional layers, a filtering
operation is performed through a feature map in which units are organized, thus, getting a
discrete convolution in order to identify local confluences of features from the preceding
layer; hence the name given to these levels and more generally to the deep model.

Simple features such as texture, lines, and edges are often extracted by the bottom
convolution layers, whereas more abstract features are typically extracted by the top layer.
(Chen and Li et al. [60]). Pooling layers combine semantically related features into a
single feature, resulting in more robust feature descriptions as well as down-sampling
and dimensionality reduction processing. These operations include max-pooling, average-
pooling, L2-pooling, and local contrast normalization. To improve CNN’s capacity to fit
non-linear data, activation layers’ units perform non-linear procedures such as rectified
linear unit (ReLU) or sigmoid units. Fully connected layers are located at the outermost
level, closest to the output, and serve the purpose of classification. As in BPNNs, the
back-propagation algorithm is employed for weights update.
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Numerous articles discuss the usage of CNN in numerous disciplines, and a significant
amount of these works emphasize the importance of the sensor selection and sensor-
related concerns.

For images, recognition cameras are adopted. The widespread use of cell phones
equipped with high resolution cameras makes available a huge amount of data that can be
used for various applications. The combination of mobile phones and deep learning is a
promising solution in many fields.

In a framework for indoor localization, Ashraf et al. [61] presented a deep learning-
based convolutional neural network (CNN) localization based on smartphone photos.
CNN is used to distinguish between floors, recognize inside scenes in a variety of lighting
conditions, and improve indoor localization precision. The classification is based on camera
images captured in pre-defined collection points using Samsung Galaxy S8 rear camera.
For recognizing scenes, CNN has a prediction accuracy of 91.04%. The search space in a
geomagnetic database used for localization is further reduced using the identified scene.

Chen and Cao et al. [62] use image processing and a CNN-based technique to deter-
mine UV intensity. They created a wearable UV sensor out of PDMS and photochromic
material. Images from a cell phone were used to construct the dataset, and the sensor
changes color when exposed to UV radiation. When a CNN was trained to measure
UV intensity, the influence of ambient light was considerably diminished, yielding an
identification rate of more than 90% under various ambient light circumstances.

Yang et al. [63] presented a comprehensible fuzzy fusion method to combine the
output of CNN models that could assess the relevance of each classifier by looking at
the interaction index between each classifier. Additionally, SoftPool and Mish activation
features were added to conventional CNNs to improve their capacity for feature extraction.
An experimentally collected dataset and an artificially generated fault bearing dataset
are used to evaluate the performance of the suggested model and assess its capacity to
extract features.

In the health monitoring of industrial systems, DL is extensively adopted, as DL-based
fault diagnosis methods achieve better results than traditional ML methods. Bearing fault
detection classification and localization is a problem in which CNNs obtained very positive
performances (Waziralilah and Fathiah et al. [64]).

Niu and Liu et al. [65] proposed a deep residual convolutional neural network (DR-
CNN) with gray-scale pictures obtained by a multi-sensor data (multiple 3-axis accelerome-
ters) as input data to address the problem of bearing fault diagnostics with multi-sensor
data. The CNN degrades as the network depth reaches a particular level, but certain
connections in the residual network skip some of the CNN structure’s layers, making it
simple for parameter gradients to spread from the output layer to the lower levels.

Another area, in which accelerometer signals are highly adopted is the biomedical
field, such as for human activity recognition (HAR). In Kulchyk and Etemad [66], the
authors apply a deep CNN for HAR using a publicly available dataset (Ugulino and
Cardador et al. [67]), which contains raw data from four tri-axial wearable accelerometers.
The suggested approach is evaluated against other conventional classifiers, such as decision
trees, random forest, support vector machines (SVM), and k-Nearest Neighbors (kNN). A
classification accuracy of 100% is achieved, with the great advantage of eliminating the
need for a pre-processing activity.

