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Abstract. Active systems (ASs) are a special class of (asynchronous) discrete-
event systems (DESs). An AS is represented by a network of components, where
each component is modeled as a communicating automaton. Diagnosing a DES
amounts to finding out possible faults based on the DES model and a sequence of
observations gathered while the DES is being operated. This is why the diagnosis
engine needs to know what is observable in the behavior of the DES and what is
not. The notion of observability serves this purpose. In the literature, defining the
observability of a DES boils down to qualifying the state transitions of components
either as observable or unobservable, where each observable transition manifests
itself as an observation. Still, looking at the way humans observe reality, typically
by associating a collection of events with a single, abstract perception, the state-of-
the-art notion of DES observability appears somewhat narrow. This paper presents,
a generalized notion of observability, where an observation is abstract rather than
concrete, since it is associated with a DES behavioral scenario rather than a single
component transition. To support the online diagnosis engine, knowledge compila-
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tion is performed offline. The outcome is a set of data structures, called watchers,
which allow for the tracking of abstract observations.

Keywords: Model-based diagnosis, abduction, active systems, discrete-event sys-
tems, finite automata, observability, abstract observations, uncertainty

1 INTRODUCTION

Model-based diagnosis [29, 14] exploits the model of a system in order to find the
causes of its abnormal behavior, based on some observations. For diagnosing a dy-
namical system [32], a discrete-event system (DES) model can be adopted [9], this
being either a Petri net [16, 8, 2, 10] or a net of communicating finite automata,
one automaton for each component [1, 11, 27, 12, 17, 18, 13, 24]. Although an au-
tomaton relevant to a DES component can represent just its nominal behavior [28],
usually each state transition is qualified as either normal or faulty, as in the seminal
work by Sampath et al. [30, 31].

The input of the DES diagnosis task is a sequence of temporally ordered ob-
servations, called a temporal observation. The output is a set of candidates, each
candidate being a set of faults, where a fault is associated with a faulty transition.

In recent years, in contrast with this general set-oriented approach to diagnosis
of DESs, a temporal-oriented approach to diagnosis has been proposed [5, 3, 4],
where a candidate is a (possibly unbounded) sequence of faults. Diagnosing a DES
becomes a sort of abductive reasoning, inasmuch as the set of candidates is based
on the (possibly infinite) set of trajectories (sequences of component transitions) of
the DES that entail the temporal observation. Since the domain of faults is finite,
both the candidates and the diagnosis output are finite and bounded.

The process of abstracting abnormality and observability of a DES from the be-
havioral models of its components started long ago. In the approach proposed in [21],
these properties are represented separately from the behavioral models. Thus, there
may be several DESs sharing the same network of components and differing in
their abnormality and/or observability. This is reasonable, since the abnormality
of a DES not only depends on its component transitions, but on the context where
the DES is used as well as on the events the diagnostician is interested to track.
Similarly, the observability of a DES does not depend on its component transitions
only, but on the operating context, as different contexts may cause different sets of
observations, as well as on the sensing apparatus. The sensing equipment depends
in turn on the events the stakeholders (including the diagnostician) are interested
to perceive.

Abnormality in DESs was further generalized to a pattern in [15], namely a deter-
ministic finite automaton (DFA) that can represent specific combinations of faults,
which can be detected by the diagnosis engine based on the temporal observation
of the DES. Instead of a single pattern, several patterns can actually be consid-
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ered, and a distinct generalized fault can be associated with each of them, like
in [22, 26], where generalized faulty events are part of the candidates. Inspired by
the generalization of faulty events, this paper generalizes the notion of DES observ-
ability.

In the literature, observability is expressed by a surjective function from a subset
of the component transitions (domain) to a set of observations (codomain). This
paper defines observability as a function from a regular language over component
transitions to a set of observations. Hence, what is generalized is solely the domain of
the function. Still, observations now become abstract, since they somehow symbolize
fragments of the DES behavior.

