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The impact of the COVID-19 pandemic involved the disruption of the processes of

care and the need for immediately effective re-organizational procedures. In the context

of digital health, it is of paramount importance to determine how a specific patients’

population reflects into the healthcare dynamics of the hospital, to investigate how

patients’ sub-group/strata respond to the different care processes, in order to generate

novel hypotheses regarding the most effective healthcare strategies. We present an

analysis pipeline based on the heterogeneous collected data aimed at identifying the

most frequent healthcare processes patterns, jointly analyzing them with demographic

and physiological disease trajectories, and stratify the observed cohort on the basis

of the mined patterns. This is a process-oriented pipeline which integrates process

mining algorithms, and trajectory mining by topological data analyses and pseudo time

approaches. Data was collected for 1,179 COVID-19 positive patients, hospitalized at

the Italian Hospital “Istituti Clinici Salvatore Maugeri” in Lombardy, integrating different

sources including text admission letters, EHR and hospital infrastructure data. We

identified five temporal phenotypes, from laboratory values trajectories, which are

characterized by statistically significant different death risk estimates. The process mining

algorithms allowed splitting the data in sub-cohorts as function of the pandemic waves

and of the temporal trajectories showing statistically significant differences in terms of

events characteristics.

Keywords: healthcare dynamics, digital health, precision medicine, temporal phenotypes, COVID-19, Electronic

Health Record (EHR), process mining, electronic phenotyping algorithms

INTRODUCTION

The impact of the COVID-19 pandemic on Hospital Care and Health Care Delivery involved
the disruption of the processes of care and the need for immediately effective re-organizational
procedures (1). Since March 2020, it was clear to the health informatics scientific community
the necessity to leverage Electronic Health Record (EHR) data to support critical decisions. In
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particular, during the pandemic, hospital management and
processes had to be transformed at an unprecedented pace
and the analysis of EHR may reveal the real impact of such
changes (2).

Trajectories mining from EHR data allows to outline
emergency guidelines and reveal how single organizations
responded to emergency measures, and adopted them on the
basis of the treated populations.

An important aspect to be considered are the pandemic
waves. As of September 2021 the COVID-19 pandemic has been
characterized by several waves. In Italy the first two waves took
place in spring 2020 and fall 2020 (3). There is a substantial
interest in comparing patients’ trajectories hospitalized during
the different waves, to understand both the disease course (e.g.,
changes due to exposure to different treatments, procedures and
processes) and changes in healthcare dynamics. In the context
of healthcare dynamics and organizational strategies, rigorous
process descriptions by means of digital health tools, such as
process mining (4) are needed to provide a robust framework for
further investigations regarding clinical and physio-pathological
aspects of the disease. Thanks to these tools, it is also possible to
compare different aspects of the health care processes: changes
in the different waves, differences between demographic strata
(i.e., sex and age classes) and among patients’ phenotypes (i.e.,
population strata defined by a specific set of diagnoses).

Identifying and comparing patterns in healthcare processes
allows characterizing and stratifying an observed cohort, thus
defining so-called temporal phenotypes (5). The application
of healthcare process modeling has been recognized as an
essential step in the analysis of observational health data (6)
for multiple purposes. Clinicians could use healthcare processes
models during their practice as part of the move toward
precision medicine by identifying subpopulations that have
distinct healthcare process patterns after a new diagnosis or
change in treatment strategy (7–9). Within clinical research the
combination of patient pathophysiology and healthcare processes
create a much clearer picture of the overall health status of
a patient than either one alone. Furthermore - and in the
light of identifying successful approaches for the management
and containment of the pandemic and its socio-economic
impacts - policymakers can study healthcare processes to identify
disparities in access to healthcare among specific populations or
to track if regulatory changes are having their expected effects on
healthcare processes [https://euprevent.eu/periscope/].

This paper is aimed at providing mining tools that can be
applied in the context of digital health to determine how a specific
patients’ population reflects into the healthcare dynamics of the
hospital, to investigate how patients’ sub-group/strata respond
to the different care processes and to generate novel hypotheses
regarding the most effective healthcare strategies.

Nowadays, available process mining tools are mainly focused
on qualitative processes descriptions rather than on quantitative
processes comparison, suggesting the need to integrate inferential
statistical approaches (10). Furthermore, when applying process
mining in the health care context to analyze its dynamics,
we often face several issues related to the context complexity
and events variability. Novel process mining approaches

provide solutions to those issues, (11) and should be used in
synergy with other methodological approaches (e.g., canonical
statistical analysis).

In this work, we propose an analysis pipeline based on
time series and process-oriented analysis, which integrates visual
analytics, inferential statistics with process mining approaches.
The pipeline is aimed at stratifying a population of interest
on the basis of several exposure factors, including both clinical
processes and patient characteristics. The methods included in
the proposed version of the pipeline can be easily applied to real
clinical scenarios and provide explainable solutions useful for
clinical practice to reply to urgent clinical questions.