A combination of a CNN and a deep convolutional generative adversarial network
(DCG), whose acronym is DCG–CNN, is proposed by Sun and Zhao [68] for gas sensor
condition monitoring to prevent fault; in the specific case, the gas is hydrogen. A DCG
combines a CNN with a generative adversarial network (GAN), whose purpose is to
produce fresh samples of data from the available data with the same statistical properties,
enhancing defect detection precision when imbalanced data samples are present. The
following steps make up the method: the DCG approach is used to construct synthetic 2D
grey images of sensor fault signals from 1D hydrogen sensor fault signals; the experimental
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signal and the synthetic signal are mixed to balance the training dataset. A CNN is trained
and evaluated using the entire dataset.

It has been discovered that deep learning has great promise for wireless sensing tasks.
There are however problems with labor-intensive training that involves gathering training
samples and retraining efforts for trained systems. In order to complete wireless sensing
tasks with fewer training efforts, Wang and Gao et al. [69] concentrated on the viability of
utilizing deep learning networks. Deep generative adversarial networks (DGAN) were
used to provide virtual training samples for the suggested wireless sensing system based
on deep learning. The case study of wireless gesture recognition established its efficacy.

Remote sensing is another important area of DL application, with an exponential rise in
papers published on the subject in recent years (Zhu and Tuia et al. [70]). Supervised CNNs
give optimal performances in the direct classification of hyperspectral images in the spectral
domain, as obtained by Hu and Huang et al. [71]. The adopted CNN model has only one
convolutional level, since authors verified that the typical CNN with two convolutional
layers is actually not applicable for hyperspectral data. According to experimental results
based on multiple hyperspectral image datasets, the suggested method produced high
classification performance.

CNNs analyze image-based patterns and are ineffective at simulating temporally
oriented events. On the other hand, R-CNNs are particularly well suited to model temporal
changes in data. They perform temporal analysis of events in time-sequence applications,
such as language and speech recognition, when given sequential inputs. The history of
the sequence is stored in a state vector in the hidden units of an R-CNN, which processes
one input element at a time. Back-propagation is utilized to train an R-CNN because the
outputs of the hidden neurons at each step time are analogous to the outputs of various
neurons in a deep multilayer network.

Uddin and Mehedi et al. [72] use a deep R-CNN in the field of HAR to identify
human behaviors (such as sitting, standing, and walking) from data collected by wearable
body sensors. In the study two publicly available datasets, MHEALTH (mobile health)
(Banos and Villalonga et al. [73]) and PUC-Rio are used, as well as the AReM (activity
recognition system based on multi-sensor data fusion) dataset gathered by the authors.
The suggested method is based on data fusion from many wearable sensors, including
an electrocardiogram (ECG), an accelerometer, and a magnetometer. Next, using kernel
principal component analysis (KPCA), features are retrieved, and then a deep R-CNN is
applied to recognize behavior.

Controlling HMI devices or artificial limbs frequently involves the detection and
classification of human movements. According to Wang and Chen et al. [74], a R-CNN
is a promising decoder for classifying hand movements based on the combination of
complicated time-series EMG signals and acceleration data.

Remote sensing also uses R-CNN. Arefin and Michalski et al. [75] developed a super-
resolution method based on an R-CNN architecture to produce a high-resolution image
from a succession of low resolution satellite photographs.

In order to learn long-term dependencies, Hochreiter and Schmidhuber [76] modified
the recurrent neural network (RNN) and created the long short-term memory (LSTM). The
LSTM employs a self-feeding loop in its inner layers that may learn time-based correlations,
combining knowledge from previous inputs into the analysis of present inputs. Both spatial
and temporal information may be extracted from data thanks to the combined strength of
CNN and LSTM.

A CNN-LSTM was used by Bilgera et al. in [77] to determine the position of a gas
source (GSL) in an outdoor environment using a variety of stationary sensors (sensor
network). In the investigation, thirty metal oxide (MOX) gas sensors that are commercially
available and one ultrasonic anemometer were used, and data from the gas sensor array
were arranged in a series of monochrome images to create a visual learning challenge
for GSL.



Appl. Sci. 2022, 12, 12392 15 of 23

According to Nagrecha et al. [78], a deep CNN-LSTM provides reliable findings for
predicting air pollution in the field of earth environmental monitoring. Ground-based
pollution sensors are used in the solution, and the sensor data are recast into a modified
pseudo-image to enable the usage of deep 1D CNN and LSTM.