The generalization of DES observability allows for modeling real-world scenarios
where, outside the DES, one can figure out the occurrence of a specific evolution of
the DES, rather than a single component transition. After all, this view resembles
the way humans observe reality, typically by associating a combination of events
with a single, abstract perception. Still, the proposed generalization does not come
without difficulties. On the one hand, since the strings of transitions in the domain
of the observability function may overlap while the DES is being operated, simple
recognizers of regular languages are not sufficient. This is why extended recognizers
are generated offline, called the watchers. On the other hand, since several strings
of transitions may end at the same point of the DES trajectory, several (abstract)
observations may be simultaneous. Thus, in general, a trajectory of the DES implies
a sequence O of sets of observations.

The temporal observation O of the DES that is actually perceived by an observer
when the DES follows its trajectory is a sequence of observations obtained from O
by substituting each set O of observations with a sequence (one out of the possible
permutations of O). Since this set-to-sequence transformation is unpredictable, the
diagnosis engine is required to cope with all the possibilities. Based on a temporal
observation O, the diagnosis engine is expected to single out the whole (possibly
infinite) set of trajectories entailing O in order to eventually generate the (finite)
set of candidates.

2 DISCRETE-EVENT SYSTEM

A DES is a network of components connected by links. A component is endowed
with a set of input pins and a set of output pins. A link connects an output pin
of a component with an input pin of another component, where each pin is en-
tered/exited by a single link. Each component is modeled by a communicating
automaton [7], where a transition is triggered by an event either occurring in the
external world or being ready at an input pin of the component. The occurrence
of a transition consumes the triggering event and possibly generates new events on
some output pins, thereby providing triggering events to other components. This
results in a reaction of the DES, where a series of component transitions move the
DES from the initial state to a final state, with all events being consumed.
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Figure 1. Thermovalve V (center) and models of the sensor s (left) and the valve v (right)

Component transition Description

v1 = ⟨closed , (op, ∅), open⟩ v reacts to the open event by opening
v2 = ⟨open, (cl , ∅), closed⟩ v reacts to the close event by closing
v3 = ⟨closed , (op, ∅), closed⟩ v does not react to the open event and remains closed
v4 = ⟨open, (cl , ∅), open⟩ v does not react to the close event and remains open
v5 = ⟨closed , (cl , ∅), closed⟩ v reacts to the close event by remaining closed
v6 = ⟨open, (op, ∅), open⟩ v reacts to the open event by remaining open
v7 = ⟨closed , (cl , ∅), open⟩ v reacts to the close event by opening
v8 = ⟨open, (op, ∅), closed⟩ v reacts to the open event by closing

s1 = ⟨norm, (ko, {op}), high⟩ s detects high temperature and generates the open event
s2 = ⟨high, (ok , {cl}),norm⟩ s detects low temperature and generates the close event
s3 = ⟨norm, (ko, {cl},norm⟩ s detects high temperature, yet generates the close event
s4 = ⟨high, (ok , {op}), high⟩ s detects low temperature, yet generates the open event

Table 1. Description of component transitions

Example 1. Represented in the center of Figure 1 is a DES, named V , modeling
a thermovalve that is composed of a temperature sensor s and a valve v. A link
connects the (unique) output pin of s with the (unique) input pin of v. In nor-
mal behavior, when the temperature exceeds a given threshold (external event ko),
the sensor commands the valve to open. Afterwards, if the temperature becomes
normal again (external event ok), the sensor commands the valve to close. The
communicating automata of s and v are displayed on the left and right side of the
figure, respectively. The details inherent to the component transitions are listed in
Table 1. Each component transition is denoted as a triple ⟨x, (e, E), x′⟩, where x
is the current state of the component, e is the triggering (input) event, E is the
set of output events, and x′ is the new component state. As defined in the table,
both the sensor and the valve may misbehave by performing faulty transitions. For
instance, the sensor may command the valve to close rather than to open (transition
s3); on its part, the valve, when expected to open, may remain closed (transition
v3).

The behavior of a DES is constrained by its topology and the models of the
components involved. These constraints confine the behavior within a finite space,
called behavior space.
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Definition 1 (Behavior Space). Let X be a DES. The behavior space of X is
a DFA1

X ∗ = (Σ, X, τ, x0, Xf) (1)

where Σ is the alphabet, comprising the set of component transitions, X is the set
of states (S,E), where S is a tuple of component states and E is a tuple of (possibly
empty) events that are ready inside the links, x0 = (S0, E0) is the initial state, where
all events in E0 are empty, Xf ⊆ X is the set of final states (Sf , Ef) such that all
events in Ef are empty, τ : X×Σ 7→ X is the transition function, where τ(x, t) = x′

when t is triggerable at state x and x′ is the state reached by the consumption of
the input event and the generation of the output events relevant to t.

