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a b s t r a c t

In modern Smart Cities, pervasive collection of sensor-based and IoT data streams is a challenging
opportunity for improving mobility resilience. Among the potential applications, sensor-based data
streams provide valuable information about the quality of the area-wide road surface. Modern vehicle
black boxes are also able to estimate the type of anomaly (e.g., bump, hole, rough ground, depression),
based on real-time analysis of acceleration data streams. Road maintainers may use all this information
to improve monitoring and maintenance activities. However, the volume of data streams, the variety
of road network and different degrees of seriousness of detected anomalies call for methods to
support maintainers in the exploration of available data. To this aim, in this paper, we propose a
methodological approach, based on big data exploration techniques. The approach is grounded on:
(i) a multi-dimensional model, apt to organise data streams according to different dimensions and
enable data exploration; (ii) data summarisation techniques, based on an incremental clustering
algorithm, to simplify the overall view over massive data streams and to cope with their dynamic
nature; (iii) a measure of relevance, to focus the attention on road portions that present critical
conditions. The innovative contributions regard the formalisation of the exploration methodology, the
definition of exploration scenarios, based on road maintainers’ goals and the measure of relevance, and
an extensive experimentation on a real world case study, addressed in a research project on smart and
resilient mobility. Experimental results show how relevance evaluation is able to efficiently attract the
road maintainers’ attention on road portions that present the most critical conditions and the proposed
incremental clustering algorithm outperforms existing algorithms in the literature.

© 2023 Published by Elsevier B.V.
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1. Introduction

In the latest years, the increasing availability of big data has
ecome a key factor in shifting towards a data-centric vision
f modern Smart Cities [1]. In particular, the concept of Smart
obility and its impact on the logistics of transporting goods and
eople are experiencing radical changes, capitalising on big data
enerated from sensor networks and IoT devices [2]. Issues that
an arise may be promptly noticed and tackled, increasing the
uality of delivered services [3]. Among the potential applica-
ions, sensor data in vehicles may generate a continuous flow of
ata streams to provide valuable information about the quality of
he area-wide road network. Modern vehicle black boxes are also
ble to estimate the types of anomalies detected on the road sur-
ace (e.g., bumps, holes, depressions, rough ground) by analysing
n (near) real-time the acceleration traces. This information may
e used by road maintainers to improve monitoring and mainte-
ance activities, for enhancing mobility resilience. However, the
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volume of data streams, the variety of road network and different
degrees of seriousness of detected anomalies call for methods to
support road maintainers in the exploration of available data [4].
Therefore, road maintainers should be equipped with valuable
analytical and exploratory tools, to gain insights from the data
and ensure a safer and more efficient infrastructure.

To support road maintainers in monitoring road surface con-
ditions and thus properly planning maintenance activities, we
propose in this paper a methodological approach to foster big
data exploration. The approach is grounded on three components:
(i) a multi-dimensional model, apt to organise data collected on
he road network according to different facets (based on features
uch as the type of road, area/district, mileage extent) and to
nable data exploration; (ii) a data summarisation algorithm, that
rovides a synthetic representation of data streams gathered by
ehicles, to simplify the overall view over massive data streams
nd to cope with their dynamic nature; (iii) ameasure of relevance,
imed at focusing the road maintainers’ attention on portions of
he road network that present the most critical conditions.

The preliminary formalisation of the approach has been pro-
ided in [5], where the definitions of the three aforementioned
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Fig. 1. Steps of the data collection procedure for monitoring the conditions of road portions.
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components have been provided and declined in the context
of sustainable and resilient mobility. The original contributions
to the state of the art provided here concern: (i) a substantial
revision of the measure of relevance, in order to be as more
independent as possible from the maintainers’ expertise in the
preparation of the exploration parameters (this aspect emerged
as a drawback in [5] and is worsened due to the variety of
road network); (ii) a new formulation of the exploration scenarios,
o be compliant with the new measure of relevance; (iii) the
mplementation of the exploration approach in a prototype tool,
upported by a GUI, to let road maintainers execute exploration
cenarios; (iv) an extensive experimentation on a real world case
tudy, addressed in a research project on smart and resilient
obility. Indeed, exploration scenarios are conceived to move

owards a human-in-the-loop data analysis vision [6], in which
umans are actively engaged in the data exploration experience,
ith the goal of extracting useful insights from data.
The paper is organised as follows: in Section 2 the applica-

ion context and the research challenges in mobility data explo-
ation are introduced; Sections 3–5 present the data exploration
ethodology; Section 6 and Section 7 describe implementation

ssues and the experimental evaluation, respectively; in Section 8
discussion about related work is provided; finally, Section 9

loses the paper, sketching future research directions.

. Motivations

.1. Application context

The proposed big data exploration approach is being applied
n the scope of the MoSoRe research project,1 whose aim is
to investigate different perspectives on the resilience of mobil-
ity systems and infrastructures in the city of Brescia (Italy). In
the MoSoRe project, a fleet of representative vehicles has been
equipped with black boxes, to collect different kinds of data,
ranging from acceleration traces in the form of data streams to
an estimate of the type of anomaly that is recognised on the road
surface.

Fig. 1 illustrates the steps behind the data collection proce-
dure. The black box of a vehicle starts ameasurement sessionwhen
a sharp variation of the accelerometric measures is detected.
During the measurement session, data collection is performed
including the GPS coordinates and data streams from measures of
accelerometers mounted on-board. Each data sample (measure)
in the stream contains: (i) the timestamp; (ii) the GPS coordinates
(latitude, longitude) of the vehicle; (iii) the accelerometers values
over the three axes X, Y and Z. Furthermore, vehicle metadata
such as its type (e.g., either commercial or private) and infor-
mation related to the vehicle when the measurement session
has been performed (e.g., average speed, direction) are associated
with the data stream.

1 Italian acronym for ‘‘Mobilità Sostenibile e Resiliente’’, funded by Lombardy
egion (Italy), POR FESR 2014–2020.
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The next step concerns the identification of road portions to
e monitored, deemed as road segments sharing similar charac-
eristics, such as the type (e.g., urban or suburban), containment
rea of the city (e.g., the district or other administrative divisions),
ileage extension and speed limit. The GPS information enables

he assignment of data streams to the road portion wherein the
easurement session occurred.
Finally, the black box calculates a real-time anomaly estimate

ased on the accelerometric measures, thus associating the data
tream with an event type. Currently, in the MoSoRe project,
nly four event types are recognised by the black boxes: hole,
ump, rough ground, depression. In this respect, future efforts
ill be devoted to setup a classification system to enable the

dentification of a broader set of event types associated with
etected anomalies. For example, in the scope of the project,
n-board cameras are planned to be mounted on a group of
epresentative vehicles, to be employed by road maintainers to
ollect and inspect video captures, thus recognising further event
ypes, complementing the anomalies identified by black boxes.

.2. Research challenges in mobility data exploration

Safety and comfort are the main features that users gen-
rally demand from a road infrastructure, looking forward to
heir continuous improvement over time by incorporating new
echnologies for the benefit of passengers, drivers and vehicles.
ecently, intelligent transportation systems have been developed
o improve traffic flow, road quality, safety levels, and avail-
bility of information to users. In particular, we focus on road
aintenance solutions to help maintainers monitoring road sur-

ace conditions and properly plan maintenance activities. This
aper addresses data exploration challenges mainly related to
he problem of providing techniques to draw the attention of
aintainers on relevant data collected from vehicles on the roads.
aintainers must be supported in the exploration of the large
uantity of collected data and their attention must be attracted
nly on relevant data, corresponding to ‘‘anomalous’’ working
onditions. The challenging issue is how to identify relevant data,
onsidering that data relevance cannot be known before data is
ollected and stored. In addition, as they explore the collected
ata streams, maintainers may pursue different goals to monitor
oad status. Depending on the goal, road maintainers should
e suggested to explore only the relevant portions of the road
o enable management of critical situations. The considerations
ntroduced above are translated into the following three chal-
enges. For each challenge, techniques proposed to address it are
pecified as well, and described in details in Sections 3–5.

andling multiple interleaved perspectives for data explo-
ation. Given the complexity of the city road network, the enor-
ous amount of data streams collected by vehicles should be

nterpreted by considering multiple aspects, such as the type
f the road (e.g., urban, suburban), the administrative division
e.g., district, area), the mileage extension and the speed limit.
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This intricate combination of data streams and dimensions must
be properly made explicit during data exploration to take the
right decision. Data modelling according to ‘‘facets’’ or ‘‘dimen-
sions’’, either flat or hierarchically organised, has been recognised
as a factor for easing data exploration, since it offers the op-
portunity of performing flexible aggregations of data, as already
demonstrated in faceted search [7]. Therefore, amulti-dimensional
ata model designed for data streams is adopted to organise data

portions in terms of dimensions (e.g., type of the road, admin-
istrative division, mileage extension, speed limit), at different
granularity levels, to guide data exploration.