The analyses described in this paper have been performed
on data from COVID-19 patients hospitalized at Istituti Clinici
Scientifici Maugeri (ICSM) in Lombardy region, Italy.

ICSM is a network of hospitals, focused on patients’
rehabilitation, therefore no emergency units or intensive care
units (ICU) are present. Since the beginning of the outbreak,
ICSM repurposed internal wards to treat COVID-19 patients
during the acute phase of the disease but not needing intensive
care or patients recovering after the acute phase of the disease.
Starting from these observations, ICSM patients are peculiar
when compared with the COVID-19 patients’ population for
at least two reasons. First of all, post-acute patients’ affluence
was mainly driven by the nearby acute hospitals that were
not able to face the ever-increasing demand of hospitalizations.
Secondly, the lack of ICU excluded hospitalizations of patients
with extremely severe clinical manifestations during the acute
phase of the disease. On the other hand, the rehabilitative
connotation of ICSM offers the opportunity to follow up patients’
condition for longer periods compared to acute hospitals.

MATERIALS AND METHODS

Study Population
Our analyses were performed on data collected from 3 hospitals
belonging to the ICSM network in the Lombardy Region:
Pavia, Lumezzane (in the Brescia area) and Milano. The study
included hospitalized patients who had a SARS-CoV-2 Reverse
Transcription Polymerase Chain Reaction (RT-PCR) positive
test result recorded from February 2020 until August 2021. For
patients with multiple RT-PCR tests, only the first positive test
was used. Data starting from 2 years before the first positive
SARS-CoV-2 test to the last available follow up were considered
for each patient. Data were available for 1,179 hospitalized
patients with SARS-CoV-2.

Data Acquisition and Preprocessing
Data was collected from the ICSM Hospital Information System
(HIS) integrating different sources including Text Admission
Letters, EHR (including demographic and clinical data) and
Hospital Infrastructure Data, from which we extracted events
information regarding the hospitals centers and their care
processes organization, as illustrated in Figure 1.

We rely on the 4CE consortium data model (12) to collect
Demographic data, Diagnosis ICD-9 codes and Laboratory
values. Each data source required extensive pre-processing,
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FIGURE 1 | Data acquisition schema.

especially in manually retrieving data from admission letters
via chart review, aggregating Diagnosis ICD-9 codes, mapping
Laboratory tests to LOINC codes and defining the process events
granularity. We defined the index date as the first hospital
admission - including a PCR positive test - date and defined “days
since admission” as the number of days since the index date.

Healthcare Process data include the events a patient undergoes
during their medical history. In this study we included events
with a coarse granularity, that is, inpatient stays identified by the
ward where the patient was hospitalized. Events were collected
from the first positive SARS-CoV-2 test to the last discharge, as
recorded by August 2021. Process data were collected in the event
log file (13), where each row is referred to a single event and each
column includes the patient’s ID, time interval of occurrence of
the event and the event label.

Ancillary data refer to metadata associated to the event
(i.e., the hospital center where the hospitalization occurred, the
calendar time of the event associated to the pandemic waves) and
to the patient (i.e., age at admission, sex, diagnosis and laboratory
test results). Ancillary data can be cross-sectional or longitudinal.
In the latter case they are aligned to the event log using the “days
since admission” reference.

Along with data cleaning and quality checks, data processing
includes the definition of the pandemic waves, disease
progression stages and patients’ frailty.

We defined the pandemic waves according to the global
and local pandemic evolution and consequent ICSM hospital
reorganization. We partitioned patients into first and second-
wave cohorts according to their first admission to the
hospital and relied on the approach exploited in (14) where,
although different regions had slightly varying temporal
trajectories in COVID-19–related hospitalizations, data indicated
2 predominant waves of hospitalizations, which were used to
partition patients as follows: a first wave from January to June
2020, and a second wave from July 2020. We observed a
substantial consistency among global and local patterns, where
the last admission in COVID wards for the first wave was
observed in 2020-06-10 and the first one for the second wave was
in 2020-10-02. Thus, we leverage on quarters granularity: the first
wave includes 2020 first two quarters (until and including 2020-
06-30), the second wave includes 2020 third and fourth quarters
and 2021 first three quarters (after 2020-06-30). Note that we
merged the 2nd and 3rd wave as novel healthcare processes were
established, and maintained, after the first wave.

Disease progression stages were defined in temporal windows
computed on the basis of the index date and “days since
admission” reference: pre-acute stage (before−7 days), acute
stage (from−6 to 30 days), post-acute stage (from 31 to 90
days) and long stage (after 91 days). The weighted Charlson
Comorbidity Index (15) was computed via the R package
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“comorbidity” (16) to measure comorbid disease status during
the disease progression.

To define comorbidity phenotypes, we mapped the ICD-9
diagnosis codes to a unique phenotype code (PheCode) (17) and
analyzed higher-level categories including: endocrine/metabolic,
mental disorders, circulatory system, injuries & poisonings,
neurological, neoplasms, genitourinary, musculoskeletal,
hematopoietic, digestive and dermatologic diagnosis.
While focusing on comorbidities, we excluded diagnoses
identifying COVID-19 phenotypes: U07.2 ICD-9 codes and
codes mapped to respiratory (Pneumonia and Respiratory
failure, insufficiency, arrest) and infectious diseases (Viral
Infection), which were recorded across the entire cohort (see the
Supplementary Table 2).