Definition 2 (Trajectory). A sequence of component transitions in the language
of a behavior space X ∗, namely T = [t1, . . . , tn], is a trajectory of X . A prefix of
T is a semi-trajectory of X . Let T be a set of component transitions in X . The
restriction of T on T is T[T] = [t | t ∈ T, t ∈ T].

Example 2. Shown in Figure 2 is the behavior space V∗ of the thermovalve V ,
where each state is a triple: a state of the sensor s, a state of the valve v, and an event
that is ready at the input pin of v (ϵ denotes no event). States are renamed 0, . . . , 7,
where 0, 3, 4, and 7 are final (ϵ indicates that the link is empty). The space involves
an infinite number of trajectories, one of them being T = [s1, v1, s2, v4, s3, v4].

Figure 2. Behavior space V∗, where final states are highlighted in bold

1 In general, a finite automaton, be it a DFA or an NFA (nondeterministic finite au-
tomaton), is defined as a 5-tuple (Σ, S, τ, s0, Sf), where Σ is the alphabet, S is the set of
states, τ is the transition function, s0 is the initial state, and Sf is the set of final states.
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3 DIAGNOSIS PROBLEM

In order to perform the diagnosis task, the specification of a DES needs to be ex-
tended with information indicating which behavior is normal and which is abnormal.
In our approach, abnormality is associated with faulty transitions.

Definition 3 (Abnormality). Let T be the domain of component transitions of
a DES X , and let F be a domain of symbols called faults. The abnormality of X is
a set of associations between component transitions and faults, namely Abn(X ) ⊆
T × F, where each transition appears at most once. If (t, f) ∈ Abn(X ), then t is
faulty, else t is normal.

Each trajectory is associated with a diagnosis.

Definition 4 (Diagnosis). Let T = [t1, . . . , tn] be a trajectory of a DES X . The
diagnosis δ of T is the set of faults associated with the faulty transitions in T ,
namely

δ(T ) = {f | t ∈ T, (t, f) ∈ Abn(X )}. (2)

Since a diagnosis is a set, possible repetitions of the same fault are missing.

Example 3. Outlined in Table 2 is the description of the abnormality Abn(V)
for the thermovalve. Considering the trajectory T = [s1, v1, s2, v4, s3, v4] of V (cf.
Example 2), based on Definition 4, we have δ(T ) = {vro, ssc}, indicating that the
valve remains open upon receiving the close command from the sensor (vro), and
the sensor commands the valve to close rather than to open (ssc).

t f Fault Description

s3 ssc The sensor commands the valve to close rather than to open
s4 sso The sensor commands the valve to open rather than to close
v3 vrc The valve remains closed upon receiving the open command
v4 vro The valve remains open upon receiving the close command
v7 vop The valve opens upon receiving the close command
v8 vcl The valve closes upon receiving the open command

Table 2. Abnormality Abn(V) of the thermovalve

The behavior of the DES is observable in that an observation is associated with
a regular language that is defined by a regular expression on a set of component
transitions.

Definition 5 (Observability). Let T be the domain of component transitions of
a DES X , let L be the domain of regular languages on subsets of T, and let O be
a domain of symbols called observations. The observability of X is a relation

Obs(X ) ⊆ 2T × L×O. (3)
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Each element in Obs(X ) is a triple (T,L, o), where T is a set of component
transitions, L is a regular language defined by a regular expression on T, and o is
the observation.

Example 4. Listed in Table 3 is the observability Obs(V) of the thermovalve. Each
row defines an observation o that is associated with a regular language L, where the
operators ‘|’ and ‘+’ represent the alternative and the repetition one or more times,
respectively. In particular, the language v3 v

+
3 | v4 v+4 of the the observation stk in-

cludes the strings of at least two consecutive transitions, either v3 or v4, indicating
that the valve is either stuck closed or stuck open (cf. Table 2). Likewise, the obser-
vation bal arises when a sequence [s3, v4] occurs, namely when the sensor commands
the valve to close rather than to open, with the valve remaining open upon the
(faulty) close command. This way, the net effect of the two faulty transitions is null
(v4 balances s3).

