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ABSTRACT
BACKGROUND: Early-life environmental exposures during critical windows (CWs) of development can impact life
course health. Exposure to neuroactive metals such as manganese (Mn) during prenatal and early postnatal CWs may
disrupt typical brain development, leading to persistent behavioral changes. Males and females may be differentially
vulnerable to Mn, presenting distinctive CWs to Mn exposure.
METHODS: We used magnetic resonance imaging to investigate sex-specific associations between early-life Mn
uptake and intrinsic functional connectivity in adolescence. A total of 71 participants (15–23 years old; 53%
female) from the Public Health Impact of Manganese Exposure study completed a resting-state functional
magnetic resonance imaging scan. We estimated dentine Mn concentrations at prenatal, postnatal, and early
childhood periods using laser ablation–inductively coupled plasma–mass spectrometry. We performed seed-based
correlation analyses to investigate the moderating effect of sex on the associations between Mn and intrinsic
functional connectivity adjusting for age and socioeconomic status.
RESULTS: We identified significant sex-specific associations between dentine Mn at all time points and intrinsic
functional connectivity in brain regions involved in cognitive and motor function: 1) prenatal: dorsal striatum,
occipital/frontal lobes, and middle frontal gyrus; 2) postnatal: right putamen and cerebellum; and 3) early
childhood: putamen and occipital, frontal, and temporal lobes. Network associations differed depending on
exposure timing, suggesting that different brain networks may present distinctive CWs to Mn.
CONCLUSIONS: These findings suggest that the developing brain is vulnerable to Mn exposure, with effects lasting
through late adolescence, and that females and males are not equally vulnerable to these effects. Future studies
should investigate cognitive and motor outcomes related to these associations.

https://doi.org/10.1016/j.bpsgos.2022.03.016
The Developmental Origins of Health and Disease theory
postulates that early-life environmental influences can result
in long-lasting effects on health (1). Indeed, exposure to
toxicants during critical windows (CWs) of development has
been shown to alter tissue-specific plasticity by interfering
with maturational processes, leading to functional changes in
various organ systems throughout the life course (2). Such
CWs result from gene-environment interactions, giving rise
to sensitive periods during development in which the for-
mation of a phenotype is responsive to external factors (3).
These changes may increase susceptibility to disease and
dysfunction later in life (4,5). This reprogramming process
depends on 1) the sensitivity of a specific tissue to the
chemical and 2) a temporal overlap between exposure and
the tissue’s CW of development. In addition, the time window
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in which the phenotype/outcome is measured plays an
important role in estimating the impact of exposure (1,6). The
extended period of brain development, spanning the third
gestational week through late adolescence, gives rise to
many CWs of vulnerability to toxic chemicals across devel-
opment (e.g., prenatal, early postnatal, and childhood pe-
riods) (7). Extensive evidence suggests that the effects of
environmental exposure on neurodevelopment may depend
as much on the exposure timing as on the concentration
(8,9). A better understanding of CWs of vulnerability to
developmental neurotoxicants and the biological mecha-
nisms underlying these associations would inform our un-
derstanding of typically developmental trajectories as well as
inform prevention and treatment strategies for reducing
adverse environmentally associated brain outcomes.
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Magnetic resonance imaging (MRI) provides insight into
biological mechanisms underlying human cognition and
behavior. Applied to studies of environmental epidemiology,
MRI offers the possibility of linking exposure with changes in
the brain. Specifically, resting-state functional MRI (rs-fMRI)
can be used to map large-scale functional networks in the
human brain by examining slow (,1 Hz) oscillatory intrinsic
fluctuations in hemodynamics (10), with the assumption that
regions with correlated activity form functional networks.
Changes in brain functional connectivity have been reported in
various neurodevelopmental disorders (11). rs-fMRI is partic-
ularly suited to benefit pediatric research because it is inher-
ently noninvasive and does not require cooperation or
motivation, minimizing many confounders related to task per-
formance and increasing consistency across participants and
datasets (12). Incorporating rs-fMRI into children’s environ-
mental health studies allows us to examine the in vivo impacts
of environmental exposures on the developing brain’s func-
tional organization (13).