A total number of 16 laboratory tests: Alanine
Aminotransferase, Aspartate Aminotransferase, Albumin,
Cardiac Troponin, C-Reactive Protein (CRP), Creatinine,
D-dimer, Ferritin, Fibrinogen, Lactate Dehydrogenase (LDH),
Lymphocyte, Neutrophil, Procalcitonin, Prothrombin Time
(PT), Bilirubin, white blood cells (WBC), previously included
in (12) were analyzed. A preliminary pre-processing phase
involved mapping internal coding to the corresponding LOINC
identifier (including measurement unit conversion if needed),
missing values removal, averaging of multiple measures by day
for each patient.

Process-Oriented Analysis Pipeline
We developed an analysis pipeline based on the heterogeneous
collected data (event logs and cross-sectional and longitudinal
ancillary data) aimed at identifying the most frequent healthcare
processes pattern, jointly analyzing them with demographic and
physiological disease trajectories, and stratify the observed cohort
on the basis of the mined patterns. This is a process-oriented
pipeline which integrates process mining algorithms, time series
analysis and visual analytics.

Descriptive Analysis

Event and ancillary data were exploited to describe the
population characteristics and its evolution during the calendar
time and waves. Processes and Clinical characteristics were
compared among waves. Each subject was assigned to only one
wave considering their first test. Pearson Chi-square (χ2) test
for independence was applied to test the null hypothesis of
independence between categorical variables, being the expected
frequencies always higher than 5 and the remaining assumptions
underlying the Pearson Chi-square test met in all cases (18).
Given their non-normal distributions (see Supplementary)
continuous variables distributions (i.e., Age and Charlson Score)
were compared among subgroups by the non-parametric Mann–
Whitney test. Categorical variable distributions are described as
absolute and relative (%) frequencies. Continuous variables are
described by both Mean (standard deviation, SD) and Median
(Interquartile Range, IQR: 25–75 percentiles).

Population characteristics were analyzed across calendar time.
For each year quarter, starting from the first quartile of 2020
(January, February and March), we computed the proportion
of the sex, age quantiles, and center of the first admission

strata. Cox proportional hazard regression and kernel density
estimation was exploited to study patients’ survival and compare
it between waves.

Cohort frailty, comorbidity and phenotypes were studied
during the different disease stages (pre, acute and post-acute) and
stratified by calendar time. Charlson score at each disease stage
was compared among the cohorts hospitalized in year quarters.
The prevalence of PheCode categories were computed in disease
stages and stratified by age classes. PheCode prevalence rate was
calculated as the number of persons having a specific diagnosis
code registered for the first-time during a given time period (i.e.,
disease stage time window) divided by the population size during
the same time period.

Events distributions were compared by age classes, sex, waves
and admission centers.

We exploited Kaplan-Meier curves to describe how long a
cohort of patients was in charge of a specific hospital ward or
to represent the time needed to move from a state to another
(e.g.,: from ‘positive covid test’ to ‘admission in a covid unit’).
Giving the appropriate meaning to the event and to censor, this
tool allows to easily verify, with a logrank test, if sub cohorts
(e.g.,: defined by sex, age, etc. . . ) are characterized by statistically
different behaviors. Assumptions (19) have been verified (i.e.
censoring was unrelated to prognosis, survival probabilities were
the same across Waves - see Supplementary Table 7 - and the
events happened at the times specified).

The significance level has been set to α = 0.05.
Descriptive analyses were performed by R software
environment for statistical computing and graphics version
4.1.2 (www.r-project.org).

Physio-Pathological Trajectory Mining

To depict the underlying physio-pathological progression of the
diseases we mined patients’ trajectories from laboratory values,
using an approach based on the topological representation of
data and pseudo time, as described in detail in (20). These
unsupervised temporal models capture continuous changes
in disease over time. Identified key temporal features allow
characterizing disease subtypes that underpin these trajectories,
thus allowing cohort stratification.

We applied the previously developed algorithm to identify
the most relevant trajectories. Starting from a patient similarity
matrix, computed via cosine similarity, the Topological Data
Analysis (TDA) algorithm infers temporal phenotypes from
topological models that learn disease states from multiple
laboratory measures, then pseudo time series approaches that
identify transitions among these states are applied.

Each subject is assigned to a unique trajectory, thus we
compared categorical characteristics (sex, wave, admission
center) by Pearson chi square test for independence and numeric
continuous ones (age and Charlson Score) by Kruskal-Wallis test.

We investigated whether the mined patients’ trajectories were
predictors of survival. To this end, we have carried out a
multivariate survival analysis by using Cox proportional hazard
regression to predict in-hospital death during the observation
period. Verification of the Cox Regression model assumptions is
reported in the Supplementary.
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TABLE 1 | Population distribution in waves.