T L o Observation Description

{s1, s2, s3, s4} s1 | s2 | s3 | s4 sns The sensor performs a transition
{v1, v2, v7, v8} v1 | v2 | v7 | v8 vlv The valve either opens or closes
{v1, v2, v3, v4, v7, v8} v3 v

+
3 | v4 v+4 stk The valve looks somehow stuck

{s3, v4} s3 v4 bal The faulty valve balances the faulty sensor

Table 3. Observability Obs(V) of the thermovalve

Given a triple (T,L, o) ∈ Obs(X ) and a trajectory T of X , the observation o
occurs when the restriction of T on T includes a subsequence that is a string in L.
Since several observations may occur at the same time, in theory, T manifests itself
as a sequence of sets of observations. However, we assume that observations in the
same set are perceived as sequences, where the temporal ordering of each sequence
is unpredictable. In other words, a trajectory T of X is perceived by the observer
as a temporal sequence of observations, called a temporal observation of X .

Definition 6 (Temporal Observation). Let O be a set of observations. The space of
O is the set of sequences composed of all the observations in O, O∗ = { [ o | o ∈ O ] }.
Let T = [t1, . . . , tn] be a trajectory in X ∗ and let O be a sequence of sets of obser-
vations

O = [Oi | i ∈ [1 .. n], Oi = { o | j ∈ [1 .. i], T ′ = [tj, . . . , ti], (4)

(T,L, o) ∈ Obs(X ), T ′
[T] ∈ L} ].

Let Ō be a sequence obtained from O by replacing each Oi ∈ O with a sequence
in O∗

i . The concatenation of the sequences in Ō is a temporal observation of X .
The whole set of temporal observations relevant to T is the observation space of T ,
denoted T ∗. A trajectory T is said to conform with a temporal observation O when
O ∈ T ∗.
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Example 5. With reference to the behavior space V∗ displayed in Figure 2, consider
the trajectory T = [s1, v1, s2, v4, s3, v4] (cf. Example 3). We have O = [{sns}, {vlv},
{sns}, ∅, {sns}, {bal , stk}] and T ∗ = {[sns , vlv , sns , sns , bal , stk ], [sns , vlv , sns , sns ,
stk , bal ]}.

Definition 7 (Candidate Set). Let O be a temporal observation of X . The candi-
date set of O is a set of diagnoses

∆(O) = { δ(T ) | T ∈ X ∗,O ∈ T ∗} . (5)

Solving a diagnosis problem amounts to finding the candidate set of a temporal
observation of a DES being operated online.

Example 6. Let O = [ sns , vlv , sns , sns , stk , bal ] be a temporal observation of V .
Based on the space V∗ depicted in Figure 2 and the observability Obs(V) defined
in Example 4 (cf. Table 3), we have only one trajectory satisfying the conditions in
Equation (5), namely T = [s1, v1, s2, v4, s3, v4]. Hence, based on Example 3, the
candidate set is the singleton ∆(O) = {{vro, ssc}}, where {vro, ssc} = δ(T ).

4 WATCHER

The notion of observability of a DES introduced in Definition 5 requires the diag-
nosis task to match trajectories of X with regular languages specified by regular
expressions. Based on Equation (5), a candidate in ∆(O) is the diagnosis of a tra-
jectory T such that O ∈ T ∗. Based on Definition 6, checking whether O ∈ T ∗ means
that we need to understand when observations occur based on the sequence of com-
ponent transitions in T . Specifically, for each (T,L, o) ∈ Obs(X ), at any point of
a prefix Ti of T , namely Ti = [t1, . . . , ti], we need to check if the restriction on T of
a suffix of Ti is a string in L. If so, the observation o should be in a proper position
in O (otherwise, T does not conform with O). The critical point is therefore to keep
tracking possible strings in L based on sequences of component transitions in T .
Since L is regular, it can be recognized by a finite automaton. However, a simple
recognizer is not sufficient for the task, as strings of the same language may overlap
in T . To cope with possibly overlapping strings in the languages associated with
observations, the notion of a watcher is introduced.