Reducing data massiveness of data streams to explore. The vol-
ume of data streams in the considered application domain might
hamper the effectiveness of exploration and calls for efficient
summarisation techniques, to provide a synthetic representation
of the temporal evolution of road surface conditions. Moreover,
while monitoring the conditions of a road portion through the
observation of a physical phenomenon of interest, single mea-
sures might be affected by noise and false outliers (e.g., due
to sensing malfunctions). In order to manage and explore large
quantity of data, incremental clustering algorithms have emerged
as promising solutions when treating data arriving at high rates,
ensuring the possibility of retaining only lossless summaries of
data, which are referred to as syntheses (or, with other analogous
terms, micro-clusters or Cluster Features [8]). In our approach, we
propose an algorithm articulated over two sub-tasks:

(1) Generation/update of collected data summaries – The clus-
tering algorithm is applied to summarise data collected in
a measurement session, in an incremental way; to capture
the temporal evolution of summarised data streams, each
run of the clustering algorithm generates/updates a set of
syntheses, which is referred to as snapshot, and represents
a status of the monitored road portion in a given time
window;

(2) Multi-dimensional organisation of snapshots – Snapshots
produced over time by the execution of the incremental
clustering algorithm form a sequence of snapshots; snap-
shots in a sequence are organised according to the dif-
ferent analysis perspectives of the aforementioned multi-
dimensional model and, therefore, are attributable to a
specific road portion; road maintainers may perform an
iterative exploration over a (sub-)sequence of snapshots,
inspecting a specific portion of the summarised stream,
thus easing data exploration.

valuating the relevance of data for effective exploration. The
ttention of road maintainers must be attracted only on rele-
ant sequences of snapshots, inherently identifying road portions
orth to be inspected in order to let road maintainers manage
ritical situations. This allows to alleviate road maintainers to
ely too much on their expertise, focusing at the same time
he exploration of road portions at the proper level of granu-
arity (according to the organisation of snapshots imposed by
ulti-dimensional model) meeting the goals of road maintain-
rs. Moreover, relevant road portions may be explored by road
aintainers pursuing different goals, for instance: (i) given a
equence of snapshots representing an anomalous event, mon-
toring the evolution of such event over time; (ii) comparing
equences of snapshots related to anomalous events of the same
ype, thus establishing a seriousness prioritisation among them.
o this purpose, a data relevance evaluation metric, combined
ith clustering-based summarisation, is required as independent

rom road maintainers’ expertise and adaptable to different data
xploration goals.
703
Fig. 2. E-R conceptual model of mobility data.

. Multi-dimensional organisation of data

To support multi-perspective exploration of data streams, a
ulti-Dimensional Model (MDM) has been conceived, grounded
n dimensions and combination of dimension instances into ex-
loration facets. In the following, we introduce the main pillars
f the MDM for organising and exploring vehicles data streams,
escending from the conceptual model in Fig. 2.

eatures and Measures. Within a measurement session, physical
uantities recorded by black boxes are referred to as features. A
eature fi ∈ F is a measurable quantity described by a name nfi
nd a unit of measure ufi (if any), where F denotes the overall
et of features. The gravity acceleration over X, Y and Z axes, with
/s2 as unit of measure, are examples of features.
A measure xi(t,GPScoords) is a scalar value for the feature fi ∈

F , expressed in terms of: (i) the unit of measure ufi ; (ii) the
GPS coordinates (latitude and longitude) GPScoords, providing the
position of the vehicle when the measure has been taken; (iii) the
timestamp t .

Road portions. Portions of the road network are described with
the properties introduced in Section 2.1, namely the type of the
road (e.g., urban, suburban), the administrative division (e.g., dis-
trict, area), the mileage extension and the speed limit. These
properties are used to model the concepts of dimension and
exploration facet as defined in the following.

Definition 1 (Dimension). A dimension di is an entity representing
a property of a road portion defined on a categorical domain
Dom(di). We denote with D = {d1, . . . , dp} the finite set of
dimensions. An instance v

j
di

of di ∈ D is a categorical value
belonging to Dom(di), ∀i = 1, . . . , p and ∀j = 1, . . . , |Dom(di)|.
Dimensions are organised into hierarchies {h1, . . . , hm}, where
each hk is described with: (i) a subset of dimensions Dim(hk) ⊆

D, ∀k = 1, . . . ,m; (ii) a total order ⪰hk on the elements in
Dim(hk). □

Definition 2 (Exploration Facet). An exploration facet φi (or, in
short, facet) is a combination of dimension instances. Such a
group of dimension instances is apt to identify road portions
sharing the same characteristics. Let Φ = {φ1, . . . , φk} be the
set of available facets. The cardinality of the set Φ (|Φ|) spans
over all the possible combinations of dimension instances, that
is, |Φ|≤2N

− 1, where N =
∑

i=1...p |Dom(di)|, excluding the
empty set combination and, generally, non combinable dimension
instances.

Example. In the MoSoRe project, the dimensions considered
for grouping road portions are Type, Area, SpeedLimit, District,
MileageExtension. For example, Urban ∈ Dom(Type) and District1
∈ Dom(District) are sample dimension instances. A sample facet
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Fig. 3. Sample streams of measures (X-Y-Z accelerations) recorded by a black
box in the case of a depression (top) and hole (bottom) for a specific road
portion.

φ̂ may have as instances for the former dimensions Type = Urban,
istrict = District1 (Area = South),MileageExtension = ≤ 5 km and

SpeedLimit = 70 km/h. Concerning Area and District dimensions,
they are included in the hierarchy h1 so that Dim(h1) = {ALL,
Area, District} and District ⪰h1 Area ⪰h1 ALL (ALL denotes the
coarsest aggregation level and is always included in a hierar-
chy). Other examples of hierarchies are h2 (Dim(h2) = {ALL,
ype}), h3 (Dim(h3) = {ALL, SpeedLimit}) and h4 (Dim(h4) = {ALL,

MileageExtension}).

Anomalies and Metadata. Fig. 3 illustrates two streams of mea-
sures, referred to a road portion belonging to the facet φ̂ from the
example above, collected after two different anomalous events
have been recognised: at the top, the type of the anomaly is a
depression, while in the second stream it is a hole. The anoma-
lies have been detected by the black box of a vehicle with an
average speed of 45 km/h (in case of depression) and an average
speed of 53 km/h (in case of hole). The latter information consti-
tutes metadata regarding the vehicle and is associated with the
measurement session as well.

4. Clustering-based data summarisation

The streams of measures within a measurement session, col-
lected on a specific road portion, are inspected to ascertain
whether the road surface conditions are deteriorating or not. To
obtain a synthetic representation of the temporal evolution of
road surface conditions, data summarisation techniques based on
an incremental clustering algorithm are applied [9]. Clustering
offers a two-fold advantage: (a) it gives an overall view over
measures, using a reduced amount of information; (b) it allows
to monitor the conditions of the observed road portion better
than single measures, that might be affected by noise and false
outliers (e.g., due to sensing malfunctions) while observing a
physical phenomenon of interest. The adopted algorithm relies on
 a

704
a lossless representation of a set of measures close each others,
denoted as synthesis. A synthesis sk, while observing a set of
features on a specific facet, corresponds to a cluster of close
measures of the observed features.