First Wave

(N = 651)

Second Wave

(N = 528)

p-value

Sex 0.023

Female 275 (42.2%) 259 (49.1%)

Male 376 (57.8%) 269 (50.9%)

Age 1.053e-08

Mean (SD) 71.9 (13.5) 76.0 (12.8)

Median [IRQ] 74.0 [63.0,

82.0]

80.0 [70.0, 85.0]

Survival 0.928

Survived 578 (88.8%) 467 (88.4%)

Death 73 (11.2%) 61 (11.6%)

Admission Center 8.964e-05

Lumezzane 182 (28.0%) 140 (26.5%)

Milano Camaldoli 170 (26.1%) 197 (37.3%)

Pavia 299 (45.9%) 191 (36.2%)

Charlson Score at Admission < 2.2e-16

Mean (SD) 1.16 (1.77) 2.85 (3.01)

Median [IRQ] 1.00 [0, 2.0] 1.00 [0, 6.0]

Data are presented as absolute and relative (%) frequencies or mean (Standard Deviation,

SD) andmedian (25th - 75th percentiles, Interquartile Range, IQR) by wave as appropriate.

Events Process Mining

Process Discovery was performed exploiting the Careflow
Miner (CMF) algorithm, as implemented in pMineR (4). Such
implementation enriches the original version of the algorithm
with a set of features aimed at joining the benefits of Process
Discovery with the benefits of the inferential statistics. To do that
a CMF graph can be stratified on the base of an attribute (one of
the additional columns in the Event Log): this causes the creation
of two CFMs which can be compared node by node testing if
the number of patients passing through that node are statistically
different (with a Fisher’s exact test or a Pearson Chi-square test,
depending on the observed cardinality). Tests assumptions were
verified as each subject can follow one and only one of the
compared processes. Similarly, the time needed to reach each
node can also be compared, by testing via Mann-Whitney test
if the distribution of the times related to two cohorts differs.
Additional analyses may include as an example the comparison
of probability to reach a final state (such as Death) between
cohorts. Sample sizes depend on the applied CFM thresholds, in
this application we choose a 12 patients’ threshold (i.e., each node
accounts for 12 or more observations)

In our analyses we compared CFMs between waves, to
study changes in process during the pandemic, and among
temporal phenotypes, as mined from trajectories (see 2.3.2), to
understand possible correlations between process of care and
disease progression.

Analyses were performed by the R statistical tool, version
4.0.2. Data are presented as the main effect estimate with 95%
confidence intervals (95% CIs), and the 5% significance level was
used for main inferences.

RESULTS

Cohort Characteristics and Descriptive
Statistics
Data were available for 1,179 inpatients with COVID-19. Table 1
reports demographic characteristics (age at the first positive
PCR test), survival at August 2021, first admission hospital
center and Charlson Comorbidity Index, stratified by pandemic
wave. Patients were assigned by a wave according to their first
hospital admission. When comparing First to Second wave,
high significant degree of evidences were found in terms of sex
(p = 0.023, χ2 = 6.1241), age at first test (p = 1.05e-08, eff.size
= 0.167), center of admission (p = 8.964e-05, χ2 = 18.64) and
Charlson Comorbidity Index at admission (p = 1.52e-20, eff.size
= 0.27) distributions.

Ancillary Data

Quarters are reported in the following as “year.quarter”. The
number of subjects hospitalized in quarters are 248 in the first
quarter of 2020 (2020.1), 381 in 2020.2, 44 in 2020.3, 388 in
2020.4 and 219 in 2021.1. Note that the total number exceeds
1,179, as one patient can be hospitalized for more than one
quarter (see Supplementary Table 1).

Hospitalized population characteristics, along with calendar
quarters, are reported in Figure 2. The dots position indicates
the percentage of the age, sex and center classes over the total
size of population hospitalized in the year quarter. The dot size
indicates the total number of patients hospitalized in the quarter.
Age classes are computed on the basis of the Age at the first
positive test quantiles.

Younger subjects weremore frequently hospitalized in the first
wave: patients younger than 68 years represented the majority of
observations in 2020.1, 2020.2 and 2020.3. This trend changed
during the second wave, when elderly subjects (over 84 year) were
the majority in 2020.4, and 2021.1 (Figure 2A).

The sex distribution characterizing hospitalized patients show
consistently higher percentages of male patients. A slight change
occurred during 2020.4, when the demographic of the population
was more homogeneous (Figure 2B).

Hospital loads depend on each center’s capacity: Pavia (426
beds), Lumezzane (149 beds), Milano Camaldoli (200 beds). Of
note, only a portion of each hospital capacity was dedicated
to COVID-19 patients based on the geographic zone and on
the pandemic-related hospitalizations pressure that varied from
week to week. However, patient distributions in centers change
during waves, possibly indicating changes in policies and cohort
management. During the late second wave (2021.1) patients
were evenly distributed across centers (Figure 2C): this aspect
is particularly interesting given the rehabilitation nature of
the ICSM hospitals. Counts and percentages are provided in
Supplementary Table 3.