Definition 8 (Watcher). Let X be a DES, letT be the set of component transitions
in X , and let (T,L, o) ∈ Obs(X ). Let Ro be the recognizer of o, a finite automaton
recognizing L. Let Rϵ

o be the NFA obtained from Ro by inserting an ϵ-transition
from each non-initial state to the initial state. The watcher of o, namely Wo, is
a DFA that is obtained by the determinization of Rϵ

o.

Example 7. With reference to Obs(V) defined in Example 4 (cf. Table 3), con-
sider the language L = v3 v

+
3 | v4 v+4 , which is associated with the observation stk .

Shown in Figure 3 are the recognizer Rstk (left), the NFA Rϵ
stk (center), and the
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watcher Wstk (right). The watchers Wsns ,Wvlv ,Wstk , and Wbal , corresponding to
the observations defined in Table 3, are shown in Figure 4.

Figure 3. From left to right: Rstk , Rϵ
stk , and the watcher Wstk (right)

Figure 4. From left to right: watchers Wsns , Wvlv , Wstk , and Wbal

The ϵ-transitions in Rϵ (cf. Definition 8) allow for a continuous matching of
(possibly overlapping) strings, which is in general impossible using a recognizer. To
clarify, assume a new abstract observation abs defined by the regular language Labs =
v3 v4 | v4 v3, with alphabet {v3, v4}, and the following (hypothetical) trajectory in V∗:

T =

s3, T ′

v4, v3v4, , v4
T ′′

, s2

 . (6)

As such, T includes two overlapping subtrajectories in Labs , namely T ′ = [ v4, v3 ]
and T ′′ = [ v3, v4 ], where the last transition v3 of T ′ is the first transition of T ′′.
Hence, the observation abs is emitted twice in T , namely at the last transition of T ′

and T ′′, respectively. Assume further to trace the emission of abs based on the
recognizer Rabs (cf. Figure 5, left). When the final state 4 is reached, abs is emitted.
At this point, since no transition exits the final state 4, the recognizer starts again
from the initial state 0 in order to keep matching. It first changes state to 2 in
correspondence of v4, and with s2 (mismatch) it returns to 0. The result is that,
owing to the overlapping of the subtrajectories T ′ and T ′′, the second emission of
abs is undetected. By contrast, consider matching T based on the watcher Wabs (cf.
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Figure 5, right). After the detection of abs at the final state 4, the next transition v4
moves to 3, the other final state, thereby also detecting the emission of the second
occurrence of abs .

Watchers are part of the knowledge that is compiled offline. They are exploited
by the diagnosis engine being operated online for matching trajectories with a tem-
poral observation to solve a given diagnosis problem, as clarified in Section 5.

Figure 5. From left to right: Rabs , Rϵ
abs , and watcher Wabs

5 SOLVING DIAGNOSIS PROBLEMS

The definition of a candidate set ∆(O) provided in Equation (5) is declarative in
nature. In other words, no operational actions are suggested for the solution of a di-
agnosis problem in Definition 7. Worse still, the assumption of the availability of
the behavior space X ∗ is in general unrealistic, owing to the exponential explosion
of the number of system states. Consequently, determining ∆(O) becomes a com-
putational issue where the soundness and completeness of the set of candidates is
required under the assumption that X ∗ is missing. The idea is therefore to generate
(online) the subspace of X ∗ comprising exactly the trajectories T of X fulfilling
the condition O ∈ T ∗ in Equation (5), called the O-constrained space of X (Defi-
nition 9). Eventually, the candidates are determined based on a decoration of the
constrained space, called the abduction of O (Definition 10).