Throughout development, the brain undergoes a complex
series of dynamic processes in which few cells develop into a
highly interconnected brain (7,14). Environmental exposure to
neuroactive metals such as manganese (Mn) during specific
CWs of brain development may disrupt typical development
and functioning, leading to persistent behavioral and cognitive
changes (14,15). The general population can be exposed to Mn
through inhalation, dietary intake, and drinking of contami-
nated water (16–18). Human activities such as ferroalloy in-
dustries may expose children and pregnant women residing in
adjacent areas to higher levels of Mn (19). Mn can cross the
placental and blood-brain barriers and lead to changes in the
brain (20). Mn levels outside of the homeostatic range (i.e.,
deficiency or intoxication) alter neuron function (21,22), in-
crease oxidative stress (23), accumulate in the basal ganglia
(21–23), and adversely affect cognitive and behavioral out-
comes including IQ (24,25), motor function (19,26,27), and
hyperactivity (28,29). While CWs to Mn have been identified
during gestation, infancy, early childhood, and adolescence
(8,9,30,31), the brain mechanism underlying its neurotoxicity
remains largely unknown. Further, animal and human studies
demonstrate sex-specific associations between Mn exposure
and behavioral outcomes (26,32–34), suggesting that males
and females may present distinctive CWs to Mn exposure and
may be differentially vulnerable to its effects. Sex-specific
vulnerability may relate to the brain’s sexually dimorphic
developmental trajectory, beginning in utero (35–37). Sex dif-
ferences in developmental trajectories may emerge from
endogenous developmental programming, developmental
experience, or other environmental exposures (38–40). Sex-
specific CWs may explain sex differences in the prevalence,
severity, and progression of neurodevelopmental disorders.
Understanding the impact of both timing and concentration of
Mn exposure on brain functional connectivity may provide
mechanistic insights into sex differences in Mn-associated
neurotoxicity.

In this study, we used rs-fMRI to investigate sex-specific
associations between prenatal, early postnatal, and child-
hood Mn exposure, measured in deciduous teeth, and brain
intrinsic functional connectivity (iFC) in older adolescents.
Notably, sex differences in associations between Mn and
Biological Psychiatry: Glob
neurocognition have been previously reported in this cohort
(32,41). Based on previous studies suggesting associations
between early-life Mn exposure and changes in brain areas
implicated in motor and cognitive control (42–46), we hy-
pothesized that early-life exposure to Mn will have down-
stream impacts on brain functional connectivity in the basal
ganglia, prefrontal cortex, parietal cortex, and motor cortex
and that these effects will be different in females compared
with males.

METHODS AND MATERIALS

Participants

Participants were part of the ongoing Public Health Impact of
Metal Exposure (PHIME) cohort based in the province of
Brescia in Northern Italy. Details of the study recruitment and
enrollment have been described previously (19). Briefly, par-
ticipants were enrolled in the study using a community-based
participatory approach from schools throughout the local
public school system in Northern Italy. Schools are located in 3
geographically different but demographically similar commu-
nities in the province of Brescia, characterized by the presence
of ferroalloy plants causing Mn exposure through airborne
emission. All participants completed baseline questionnaires
to evaluate inclusion and exclusion criteria. Inclusion criteria
included birth in the study area of interest, residence in the
study area since birth, and family residence in the study area
since the 1970s. Exclusion criteria included known neurologic,
hepatic, metabolic, endocrine, or major psychiatric disorder;
medication usage with known neuropsychological side effects;
clinically diagnosed motor deficits or cognitive impairment;
and visual deficits that are not adequately corrected. A total of
720 adolescents were enrolled in the Public Health Impact of
Metal Exposure cohort between 2007 and 2014. At the time of
enrollment, participants were asked to provide a naturally shed
deciduous tooth. Between 2015 and 2020, 207 subjects (age
16–23 years) participated in a multimodal MRI follow-up study
and completed baseline questionnaires, including information
on parental educational and occupational levels, and neuro-
psychological tests, including IQ using the Wechsler Intelli-
gence Scale for Children-III assessment (47). Between 2015
and 2016, a convenience sample of teeth from 195 (27%)
participants were analyzed for early-life Mn. From this sample,
MRI scans were acquired for 73 subjects. Complete exposure
data (i.e., dentine Mn), outcome (MRI data), and covariate data
were available for the 73 adolescents (38 females) included in
this analysis. After excluding 2 participants due to movement
in the scanner, Mn uptake, MRI scans, and covariate data were
available for 71 adolescents (38 females). This study was
approved by the Institutional Review Board of the Icahn School
of Medicine at Mount Sinai and the Public Health Agency of
Brescia. Written informed consent was obtained from all
participants.

