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ABSTRACT 
This paper presents an End-User Development environment for 
collaborative robot programming, which integrates Open AI Chat-
GPT with Google Blockly. Within this environment, a user, who 
is neither expert in robotics nor in computer programming, can 
defne the items characterizing the application domain (e.g., objects, 
actions, and locations) and defne pick-and-place tasks involving 
these items. Task defnition can be achieved with a combination 
of natural language and block-based interaction, which exploits 
the computational capabilities of ChatGPT and the graphical in-
teraction features ofered by Blockly, to check the correctness of 
generated robot programs and modify them through direct manip-
ulation. 

CCS CONCEPTS 
• Human-centered computing → Collaborative and social com-
puting devices; • Computer systems organization → External 
interfaces for robotics. 
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1 INTRODUCTION 
The growing interest in the use of collaborative robots (cobots) to 
assist human operators in diferent work scenarios, such as manu-
facturing, healthcare, and logistics, opens up an important research 
question about the easiness of robot task defnition. Cobots are 
fexible automation technologies, thus suitable to small-batch pro-
ductions [15]; some models are also lightweight and can therefore 
be moved in diferent places within a work environment to support 
location-based tasks [25]. For these reasons, cobots must be quickly 
and easily programmed by end users, who may be expert in their 
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work domain, but not necessarily expert in computer and/or robot 
programming. 

The recent survey [1] highlights how end-user robot program-
ming can be much more complex than traditional end-user pro-
gramming: the created robot programs must in fact refer to physi-
cal objects and locations; in addition, the robot must interact with 
the surrounding environment, including humans, by moving its 
arm(s) in the space and performing actions on the physical objects. 
Therefore, an important objective of the research on end-user robot 
programming is defning methods that allow end users without 
expertise in robotics and programming to cope with this complex-
ity. The literature presents methods based on programming by 
demonstration [14, 21], visual programming languages, and natural 
language programming. Programming by demonstration usually 
requires many trials, thus making the programming task inefcient. 
Visual programming languages, in turn, exploit fowchart notation 
[2], hierarchical trees [20] or block composition [9, 26]; in all these 
cases, programming concepts, such as variables, conditionals or 
loops, are visually expressed in the programming environment, but 
their meaning must be known to the user; in other terms, the user 
must possess some programming knowledge, especially because 
the user must conceive the whole program from scratch. With the 
skill-based visual programming language, [22] adopts a higher-level 
approach than the previous ones: the user can create a sequence 
of skills, namely robot actions (e.g., “pick object”, “navigate to loca-
tion”, “rotate object”), to defne the desired robot behavior. However, 
the approach appears as less fexible than those based on the other 
visual programming languages. Natural language programming has 
been proposed for instance in [4, 16, 17], even though the recent 
spread of Large Language Models (LLMs) has revived this approach. 
In [24], the authors explore OpenAI ChatGPT [18] as a potential 
versatile tool for robot programming; in their approach, a high-level 
function library is frst created and then ChatGPT can parse user 
requests and convert them to a logical sequence of function calls. 
However, the user must be able to evaluate the code generated 
by ChatGPT and provide feedback on its quality and safety. The 
assumption is that the user is able to understand the generated code 
and suggest modifcations, if needed. Other studies explore the use 
of LLMs in robotics for task planning [10, 23] and control [11], but 
do not consider the users as the recipient of generated code. 

In this work, we do not simply propose a new, user-oriented, 
programming method for cobots, but an End-User Development 
(EUD) approach that combines diferent interaction modalities and 
can lead the user to generate robot programs in an unwitting man-
ner [5]. EUD subsumes end-user programming [3, 12], since it is 
not simply focused on facilitating programming by end users. EUD 
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has a wider perspective in that it aims to empower end users in 
modifying, extending, and creating digital artifacts with software 
environments designed around their own domain concepts and 
work practices. 