Definition 9 (Constrained Space). Let O = [o1, . . . , on] be a temporal observation
of X , let X ∗ = (Σ, X, τ, x0, Xf) be the behavior space of X , let Obs(X ) = {(T1, L1,
o′1), . . . , (Tk,Lk, o

′
k)} be the observability of X , and let Wi = (Ti,Wi, τi, w0i,Wf i)

be the watcher of o′i, i ∈ [1 .. k]. The O-constrained space of X is a DFA

X ∗
O = (Σ, Y, τy, y0, Yf) (7)

where Y ⊆ X × W × [0 .. n] is the set of states, where W = (W1 × · · · × Wk),
y0 = (x0, w0, 0) is the initial state, where w0 = (w01, . . . , w0k), Yf ⊆ Y is the set
of final states, with (x,w,ℑ) ∈ Yf when x ∈ Xf and ℑ = n, and τy : Y × Σ 7→
Y is the transition function, with τy((x,w,ℑ), t) = (x′, w′,ℑ′), w = (w1, . . . , wk),
w′ = (w′

1, . . . , w
′
k), when τ(x, t) = x′, (x′, w′,ℑ′) is connected with a state in Yf ,
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∀i ∈ [1 .. k]:

w′
i =


w̄i, if t ∈ Ti and τi(wi, t) = w̄i

w0i, if t ∈ Ti and τi(wi, t) is undefined,

wi, if t /∈ Ti,

(8)

and, let O = {o′i | i ∈ [1 .. k], τi(wi, t) = w′
i, w

′
i ∈ Wf i}, |O| denoting the cardinality

of O, we have ℑ′ = ℑ+ |O|, provided that ℑ′ ≤ n and O = { oℑ+j | j ∈ [1 .. |O|] }.

One may argue that Definition 9 assumes the availability of the behavior spa-
ce X ∗, thereby contradicting the assumption of its unavailability. In reality, the
reference to X ∗ is handy for formal reasons only. The construction of X ∗

O can (and
will) be performed without X ∗, by reasoning on the model of X and applying the
triggerable component transitions for generating the system states, where a state is
final when all links are empty. For instance, the condition τ(x, t) = x′ is translated
into checking the triggerability of the component transition t at the system state x
and, if so, by generating the new state x′ = (S ′, E ′) as an updated copy of x by
setting in S ′ the new component state relevant to t, by removing from E ′ the input
event of t, and by inserting into E ′ the output events of t (if any). In this gener-
ation, it is essential to capture the occurrences of observations (cf. Equation (8))
and to match them against O by comparing the set O of observations occurring
at t with the next observations in O, irrespective of their temporal ordering (cf.
Definition 6). Eventually, only the states that are involved in a trajectory of X are
retained (namely, those connected with a final state).

Figure 6. Generation of the O-constrained space V∗
O of the thermovalve, where O =

[sns, vlv , sns, sns, stk , bal ]
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Example 8. Shown in Figure 6 is the generation of the O-constrained space V∗
O of

the thermovalve, where O = [sns , vlv , sns , sns , stk , bal ] (cf. Example 6). The actual
states of V∗

O are circled and renamed 0 .. 6, where 6 is the only final state. The other
states (those not circled) are discarded because they are not connected with any
final state, thus being not part of any trajectory of V . Based on Definition 9, each
state in X ∗

O is identified by a triple (ν, w,ℑ), where ν is a state of V (cf. Figure 2),
w = (wsns , wvlv , wstk , wbal) is a quadruple of states of the watchers Wsns , Wvlv , Wstk ,
and Wbal (cf. Figure 4), and ℑ ∈ [0 .. 6] is the index of O, indicating the prefix of
O that has been matched already. In summary, V∗

O includes one trajectory only,
namely T = [s1, v1, s2, v4, s3, v4].

For efficiency reasons, the field w within a state of X ∗
O may comprise only the

states of the watchers relevant to the languages in Obs(X ) including sequences of two
or more transitions (in Example 8, Wstk andWbal). So, the states of the watchers rel-
evant to the languages including strings of single transitions only may be disregarded.
In Example 8, the missing watchers would be Wsns and Wvlv , which are relevant to
the regular languages Lsns = {[s1], [s2], [s3], [s4]} and Lvlv = {[v1], [v2], [v7], [v8]}, re-
spectively (cf. Table 3). The rationale behind this simplification lies in that the
observation associated with single component transitions can be detected directly
based on the component transition t marking each transition ⟨(x,w,ℑ), t, (x′, w′,ℑ)⟩
in X ∗

O. For instance, the transition ⟨0, s1, 1⟩ in V∗
O (cf. Figure 6) allows for detecting

the observation sns regardless of the state of Wsns .