Dentine Mn Biomarker

To identify early-life CWs of vulnerability to Mn, we used de-
ciduous teeth as a biomarker of retrospective exposure.
Because deciduous teeth accumulate metals in a pattern
similar to the growth rings of a tree, they can provide estimates
al Open Science July 2023; 3:460–469 www.sobp.org/GOS 461
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of both the timing and intensity of exposure, allowing us to
detect when exposure is most hazardous (48). Only incisors,
canines, and molars that were free of defects such as caries
and extensive tooth wear, were analyzed. Detailed analytic
methods have been described previously (48–50). Briefly, teeth
were washed in an ultrasonic bath of ultrapure Milli-Q water
(18.2 MU/cm) and sectioned on a vertical, labial-lingual, or
buccal-lingual plane using a diamond-encrusted blade. The
neonatal line, which histologically distinguishes pre- and
postnatally formed regions of dentine, was identified using
light microscopy. With the neonatal line as a reference point,
the concentrations and spatial distribution of Mn in different
developmental windows were determined using laser ablation–
inductively coupled plasma–mass spectrometry. Dentine Mn
concentrations were normalized to dentine calcium levels
(55Mn:43Ca ratio) to account for variations in mineral density
within and between teeth. A total of 30 sampling points were
ablated parallel to the enamel-dentine junction and assigned to
pre- or postnatal zones after identifying the neonatal line. Area
under the curve was used to account for the different number
of sampling points in each zone per tooth. Childhood cumu-
lative Mn concentrations (1 to w6 years of age) were deter-
mined by averaging across 10 sampling locations within
secondary dentine, the formation of which starts after the
completion of the tooth root and proceeds at a slower rate. The
limit of detection was 0.02 mg/g. Only one dentine measure-
ment fell below the detection limit (n = 1) and was assigned half
the lowest value among the samples above the detection limit.

Covariates

Given that age and socioeconomic status (SES) may impact
iFC (51,52) and associations between Mn exposure and neu-
rodevelopment (53), we included these variables as covariates
in the analyses. SES index (low, medium, high) was determined
using parental educational and occupational levels (54).

MRI Data Acquisition

The MRI scan was performed on a 3T MR unit (Skyra, Siemens)
equipped with a 64-channel phased array head coil at the
Neuroimaging Division at the ASST Spedali Civili Hospital of
Brescia. The 10-minute rs-fMRI scans were acquired using a
T2*-weighted echo-planar imaging sequence (repetition time =
1000 ms, echo time = 27 ms, 70 axial slices, 2.1-mm thickness,
matrix size 108 3 108, covering the brain from vertex to cer-
ebellum). During this acquisition, lights were turned off and
subjects were instructed to keep their eyes open and stare at a
night skyline picture projected on the monitor, to not think of
anything specific, and to not fall asleep. For registration pur-
poses, we acquired a high-resolution anatomical T1-weighted
scan using three-dimensional magnetization-prepared rapid
gradient echo (repetition time = 2400 ms, echo time = 2.06 ms,
230 mm field of view, matrix size 2563 256, 224 sagittal slices,
0.9 mm3 voxel size).