In the approach presented in this paper, the user goal is defning 
pick-and-place robot tasks. The idea is that the user can describe 
desired robot tasks to an assistant using natural language (as in the 
real world), but that what the assistant understands is not visualized 
as program code, like in [24], but through a more intuitive represen-
tation. In other words, we propose a EUD environment where the 
user interacts with a chat interface based on ChatGPT to describe 
pick-and-place robot tasks, and then verifes and possibly corrects 
the generated program through an intermediate visualization of the 
program based on Google Blockly [8]. The selection of ChatGPT is 
based on a thorough assessment of its computational capabilities 
[13], ease of adaptation in training, and facility of integration and 
customization. The use of Blockly for the graphical representation 
and programming of robot tasks arises from its inherent benefts 
in fostering an intuitive programming environment, as shown in 
[9], even though in our case the user does not need to defne a 
Blockly program from scratch. In addition, pick-and-place tasks 
can be created based on the items (objects, actions, and locations) 
defned by the users themselves within the EUD environment, thus 
making it tailorable to diferent application domains. 

The rest of the paper presents the architecture and implemen-
tation of the EUD environment. The generated programs can be 
executed on the DENSO COBOTTA collaborative robot. 

2 ARCHITECTURE 
The developed EUD environment is a web application implemented 
in adherence to a client-server paradigm, including a front-end 
developed in JavaScript/Typescript React and a back-end developed 
in Python Django; an SQLite database is used as data management 
system. The application architecture is shown in Figure 1. It encom-
passes four layers: 

(1) The User Interface Layer: through this layer the user can 
interact either with a chat or a graphic interface to defne 
pick-and-place tasks through natural language interaction 
or block-based interaction respectively; 

(2) The Task Defnition Layer : this layer is the application logic 
of the EUD environment, where ChatGPT or Blockly are 
exploited to process users’ requests coming from the User 
Interface layer. 

(3) The Data Layer : in this layer robot programs are stored in 
the database using a JSON format compatible with Blockly; 
parsing functions transform the output of ChatGPT into 
JSON data that the Blockly engine may recognize. 

(4) The Execution Layer : here, the task execution by the robot is 
managed by means of a program template. 

Going more in detail in the user workfow, let us assume that 
the defnition of a new task for the robot begins with the interac-
tion with the Chat interface (Step 1 in Figure 1). User messages, 
conveyed via the chat, are directed to an Adapter, which exploits 
the ChatGPT API to interpret the user’s request (Step 2). This mod-
ule provides ChatGPT not only with the user’s request, but also 
with specifc constraints and instructions, to ensure precise and 

non-deterministic interpretation of the robot task (Step 3). After the 
task defnition is complete and the interaction with the Chat ends, 
a custom JSON representation of the robot program is generated 
(Step 4). Following this, parsing functions are employed to convert 
the custom JSON format used by the Chat into a JSON format that 
can be interpreted by Blockly (Step 5), enabling the program to be 
visualised in a graphical format (Step 6). At this stage, the user can 
check the correctness of the program in the Graphic interface (Step 
7 ), and can either confrm or modify it (Step 8). Finally, the Blockly 
program representation is used by a program template (Step 9); 
this program will execute the elementary robot actions needed to 
accomplish the task (Step 10), like moving the arm to a specifc 
position or searching for an object in the working area. 

Advanced users of the application can directly defne a new robot 
task through the Graphic interface starting from Step 7. While this 
strategy guarantees faster execution, it necessitates more cognitive 
efort than using the Chat interface, and then simply check and 
correct what AI has generated. 

3 IMPLEMENTATION 
As an example of the robot task defnition, useful for explaining 
the workfow in detail, let us present an interaction scenario: 

The user aims to organize their desk using a collaborative robot. 
They will require to specify one or more items that ought to be picked 
up, such as the highlighter item, along with the position to drop it, 
in this case a box. The user wants to execute a shaking action before 
disposing the highlighter to prevent its tip from drying. Once the 
items are defned, they can request through the chat to execute the 
operation and repeat it fve times, since fve highlighters are present 
on the desk. Subsequently, the user can check the task created in the 
graphic interface and run it on the robot. 