An incremental clustering algorithm applied on a stream of
measures produces, at a given time t , a set of syntheses S(t),
starting from: (a) the portion of the stream between the times-
tamp t −∆t and the timestamp t , being ∆t the temporal interval
over which the set of syntheses is updated; (b) the previous set of
syntheses S(t − ∆t). Syntheses conceptually represent a specific
status of the road portion, by observing a data stream. The set of
syntheses S(t) composes a snapshot, i.e., a data structure which,
for the smart mobility domain considered in this paper, has been
defined as follows.

Definition 3 (Snapshot). A snapshot for a road portion ρ, stored
at time t considering a set of observed features F⊆F , is defined
as follows:

SN⟨F ,ρ,M,ϵ⟩(t) = S(t) (1)

where: (i) S(t) is the set of syntheses, identified at time t , based
on the measures of features in F⊆F gathered on the road portion
ρ; (ii) M is the set of metadata associated with the measurement
session; (iii) ϵ is the event type (e.g., bump, hole) associated
with the measurement session. When they are obvious, the set
of features F⊆F , the set of metadata M and the event type ϵ can
be omitted and the snapshot is denoted with SNρ(t). □

According to Definition 3, a snapshot refers to a specific road
portion ρ, that in turn is associated with a facet φi. A snapshot
is generated when the set of observed features and the set of
metadata have been established. Intuitively, comparison between
different snapshots is meaningful if the two snapshots share the
same set of features and are generated starting from measures
collected in the same conditions (i.e., with the same metadata).
In this case, the two snapshots are defined as comparable. Fig. 4
shows the set of syntheses in four comparable snapshots taken
at time t1 + k · ∆t , k = 0, . . . 3, where measured features are X–

accelerations and the event type is hole. Specifically, they are
eferred to a road portion identified through a facet that groups
rban roads in city downtown. In the figure, each red circle
epresents a synthesis: the centre of the circle is the centroid
f the synthesis, whereas the radius reflects the dispersion of
he data points (measures) in the synthesis, calculated as the
MS (Root Mean Square) deviation of the data points from the
entroid. Fig. 4 displays a sequence of snapshots, that provides a
ision of the evolution of road surface conditions over time. From
ig. 4(a) to (d) changes in the four snapshots can be identified. In
act, the set of syntheses moves towards higher values of X axis
cceleration and lower values of Y axis acceleration. A sequence
f snapshots is formalised as follows.

efinition 4 (Sequence of Snapshots). A sequence of snapshots is
efined as the following tuple:

ρ(t1, . . . , tn) = ⟨SNρ(t1), . . . , SNρ(tn)⟩ (2)

here t1, . . . , tn represent the time instants in which the snap-
hots have been computed on the road portion ρ, and tk+1 =

k + ∆t, k = 1, . . . , n − 1 hold. Snapshots in Sρ(t1, . . . , tn) share
he same event type, the same features and the same metadata.

.1. Identification of relevant road portions

Given two comparable snapshots SNρ(t1) and SNρ(t2) (with
2 > t1), changes between syntheses in the two snapshots

re apt to identify relevant road portions. Relevant road portions



D. Bianchini, V. De Antonellis and M. Garda Future Generation Computer Systems 149 (2023) 701–716

h

a
I
d

D
t

w

∀

c
f
s
(
b
(
a
b

i
b
o

I

a
o

|

w

a
t
p
b
g

d
s

I
t

Fig. 4. Visual representation of a sequence of snapshots, resulting from the
execution of the incremental clustering of a stream of records over X and Y
axes acceleration: the sequence of four snapshots for a hole event is shown
ere.

re proposed to road maintainers to start the exploration from.
n particular, the measure of relevance leverages the notion of
istance between snapshots, formalised as follows.

efinition 5 (Distance between Snapshots). The distance between
wo snapshots SNρ(t1) and SNρ(t2) on the same road portion ρ

is based on the sets S(t1) and S(t2) of syntheses in the two
snapshots (containing n and m syntheses, respectively, where n
and m do not necessarily coincide) and is defined as follows:

dSN (SNρ(t1), SNρ(t2)) =

∑
si∈S(t1)

d(si, S(t2)) +
∑

sj∈S(t2)
d(S(t1), sj)

m + n
(3)

here d(si, S(t2)) = minj=1,...mds(si, sj) is the minimum distance
between the synthesis si ∈ S(t1) and syntheses sj ∈ S(t2),
j = 1, . . .m. Similarly, d(S(t1), sj) = mini=1,...nds(si, sj). To
ompute the distance between two syntheses ds(si, sj), different
actors have been combined: (i) the Euclidean distance between
yntheses centroids, to verify if sj moved with respect to si;
ii) the difference between syntheses radii, to verify if there has
een an expansion or a contraction of sj with respect to si;
iii) the difference in the density of syntheses (i.e., number of
ggregated records with respect to the hyper-volume occupied
y each synthesis).

Apart from the qualitative temporal evolution of the syntheses
n a sequence of snapshots Sρ(t1, . . . , tn) (in brief, Sρ), that can
e visualised as depicted in Fig. 4, a quantitative assessment
f the evolution of syntheses in Sρ can be computed based on

Definition 5. Since the collection of a data stream and corre-
sponding calculation of syntheses and sequence of snapshots is
triggered by the occurrence of an anomalous event, such a quan-
titative assessment will be used to monitor the evolution over
time of the anomaly on the road portion identified as relevant.
The quantitative assessment of the evolution of snapshots in a
sequence Sρ is based on a vector of distances, denoted with dSρ .
n particular, each component of dSρ is calculated as:

dSρ [i] =
dSN (SNρ(t1), SNρ(ti+1))

∆t
∀i = 1, . . . , n − 1 (4)

where: (i) SNρ(t1) is the first snapshot of the sequence, fos-
tered as a reference snapshot to perceive the temporal evolution
of the anomalous event from the beginning of the sequence;
(ii) ∆t is the syntheses update temporal interval, used as a scaling
 p

705
factor to balance each distance value. The distance vector dSρ can
be exploited to establish whether a sequence of snapshots has
to be considered as relevant or not, according to the following
definition.

Definition 6 (Relevant Sequence of Snapshots). Let dSρ be the
verage value of all the distances contained in dSρ . A sequence
f snapshots Sρ is relevant if:

{dSρ [i] such that dSρ [i] > dSρ }| > k · dim(dSρ )

(i = 1, . . . , dim(dSρ )) (5)

here: (i) dim(dSρ ) = |Sρ |−1 is the number of components of dSρ ,
being |Sρ | the number of snapshots contained in the sequence;
(ii) dSρ [i] denotes the ith component of dSρ ; (iii) k ∈ [0, 1) is
a parameter used to set the sensitivity of relevance evaluation.
The higher k, the lower the probability to identify the sequence
of snapshots as relevant. For example, k = 0.5 means that a
sequence of snapshots is recognised as relevant if at least 50%
of distances in the vector dSρ is greater than the average value of
distances in the vector. If a sequence Sρ is identified as relevant,
then the corresponding road portion ρ is considered as relevant
as well. □

5. Relevance-based data exploration methodology

Clustering-based data summarisation and the measure of rel-
evance are at the basis of the definition of a methodological
approach for mobility data exploration. Specifically, clustering-
based data summarisation reduces the volume of target data,
focusing on aggregated data representation (syntheses) instead
of single measures, that might be affected by high variability in-
fluenced by noise and perturbations in the sensing infrastructure.
The measure of relevance is used to quickly identify relevant road
portions, guiding the exploration towards deteriorating situations
only, thus enabling road maintainers to perform data inspection
in presence of a large number of road portions. By relying on the
Multi-Dimensional Model, the road maintainers can move across
relevant road portions previously identified.

5.1. Exploration scenarios

Road maintainers may focus the exploration on different road
portions, depending on their exploration goals. As a result, a set
of exploration use cases, that we refer to as exploration scenarios,
can be performed. An exploration scenario aims at capturing the
essential elements demanded to perform data exploration on rel-
evant sequences of snapshots according to Definition 6, in order
to fulfil a specific exploration goal, amongst the ones considered
in the MoSoRe project. Exploration scenarios are formally defined
in the following.

Definition 7 (Exploration Scenario). An exploration scenario ESi is
triple ⟨goali, φi, σi⟩ where: (i) goali is a textual description of

he goal of the scenario; (ii) φi ∈ Φ is a facet to filter the road
ortions involved in the scenario; (iii) σi is a sorting function to
e applied on the road portions classified with φi, depending on
oali, for their inspection by the road maintainer. □

In the following paragraphs, three exploration scenario with
ifferent goals, employed in the smart mobility context, are de-
cribed.