Proposition 1. The language of an O-constrained space X ∗
O is the sublanguage

of X ∗ comprising the trajectories that conform with the temporal observation O,
namely

{T | T ∈ X ∗
O } = {T | T ∈ X ∗,O ∈ T ∗ } . (9)

Proof.

Soundness. If T ∈ X ∗
O, then T ∈ X ∗, O ∈ T ∗. Based on Definition 9, τy((x,w,ℑ),

t) = (x′, w′,ℑ′) in X ∗
O requires τ(x, t) = x′ in X ∗; hence, T ∈ X ∗. We have to

show that O ∈ T ∗ also. Based on Definition 6, given T = [t1, . . . , tn], a sequence
O = [O1, . . . , On] is defined, where each Oi ∈ O, i ∈ [1 .. n], is a (possibly empty)
set of observations o such that, given a suffix T ′ of the prefix [t1, . . . , ti] of T ,
we have T ′

[T] ∈ L, where (T,L, o) ∈ Obs(X ). Any sequence of observations
obtained by transforming each set in O into a sequence and by concatenating
all these sequences is a temporal observation O ∈ T ∗. Based on Definition 9,
the new states of the watchers in w′, defined in Equation (8), allow for the
computation of a set O of observations that equals a corresponding set in O. In
fact, O is matched against the next observations in O, namely oℑ+1, . . . , oℑ+|O|,
where |O| is the cardinality of O. Eventually, this matching guarantees that
O can be generated by concatenating all Ō ∈ Ō, where each Ō is obtained by
transforming a set O ∈ O into a sequence.
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Completeness. If T ∈ X ∗, O ∈ T ∗, then T ∈ X ∗
O. Based on Definition 9, τ(x, t) =

x′ in X ∗ is a requisite for the definition of τy((x,w,ℑ), t) = (x′, w′,ℑ′) in X ∗
O. We

have to show that the additional constraint O ∈ T ∗ is valid for X ∗
O also. Based

on Definition 6, O ∈ T ∗ means that O can be generated by concatenating the
sequences in Ō obtained from each set of observations Oi ∈ O, i ∈ [1 .. n], where
each Oi includes the observations o such that (T,L, o) ∈ Obs(X ), T ′ is a suffix of
[t1, . . . , ti], and T ′

[T] ∈ L. Since, for the tuple w′ of watcher states, the same Oi is
generated based on the final states of the watchers, the subsequent conditions on
the matching of Oi against the next observations in O, namely oℑ+1, . . . , oℑ+|Oi|,
with |Oi| being the cardinality of Oi, are fulfilled for all transitions in ti ∈ T .
Hence, T ∈ X ∗

O.

□

According to Proposition 1, any trajectory T ∈ X ∗
O conforms with O and no

other trajectory does. Hence, based on Definition 7, the set of candidates ∆(O) can
be determined by providing the set of diagnoses δ(T ) such that T ∈ X ∗

O.

Definition 10 (Abduction). Let O be a temporal observation of a DES X . The
abduction of O is a DFA X∆

O obtained from the O-constrained space

X ∗
O = (Σ, Y, τy, y0, Yf) (10)

by marking each state y ∈ Y with a set of diagnoses ∆(y) as follows:

1. For the initial state y0, ∅ ∈ ∆(y0);

2. For each transition ⟨y, t, y′⟩, for each δ ∈ ∆(y), if (t, f) ∈ Abn(X ), then δ∪{f} ∈
∆(y′), else δ ∈ ∆(y′).

Based on the first rule in Definition 10, the empty diagnosis corresponds to
the empty semi-trajectory. Based on the second (inductive) rule, if the decoration
of a state y includes a diagnosis δ, then there is at least one semi-trajectory T ,
ending at y, whose diagnosis is δ. Thus, there is a semi-trajectory T ∪ [ t ] ending
at y′ whose diagnosis is either the extension of δ by the fault f associated with
the component transition t in Abn(X ), when (t, f) ∈ Abn(X ), or δ, when (t, f) /∈
Abn(X ). Note that, even when the number of trajectories in X ∗

O is infinite (owing
to cycles), since a diagnosis is a set, the faults involved in a cycle are not duplicated.
Hence, the abduction can be generated in a finite number of decoration actions.
These considerations support Proposition 2.