Xia and Huang et al. [79] used inertial sensor data from a wearable smartphone
to apply an LSTM-CNN model to a HAR issue to identify activities of daily life such
as standing, walking, walking downstairs, and going upstairs. The model is made up
of a pre-processing phase that uses a two-layer LSTM to extract temporal features, two
convolutional layers with a max-pooling layer to extract spatial features, a global average
pooling layer (GAP), a batch normalization layer (BN), and an output layer (with a Softmax
classifier) that produces a probability distribution over classes. Three open datasets (UCI,
WISDM, and OPPORTUNITY) were used for testing, with overall accuracy ratings of
95.78%, 95.85%, and 92.63%, respectively. The cost-minimization method is used by the
logistic regression-based Softmax classifier to describe multi-class classification problems.

A generative deep learning model called autoencoder (AE) converts high-dimensional
data into low-dimensional feature vectors by using copies of training data as input. This
reduces the complexity of calculation. AE is an unsupervised method for learning data
coding since it uses a feature learning paradigm that directly learns a para-metric map
from inputs to their representation (Ma and Sun et al. [80]; Lei et al. [81]). The encoder, a
feature-extracting function, and the decoder, which maps the feature space back into the
input space, are the two parts of an AE. An encoder and a decoder consist of an input layer,
an output layer, and numerous hidden layers in between.

In order to decrease the reconstruction error, which is a measurement of the disparity
between the inputs and their reconstruction over all training datasets, a back-propagation
technique is employed to modify the encoder and decoder parameters (the weights of the
hidden layers). Deep AE provides a data-driven method for learning feature extraction in an
effort to lessen the over-reliance on manually produced features prevalent in conventional
machine learning techniques. Different fields use AE variations that have been established.

By connecting the hidden representations of two single AEs, a deep coupling AE
(DCAE) model is created. DCAE is used to gather the combined information from multi-
modal data. Ma et al. developed a DCAE in [80] with the objective of discovering a
combined feature between vibration and acoustic data in order to categorize the health
state of gears and bearings. For the purpose of combining multimodal signals obtained from
several sensors, the model uses a deep learning approach based on the CAE. This technique
fuses multimodal data fusion and feature learning into a single step. Furthermore, by
self-teaching the high-level features through greedy layer-wise training, the created deep
architecture can effectively extract correlations between vibration and acoustic data.

To increase precision and decrease over-fitting in HAR with smartphone-embedded
accelerometer sensor data, Alo and Nweke et al. [82] present a deep sparse AE-based
deep learning model. The sparse AE is a not supervised DL technique to learn an over-
complete feature representation from the raw sensor data by modeling the loss function’s
sparsity term with the sparsity term and setting to zero some of the active units. The
model can train stable, linearly separable, displacement, distortion, and change-invariant
feature representations thanks to the sparsity term. The features of the sparse AE guarantee
effective low-dimensional characteristic extraction from the high-dimensional structure
of the input sensor data. Furthermore, Additionally, a complicated activity recognition
framework is compactly represented.

The model and the training algorithm of a deep belief network (DBN) were proposed
by Hinton and Osindero et al. [83]. DBNs use a greedy layer-by-layer learning approach
and a hierarchical structure with numerous stacked restricted Boltzmann machines (RBMs),
followed by a fine-tuning. A visible layer and a concealed layer are both present in
every RBM. Each layer contains a particular number of neurons. Although the RBM’s
layers are interconnected, the units within each layer are not. The values of the hidden
neurons can be updated for this structure using matrix operations. This approach is
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suitable for making predictions online because it can speed up training. The input for
the following layer is thought to be the learned properties. A Softmax classifier is then
used to update the network’s parameters, and it is also used in the final layer to label each
pixel and the classification result. RBMs are an efficient method for extracting features for
the feedforward neural network’s initialization, and they greatly enhance the network’s
generalization performances.

Due to the random initialization of weighted parameters, local optimum and extended
training period are problems that DBN resolves. The convergence time is substantially less
because the parameter space only calls for a local search.

