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Abstract

In recent years, there has been a significant increase in robots sharing
workspace with human operators, combining the speed and precision
inherent to robots with human adaptability and intelligence. However,
this integration has introduced new challenges in terms of safety and
collaborative efficiency. Robots now need to swiftly adjust to dynamic
changes in their environment, such as the movements of operators, alter-
ing their path in real-time to avoid collisions, ideally without any disrup-
tions. Moreover, in human-robot collaborations, replanned trajectories
should adhere to safety protocols, preventing safety-induced slowdowns
or stops caused by the robot’s proximity to the operator. In this con-
text, quickly providing high-quality solutions is crucial for ensuring the
robot’s responsiveness. Conventional replanning techniques often fall
short in complex environments, especially for robots with numerous de-
grees of freedom contending with sizable obstacles.

This thesis tackles these challenges by introducing a novel sampling-
based path replanning algorithm tailored for robotic manipulators. This
approach exploits pre-computed paths to generate new solutions in a
few hundred milliseconds. Additionally, it integrates a cost function
that steers the algorithm towards solutions that comply with the ISO/TS
15066 safety standard, thereby minimizing the need for safety interven-
tions and fostering efficient cooperation between humans and robots.
Furthermore, an architecture for managing the replanning process dur-
ing the execution of the robot’s motion is introduced. Finally, a software
tool is presented to streamline the implementation and testing of path
replanning algorithms. Simulations and experiments conducted on real
robots demonstrate the superior performance of the proposed method
compared to other popular techniques.





Sommario

Negli ultimi anni si è assistito a un incremento significativo di robot che
condividono lo spazio di lavoro con operatori umani, per combinare la
rapidità e la precisione proprie dei robot con l’adattabilità e l’intelligenza
umana. Tuttavia, questa integrazione ha introdotto nuove sfide in termi-
ni di sicurezza ed efficienza della collaborazione. I robot devono essere in
grado di adattarsi prontamente ai cambiamenti nell’ambiente circostan-
te, come i movimenti degli operatori, adeguando in tempo reale il loro
percorso per evitare collisioni, preferibilmente senza interruzioni. Inol-
tre, nelle operazioni di collaborazione tra uomo e robot, le traiettorie ri-
pianificate devono rispettare i protocolli di sicurezza, al fine di evitare
rallentamenti e fermate dovute alla prossimità eccessiva del robot all’o-
peratore. In questo contesto è fondamentale fornire soluzioni di alta qua-
lità in tempi rapidi per garantire la reattività del robot. Le tecniche di
ripianificazione tradizionali tendono a faticare in ambienti complessi, so-
prattutto quando si tratta di robot con molti gradi di libertà e ostacoli di
dimensioni considerevoli.

La presente tesi affronta queste sfide proponendo un nuovo algorit-
mo sampling-based di ripianificazione del percorso per manipolatori ro-
botici. Questo approccio sfrutta percorsi pre-calcolati per generare ra-
pidamente nuove soluzioni in poche centinaia di millisecondi. Inoltre,
incorpora una funzione di costo che guida l’algoritmo verso soluzioni
conformi allo standard di sicurezza ISO/TS 15066, riducendo così gli in-
terventi di sicurezza e promuovendo una cooperazione efficiente tra uo-
mo e robot. Viene inoltre presentata un’architettura per gestire il proces-
so di ripianificazione durante il moto del robot. Infine, viene introdotto
uno strumento software che semplifica l’implementazione e il testing de-
gli algoritmi di ripianificazione del percorso. Simulazioni ed esperimenti
condotti su robot reali dimostrano le prestazioni superiori del metodo
proposto rispetto ad altre tecniche popolari.
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CHAPTER 1
Preface

In recent years, robots have gained substantial importance across various
industries like automotive, manufacturing, and healthcare. Their capa-
bility to automate tasks, enhance production efficiency, and reduce costs
has propelled their significance. Initially, robots operated in isolated en-
vironments to maximise efficiency without endangering human workers.
However, a paradigm shift has occurred, emphasising the importance of
collaboration between humans and robots. This trend stems from main-
taining adaptability and efficiency even in complex scenarios, merging
machine precision and speed with human intelligence and flexibility.