rs-fMRI Data Preprocessing

rs-fMRI data were preprocessed using the Functional Con-
nectivity (CONN) toolbox (http://web.mit.edu/swg/software.
htm) following the standard CONN preprocessing pipeline
(55): functional realignment and unwarp (56), slice-timing
462 Biological Psychiatry: Global Open Science July 2023; 3:460–469
correction (57), outlier identification (volumes exceeding .0.9
mm framewise displacement or global blood oxygen level–
dependent signal changes above 5 SD), direct segmentation
and normalization [images were normalized into standard
Montreal Neurological Institute space and segmented into gray
matter, white matter, and cerebral spinal fluid tissue classes
using SPM12 unified segmentation and normalization pro-
cedure (58)], and functional smoothing (images were smoothed
using spatial convolution with a Gaussian kernel of 8 mm full
width at half maximum). After preprocessing, we applied
CONN’s default denoising pipeline composed of linear
regression of confounding effects and temporal bandpass
filtering. White matter and cerebral spinal fluid noise were
estimated and regressed out using an anatomical component-
based noise correction procedure (59). To reduce motion ar-
tifacts, we included 12 noise parameters as nuisance re-
gressors (3 translation and 3 rotation parameters and their
associated first-order derivatives) at the single-subject level.
Temporal frequencies were filtered to 0.01 to w0.09 Hz to
focus on low-frequency fluctuations while minimizing the in-
fluence of physiological, head motion, and other noise sour-
ces. These noise and motion confounders were regressed out
in the lower-level multiple regression analyses for each
participant before any group-level analyses were carried out.

Seed-Based Correlation Analyses

Seed-based analyses were performed using the CONN
toolbox by computing the temporal correlation between the
blood oxygen level–dependent signals from regions of interest
to all other voxels in the brain. Based on previous pilot results
by our group (43), we selected 7 seeds from the probabilistic
Harvard-Oxford Subcortical Structural Atlas (60): left and right
putamen, left and right caudate, left and right pallidum, and
bilateral middle frontal gyrus. Group-level analyses were per-
formed using the general linear model implemented in the
CONN toolbox with natural log-transformed Mn concentra-
tions at each time point as predictors and iFC as the outcome.
Given that Mn concentrations were moderately correlated
across 2 of the 3 time points (r values = 0.03–0.42), we per-
formed separate analyses for each of the 3 time points. To
investigate the moderating effect of sex on the associations
between dentine Mn and iFC, we examined interactions be-
tween sex and Mn adjusting for age and SES. Statistical im-
ages were thresholded using a cluster-corrected threshold of p
, .05 false discovery rate correction (44,61–63). To control for
the number of comparisons (n = 21; 7 seed regions 3 3 Mn
time points), we applied a secondary false discovery rate
correction and only report findings surviving both false dis-
covery rate corrections. Finally, in a sensitivity analysis, we
investigated sex-stratified associations between dentine Mn
and iFC in regions found to have a significant interaction term.
Stratified models were implemented in R (version 3.5.1) with
the glm package.

RESULTS

Descriptive Statistics

Participant demographics are presented in Table 1. Among the
71 participants (38 [54%] female), the mean age of participants
www.sobp.org/GOS
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Table 1. Sex-Stratified Sociodemographic Characteristics of 71 Adolescents From Northern Italy

Sociodemographic Characteristics Female, n = 38 Male, n = 33 Total, N = 71

Age, Years

Mean (SD) 19.7 (2.08) 19.1 (2.36) 19.4 (2.22)

Median [min, max] 19.7 [15.9, 23.1] 19.1 [15.9, 23.4] 19.4 [15.9, 23.4]

IQ

Mean (SD) 103 (10.7) 106 (9.25) 104 (10.1)

Median [min, max] 105 [78, 117] 105 [77, 121] 105 [77, 121]

SES, n (%)

Low 5 (13.2%) 2 (6.1%) 7 (9.9%)

Medium 25 (65.8%) 23 (69.7%) 48 (67.6%)

High 8 (21.1%) 8 (24.2%) 16 (22.5%)

Site, n (%)

BM 13 (34.2%) 18 (54.5%) 31 (43.7%)

GL 13 (34.2%) 6 (18.2%) 19 (26.8%)