ES1 -Prioritisation of anomalous events of the same type.
n this exploration scenario, sequences of snapshots related to
he same type of anomalous event (e.g., hole) are considered. In

articular, the goal is to enable road maintainers to choose among
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Fig. 5. Overview of the methodological phases for data exploration.
ifferent road portions on which the same type of anomalous
vent has been detected. Let Sρ̂1 and Sρ̂2 be two sequences of

snapshots summarising streams generated on the occurrence of
two anomalous events of the same type. Definition 5 is used
to establish whether the event corresponding to Sρ̂1 has to be
considered more critical than (or, equivalently, having the highest
priority with respect to) the one corresponding to Sρ̂2 . To this
aim, two vectors of distances dSρ̂1

(for Sρ̂1 ) and dSρ̂2
(for Sρ̂2 ) are

calculated. Therefore, the anomalous event corresponding to Sρ̂1
is considered as more critical than the one corresponding to Sρ̂2

if the mean distance value dSρ̂1 is higher than the mean distance
alue dSρ̂2 . In this scenario, the sorting function σ1 is leveraged to
stablish a priority order from the most to the least critical road
ortion, induced by the priority of events occurred within. The
bove mentioned criterion can be generalised when more than
wo sequences of snapshots are considered.

ES2 -Recurrent anomalous event of a given type. In this explo-
ation scenario, the number of relevant sequences of snapshots
re considered. The goal of this scenario is to enable road main-
ainers to choose among road portions based on the frequency of
nomalous events occurring on them. To this aim, for each road
ortion filtered through the facet φ2 and for each known type of

anomalous event, a counting operation is performed on the set
of available relevant sequences of snapshots. Relevant sequences
of snapshots are detected by applying Definition 6. As a result, it
is possible to establish the type of the most recurring event on
a specific road portion ρ̂ and, generally, for all the road portions
classified with φ2. In this scenario, the sorting function σ2 can
e used to sort the road portions starting from the one with the
ighest number of relevant sequences of snapshots corresponding
o a specific event type ϵ̃.

ES3 -Recurrent anomalous event of a generic type. A variant
of the previous exploration scenario is not bounded to a specific
event type ϵ̃, but considers all available event types (for instance,
in MoSoRe project, bump, hole, depression and rough ground).

The (non exhaustive) list of exploration scenarios just dis-
cussed is characterised by a common procedure to perform the
exploration: relevant road portions are first selected and filtered
through the facet φi and then sorted according to a specific
criterion, being the seriousness of a given event type (ES1), the
requency of a specific event type (ES2) or the frequency of a
generic event on the road portion (ES3). Scenarios can also be
composed. For instance, road maintainers can start exploration
based on frequency of event types (ES2 or ES3) and then refine
their search based on seriousness of a specific event type (ES1).
This suggests the definition of a methodology for inspecting rel-
evant road portions, based on the scenarios, as explained in the
following.

5.2. Exploration methodology

We conceive the mobility data exploration problem as the ex-
ploration of the relevant sequences of snapshots associated with
706
the anomalous events, according to a methodology organised
over the three phases illustrated in Fig. 5: (i) setup of exploration
scenario; (ii) selection of exploration scenario; (iii) exploration on
the top of the Multi-Dimensional Model. The three phases may be
repeated as long as road maintainers: (a) move within the Multi-
Dimensional Model, to restrict/broaden the set of road portions,
using facets for exploration; (b) revise their exploration strategy,
thus changing the scenario (goal).

1 – Setup of exploration scenario. In this phase, the road main-
tainer may specify his/her preferred dimensions in a facet φi,
in order to delimit an initial set of road portions to start the
exploration from. The expected output of this phase is a set of
relevant road portions, detected within a given facet φi according
to Definitions 5 and 6. The next two phases are aimed at shifting
the attention of the road maintainer on the most promising
road portions to explore (determined depending on the relevant
sequences of snapshots).

2 – Selection of exploration scenario. After the exploration
setup, the road maintainer may perform one of the exploration
scenarios ES1,2,3 presented in Section 5.1. The choice of the ex-
ploration scenario induces an order over the set of relevant road
portions filtered through the facet φi, as relevant road portions
are suggested to the road maintainer for exploration according to
the sorting functions σ1,2,3.

3 – Exploration on the top of the Multi-Dimensional Model.
Within the scope of a scenario, the road maintainer may apply
exploration operators, to change the dimensions instances in the
facet φi according to his/her exploration interests. Exploration
operators are inspired by the well-known OLAP operators (slice,
dice, roll-up, drill-down) and are formalised according to the
following definition.

Definition 8 (Exploration Operator). An exploration operator is
denoted as o(τo, ιo, dkhj ), where: (i) τo is the type of the operator;
(ii) ιo is a measure quantifying the extent of variation in the
number of relevant road portions as a result of the application
of o over the dimension dkhj in the hierarchy hj. We denote with
O the set of available operators. □

Exploration operators are leveraged to move over the levels
of the hierarchy hj, thus modifying instances in φi accordingly, or
to select/remove an instance of the dimension dkhj . A change in φi

induces a variation on the number of available road portions and,
by extension, also on the relevant ones according to Definition 6.
For example, a ‘‘drill-down’’ operation may restrict the size of the
set of relevant road portions. To assess this variation and focus
the attention of the road maintainer only on facets containing
relevant portions, the following measure is used:

ιo =
|Σ rel

o(φi)
|

rel (6)

max(1, |Σφi

|)
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Fig. 6. Architecture overview.

here: (i) |Σ rel
o(φi)

| represents the number of relevant road portions
fter the application of o and (ii) |Σ rel

φi
| represents the number of

elevant road portions before the application of o. A value of ιo in
0, 1) denotes a reduction in the number of relevant road portions
o be explored, a value >1 denotes an increment, whilst a value
1 denotes no variations. Thus, the road maintainer may avoid
trial-and-error approach while moving across the dimensions
f the Multi-Dimensional Model, leveraging the value ιo to shift
owards the most promising dimension instances, determining
acets with relevant road portions to explore, revising his/her
xploration choices within a scenario.

. Implementation

.1. Architecture

Fig. 6 reports the high-level architecture of the system em-
loyed for mobility data exploration. The numbers on the arrows
enote the interaction flow between modules. Mobility data is
ade available by the provider’s black boxes through an FTP

epository, wherein black boxes periodically push collected mea-
ures (stored in the form of CSV files). The Back-end modules:
i) check for newly available measures using an FTP connector
steps 1 and 2); (ii) store the measures labelled with the di-
ensions of the MDM and metadata into a MongoDB database
amed Collected Data (step 3). Collected data is stored as JSON
ocument organised into collections (a collection contains daily
ata). The Incremental Clustering module is notified about the
resence of new available data to process from the Collected Data
tore (step 4). The output of the Incremental Clustering module
s stored within the Summarised Data MongoDB database and
hen sent to the Relevance Data Identification module, which is in
harge of: (a) identifying relevant road portions according to the
elected exploration scenario; (b) sending relevant road portions
o be displayed on a GUI. In the figure, (a) and (b) denote the
xploration flow triggered by the road maintainer through the
UI.

.2. Data summarisation and relevance evaluation library

The Incremental Clustering and Relevant Data Identification
odules have been implemented in Python (version 3.10.1). In
articular, a software library has been designed to implement
he clustering-based data summarisation algorithm whose fun-
amentals have been presented in Section 4 (such algorithm has
een called IDEAaS — which stands for Interactive Data Explo-

ation As a Service) by relying on the renowned Template and

707
Fig. 7. UML diagram of the main packages of the Python software library
that implements the Incremental Clustering and Relevant Data Identification
modules.