With information gathered from numerous sensors, Chen and Jin et al. [84] employed
a DBN to forecast tool wear in a high-speed CNC milling machine (a three-component
dynamometer, piezo-accelerometers and an acoustic emission sensor). The study found
that the DBN performed well in terms of speed, accuracy, and stability.

Zhong et al. [85] created a technique based on a DBN used for multivariate optical
sensors and hyperspectral image classification. The development of an RBM’s stacks has
been their main contribution. They changed the RBM and the learning algorithm. As part of
the pre-training and fine-tuning procedures, data are trained in tiny batches to maximize the
loss function of the validation dataset. In hyperspectral images, deep features that model
several ground-truth classes are extracted. Experiments demonstrate the effectiveness of
this generative feature learning for a spatial classifier (SC) or combined spectral-SC (JSSC),
demonstrating cutting-edge performance on hyperspectral image classification.

Deep learning is also declined in terms of “geometric deep learning”. Some current
DNN topologies can be seen as graph neural networks (GNN). In the computer vision
domain, e.g., CCNs can be thought of as a GNN applied to graphs that are organized
as pixels-per-grid grids. A GNN allows the processing of data represented in graph
domains, e.g., chemical compounds, images, subsets of the web [86]. Graphs could be
cyclic, directed, undirected, or a mixture of these. Social networks, molecular biology,
chemistry, citation networks, forecasting of environmental conditions and physics are a
few relevant application domains for GNNs.

In [87], Jiao et al., in order to create a group solar irradiance neural network GSINN,
merged a GCN (Graph Convolutional Network) with a modified LSTM RNN to capture
the graph feature of photo-voltaic panels (PV) groups. The role of the LSTM RNN is to
catch the temporal correlations. Meteorological data of 17 silicon radiometers of the U.S.
National Renewable Energy Laboratory [88] are used to conduct a thorough study The
testing outcome demonstrates the suggested GSINN’s higher performance in terms of
universality, dependability, and accuracy when compared to existing prediction systems.

Shi and Rajkumar applied a GNN [89] for 3D object detection in a point cloud obtained
through Lidar sensors. They propose a single-stage detection method, in which a graph is
constructed from the point cloud, a GNN with auto-registration is used to refine the vertex
features by aggregating features along the edges and the NN outputs (multiple bounding
boxes) are merged into one and a confidence score is assigned.

CNN and GCN have been applied by Zhang et al. [90] to extract discriminative features
from RNA sequences. They developed a method based on two-layer CNN and GCN in
parallel to extract the hidden features, followed by a fully connected layer to make the
prediction of RNA-binding proteins for the anatomy of the essential mechanism of gene
regulation. The use of the spectral GCN in RNA sequence analysis suggests that GCNs are
useful for extracting relative characteristics from RNA sequences.

ML and DL models have been effectively used to address the intrusion detection
challenge for wireless sensor networks. A redundancy identification system based on
a convolutional DBN and a performance evaluation strategy was created by Wen and
Shang et al. [91]. The improved method deals with the issue of unidentified or inadequate
preceding samples by using unsupervised learning to extract characteristics from examples
of both normal and abnormal behavior. To raise the execution effectiveness of CDBN,
a knowledge contraction method was created. This mechanism may optimize feature
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datasets and produce a useful classification sample space to improve intrusion detection’s
classification accuracy.

Over the last decade, we have witnessed a big number of publications on ML and DL
applications in science and engineering. Considering that both deep or shallow learning
models are built as a black-box model by ML or DL algorithms, respectively, an interpre-
tation mechanism should be applied, which allows to interpret or describe the ML or DL
model results and make them more transparent. Having said this point, an early work to
explainable ML models can be referred to [92]. However, there would be a tradeoff between
the complexity of deep leaning models and its simplification to be interpretable or under-
standable by humans. On this aspect, the authors in [93] developed gradient-weighted
class activation mapping (Grad-CAM) for generating “visual explanations” for choices
from a broad class of CNN-based models.

Recently, the authors in [94] provided a comprehensive review for the existing machine
learning interpretability methods. Four main kinds of interpretability approaches—those
for developing white-box models, explaining complex black-box models, promoting fair-
ness and preventing prejudice, and, finally, methods for measuring the sensitivity of model
predictions—were specifically examined.