VC 12 (31.6%) 9 (27.3%) 21 (29.6%)

Prenatal Mn

Mean (SD) 0.433 (0.165) 0.471 (0.192) 0.451 (0.178)

Median [min, max] 0.417 [0.168, 1.14] 0.470 [0.148, 0.869] 0.427 [0.148, 1.14]

Postnatal Mn

Mean (SD) 0.137 (0.0477) 0.119 (0.0555) 0.129 (0.0519)

Median [min, max] 0.125 [0.0486, 0.256] 0.121 [0, 0.238] 0.124 [0, 0.256]

Childhood Mn

Mean (SD) 0.000821 (0.000422) 0.000818 (0.000447) 0.000820 (0.000431)

Median [min, max] 0.000720 [0.000328, 0.00267] 0.000757 [0, 0.00208] 0.000727 [0, 0.00267]

IQ was measured using the Wechsler Intelligence Scale for Children, 3rd edition (47). Sociodemographic characteristics did not differ between
males and females (p . .05).

BM, Bagnolo Mella; GL, Garde Lake; max, maximum; min, minimum; Mn, manganese; SES, socioeconomic status; VC, Valcamonica.
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was 19.4 years (SD = 2.2 years). The average IQ score of
participants was 104 (SD = 10.1). The majority of participants
were from families reporting medium SES (66%). Dentine Mn
was log-transformed to reduce skewness and approximate a
normal distribution. There were no statistically significant dif-
ferences found in dentine Mn, age at scan, IQ, and SES be-
tween male and female participants. Dentine Mn
concentrations in each time point, stratified by sex, are pre-
sented in Figure 1.

Seed-Based Correlation Analyses of Sex-Specific
Associations

For all time points, the seed-based correlation analyses
revealed sex-specific associations between dentine Mn and
iFC (Table 2, Figure 2). Seed-to-region connectivity and peak
coordinates in Montreal Neurological Institute space for
models showing significant interactions between dentine Mn
and sex are reported in Table 2. We observed sex-specific
associations between prenatal dentine Mn and iFC in the
following connections: 1) left caudate and left occipital pole, 2)
left putamen and left middle frontal gyrus, 3) left putamen and
left occipital fusiform gyrus, and 4) middle frontal gyrus and
right occipital pole. Sex-stratified analyses showed that in
connections 1 and 3, prenatal Mn exposure was associated
with increased iFC in females and decreased iFC in males,
whereas connections 2 and 4 show an inverse pattern
(Table S1). Mn uptake during the early postnatal period (,1
year of age) showed sex-specific effects on iFC between the
Biological Psychiatry: Glob
right putamen and the right cerebellum, with decreased iFC in
females and increased iFC in males. Exposure to Mn during the
early childhood period (1 to w6 years) showed sex-specific
effects on iFC between 1) the left putamen and the right su-
perior division of the lateral occipital cortex and 2) the middle
frontal gyrus and the left posterior division of the middle tem-
poral gyrus. In both connections, increased Mn exposure was
associated with increased iFC in females and decreased iFC in
males.

DISCUSSION

In this study, we sought to test our Developmental Origins of
Health and Disease–based hypothesis that Mn uptake during
early-life CWs of development is associated with changes in
functional connectivity in adolescence, and that environmen-
tally associated brain changes are sex specific. Using an
objective, retrospective biomarker of Mn uptake during pre-
natal, early postnatal, and childhood periods and rs-fMRI in
adolescence, we found significant sex-specific associations
between dentine Mn at all time points and iFC in adolescents.
Moreover, we report associations in different networks
depending on the timing of exposure, suggesting that different
brain networks may present distinctive CWs of vulnerability to
Mn. During the prenatal period, we observed sex-specific as-
sociations between dentine Mn and functional connectivity
between the dorsal striatum (caudate and putamen) and re-
gions in the occipital and frontal lobes and between the middle
frontal gyrus and the occipital lobe. During the early postnatal
al Open Science July 2023; 3:460–469 www.sobp.org/GOS 463