Builder design patterns from [10]. Template is a behavioural
pattern which enables to define the skeleton of an algorithm in
a parent class. The sub-classes of the parent one may override
specific methods of the algorithm, without altering its original
structure. This pattern has been fostered to handle the creation
and the update of syntheses within snapshots, in order to be
flexible enough to ensure future extensions (for instance, to im-
plement a different update mechanism for syntheses). Builder
is a factory pattern allowing the generation of complex objects
in a step-wise manner, preventing the proliferation of highly-
specialised sub-classes. This pattern has been adopted to pursue
the flexibility in the creation of snapshots. The library is organised
into five packages: a simplified UML class diagram is illustrated in
Fig. 7. In particular: (a) the data_structures package regards
classes for modelling and handling syntheses and snapshots;
(b) the initialisation and update packages group classes
evoted to implement the incremental clustering algorithm and
ts macro-phases (i.e., syntheses creation and update); (c) the
elevance package gathers classes for the calculation of the
easure of relevance. The data summarisation algorithm has
een designed according to two different modes: (i) single ex-
cution or (ii) iterated execution, which is apt to test different
onfigurations of clustering, by varying one of its parameters at
time, as it will be explained in Section 7.2. Noteworthy, the
attern-based structure of the software library has been lever-
ged to include the implementation of additional incremental
lustering algorithms from the literature. Such algorithms have
een included in the library to prove that the clustering quality
elivered by IDEAaS outperforms the clustering quality obtained
hen fostering other existing reference algorithms. A thorough
iscussion on the latter aspect will be provided in Section 7.3.

. Experimental evaluation

Experiments have been performed using the data summarisa-
ion and relevance evaluation software library described in the
revious section on a PC equipped with an Intel Core i5-3210M
rocessor, CPU 2.50 GHz, 4 cores, 8 logical cores, RAM 8 GB.
he whole library has been deployed as a containerised applica-
ion into a Docker container (Docker version 20.10.17). Indeed,
ontainerisation is exploited to pave the way to a scalability
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assessment of the proposed approach with different hardware
configurations. The experimental evaluation touches different as-
pects: (i) the effects of IDEAaS algorithm clustering parameters on
data summarisation quality (Section 7.2); (ii) the comparison of
IDEAaS algorithm against other reference incremental clustering
algorithms in the literature (Section 7.3); (iii) the assessment
of the processing time, to prove that data summarisation and
relevance evaluation can be efficiently computed (Section 7.4);
(iv) usability tests on the prototype GUI to execute the explo-
ration scenarios (Section 7.5). Experimental evaluation has been
performed on mobility data acquired in the MoSoRe research
project. The characteristics of this data are reported in the fol-
lowing.

7.1. MoSoRe mobility data

In the MoSoRe project, four different types of anomalies have
een considered, namely, hole, bump, depression and rough
round. To explore road portions affected by these kinds of
nomalies, data has been collected through vehicles black boxes
nd stored on the FTP repository as CSV files. Four different types
f CSV files have been considered (in each file the pattern YYYY-
MM-DD denotes the reference date of the measures contained
within the file):

• VEM_YYYY-MM-DD_TRIP.csv contains information of start
and end of a trip performed by a vehicle; it is composed
of 18 columns containing information of place, time and
weather conditions for start and end place and the mileage
extension of the trip (in km); the number of records (that
corresponds to the number of the trips in a day) ranges, on
average, from 30 to 80;

• VEM_YYYY-MM-DD_TRIPDETAILS.csv contains the inter-
mediate positions of a vehicle during a trip, gathering also
metadata about the direction of the vehicle, heading and
speed; the number of columns of the file is 12 and average
size ranges from 1000 to 3000 records per day;

• VEM_YYYY-MM-DD_HOBU.csv contains information of the
anomalous events occurred within a day; the type of event,
the intensity of the impact, sampling frequency associated
with the accelerometric traces, number of samples are re-
tained in the file; the file consists of 11 columns and average
size goes from 300 to 500 records per day;

• VEM_YYYY-MM-DD_ACC.csv contains the accelerometric
traces associated with anomalous events that occurred on
the monitored road portions; along with X-Y-Z acceleration
values, each record contains a reference to the ID of the
anomalous event and the relative position of the sample in
the trace; the file consists of 8 columns and average number
of records ranges from 2 · 106 to 3 · 106 records.

.2. Effects of clustering parameters on data summarisation

The configuration of the IDEAaS incremental clustering algo-
ithm is rooted on four parameters: (i) the maximum number of
yntheses m, to be created during the initialisation phase of the
algorithm and maintained over time for the whole duration of the
data stream processing; (ii) a factor p, concurring in the calcula-
ion of the so-called maximal boundary, which is exploited during
he assignment of incoming data points to syntheses (if the data
oint does not lie within the boundary of the nearest synthesis,
hen a new synthesis is created); (iii) the size of the time window
t , retaining data points of the stream collected from timestamp
− ∆t to timestamp t; (iv) a threshold τ , influencing the ageing
echanism of syntheses, used to label the least updated synthe-

es, which are candidate to be discarded. The first two parameters
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Fig. 8. Variations of the number of syntheses with different values of ageing
threshold τ (∆t = 40 · tu and ∆t = 200 · tu).

can be analysed separately, in conjunction with the time window
∆t and the threshold τ . In the following, we will describe tests
conducted to demonstrate how the maximum number and maxi-
mal boundary of syntheses impact on data summarisation quality
as applied on available mobility data, by varying at the same
time the window ∆t and the threshold τ . For all the tests, we
onsidered a representative stream of measures denoting a hole
nomalous event, composed of ≈2000 samples (Z axis accelera-
ion only). For the evaluation of the quality of clustering, we relied
n the renowned SSQ metric (sum of squared distance), used
or validation of data stream clustering algorithms [11], which is
alculated as follows. Consider the points collected during the last
t interval. For each point, the centroid of its closest synthesis

s found by computing the Euclidean distance. Hence, the SSQ
t time t is equal to the sum of squared distances for all the
oints within the last ∆t interval. SSQ is not bounded to any
redefined range, and small SSQ values mean better compactness
f syntheses (i.e., it quantifies the error due to the clustering
peration). Therefore, SSQ must be minimised.

aximum number of syntheses. We executed the IDEAaS cluster-
ng algorithm varying the parameter m (maximum number of
syntheses) in the range [5, 40], with an increasing step of 5. In this
experiment, we considered two values for the time window ∆t ,
amely, ∆t = 40 · t and ∆t = 200 · t (where t is the minimum
u u u
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Fig. 9. Detail of centroids positioning with respect to original data (black line in the background) for different combinations of τ (ageing threshold) and m (number
f syntheses); in the figure, ∆t = 40 · tu and the radii are not in scale.
time resolution of a single sample and, in the case of the reference
stream, it is equal to 50 ms), in order to assess SSQ metric value
on the same number of snapshots for all the experiments. The
width of the time window has been chosen to produce snapshots
with a medium-high frequency, thus allowing us to focus only on
the other three parameters of the data summarisation algorithm.

Focusing on the ageing threshold τ , as it can be evidenced
from Fig. 8, values of τ < 800 yield lower values of SSQ (i.e., bet-
ter clustering results). On the other hand, the value of time
window ∆t has a negligible impact on the average SSQ value.
Lower values of ∆t will increase the promptness in the identifica-
tion of changes in data streams (by augmenting the frequency of
controls), but at the same time has an impact on the response
time of the algorithm, as demonstrated in Section 7.4. Indeed,
since the threshold τ steers the ageing mechanism of syntheses,
if we set τ to a value close to zero, old input data is hardly
forgotten. Conversely, as the value of τ increases, the algorithm
is forced to consider the most recent points only. This aspect
clearly emerges in Fig. 9, which illustrates the distribution of
centroids values and input data for ∆t = 40 · tu = 2 s (that
has been set to this value to permit, with a fine-grained level of
detail, to qualitatively perceive the evolution of the distribution
of centroids and corresponds to acceptable response times, see
Section 7.4). Regardless of the value of τ , Fig. 8 shows that the
average SSQ progressively decreases as the number of syntheses
m increases, until it becomes stable (from the figure, after a
number of syntheses equal to 20 for τ ∈ {10, 100, 500} and 35
for τ ≥ 800). The plots in Fig. 8 shed light on two considerations.
The first one is that, to achieve high-quality clustering and keep
small the amount of memory dedicated to syntheses, a trade off
value of m must (and can) be identified. The second consideration
is that, if the ageing threshold τ is progressively increased, to
improve the SSQ metric, a higher value of m is required. The
latter case is evident if focusing on the points range 600 ÷ 1000
in Fig. 9. Generally speaking, the lowest average value of SSQ is
obtained for values of τ near to zero. In fact, as the stream is being
processed, it will be reached a situation in which the syntheses
are distributed from the maximum to the minimum peak of the
acceleration signal, as removal of old syntheses is disabled. Hence,
as a result of the disabled removal mechanism, a synthesis very
close to input data will always be found (see the leftmost plot in
Fig. 9).