Figure 3 illustrates a kernel density estimation that allows
comparing age distribution of survived and not survived patients
between waves. The top panel indicates how non-survived seems
younger during the first wave.

Patients comorbidities and frailty status were investigated
leveraging ICD9-CM diagnosis codes collected during each
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FIGURE 2 | Population characteristics in calendar quarters. From the top: (A) age classes, (B) sex, and (C) centers. The dot size indicates the total number of

patients hospitalized in the quarter. The y axis reports the relative frequency (%) of each variable’s values by calendar quarter.

hospitalization. Figure 4 illustrates the prevalence rate of most
common non-respiratory PheCodes in specified disease stages.
The size of the filled symbols indicates the total number of
subjects observed in each stage, the position on the vertical axis
indicates the prevalence of the phenotype in the time windows,
stratified by age class. For simplicity, we only used two age classes,

computed on the median of the age at the first positive test
quantiles (i.e., 77 years). Circulatory system phenotypes account
for the majority of the comorbidities phenotypes during all the
disease stages, being more frequent in older subjects. As in other
Phecodes, it is possible to observe a loss-of follow ups in the
post and long stages. Endocrine and metabolic phenotypes have
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FIGURE 3 | Age distribution by wave in survived and non-survived patients.

an increasing trend in both the age classes during the acute
phase, while the trend is decreasing for genitourinary diagnosis.
Neurological phenotypes follow another trend, decreasing during
the acute stage and increasing in the post stage. Complete counts
are provided in Supplementary Table 5.

Event Data

Events were extracted from the ICSM HIS and depicts the
patients careflow in terms of hospitalization wards. The
analyzed event log includes a total of 5,176 events (i.e.,
hospitalizations), whose distributions in waves and population
strata are shown in Figure 5. Figure 5 does not include events
“Tested Positive” and “Discharge,” recorded for all the 1,179
subjects. Events were collected from February 2020 to August
2021. Supplementary Table 6 reports events counts.

Figure 5A illustrates the distribution of events by center
during the two waves. Given the differences in centers
organization and pre-pandemic hospitals facilities (i.e., sub-
acute, surgery or rehabilitation units), it is possible to observe
that the “Milano Camaldoli” center accounts for the majority
of sub-acute hospitalization, while the “Pavia” center has more
heterogeneous events, including hospitalizations in Surgery,
Nephrology and Oncology wards. Figure 5B shows events
distribution by sex and age classes. Older subjects (over 84 years)
were more frequently hospitalized in the sub-acute units. The
age class from 69 to 77 years include subjects that were more

frequently admitted in non-covid units, such as cardiology and
nephrology wards.

The Kaplan-Meier (KM) curve in Figure 6A compares the
time between a patient’s COVID-19 positive test and the
admission to the ICSMCOVID-19ward. Not all the patients were
admitted in the ICSM COVID-19ward because in some cases
(e.g., a patient that was hospitalized in a different hospital during
the acute phase) the patient was treated in a different ICSM
ward for rehabilitation. The logrank test confirmed a statistically
significant difference in terms of time to admission to the ICSM
COVID-19 ward between the two waves (p < 0.0001), with
patients from the second wave showing longer time to transfer.
Figure 6B shows the time from COVID-19 positive test to death
based on data from deceased patients as function of age: older
patients showed significantly shorter survival time compared to
young patients (p < 0.05).

Patients Trajectories
The TDA algorithm identified five potential trajectories,
from the laboratory values registered during patients’ acute
hospitalizations and follow-ups. Figure 7 reports the mined
trajectories. Each node represents a cluster of data points as
observations in time (i.e., a measure of a laboratory value). The
node coloring is based upon topological structure membership.
The algorithm identifies five distinct trajectories; all of which start
from a central cluster which accounts for the first observations

Frontiers in Public Health | www.frontiersin.org 7 May 2022 | Volume 10 | Article 815674

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Dagliati et al. COVID-19 Electronic Temporal Phenotypes From EHR

FIGURE 4 | Comorbidity phenotypes prevalence in disease stages stratified by age.

in time and progressing toward other clusters in the tips of the
topology, as indicated by the arrows. For example, for a subject
belonging to the yellow trajectory (Trajectory 3), the disease
progression models indicate a transaction from the central
nodes to the ones on the top right of the figure. The cohort
was then stratified on the basis of the trajectory each patient
was assigned to, consisting of five temporal phenotypes that
show the progression of each trajectory (each one representing
a temporal phenotype) toward the disease’s deterioration and
distinct outcomes.

We characterize these phenotypes using relevant clinical
features values at baseline. Table 2 reports demographic
characteristics, survival at August 2021, first admission hospital
center and Charlson Comorbidity Index, stratified by trajectory
clusters. Trajectories 4 and 5 include a small number of patients
(n = 24 and n = 19 respectively), thus they will be described but
not included in the process models’ analyses described in Mined
Careflows and Comparison in Waves and Temporal Phenotypes.
Among the larger groups (trajectories 1, 2 and 3), trajectory 3
includes the older patients, with higher frailty scores at the first
admission and percentage of death events in the observation
period, opposite to trajectory 2, which includes younger subjects
and lower percentage of deceased patients. While accounting
only for 19 patients, Trajectory 5 includes the oldest subset
of patients.