A synthetic summary of the deep learning advances for sensing and condition moni-
toring is presented in Table 3.

Table 3. Summary of the deep learning advances for sensing and condition monitoring.

Ref. First Author Year Model Application
Field Dataset Accuracy Details

[59] Mukherjee D. 2020 EnsemConvNet
model

Human activity
monitoring

Publicly available
datasets are: Wireless
Sensor Data Mining

(WISDM [95],
MobiAct [96] and uniMiB

SHAR [97], employed
accelerometers,
gyroscope, and

geomagnetic field sensors

Monitoring
accuracies are

99.6%, 99.1% and
99.9% on the

three datasets,
respectively

Combination of
CNN-Net,

Encoded-Net, and
CNN-LSTM

[61] Ashraf 2019 CNN model
Indoor

localization and
monitoring

Datasets, based on
smartphone photos

Monitoring
accuracy is 91%

Indoor localization
and monitoring
based on CNN,

which is used to
distinguish between

floors, recognize
inside scenes in a
variety of lighting

conditions

[62] Chen 2022 CNN model Monitoring UV
intensity

Datasets, based on
smartphone photos

Monitoring
accuracy is more

than 90%

A UV intensity
monitoring APP,

based on a
mobile CNN

[65] Niu 2021 DR-CNN
model

Bearing fault
diagnostics with
multi-sensor data

Multiple 3-axis
accelerometers datasets

Estimate of
diagnosis

accuracy is 100%

New connections in
the residual network

skip some CNN
structure’s layers;

this leads to accuracy
improvement

[66] Kulchyk 2019 CNN model Human activity
monitoring

Four tri-axial wearable
accelerometer dataset

(publicly available
via [67])

Estimate of
diagnosis

accuracy is 100%

Novel CNN is
eliminating a need

for a pre-processing
activity

[68] Sun 2022 DCG–CNN
model

Gas sensor
condition

monitoring

1D hydrogen sensor data
and synthetic 2D

grey images

Monitoring
accuracy is 98.9%

Synthetic 2D grey
images are generated

from 1D hydrogen
sensor data
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Table 3. Cont.

Ref. First Author Year Model Application
Field Dataset Accuracy Details

[69] Wang 2020 DGAN model Wireless gesture
monitoring

Radio image datasets,
obtained from de-noised
wireless measurements

Monitoring
accuracies are

90% for different
participants, 91%

for different
laboratories, and
86% for different
participants and

laboratories

Reducing training
efforts by generating

virtual samples

[71] Hu 2015
CNN model

with one
convolutional

level

Hyperspectral
image

classification

Three datasets from
remote sensors, which are

characterized by
hundreds of observation

channels with a high
spectral resolution

Classification
accuracies are
90.2%, 92.6%,

92.6% for three
datasets

Classification of
hyperspectral images

in spectral domain

[72] Uddin 2020 R-CNN model

Human activity
monitoring

(sitting, standing
and walking)

Data fusion from many
wearable sensors,

including an
electrocardiogram (ECG),
an accelerometer, and a
magnetometer (publicly

available datasets,
MHEALTH [98] and

PUC-Rio) and AReM [99],
collected by the authors)

Monitoring
accuracy is 99%

Monitoring features
are retrieved using

kernel principal
component analysis

[76] Wang 2018 R-CNN model HMI control
Dataset, combining EMG
signals and acceleration

signals

Monitoring
accuracy is 91.5%

Human activity
monitoring (i.e.,
classifying hand

movements)

[75] Arefin 2020 R-CNN model
Remote sensing
and condition

monitoring

Dataset of low-resolution
satellite photographs

Effective
condition

monitoring

Production of
high-resolution
images from a
succession of

low-resolution
satellite photographs

[77] Bilgera 2018 CNN-LSTM
model

Monitoring a
position of a gas

source in an
outdoor

environment

Dataset from gas sensor
array is arranged in a
series of monochrome

images

Monitoring
accuracy is 95%

Monitoring in an
outdoor environment

using stationary
sensors (i.e., a sensor

network)