Maximal boundary of syntheses. The p factor concurs in the as-
signment of incoming data points to existing syntheses, and it is
leveraged to establish whether a new synthesis must be created
for an incoming data point or not. The value of p should be
chosen small enough, so that it can successfully detect most of the
points representing new syntheses or outliers. At the same time,
it should not generate too many unpromising new syntheses or
outliers. In the experiments from Fig. 10, we tested different
configurations of p ≤ 2 (in particular, p ∈ {0.01, 0.1, 1.5, 2})
to assess the impact of its variation on clustering quality, with
709
∆t = 200 · tu. The recommended value of p = 2 ensures the
lowest average value of SSQ when varying the maximum number
of syntheses (with fixed τ ). Similarly, the same situation holds
when varying the maximum value for the ageing threshold (with
fixed m).

Final considerations. From the former experiments, it emerges
that the two parameters which influence the most the quality
of clustering are the maximum number of syntheses m and the
ageing threshold τ , which therefore may influence the results
of the exploration scenarios execution. For the considered rep-
resentative input data, a maximum number of syntheses m ∈

[20, 40] ensures a good quality of clustering. For the same range
of syntheses, an ageing threshold τ near to zero delivers a better
quality, disregarding the ability of the algorithm to consider only
more recent data. The plot in the upper side of Fig. 10 shows
that a good choice of the value of threshold would be in the
range [500, 700]. For completeness, we repeated the experiments
performed in this section on three other streams regarding hole
events on the same road portion. Such streams have an increas-
ing length (i.e., the number of data points, which depends on
the generation frequency of the black boxes as explained in
Section 2.1) of 4000, 6800 and 14160 points (collected every
50 ms), respectively. In particular, the latter corresponds to the
maximum length of a stream related to an anomalous event in
the context of the MoSoRe project. Focusing on the m parameter,
that can be used to regulate the memory dedicated to store
the syntheses, experiments evidenced that for the stream with
a length of 4000 points, a value of m ∈ [25, 45] ensures a
good quality of clustering and a satisfying average value of SSQ.
The same happens for the stream with length 6800 points and
m ∈ [30, 55], and for the stream with length 14160 points and
m ∈ [40, 75]. For all the three streams, ∆t , τ and p have been set
to a fixed value.

7.3. Comparison between incremental clustering algorithms

After the in-depth analysis on how the configuration parame-
ters of IDEAaS clustering algorithm affect the quality of clustering,
we compared the quality of IDEAaS against the quality of other
incremental clustering algorithms from the literature. Given the
plethora of existing data stream clustering algorithms (a sur-
vey with the genealogical tree of the most famous algorithms
and the mutual features they share can be found in [15]), we
focused our analysis on the following algorithms: BIRCH [13],
DenStream [14] and D-Stream [12]. In particular, DenStream [14]
shares with IDEAaS the origin, being both the algorithms derived
from the CluStream algorithm [16]. BIRCH [13] is the baseline
algorithm, from which all the distance-based incremental cluster-
ing algorithms have been derived (including CluStream). Beyond
a comparison against other distance-based algorithms, we also
considered the ancestor of the grid-based ones, D-Stream [12], as
suggested in [15]. Similarly to the experimentation described in
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Fig. 10. Variations of ageing threshold for different values of maximal boundary
factor (above, m = 40) and detail for τ = 500 (below).

Table 1
Configuration parameters for the stream clustering algorithms (parameters not
enlisted here have been set to their default values, provided in the corresponding
paper).
Algorithm Parameter Value

IDEAaS m 40
τ 10000
p 2

D-Stream [12] λ 0.9
Cm 1.3
Cl 1.1
grid size 0.1

BIRCH [13] threshold 0.1
branching 6
maxLeaf 20

DenStream [14] λ 1.9
ϵ 5
β 1
µ 1.5

the previous section, the clustering quality is expressed through
the value of the SSQ measure. Comparison between the afore-
mentioned representative clustering algorithms has been based
on an accelerometric trail of ≈14k samples. The setup for the
xecution parameters of the clustering algorithms (reported in
710
Table 1) has been obtained striving to meet two empirical criteria:
(i) the stabilisation of the average SSQ, to identify a number of
syntheses apt to contain the amount of memory used by the
algorithms, similarly to the experiments in the former section;
(ii) a proper setting for the parameters (where present) meant to
regulate the capability of the algorithms to capture the dynamics
of incoming data (e.g., the τ parameter of IDEAaS).

Fig. 11 illustrates the evolution of the SSQ quality index as the
stream of data is processed by the clustering algorithms. For each
clustering algorithm, the average value of SSQ (denoted as SSQ )
s reported in the legend in the top-left side of the plot. As can
e evidenced from the figure, the quality of IDEAaS algorithm
valuated on the accelerometric trail data stream outperforms
he quality delivered by the other reference clustering algorithms
rom the literature and, on average, IDEAaS assures the lowest
SQ value.

inal considerations and threats to validity. Apart from the quan-
itative extent of the clustering quality, the choice of a clustering
lgorithm with respect to another one is not a trivial task, since
t has to consider a trade-off amongst several factors, which
oncur to delineate the advantages and disadvantages of cluster-
ng algorithms, as elicited by [8]. Two major factors are: (i) the
egree of domain knowledge required for executing the algorithm,
hich is backed, for instance, by the setting of the configura-
ion parameters (e.g., from Table 1, BIRCH and IDEAaS have less
arameters with respect to DenStream and D-Stream); (ii) the
nderlying structure of the algorithm (e.g., even though DenStream
hares with IDEAaS the same origin, the inner structure of Den-
tream is slightly more complex with respect to the structure
f IDEAaS, since it introduces the management of core/outlier
icro-clusters in the original implementation of CluStream, along
ith time decaying and damped window model). As anticipated

n Section 7.2, regardless of the clustering algorithm, an uni-
ersal issue regards the tuning of its configuration parameters,
hich goes beyond empirical criteria. Therefore, future efforts
ill be devoted to implement finer techniques to find an optimal
uning for the parameters demanded for the execution of the
lgorithms depending on the input dataset, resembling to the
trategy proposed in [17]. Nevertheless, for the aforementioned
onsiderations about the selection criteria to choose the algo-
ithms to compare against IDEAaS, according to the classification
escribed in [15], the selected ones are good representatives of
he available solutions and the experimental results are successful
n demonstrating the high clustering quality of IDEAaS.

.4. Experiments on processing time and relevance evaluation qual-
ty

Regarding processing time, we performed tests varying the
ime window ∆t . Fig. 12 shows the average time required to
rocess a single record of measures for different ∆t values, con-
idering the reference stream of measures employed for the ex-
eriments described in Section 7.2. The figure shows that, on
verage, lower ∆t values demand more time to process data. In
act, every time data summarisation and relevance evaluation are
erformed, some initialisation operations are executed (e.g., ac-
ess to the set of syntheses previously computed). Therefore,
o ensure lower processing time, the frequency of clustering
xecution and relevance evaluation must be reduced, that is, ∆t
alue must be increased. On the other hand, higher ∆t values
ndicate that clustering execution and relevance evaluation could
e performed far from time instants where important variations
ccurred, thus reducing the quality of data relevance evaluation.
Therefore, we investigated the effects on the relevance mea-

ure when adopting different time windows ∆t , jointly with vari-
tions of the ageing threshold τ . The goal of these experiments
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Fig. 11. Comparison of clustering quality against different stream algorithms (for all the algorithms, snapshots have been generated with ∆t = 100 · tu).
Fig. 12. Average processing time for each collected measure for different ∆t
alues.

as to evaluate whether the distance-based metric, employed
o identify relevant sequences of snapshots, is able to capture
ariations in collected data. To this aim, the first 100 measures
n the reference stream have been employed to generate a snap-
hot, used as a reference to calculate the value of the metric
or all the other snapshots that will be generated, according to
efinitions 5 and 6. The value of τ permits to tune the sensi-
ivity of the algorithm in following sharp variations of incoming
ata. Sensitivity is evaluated through the calculation of distance
alue. Indeed, a too small value of τ prevents old syntheses from

being eliminated, and sharp variations are more difficult to be
perceived. In Fig. 13 variations are hardly intercepted as τ value
ecreases. Additionally, there is a reduction in sensitivity when
t assumes large values, as expected. Therefore, the rationale

s to adaptively increase/decrease ∆t according to the distance
f relevant syntheses from warning and error thresholds for the
bserved features, depending on the road portion, since they cor-
espond to potentially critical situations that must be monitored
t finer granularity.