This shift has led to collaborative robots, commonly referred to as
cobots, designed to work alongside humans in shared workspaces. Col-
laborative robots are equipped with advanced sensors and control algo-
rithms to ensure safe interactions with humans, minimising the risk of
accidents and enhancing production flexibility. The integration of cobots
into industries brings forth a multitude of benefits, such as streamlin-
ing production processes, reducing labour expenses, improving product

1



Chapter 1. Preface

quality, and increasing overall productivity. However, as the barriers
separating robot workspaces are removed, work efficiency and human
safety challenges come to the forefront. The assumption that the work
environment remains unchanged is no longer valid. In the past, when
workspaces were static and pre-defined, robots could move smoothly
without interruptions. In contrast, today’s dynamic workspaces, which
include moving obstacles like human operators, often impede the robot’s
movement. Robots must either slow down or stop whenever an operator
gets close to prevent collisions. This behaviour can be inefficient, mainly
if the operator frequents the area or remains there for prolonged periods.

This problem can be addressed at the motion planning level. The
idea is to modify the calculated path on-the-fly to adapt to environmen-
tal changes and avoid collisions. To tackle this challenge, researchers
are actively exploring motion replanning techniques. Generating an en-
tirely new path whenever a new obstacle appears requires substantial
computational resources and time. A more efficient approach involves
dynamic adjustment of the existing path to quickly and efficiently re-
spond to changes. Nevertheless, existing techniques still require signifi-
cant computational power, impacting their responsiveness.

Replanning algorithms need to be supported by complex software ar-
chitectures. When dealing with unchanging environments, the regular
approach to motion planning involves computing a path, assigning it a
time parametrisation, and then executing the resulting trajectory. On the
other hand, when it comes to motion replanning, there is a greater de-
mand throughout the trajectory’s execution. It is essential to consistently
reevaluate and adjust the plan as the robot moves, smoothly transitioning
to new trajectories. This calls for an architecture that not only supervises
the robot’s motion execution but also maintains up-to-date scene infor-
mation while managing the replanning process simultaneously.

However, in workspaces shared with humans, it is necessary to do
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more than ensure that the robot’s path is collision-free. The robot’s speed
adjustments and halts are controlled by safety systems that continually
monitor the workspace to guarantee human safety. The ISO/TS 15066
safety standard proposes collaborative operations like Speed and Separation
Monitoring (SSM) or Power and Force Limiting (PFL) to adhere to safety
regulations and protocols. The choice of strategy depends on risk analy-
sis and aims to reduce potential hazards. In this context, the robot should
work minimising the need for safety interventions to reduce wasted time
and enhance collaborative productivity. To achieve this goal, implement-
ing adaptive strategies across task planning, motion planning, and con-
trol levels is imperative. Building upon the existing safety module, these
strategies proactively and reactively oversee the robot’s actions, ensuring
smooth cooperation with the operator in shared spaces.

Therefore, the conventional approach to path replanning needs to be
reconsidered. Simply ensuring a collision-free trajectory does not neces-
sarily translate to a safety-compliant robot’s behaviour. Modifying the
path to avoid collisions might cause the safety system to intervene sig-
nificantly, resulting in slowdowns or stops, which could undermine the
robot’s effectiveness. As a result, replanning algorithms need to be aware
of the effects of the safety module. These algorithms should consider hu-
mans not just as obstacles but as factors that affect how the trajectory
should be modified to achieve efficient behaviour. Unfortunately, this
adds computational complexity, which can impact robot promptness.