http://www.sobp.org/GOS


Figure 1. Prenatal, postnatal, and early childhood manganese (Mn)
concentrations (log) measured in naturally shed deciduous teeth of 71 study
participants by sex. The density curve represents the relative frequency of all
observations, such that the area underneath it is exactly 1. Dentine Mn did
not differ between males and females (logistic regression adjusted for so-
cioeconomic status and age, p . .05). Ca, calcium.
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period (,1 year), dentine Mn was associated with sex-specific
changes in the right putamen and the cerebellum. Finally,
during the early childhood period (1 to w6 years), exposure to
Mn showed sex-specific effects on iFC between the putamen
and the occipital lobe and between the frontal and temporal
lobes. Our results highlight that the effect of Mn on iFC differs
Table 2. Results From Seed-Based Correlation Analysis Dem
Dentine Mn at Three Time Points and Intrinsic Functional Conn

Exposure Time Point Seed-to-Region Connectivity

Prenatal Left caudate—left occipital pole

Left putamen—left middle frontal gyrus

Left putamen—left occipital fusiform gyrus

Middle frontal gyrus—right occipital pole

Postnatal Right putamen—right cerebellum

Early Childhood Left putamen—lateral occipital cortex, right superior d

Middle frontal gyrus—middle temporal gyrus, left pos

All models controlled for age (years) and SES. Voxel threshold p , .001 (
presented are in MNI space. All coefficients refer to sex-Mn interaction term

FDR, false discovery rate; Mn, manganese; MNI, Montreal Neurological
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in magnitude and directionality between females and males.
Four connections showed increased iFC in females and
decrease in males, whereas 3 connections showed a reverse
pattern. These sex-specific effects may not be attributed to
sex differences in exposure or absorption of Mn, because we
report similar Mn uptake levels between males and females.
Despite the proximity of study participants to active ferroalloy
smelting activity, dentine Mn levels measured in this study are
comparable to previously reported levels in other populations
and are not suggestive of exceptionally heightened exposure
(28,43,64,65). This study contributes to the growing literature
suggesting that early-life Mn uptake impacts neuro-
developmental outcomes by providing mechanistic insights
into the brain regions underlying these associations. Using our
dentine biomarker to provide a retrospective marker of Mn
uptake in 3 developmental stages, we identified 3 CWs of
vulnerability to this neuroactive metal. Finally, our findings of
sex-specific associations support our hypothesis that the ef-
fect of early-life exposure to Mn differs by sex.

MRI allows in vivo visualization of the brain. It is noninvasive
and free of ionizing radiation, making it suitable for research in
children. In the field of environmental epidemiology, MRI plays
a critical role in elucidating biological mechanisms underlying
Mn neurotoxicity. Until recently, the use of brain imaging in
environmental health studies of Mn neurotoxicity has focused
on structural brain abnormalities, primarily in the basal ganglia,
and mostly targeted highly exposed workers (66,67).
Numerous structural basal ganglia abnormalities have been
reported in workers exposed to Mn, including T1 hyper-
intensities (68–71), lower apparent diffusion coefficient (68),
higher pallidal index (72,73), and lower fractional anisotropy
(74–76). Only 2 occupational MRI studies have investigated
functional brain changes related to Mn exposure (77,78).
Chang et al. (77) showed Mn-induced alterations in brain ac-
tivity during a working memory task, with higher activation in
the basal ganglia (i.e., including the putamen) in exposed
welders. Seo et al. (78) showed decreased activation of the
frontal, parietal, and insular cortices in welders during an ex-
ecutive function task. Our findings are consistent with prior
structural and functional MRI studies, because we detect ef-
fects in the caudate and putamen, which are central compo-
nents of the basal ganglia. This study builds on the previous
literature by adding 1) a focus on lower nonoccupational ex-
posures in children, 2) longitudinal retrospective measures of
onstrating Significant Sex-Specific Associations Between
ectivity in Adolescents

Cluster (x, y, z) Cluster Size b p-FDR

(204, 290, 108) 223 0.67 ,.001

(230, 126, 142) 64 20.71 .014

(228, 278, 216) 60 0.67 .014

(114, 298, 112) 99 20.92 .003

(142, 268, 254) 74 20.70 .009

ivision (112, 252, 158) 90 0.64 .003

terior division (250, 222, 204) 138 0.74 .002

uncorrected); cluster threshold p , .05 (p-FDR corrected). Coordinates
.