When comparing trajectories, medium degree of evidences
were found for sex (p = 0.058, χ2 = 9.1293, df = 4), high degree
of evidences were found for age at first test (p < 2.2e-16, eff.size
= 0.023), deaths (p < 2.2e-16, χ2 = 162.13, df = 4), Charlson
Score at admission (p = 0.00748, eff.size = 0.008), none in in
waves (p= 0.306).

Figure 8 reports the distribution of laboratory test results
over time of subjects by trajectory: x-axis indicates the disease
stages time windows from the first positive PCR test. The y-axis
indicates the average value of the laboratory test results in the
time window and its standard error.

Temporal phenotypes were then compared in terms of
survival. As indicated in Table 2, the groups with the worst
prognosis are represented by Trajectory 3 and 4. We further
investigated whether the phenotypes were significant predictors
of death in the observation period by multivariate Cox
proportional hazard regression including demographic and
pandemic waves in the model. Trajectory 1 includes the majority
of subjects and has been used as reference. Results from the
multivariate regression are reported in Figure 9 and show that
the mined temporal phenotypes are highly significant predictors
of death: compared to subjects belonging to trajectory 1, subjects
assigned to the phenotypes identified by trajectory 3 (HR
= 6.29, 95% CI = 4.07 - 9.7, p < 2e-16) and trajectory
4 (HR = 18.11, 95% CI = 9.12 - 36.00, p < 2e-16) have
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FIGURE 5 | Events distribution by waves and centers (A) and by age and sex classes (B). Events consist of hospitalizations.
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FIGURE 6 | In (A), KM curves showing time between positive test and admission to the ICSM COVID-19 ward by wave. The p - value derives from the logrank test. In

(B), KM curves showing time between positive test and admission to the ICSM COVID-19 ward by age (<77 and ≥77 years). The p - value derives from the logrank

test.
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FIGURE 7 | The trajectories mined from the topology and their age distribution in females and males. (A) Each node in the graph on the leftmost side represents a

cluster of data points as observations in time (i.e., a measure of a lab value). The node coloring is based upon topological structure membership. (B) The boxplots on

the rightmost side represent the age at the first SARS-CoV-2 PCR test distribution by trajectory in females and males.

TABLE 2 | Population distribution in trajectories clusters.

Traj.1 Traj.2 Traj.3 Traj.4 Traj.5 p-value

(N = 583) (N = 286) (N = 254) (N = 24) (N = 19)

Sex 0.058

Female 283 (48.5%) 114 (39.9%) 108 (42.5%) 11 (45.8%) 12 (63.2%)

Male 300 (51.5%) 172 (60.1%) 146 (57.5%) 13 (54.2%) 7 (36.8%)

Age 2.454e-06

Mean (SD) 74.4 (12.4) 70.1 (15.0) 76.6 (11.6) 75.0 (14.0) 78.8 (10.7)

Median [IRQ] 77.0 [67.0, 83.0] 72.0 [61.0, 82.0] 79.0 [71.0, 85.0] 77.5 [70.5,84.5] 82.0 [70.0, 85.0]

Survival < 2.2e-16

Survived 555 (95.2%) 273 (95.5%) 178 (70.1%) 12 (50.0%) 17 (89.5%)

Death 28 (4.8%) 13 (4.5%) 76 (29.9%) 12 (50.0%) 2 (10.5%)

Charlson Score at Admission 0.00748

Mean (SD) 1.69 (2.30) 1.99 (2.69) 2.31 (2.80) 3.04 (3.63) 1.63 (2.06)

Median [IRQ] 1.00 [0, 2.00] 1.00 [0, 3.0] 1.00 [0, 3.0] 1.50 [0, 6.0] 1.00 [0, 2.00]

Wave of the first Admission 0.306

First 332 (56.9%) 146 (51.0%) 146 (57.5%) 12 (50.0%) 8 (42.1%)

Second 251 (43.1%) 140 (49.0%) 108 (42.5%) 12 (50.0%) 11 (57.9%)

Data are presented as absolute and relative (%) frequencies or mean (Standard Deviation, SD) and median (25th - 75th percentiles, Interquartile Range, IQR) by wave as appropriate.

a significantly higher risk of death. Complete results are in
Supplementary Table 7.