[78] Nagrecha 2020 CNN-LSTM
model

Earth
environmental

monitoring

Round based pollution
sensor data recast into a
modified pseudo-images

Monitoring
accuracy is 75%
(average value

for different sites
and different

hourly intervals)

Prediction and
monitoring of an

air pollution

[79] Xia 2020 LSTM-CNN
model

Human activity
monitoring
(standing,

walking, walking
downstairs, and

walking upstairs)

Three open datasets (UCI,
WISDM and

OPPORTUNITY)

Monitoring
accuracies are
95.8%, 95.8%,

and 92.6% for the
three datasets,
respectively

Logistic
regression-based

Softmax classifier is
used to solve the

multiclass
monitoring problem

[80] Ma 2018 DCAE model

Detection/diagnosis
of the health state

of gears and
bearings

Vibration and acoustic
datasets

Diagnosis
accuracy is 94.3%

Technique, which
fuses multimodal
data and feature
learning into a

single step

[82] Alo 2020 Sparse AE
model

Human activity
monitoring

(ascending stairs,
descending stairs,
drinking coffee,
presenting talks,

and smoking)

Dataset from
smartphone-embedded

3D accelerometers,
including magnitude and
rotation angle data (pitch

and roll)

Monitoring
accuracy is 97.2%

Method, based on
data fusion, deep

stacked autoencoder
algorithm and

orientation invariant
features, is used for a

complex human
activity monitoring
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Table 3. Cont.

Ref. First Author Year Model Application
Field Dataset Accuracy Details

[84] Chen 2018 DBN model

Monitoring tool
wear in a

high-speed CNC
milling machine

Dataset from
three-component

dynamometer,
accelerometers and an

acoustic emission sensor

R2 value is 98.9%

DBN model, which is
featured a low
runtime, a high
accuracy and a
high stability

[85] Zhong 2017

D-DBN-PF
model (DBN

with diversifying
training method

both in
pre-training and

fine-tuning
phases)

Hyperspectral
image

classification

Dataset of hyperspectral
images from multivariate

optical sensors

Classification
accuracy is 93.1%

Deep features, that
model multiple

ground-truth classes,
are extracted from

hyperspectral images

[87] Jiao 2022 GCN-LSTM
model

Solar irradiance
forecasting and
monitoring for a

group of PV
panels, based on

their temporal
and spatial
information

Solar irradiance dataset,
sourced from the U.S.’s

National Renewable
Energy Laboratory [88]

Root mean
squared error

is 0.0052

Model is a group
solar irradiance
neural network
(GSINN), which
integrates a GCN

model with a
LSTM model

[89] Shi 2020 CNN-GNN
model

Monitoring of
objects from a 3D

point cloud

KITTI dataset [100] (Lidar
point clouds and the

camera images)

Monitoring
accuracy is

between 75%
and 90%

Single-stage
monitoring method:

a Point-GNN extracts
features of the point
cloud by iteratively

updating vertex
features on the

same graph

[90] Zhang 2022 CNN and GCN
models

Discriminative
features from

RNA sequences
for prediction

and monitoring
of binding sites

24 datasets [101] (RBPs
binding sites with
different methods)

Monitoring
accuracy is 87.9%
(mean value for

24 datasets)

Two-layer CNN and
GCN are used in
parallel to extract
hidden features

[91] Wen 2021

ICDBN-IDM
(improved

convolutional
deep belief

network-based
intrusion

detection model)

Intrusion
monitoring via
wireless sensor

networks

Dataset on environmental
information, collected in

real-time from sensor
node of an WSN

Monitoring
accuracy is 96.8%

Redundancy
monitoring

algorithm, based on
the convolutional

deep belief network
and a performance
evaluation strategy

5. Brief Conclusions

This article has provided an overview and understanding on the impact of machine
learning techniques in real-time condition monitoring and sensing technologies. More
specifically, various learning algorithms are analyzed to deal with the accuracy and compu-
tational complexity challenges within the context of sensor data processing. Afterwards,
different machine learning and deep learning models are provided from application point
of view. Some important and yet challenging research topics are machine learning for com-
plex sensing networks, integrated machine learning hardware for soft sensing applications,
interpreting machine learning models and a different range of applications.
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