Proposition 2. Let T be a trajectory of an abduction X∆
O ending at a final state y.

We have δ(T ) ∈ ∆(y). Conversely, if δ̄ ∈ ∆(y), where y is a final state of X∆
O , then

there is a trajectory T ∈ X∆
O such that δ̄ = δ(T ).
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Example 9. Shown in Figure 7 is the abduction V∆
O relevant to the O-constrained

space V∗
O shown in Figure 6 (cf. the abnormality Abn(V) listed in Table 2). Notably,

the set of diagnoses marking the final state, namely {{vro, ssc}}, equals the candi-
date set ∆(O) determined in Example 6 based on the same temporal observation O
of V . This is no coincidence, as formally claimed in Theorem 1.

Figure 7. Abduction V∆
O , where O = [sns, vlv , sns, sns, stk , bal ]

Theorem 1. The candidate set of a temporal observationO of X can be determined
based on the set Yf of final states of the abduction X∆

O , specifically

∆(O) =
⋃
y∈Yf

∆(y). (11)

Proof. Let ∆y denote
⋃

y∈Yf
∆(y) in Equation (11). We have to show that, if

δ̄ ∈ ∆(O), then δ̄ ∈ ∆y (completeness); and, if δ̄ ∈ ∆y, then δ̄ ∈ ∆(O) (soundness).
If δ̄ ∈ ∆(O), then, based on Equation (5), there is a trajectory T ∈ X ∗ such that
O ∈ T ∗. Hence, according to Equation (9) of Proposition 1, T is also in X ∗

O (as well
as in X∆

O ); besides, based on Proposition 2, ∆y includes δ̄. On the other hand, if
δ̄ ∈ ∆y, then, according to Proposition 2, there is a trajectory T ∈ X∆

O (as well as
in X ∗

O) such that δ̄ = δ(T ). According to Equation (9) of Proposition 1, T ∈ X ∗

and O ∈ T ∗. Hence, based on Equation (5) of Definition 7, δ̄ ∈ ∆(O). □

6 OBSERVABILITY AND UNCERTAINTY

The input of a DES diagnosis task is usually a temporal observation, namely a totally
temporally ordered sequence of observations, where it is assumed that an observed
event equals the emitted event and the reception order of events equals the emission
order. Still, as proposed in [20], the temporal observation may become uncertain
in nature. An uncertain temporal observation is represented as a directed acyclic
graph, where each vertex is an observed event and each edge is a (partial) temporal
precedence relationship. Partial temporal ordering leads to temporal uncertainty,
which may be caused either by the lack of timestamps associated with observations
or by unreliable timestamps. Besides, each vertex comprises a set of observations,
possibly including the null observation (denoting no observation), of which only
one is the (unknown) actual observation emitted by the DES. This is called logical
uncertainty, which may be caused by noise in the communication channel(s) con-
necting the DES with the observer. Now, what is the relationship between uncertain
observations and generalized observability? The answer is that uncertain temporal
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observations are orthogonal to generalized observability, since uncertainty in obser-
vations is relevant to the perception of the observable events produced by a DES
being operated, whereas generalized observability is relevant to the genesis of these
events.

7 CONCLUSION

Observability has received little (if any) attention in model-based diagnosis of DESs.
This may sound striking if we consider the amount of attention devoted to other
DES properties, such as abnormality and, overwhelmingly more so, diagnosabil-
ity. Inspired by humans observing reality, where a combination of events may be
registered by the mind as a single perception, this paper has proposed a diagno-
sis technique for DESs based on a generalized notion of observability. What is
observed is no longer confined to a single transition; rather, it is extended to a
(possibly large) fragment of the DES behavior. This comes with a price, since the
detection of the (abstract) observations requires the diagnosis engine to store the
states of the watchers within the states of the O-constrained space of the DES.
To alleviate this problem, knowledge compilation techniques may be designed for
constructing (offline) extended diagnosers, possibly constructed incrementally [6].
Finally, the integration with abstract abnormality [22, 26] and the adaptation with
complex ASs [19, 23] as well as deep DESs [25], are exciting topics for future re-
search.
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