3.1 Item defnition 
To create a task for the robot, the frst step is to defne the items, 
namely the object to pick (highlighter), the location where to place 
the object (box) and the optional action (shaking) to be executed 
between the pick and place steps. These items will then be saved 
in the corresponding libraries to be re-used for future tasks. An 
object is a tangible entity that a robot can manipulate. To create a 
new object, the user should capture a picture of it using the robot 
camera and set all relevant data required for proper manipulation. 
For identifcation purposes, users must provide an object name and 
optionally a set of synonyms to be used by the natural language 
processing function of the chat. Technical data must also be pro-
vided, pertaining to the required force for object grasping and the 
approach to the object, i.e. the Z-axis distance the robotic arm needs 
to attain in order to pick up the object. After having acquired the 
photo of the object, the image is processed through segmentation, 
binarization, fltering, and contour searching. At the time of exe-
cution, the robot can efciently search for items in the designated 
area, retrieve their position and alignment, and successfully grab 
them. With this procedure, the user can defne the "highlighter" 
object of our running example. A location refers to a point in space 
that serves as the target for a "place" operation. Therefore, its def-
nition remains straightforward: upon providing the identifcation 
information for the location, the robot arm must be manoeuvred 
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Figure 1: The prototype architecture and the collaborative robot COBOTTA by DENSO WAVE Ltd. 

to the intended point before acquiring the specifc position. Here, 
the user can defne the "box" location for our running example. An 
action enables the robot to move along a specifed path between a 
"pick" and a "place" step. It consists of a sequence of points (a cloud 
of points) that the robot arm must reach to follow a defned path. 
Recording a cloud of points is achieved by guiding the robot arm 
along the desired path and repeatedly pressing a specifc button in 
the software application to capture signifcant points of the trajec-
tory. As for objects and locations, identifcation data related to the 
action must also be provided. In this way, the user can defne the 
"shaking" action for our running example. 

3.2 Task defnition and execution 
The chat-based interface is used to guide the user through the 
programming of the robot tasks. Figure 2 presents the interaction 
between the user and our application integrating ChatGPT, consid-
ering the scenario introduced above. We specifcally chose to use 
the gpt-3.5-turbo model, which is recognized as the most powerful 
model currently available for a free trial. 

To tailor the behavior of ChatGPT, it must be provided with 
clear instructions about its goals and context. As mentioned above, 
the Adapter is responsible for handling the calls to the ChatGPT 
APIs and instructing the model about its goals. All instructions 
are given as prompts at the beginning of the conversation and 
are transparent to the user. This specifcation allows the model to 
recognize the details required to defne a complete robot task. In 
addition to these instructions, the request from the Adapter includes 
the JSON data format expected as the output of the model. The 
desired output is defned by passing a function to ChatGPT Chat 
completions API, which expects as parameter a representation of the 
custom JSON format. In this way, the API will respond with a JSON 
object compliant with the expected format. As to the temperature 
parameter of the model, the value 0.2 was chosen to obtain a quite 

deterministic reasoning and prevent creative interpretation of the 
user’s intentions. However, a small degree of creativity was retained 
to allow the chat to better adapt to user’s requests and exhibit a 
human-like behavior. 

After the dialogue is concluded, ChatGPT produces a task de-
scription in a custom JSON format (see the top right-hand corner of 
Figure 2). This format was introduced since ChatGPT was not able 
to always provide an output compatible with Blockly. The custom 
JSON data is passed to Python functions, which parse the data and 
transform them into a Blockly-compatible JSON format. 