.5. Proof of concepts GUI for mobility data exploration

A proof of concepts Graphical User Interface, that imple-
ents the proposed exploration scenarios, has been developed

o support the exploration of mobility data. The GUI follows
he methodological phases described in Section 5.2, namely, it
nables road maintainers to start the exploration by selecting
imensions and their instances to form the facet φ (Phase 1),
711
Fig. 13. Values of the measure of relevance for different ageing thresholds and
time windows ∆t (dashed line in the background is the original input data).

to select the exploration scenario (Phase 2) and to iteratively
refine the exploration by changing road maintainer’s choices on
dimensions (Phase 3). At each step, the GUI proposes a set of rel-
evant road portions and corresponding anomalous events. Road
portions are ranked according to the sorting function σ of the
scenario. As a representative example, in Fig. 14 the exploration
scenario ES1 (prioritisation of anomalous events of the same type)
is considered. In the figure, the road maintainer, after selecting
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Fig. 14. Prototype GUI supporting the execution of exploration scenarios (detail
of ES1); the road maintainer, after selecting the exploration scenario, a road
portion and an event type, is provided with the events of the chosen type,
properly sorted according to their seriousness.

the exploration scenario, a road portion and an event type, is
provided with the events of the chosen type, properly sorted
according to their seriousness.

The GUI has been tested with usability experiments within the
MoSoRe project. Usability experiments have been performed on a
group of 25 users possessing road maintainers skills and familiar
with software for viewing, editing, and analysing geospatial data
(i.e., the so-called GIS — Geographic Information Systems). After
an initial training, participants were assigned a task to be accom-
plished using the exploration tool, without imposing timeouts or
any particular exploration constraint. Specifically, the task was a
broad data exploration for inspecting and comparing events on
a road portion with a high rate of anomalous events occurrence.
Then, we asked participants to fill a standard System Usability
Scale (SUS) questionnaire, which is widely employed for usability
assessment purposes. SUS scores a software in a range between
0 to 100, where 0 indicates the least usability and 100 represents
a high usability, respectively. For each statement of the question-
naire, road maintainers indicated their opinion on a five point
scale. We averaged over all maintainers’ questions and the re-
sulting mean score amounted to 78, which locates our prototype
tool in the 80–85 percentile range of the SUS score curve [35].
We also calculated the time participants spent to carry out their
task. Using the prototype, participants accomplished their task in
a shorter timer compared to a plain GIS interface without data
exploration facilities based on the proposed scenarios.

8. Related work

This section surveys an excerpt of the existing Smart City
platforms and frameworks, with focus on smart mobility issues
(Table 2). In particular, our critical analysis focused on how re-
search addresses big data exploration issues in this domain. One
of the main challenges within Smart City environments regards
the aggregation and processing of massive amounts of rapidly
changing data, generated by sensors and IoT devices, in order to
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be ready for subsequent exploration. In this respect, the compar-
ison between considered approaches is based on: (i) how variety
of collected data within the Smart City domain is addressed;
(ii) how volume of data has been tackled, and whether sum-
marisation techniques have been employed to obtain meaningful
data aggregations for analysis and exploration; (iii) the pres-
ence of relevance evaluation techniques to attract domain experts’
ttention while exploring data; (iv) if the approach takes into
ccount an exploration methodology to ease exploration and (v) if
n implementation environment has been provided to assess the
pproach.
Authors in [23] outline the requirements for a large-scale IoT

ata streams processing framework, addressing user’s centric de-
ision support and reliable information processing for Smart City
pplications. Therein, use cases involving traffic management and
ustainable development of the urban fabric are presented, giving
nsights about the importance of exploration support. In [24], the
ITIESData framework handles data streams from smart meters
nd sensors fostering a flexible ETL tool (called BigETL) apt to
anage data with both different formats and with high gen-
ration rates. Through the framework, an evaluation on heat-
ng consumption data has been conducted. Similarly, to meet
he rates of high-speed stream processing, an ecosystem based
n Spark is proposed in [30], empowered by the adoption of
raphics processing units (GPUs) to yield high elaboration per-
ormance. Focused on renewable energy systems analytics in
mart Cities, Preda et al. [29] adopts a methodology to pro-
ess data coming from sensors installed on photovoltaic panels
hich envisages storage of data streams, resources management
nd a processing engine. Therein, three different analytical ex-
loration scenarios are described, based on the application of
achine Learning techniques. Although not specifically focused
n smart mobility, approaches in [24,29,30] have been anal-
sed for their high-performance stream processing. Among them,
nly [29] proposes a data exploration solution. Grounded on
ddressing specific mobility problems (e.g., air pollution, traf-
ic jam), the framework in [25] adheres to a Complex Event
rocessing (CEP) data-streaming processing paradigm and im-
lements several real-time primitives to integrate, process and
nalyse the data streams. The work in [27] describes a model
o implement an enterprise architecture, where several APIs are
ntegrated, with the aim of analysing mobility data to pursue
ustainable transportation. Authors from [28] propose a SOA (Ser-
ice Oriented Architecture) to promote intelligent transportation,
ncluding proper services devoted to aggregate data and provide
ecision making support and data analytics, suggesting new per-
pectives for big data management in the presented Smart City
omain. In [32], a platform for developing smart city applications
as been proposed, to provide support for integration of hetero-
eneous data along with data analysis and visualisation. Therein,
ata analysis tasks are managed through a CEP engine and a Batch
rocessor. Focusing on energy consumption, the platform in [34]
as been conceived as a modular system to promote a conscious
se of energy by the users inside local energy communities. It
ncludes a middleware apt to collect and analyse energy con-
umption big data, the latter achieved by means of dedicated
ervices.
Further delving into the Smart Mobility topic, several research

fforts propose the adoption of comprehensive solutions for big
ata analysis and exploration to improve mobility resilience. Au-
hors in [18] propose a framework for analysing road accident
ata; therein, after data preprocessing, a clustering algorithm is
pplied and association rules are mined to obtain measures of
nterest, to find possible underlying patterns in the data set. With
imilar intents, the work in [19] combines IoT and big data to
evise the Pavement Managements System (PMS), a road main-
enance management structure composed of pavement detection
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Table 2
Overview of surveyed big data exploration solutions.