Mined Careflows and Comparison in
Waves and Temporal Phenotypes
CareFlow Miner was exploited to dig into the data from many
points of view. Figure 10 shows how the patients evolve, from

an initial virtual state called root, through the events of their
clinical pathways. Each node contains the name of the event
(at the patient start with a positive covid test), the number of
patients passing through that node (called hits) and a triple <

tmin - tmed - tmax >) containing the minimum, the median and
the maximum time took, from root, to reach the node. The
colors depend on the median time and are shaded depending
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FIGURE 8 | Laboratory values in time in trajectories. The x-axis indicates the disease stages time windows, from the first positive PCR test. Values of the y-axis

indicate the average value of the laboratory test results in the time window and its standard error.

on the interval 0–10 (lightest); 10–25; 25–40; 40-Inf (darkest)
days. On the edge is indicated the percentage of patients
passing there on the basis of the number of patients in the
previous node.

The same topology is used, in Figure 11, to investigate a
different goal; in this case two different CareFlow Graphs were

built splitting the data in two sub-cohorts, one for each wave.
Each node contains, under the name of the event and for both the
waves, the number of hits over the cardinality of the sub-cohort
(1st wave vs 2nd wave). Below is indicated the ratio between the
mentioned percentages and the p-value from the Fisher’s exact
test. By default, the library, indicated in yellow the nodes where
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FIGURE 9 | Cox Regression results reported as Hazard Ratio + 95 % confidence interval for hazard ratio and significance codes for death.

the number of patients passing there between the two waves has
p-value lower than 0.05 at statistical test.

As a final step, we compared the CareFlow among temporal
phenotypes, applying the same approach used to compare waves.
This step is aimed at combining process data (the health care
processes mined via CFM) with physio-pathological information
regarding the disease progression (the temporal phenotypes
derived from the topological models).

Figure 12 shows how, when compared to the main trajectory
1, trajectory 2 identifies hospital processes with different
outcomes following a hospitalization in the COVIDwards, that is
the probability of being discharged to home or the need of further
treatments near a pneumatology unit.

Figure 13 indicates how trajectory 3 is able to differentiate
the underlying status of patients following a rehabilitation
care process.

DISCUSSION

The outbreak of the COVID-19 pandemic caused by the
SARS-CoV-2 virus represents an unprecedented challenge for
healthcare systems at a world-wide level. The first and most
urgent aspect to be faced was represented by the management
of a rapidly emerging and completely uncharacterized disease
causing a dramatic rise in terms of mortality rate and secondary

pathological conditions causing the collapse of most of the
healthcare systems. Secondly, the conversion of entire hospital
wards to COVID-19 dedicated units and the repurposing of
physicians and nurses to assist COVID-19 patients induced an
almost complete stop in terms of routine clinical activities (21).
Thanks to the lessons learned and to the scientific knowledge
gained during the first months of pandemic, national healthcare
systems underwent an internal re-organizational phase that
allowed facing COVID-19 disease in a more effective and
harmonized way while allowing for the routine clinical activities
to be recovered and performed in an almost physiological way
(2, 22).

The extremely heterogeneous phenotypic manifestations
characterizing COVID-19 patients (23) and the different long-
term consequences of the infection (24) highlighted the need
for personalized treatment interventions. To this aim it is
of paramount importance to be able to identify potential
subpopulations of patients characterized by similar disease
manifestations with a common evolution over time. Further,
being able to identify and characterize recurrent patterns of
treatments and procedures and to verify the efficacy of such
interventions against clinically relevant outcomes (e.g., severity,
death) offers the possibility to improve patients’ management
during the acute and post-acute phases of the disease. A more
effective management of COVID-19 patients would also translate
into a lower burden on the healthcare systems, with shorter
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FIGURE 10 | CareFlow miner results - time from the first event enrichment.

hospitalizations and lower treatment costs, toward an easier
coexistence of both COVID-19 dedicated wards and regular units
in the hospitals.

The availability of large amounts of retrospective EHR
data of COVID-19 patients, analyzed by advanced data
mining/artificial intelligence tools is providing an ever-increasing
characterization of such phenotypic and management patterns,
toward the ambitious goal of personalized medicine. The
scientific articles recently published by the Consortium for
Clinical Characterization of COVID-19 by EHR (4CE) [https://
covidclinical.net/] (14, 25–27) confirm the usability of EHR data
– consisting of demographic information, diagnoses, laboratory
values, pharmacological treatments and interventions collected
through hospitalizations and outpatient visits performed before,
during and after COVID-19 disease – to successfully characterize
COVID-19 related manifestations by different points of view.

The objective of this manuscript is to introduce useful tools
to determine how specific patients’ populations reflect into the
healthcare dynamics of the hospital, to investigate how potential
patients’ subgroups respond to the different care processes
and to generate novel hypotheses regarding the most effective
healthcare strategies.

Available process mining tools typically have a purely
descriptive connotation: quantitative and reproducible
methodologies integrating aspects deriving from inferential
statistics are therefore needed to be able to face real-world data
challenges (10).

Furthermore, the Process Mining for Healthcare (PM4H)
community recently described the process mining key challenges
and especially the distinguishing characteristics that add to
the complexity of using process mining within a healthcare
context (28), including the need for tailored methodologies and
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FIGURE 11 | CareFlow miner results - waves comparison.

frameworks, and the necessity to take into account concepts drifts
given the changes of processes over time. These challenges have
been partially tackled in the proposed framework, which mines
the distinct change in pattern between the first and second wave
of the pandemic, and identifies distinct disease trajectories, which
has been recognized as an emerging area of study in process
mining (29).