Institute; SES, socioeconomic status.
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Figure 2. Sex-specific correlations between intrinsic functional connectivity (iFC) in adolescents and natural log-transformed dentine manganese (Mn) from
3 time points: (A) prenatal, (B) postnatal, and (C) childhood (N = 71). Brain regions are color-coded: left caudate, red; right putamen, blue; left putamen, pink;
middle frontal gyrus, green; left occipital pole, purple; left middle frontal gyrus left, yellow; left occipital fusiform gyrus, teal; right occipital pole, orange;
cerebellum, black; lateral occipital cortex, light pink; middle temporal gyrus, brown. Graphs plot regression lines and standard errors for females (green) and
males (orange). Only significant interactions (p , .05) between dentine Mn and sex are shown. Regions are color-coded for visualization purposes. Exact
cluster locations in Montreal Neurological Institute coordinates and cluster sizes are reported in Table 2.
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Mn uptake allowing the detection CWs of susceptibility, 3)
direct and objective measurement of Mn concentrations
instead of self-reported exposure history, and 4) analyses of
sex-specific effects.

Substantial research demonstrates associations between
early-life Mn exposure and adverse neurodevelopmental out-
comes (9,28,79,80). In a recent pilot study, de Water et al. (43)
reported associations between postnatal Mn dentine concen-
trations and iFC in areas of the brain implicated in cognitive
control and motor function. In this study, we built on this pilot
work to explore sex-specific vulnerabilities to the effect of
early-life Mn exposure on iFC. Our findings indicate that Mn
exposure is differently associated with functional connectivity
in males and females in brain regions involved in cognitive
control and motor function. Mn concentrations were associ-
ated with sex-specific effects on iFC between regions of the
basal ganglia (striatum or caudate–putamen) and cortical re-
gions (occipital and frontal).

The cortical–subcortical connections impacted by Mn
exposure in our study are known to be associated with
neurologic health outcomes in adults. According to the current
Biological Psychiatry: Glob
model of basal ganglia function in adults, the striatum is the
main entry point of cortical information to the basal ganglia; it
receives afferents from widespread areas of the cerebral cortex
through the thalamus (i.e., corticobasal ganglia–
thalamocortical loops) (81,82). These circuits are crucial for
emotional, cognitive, and motor functions (83–87). The
caudate and putamen are involved in the planning and
execution of movement, learning, memory, and reward
(88–90). Mn dyshomeostasis may disrupt the corticobasal
ganglia circuitry, because Mn is known to accumulate in basal
ganglia structures (42,91). Increased caudate connectivity (92),
putamen dysfunction (93), and increased putamen–cerebellum
connectivity (94) have been observed among adults diagnosed
with Parkinsonism. Mn-exposed occupational workers
demonstrate clinical symptoms mirroring Parkinson disease
(95). Middle frontal gyrus and middle temporal gyrus connec-
tivity have also been associated with cognitive and executive
function, specifically literacy and numeracy abilities (96,97),
with increased connectivity in the middle frontal gyrus within
the occipital pole network reported among children with autism
spectrum disorder (98). Little is known about the dynamic
al Open Science July 2023; 3:460–469 www.sobp.org/GOS 465
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development of these circuits during childhood. Given the
known vulnerability of these circuits to perturbation during
development, our study adds to the literature by relating Mn
exposure to alterations in typical neurodevelopment of
subcortical–cortical connections.