Blockly is a library of puzzle-like visual blocks, organized in 
categories, which allows creating intuitive programming interfaces, 
and thus empowering users to conceptualise and articulate program 
logic in a highly comprehensive manner. For the sake of integration 
in our EUD environment, Blockly categories and blocks have been 
properly tailored. The Logic category has been created for logic 
constructs, such as "When" and "Repeat". The Events category en-
compasses conditions like "Sensor" and "Find" (the former is used 
to check whether a sensor signal is arrived, while the latter is used 
to check if a specifc object is recognized). Steps is the category 
containing basic robot skills, like "Pick", "Place", and "Processing". 
Finally, the Objects, Locations, and Actions categories serve as user-
defned libraries of items, which can be used like variables, without 
that the user must know the variable concept. 

After the generation of the Blockly JSON data, the parsing func-
tions query the database to retrieve the identifers of objects, loca-
tions, and actions involved in the task defned through the chat, and 
integrate them in the data structure as meta-data. Item identifers 
are needed for the subsequent task execution by the robot, to obtain 
the other technical data (e.g., object photo, location position, etc.). 
Item searching in the database is performed also using synonyms 
specifed during the item defnition. Once the retrieval of the item 
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Figure 2: The ChatGPT-Blockly workfow 

details is fnished, a data format that includes all the required in-
formation for execution is available and compatible with Blockly. 
Subsequently, the task is displayed in the graphical interface (see 
the bottom right-hand corner of Figure 2). 

The task can now be executed on the COBOTTA robot. This robot 
is designed to be lightweight, easily portable, and highly adaptable. 
It is a single articulated arm with six axes, and its standard confgu-
ration includes a camera and a gripper suited for pick-and-place 
operations. To execute the task, a Python program template is acti-
vated, which analyzes the Blockly JSON code and determines the 
elements that are essential for generating an executable sequence 
of robot instructions. Beyond including calls to proprietary DENSO 
APIs, these ones also include the objects to pick up, the actions 
to execute, the locations where the objects should be placed, and 
the conditions and cycles to apply. During execution, the robot 
camera searches for the objects to be picked up, which are then 
manipulated by the robot arm and fnally placed in the desired 
location. 

4 DISCUSSION AND CONCLUSION 
The system here described is inspired to the hybrid approach to 
user-oriented programming presented in [6]. In this paper, we ex-
perimented ChatGPT capabilities for user intent recognition to 
create domain-independent robot programs. Our objective was not 
to generate the fnal code for the robot based on the user’s input, 
but rather to obtain a task representation that could be processed 
in our EUD environment, enabling users to evaluate the program 
correctness via Blockly, here tailored to represent pick-and-place 

robot tasks. In this way, non-expert users can visually check robot 
programs and modify them through drag-and-drop of the blocks, or 
direct manipulation of the variables corresponding to users’ defned 
items. 

We plan in the future to evaluate system usability with the par-
ticipation of university students not enrolled in computer science 
courses, who must acquire basic programming skills in their curricu-
lum. In this way, we aim also to assess whether our hybrid approach 
could be employed for educational goals, to improve the learning 
process of imperative programming languages. We are experiment-
ing the same approach to support pharmacists in the defnition of 
robot tasks for the preparation of personalized medicines [7]; in 
this case, a simpler block-based visualization (more suitable to the 
target users) than Blockly was implemented. Positive qualitative 
feedback has been collected till now. 

As to the limitations of the approach, a frst one concerns the 
complexity of the tasks that can be defned. In the chat, only the 
generation of tasks without nested logic has been implemented. To 
defne more complex tasks, users must possess adequate computa-
tional thinking skills. It is essential to further investigate ways to 
enhance task complexity, while minimizing the required end-user 
technical expertise. A second limitation concerns the image pro-
cessing algorithms used for object recognition. These algorithms 
are quite simple and basic; it could be interesting to explore the 
new approaches to computer vision that have recently emerged 
along with LLMs, such as GPT-Vision [19]. 
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