The analytical pipeline proposed in this manuscript consists
of time series and process-oriented analyses, integrating
visual analytics, inferential statistics with process mining
approaches. The described methodology allows stratifying
patients based on demographic and clinical characteristics
as well as treatment and interventions performed during
hospitalizations or outpatient visits. The described pipeline
has been applied to real-world data deriving from COVID-19
patients hospitalized in three ICSM centers in Lombardy
region, Italy.

Descriptive statistics allowed characterizing the analyzed
cohort of subjects based on demographics characteristics,
including age, gender and ICSM hospitalization center. By
stratifying subjects according to the calendar date when the
SARS-CoV-2 infection first occurred it has been also possible to

analyze and compare patients’ characteristics between COVID-
19 pandemic waves. Disease categories prevalence rates have been
also estimated on the basis of ICD9 codes as function of different
time windows, using the SARS-CoV-2 positive test as reference
(pre, acute, post and long). Such categories showed differential
trends as function of the stage, on the basis of patients’ age.
Circulatory system was the most represented category, with a
higher frequency in older people compared to younger people,
especially during pre and acute phases. Patient’s hospitalizations
distributions have been compared between wards as function
of age, gender, waves and center, showing differential patterns,
especially between centers. Such differences could be partially
explained by the characteristics of the ICSM centers and by the
number of wards converted into COVID-19 units to face the
pandemic pressure.

Survival analyses allowed identifying statistically significant
differences in terms of survival profiles between first
and second wave, with patients from the second wave
being characterized by a significantly higher survival
probability. As previously reported, younger patients
were also more likely to survive compared to older
subjects (30).
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FIGURE 12 | CareFlow miner results - comparison of trajectory 1 with trajectory 2.

Temporal disease trajectories are usually constructed on the
basis of discrete events (i.e., diagnosis) and defined as an ordered
series of diagnoses where the diagnoses were observed in the
patient in a specific order, then infer the latent disease stages
from that (31). In this work the TDA approach, coupled with the
concept of pseudo time (20). The TDA approach is “censoring
agnostic,” based on continuous observations (i.e., lab values)
and reconstructs the trajectory on the basis of observed disease
stages with the pace of intra-patient follow-ups. On the contrary,
the CFM approach sets an initial time - in this application the
initial time is the first positive test that we use as a diagnosis
proxy - and mines processes in a sequential way from discrete
events. When we compare CFM mined processes in terms of
TDA trajectories (Figures 12, 13) we are merging these two
timelines perspectives: the continuous one from the TDA and
the discrete one from the CFM. Figures 12, 13 can be interpreted
together with the patients’ characteristic in each trajectory (i.e.,
Table 2), indicating how population strata, identified as temporal

phenotypes, differ from the physiological point of view and also
reflects how patients’ fragility is managed during the care process.

The TDA algorithm identified five potential trajectories,
from the laboratory values registered during patients’ acute
hospitalizations and follow-ups. Using baseline information, it
has been possible to characterize patients belonging to the
trajectories most represented in terms of sample size. Significant
differences among trajectories were observed in terms of age
at first test, death, Charlson Comorbidity Index at Admission
but not in pandemic waves. Patients from different trajectories
showed different trends in terms of lab values as function
of the time from the first positive SARS-CoV-2 swab test,
being also characterized by statistically significant different death
risk estimates.

The CareFlow Miner tool was exploited to study how patients
evolve over time - from an initial virtual state, through the events
characterizing their clinical pathways. Thanks to a tree-like
graphical structure (the CareFlow Graph) it is possible to inspect
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FIGURE 13 | CareFlow miner results - comparison of trajectory 1 with trajectory 3.

the characteristics of the different paths defined by sequential
nodes. Different CareFlow Graphs were built splitting the data
in sub-cohorts as function of the pandemic waves and of the
temporal trajectories showing statistically significant differences
in terms of nodes characteristics.

This study has several limitations. Further analyses should
be done to better describe intra-waves dynamics with finer
granularity. The inclusion of data from the third wave, with
additional information regarding variants and vaccination could
strengthen the presented results.

Given the recent application of the proposed method in
healthcare to heterogeneous clinical and administrative data, they
still have several limitations. Further efforts might be needed to

better visualize CFM results, for example not coloring nodes in
a binary way according to fixed threshold but reporting the p-
values as a continuous scale. However, we feel that the current
visualization is the best (simplest) one to explaining the major
differences among the considered strata in purely descriptive
fashion. These tools still need to be introduced into clinical
practice and/or delivered to public health stockholders, which
implies their practical evaluation, thoughtful interpretation and
usefulness assessment, for example for their embedding in
decision support systems.While their potential impact on routine
clinical practice has been already shown (32), we still have to
prove their validity in emergency contexts such as the outbreak
of the COVID-19 pandemic.
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