A promising way to address the challenges of motion replanning is
through the sampling-based approach, which has become increasingly
popular in recent decades for solving path planning problems. This
method seeks for solutions by randomly sampling the robot search space
and it is favored for its simplicity, adaptability, and ability to scale, even
when dealing with large search spaces (e.g., robots with many degrees
of freedom). However, as the number of dimensions increases, finding
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new solutions becomes more complex. This results in a greater number
of algorithm iterations, potentially burdening computations and slow-
ing down the algorithm’s responsiveness. Consequently, reactive path
replanning for robots with numerous degrees of freedom (e.g., robot ma-
nipulators) remains a challenge that is yet to be fully solved.

This thesis aims to address the aforementioned problems by introduc-
ing a novel algorithm of path replanning for many degrees of freedom
robots. In this regard, the following contributions are presented:

• A framework to manage the replanning process. A software archi-
tecture is devised to oversee the execution of the robot’s trajectory,
continuous scene updates, and concurrent replanning. This frame-
work is adaptable to a wide range of sampling-based path replan-
ning algorithms. Importantly, it alleviates the algorithm’s burden
of collision checking and cost updating of the current path.

• A sampling-based multi-path replanning algorithm. The algorithm
is designed for fast and efficient path replanning, even when deal-
ing with robots with numerous degrees of freedom. Instead of aim-
ing to find an entirely new solution to reach the goal, the algorithm
focuses on connecting to pre-existing paths that lead to the same
goal. This approach accelerates the initial solution discovery pro-
cess, which can subsequently be refined over time. Formal guar-
antees about the completeness and optimality of the method are
provided, ensuring its reliability.

• A safety-aware cost function for collaborative applications. A cost
function is designed to guide the replanning algorithm towards
generating solutions that prioritize safety compliance. By minimiz-
ing the necessity for safety module interventions, it promotes an ef-
ficient robot behavior. The resulting algorithm facilitates improved
human-robot cooperation, enabling the robot to efficiently adjust
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its motion in response to unexpected movements of the operator in
unstructured tasks and environments.

• A flexible software tool to solve path replanning problems. The
core of this tool is a library that streamlines motion replanning chal-
lenges with minimal code requirements. It serves as a valuable
resource for researchers aiming to develop new algorithms while
simplifying the practical application of solutions.

Proposed algorithms are evaluated through comprehensive compar-
isons with state-of-the-art approaches. A combination of simulations and
real-world experiments was conducted to assess the suitability of the pro-
posed approach in shared workspace scenarios. These tests highlight its
performance in unstructured scenarios and aim to show in which con-
texts it provides advantages over standard solutions.

The dissertation is structured as follows: Chapter 2 presents path
planning and replanning problems along with the key techniques em-
ployed to address them. Chapter 3 introduces an architecture that en-
ables simultaneous trajectory execution and online path modification, al-
lowing the robot to adapt its trajectory without interruption. The pro-
posed sampling-based path replanning algorithm is detailed in Chapter
4, while Chapter 5 covers its integration with a safety-aware cost func-
tion. Chapter 6 introduces an open-source tool designed to streamline the
process of implementing, testing, and utilizing replanning algorithms.
Finally, Chapter 7 provides the concluding remarks.
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CHAPTER 2
Path planning and replanning problems

This chapter provides a comprehensive overview of path planning and
replanning techniques. It begins by elucidating the differences between
path planning and replanning problems. The subsequent section delves
into the prominent strategies found in existing literature for addressing
path planning challenges and how these strategies are adapted to han-
dle replanning scenarios. It gives special attention to the advantages of
employing a sampling-based methodology and the attendant challenges
in this context. Additionally, the chapter highlights the requisites for ef-
ficient motion planning in human-robot collaboration. Finally, Section
5.1.1 delineates the specific contributions of this thesis.

2.1 Introduction

One of the primary objectives in the field of robotics is to make robots
fully autonomous. This means that robots should be able to understand
high-level commands and complete desired tasks without any human
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intervention. The concept of enabling robots to autonomously under-
stand and execute provided instructions has captured significant atten-
tion across diverse sectors, spanning industries, space and maritime ex-
ploration, search and rescue missions, medical applications, and social
services [92]. A pivotal component in achieving this autonomy is mo-
tion planning. The motion planning problem is one of the most studied
in robotics [36]. It consists of determining the sequence of movements a
robot must perform to successfully complete a designated task, such as
moving from a starting point to a desired endpoint.