Focus Big data exploration issues Has
implementation

Addresses data
variety

Addresses data
volume

Relevance
evaluation

Proposes exploration
methodology

Kumar et al.
[18]

Analysis of
road accident
data

No Yes (Clustering) Yes
(Association
Rules)

No Yes

Dong et al. [19] Road
maintenance

No No No ∼(Description of use
cases)

Yes

Yang et al. [20] Traffic state
assessment

No Yes (Clustering) No No Yes

Alipour et al.
[21]

Road
maintenance

No No No No Yes

Zenkert et al.
[22]

Analysis of
road traffic and
pollution

No No No ∼(Description of use
cases)

Yes

Tönjes et al.
[23]

Traffic
management

No No No ∼(Description of use
cases)

No

Liu et al. [24] Analysis of
heating
consumption
data

∼(Flexible ETL
tool)

No No No Yes

Junior et al.
[25]

Analysis of
traffic data

No No ∼(Adoption of
a CEP system)

No Yes

Babar et al.
[26]

Traffic
congestion
control

No No (Only data
aggregation
techniques)

Yes (Rule
engine with
threshold limit
values)

∼(Analytical use
cases)

Yes

Anthony et al.
[27]

Mobility and
sustainable
transportation

No No No ∼(Requirements for
context-driven
exploration)

No

Kemp et al.
[28]

SOA to
promote
intelligent
transportation

No No (Only data
aggregation
services)

No No Yes

Preda et al.
[29]

Renewable
energies
systems
analytics

No No No ∼(Three different
analytical scenarios)

Yes

Rathore et al.
[30]

Big data stream
processing

No No No No Yes

Bachechi et al.
[31]

Big data
analytics and
visualisation
for traffic
monitoring

No No No (DTW for
time series
similarity
assessment)

No (only visualisation
layers built on top of
queries)

Yes

Pereira et al.
[32]

Big data
integration and
Smart City
application
development

No No No No (only visualisation
layers built on top of
queries with
user-defined filters)

Yes

Shir et al. [33] Big data
integration and
Smart City
application
development

No ∼(hybrid
scheme
combining
clustering,
regression,
classification)

No No ∼(only
experimental
results
reported)

Gagliardelli et
al. [34]

Big data
platform for
analysis of
energy
consumption
data

No ∼(no details on
algorithms
provided)

No No Yes

Ours Road
assessment

Multi-
dimensional
model

Yes
(Incremental
clustering)

Yes (Distance-
based)

Yes (Formalisation of
exploration scenarios)

Yes
713
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and 3D modelling, data analysis and decision support. It also
illustrates use cases for two main actors, the road maintenance
company and a technical firm that offers smart solutions for
road maintenance. In [20], a city traffic state assessment sys-
tem is implemented using a big data cloud infrastructure, that
hosts clustering methods to find areas of jam, thus assuring
high scalability. Leveraging the recent advances in the field of
computer vision and big data computing, authors in [21] devel-
oped a scalable framework for image-based monitoring of urban
infrastructure, using both web images and Google Street View
imagery to train a CNN model. Pursuing the goal of analysing
road traffic and pollution data for the city of Aaruhs (Denmark),
in [22] big data technologies ease the calculation and visualisation
of the least polluted route. The approach by Babar et al. [26]
aims at controlling traffic congestion by proposing a preliminary
idea of analytical use cases. In their approach, data exploration is
achieved by applying aggregation techniques, and a rule-based
engine with thresholds (limits) suggests relevant data to end-
users. Authors in [31] propose a framework to analyse urban
traffic data through effective information visualisation techniques
and the use of a dashboard. Data is collected from traffic sensors,
and it is leveraged to build up a traffic simulation model. Focusing
on user mobility (specifically, bike sharing ecosystems), in [33] a
hybrid prediction scheme has been devised, to tackle renowned
mobility challenges (e.g., prediction of the level of hourly demand
of bikes).

Novel contributions. With respect to our approach, which con-
iders the synergy between big data exploration techniques and
ethodological steps, the aforementioned approaches do not of-

er a comprehensive environment to perform big data explo-
ation. This happens in the analysed Smart City platforms, pro-
iding only a high-level vision of how data exploration has been
erformed. For instance, approaches in [24,28,30] mainly focus
n the design of the data stream processing architecture and on
he efficiency of data acquisition algorithms, thus lacking of real
nalytic and exploratory use cases resembling our model of ex-
loration scenarios. Moreover, methods and techniques targeted
o face the variety and the volume of data are not envisaged in
he exploration facilities offered to users, which are forced to rely
nly on a blind exploration strategy in the deluge of data. Both
önjes et al. [23] and Anthony et al. [27] present examples of
ossible applications of the conceptual framework proposed in
heir work for exploration purposes, but it remains an abstract
verview of requirements, not translated into methodological
teps and quantitative metrics (e.g., the measure of relevance) to
ssist domain experts in the exploration of data streams as we
ropose in this paper. Similarly, Junior et al. [25] describe a case
tudy where heterogeneous data streams coming from multiple
ources are considered (e.g., bus fleet, city police force, city sta-
ions), but it is not framed into a methodology targeted to foster
xploration. Even though exploration scenarios are introduced
n [29], they are anchored to the application of specific Machine
earning algorithms, thus not prone to be generalised also for
ther domains, leaving in the background exploratory aspects.
ereira et al. [32] provide an abstraction layer for implement-
ng dashboards for different categories of users (e.g., academia,
itizens, industry, government), endowing users with the pos-
ibility of autonomously create queries and filters to limit data
isualised on the underlying city map. However, the latter are
ot employed to set up exploration scenarios, as conceived in
ur proposal. In [34], use cases and scenarios are introduced,
ut they are strictly related to the description of dataflow opera-
ions (e.g., data sources management), thus not being targeted to
nd-user exploration.
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We share with [18,26] the introduction of metrics/techniques
to identify relevant data for road maintainers, in order to high-
light the most interesting data summaries or to notify the
occurrence of specific road network events. Nevertheless, multi-
dimensional data organisation is not envisaged in any of these
approaches. Furthermore, only [18,20,26] foster summarisation
techniques, with [18,20] relying on clustering. Instead, the ap-
proaches in [31,33] employ different techniques, albeit not di-
rectly devoted to perform data summarisation. In particular, [31]
adopts the Dynamic Time Warping (DTW) algorithm to analyse
urban data flow time series, whilst [33] combines clustering,
regression and classification. Authors in [26] apply a coarse-
grained aggregation procedure, wherein data sources content
is packed into blocks (recognised and classified according to
their physical sources, such as sensors) and, within each block,
aggregation is made by applying a divide-and-conquer approach
on data sources attributes. In [18], several clustering algorithms
from the literature are cited, but none of them is conceived to
be applied incrementally on a data stream, whilst in [20] details
on how the algorithm is applied are not provided. Regarding the
formulation of exploration scenarios to support data exploration,
only [22,26,31] sketch scenarios targeted to smart mobility, but
details are coarsely given. Overall, in the surveyed smart mo-
bility data exploration approaches, a methodology to steer data
exploration is absent, thus forcing domain experts to adhere to a
trial-and-error approach during exploration.

The approach described here is a substantial evolution with
respect to its original formulation in [5]. In particular, the metric
of relevance applied to the sequence of snapshots has been com-
pletely changed, eliminating the burden for road maintainers to
define a reference snapshot for any possible kind of road portion
and event type. This significantly makes easier the exploration
tasks, thus not depending on road maintainers’ experience. Explo-
ration scenarios and experimental evaluation have been revised
accordingly.

9. Concluding remarks

In this paper, we presented a methodological approach, that
relies on big data exploration techniques, to support road main-
tainers during the inspection of road surface conditions in pres-
ence of multiple anomalies detected on the surface. The approach
includes three components: (i) a multi-dimensional model, apt
to represent the road network and to enable data exploration;
(ii) a data summarisation algorithm, to simplify overall view over
massive data streams collected by vehicles; (iii) a measure of
relevance, aimed at focusing the attention of the road maintainers
on portions of the road network that present critical conditions,
thus enabling maintainers to properly plan interventions on the
road infrastructure. The main contributions regard the introduc-
tion of a methodology for big data exploration, equipped with
quantitative metrics to support road maintainers. The methodol-
ogy has been declined into exploration scenarios, implemented in
a prototype tool. The scenarios pave the way for the application of
the methodology also in other application domains. Experimental
results showed how relevance evaluation was able to efficiently
attract the road maintainers’ attention on road portions that
present the most critical conditions and the proposed incremen-
tal clustering algorithm outperforms existing algorithms in the
literature.

Future research directions are may-fold. On the one hand,
a further enrichment of exploration scenarios will be pursued:
(a) introducing personalisation aspects for users and the notion
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of preferences in exploration; (b) expanding the amount of infor-
mation gathered on the road surface. To this aim, in the MoSoRe
project, on-board cameras are planned to be mounted on a group
of representative vehicles, to be employed by road maintainers to
collect video captures for the aforementioned purposes. On the
other hand, a parallel implementation of the incremental clus-
tering algorithm will be integrated. In fact, since some existing
approaches [36,37] demonstrated how the CluStream algorithm
(from which our incremental clustering algorithm has been de-
rived) can be parallelised, in future work we will adapt the same
parallelisation strategy to the algorithm proposed in this paper.
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