Our novel approach combining neuroimaging in late
adolescence with the use of deciduous teeth as a retrospective
biomarker of early-life Mn uptake allows us to test our Devel-
opmental Origins of Health and Disease–based hypothesis.
Traditional biomarkers of Mn exposure (e.g., urine, blood, hair)
used in prior studies are unable to directly measure exposure
in fetal life. Further, traditional biomarkers fail to provide lon-
gitudinal exposure spanning several potential CWs of devel-
opment including the fetal, postnatal, and childhood periods.
There is a lack of consensus regarding the appropriate
biomarker to assess Mn-associated impacts on the developing
brain because each biomarker reflects differences in pharma-
cokinetics, and therefore, associated health effects may be
matrix dependent. Instead, dentine Mn is a validated biomarker
providing a direct measure of Mn across prenatal and post-
natal periods, which enabled us to detect CWs for effects of
Mn exposure on iFC of the brain. Results from a recent study in
the same cohort, using the dentine biomarker to study asso-
ciations between Mn and neurocognition, suggest a subtle
shift over time from a beneficial role of Mn during the prenatal
period to a more detrimental role in childhood (41). Our unique
study design is able to provide detailed insights into the neural
mechanisms that may underpin these associations between
early-life Mn exposure and cognitive and motor control re-
ported in prior studies (26,28,32,41,99).

Very few previous investigations have explored sex-specific
effects of early-life Mn on neurodevelopmental outcomes, and
although most of them detect a difference in vulnerabilities by
sex, the direction of reported associations is inconsistent. Early-
life Mn has been positively associated with improved cognition
and motor outcomes among females compared with males
(26,100). Contrastingly, other groups have found a negative as-
sociation between Mn concentrations and nonverbal perfor-
mance, motor outcomes, visuospatial learning, and IQ scores
among females (28,32,79,99). Discrepancies in direction of as-
sociation may be due to differences in the task used to assess
behavior, type of biomarker used to assess exposure, and timing
of exposure and/or outcome assessment. Our results are in line
with previous studies, suggesting that male and female neuro-
development is not equally vulnerable to the effect of Mn
exposure, and the direction of effect varies not only in magnitude
but also in direction. Notably, unlike assessments of cognition
and motor function, interpretation of directional changes in iFC is
challenging. Increased functional connectivity does not neces-
sarily indicate better performance, as it has been associated with
memory and cognitive impairments (101,102), anxiety (103), and
epilepsy (104), or may reflect a compensatory mechanism.
Despite this limitation, our results add to the growing literature
relating early-life Mn exposure with alterations in typical neuro-
development and suggest that males and females are not
equally vulnerable to Mn exposure, with effects persistent
throughout extended adolescence.

To our knowledge, this is the first study to use a neuro-
imaging approach to examine sex-specific effects of early-life
Mn exposure on neurodevelopmental outcomes in
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adolescence. We acknowledge several limitations to our
research. The modest sample size of this study limits the
generalization of our findings. Exclusion criteria such as diag-
nosis of neurologic or psychiatric disorders could potentially
exclude participants with the highest levels of Mn exposure.
The exact age at which teeth were shed was not documented
in this study. However, because the age of shedding is not
expected to be related to MRI data, any resulting bias would
likely be toward the null. Pubertal stage data were not
collected, which could potentially be considered as a covari-
ate. Moreover, because the interpretation of the directionality of
our observed associations is challenging, future studies with a
larger sample size should include cognitive and motor outcomes
to test whether Mn-associated changes in iFC are associated with
increased or decreased performance. Finally, children and ado-
lescents are rarely exposed to Mn alone and, in most cases, are
exposed to low levels of several metals simultaneously. Coex-
posure to multiple metals may influence Mn toxicity (105,106).
Thus, future studies should explore associations between early-
life exposure to mixtures of metals and iFC later in life.

In conclusion, we identified sex-specific CWs of suscepti-
bility to Mn exposure on iFC in areas of the brain implicated in
cognitive and motor function. These findings suggest that the
developing brain is especially vulnerable to Mn exposure, with
effects lasting at least through late adolescence and possibly
later. More research into identifying CWs of development that
are sensitive to environmental insults will improve public health
and risk management and may help identify especially sus-
ceptible subgroups for interventions and methods to optimize
Mn exposure. Future research is needed to link sex-specific
neural correlates with their behavioral and cognitive outcomes.
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