Generally, this problem involves two main steps. The first one, known
as path planning, focuses on determining the sequence of points the robot
needs to reach to accomplish the desired task. The second step is the
time parameterisation, aimed at computing the timing-law for traversing the
path. This computation results in a trajectory encompassing both the ge-
ometric path to be followed and the corresponding velocity profile. The
trajectory essentially consists of positions, velocities, and accelerations
over time, dictating where and when to move the robot. This sequence of
information is then sent to the robot’s low-level controller to execute the
entire motion.

Path planning and trajectory planning address two separate problems.
Path planning focuses on determining the route from a starting point to
a goal point, in the robot’s configuration space or in the Cartesian space.
This path must be feasible, meaning the robot can execute it without colli-
sions or violating system constraints. Furthermore, the path should fulfil
specific task requirements, such as being the shortest one.

On the other hand, trajectory planning deals with finding the best
way to move along a selected path, considering the robot’s kinematic and
dynamic constraints while simultaneously adhering to various criteria,
such as minimizing energy [14], execution time [129], and jerk [130].

Although a motion is fully defined only once the trajectory is deter-
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mined, this dissertation primarily focuses on paths, relying on state-of-
the-art techniques for time parametrisation.

In addition, enabling autonomous movement for robots necessitates
ensuring their capability to move even in open and unpredictable envi-
ronments, where they are not the sole moving entity. This imperative
applies to all the previously mentioned sectors, encompassing industrial
realm.

Initially, in industrial settings, robots operated within confined cells
with known and static surroundings, devoid of unfamiliar moving ob-
jects. In this context, the robot’s motion is calculated to satisfy various
criteria, such as optimizing productivity, speed, and energy efficiency,
while adhering to system limitations, workspace constraints, and task
prerequisites. However, computing these motion trajectories incurs sub-
stantial computational costs and time consumption. Nonetheless, if tasks
are repetitive and consistently demand the same motions, these trajec-
tories can be computed beforehand. This methodology, known as offline
planning, rests on the presumption of a static environment or foreknowl-
edge of potential changes. It does not account for unexpected environ-
mental shifts demanding the robot to adapt on the fly. Consequently, this
approach find applicability in well-defined and controlled environments.

In contrast, offline planning proves inadequate in dynamic environ-
ments, where a robot must adapt promptly to its surroundings. Achiev-
ing this capacity entails proficiency in environmental sensing, decision-
making, and adaptive motion. However, this thesis specifically focuses
on the latter aspect – modifying the robot’s trajectory during the motion.
This can involve actions like slowing down [39] or altering the path [10].
Commonly referred to as online planning, this approach is carried out dur-
ing motion and cannot be precalculated since it responds to unexpected
events. Notably, to react swiftly to environmental changes, the robot’s re-
sponse must be computed rapidly. While velocity scaling strategies can
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usually be applied in each cycle of task execution, path replanning tech-
niques require more computational resources, often taking tens to hun-
dreds of milliseconds to find a new solution. These strategies alter the
robot’s path during execution to evade collisions and meet specific task
criteria. These types of algorithms constitute the focus of this thesis, with
particular regard to path replanning strategies applied to robotic manip-
ulators.

2.2 Problem formulation

Although the robot physically operates within its workspace, the path
planning problem is typically described using the concept of the robot’s
configuration space [105], denoted as C. Definition 1 provides the formula-
tion of the problem.

Definition 1: The Feasible Path Planning Problem

Consider the configuration space of the robot, denoted as C ⊆ Rn,
as the search space for the path planning problem. Here, n signifies
the number of degrees of freedom (DoF) of the robot, while q ∈ C
represents the generalized coordinates of the system. In the context
of robot manipulators, q typically corresponds to a real-valued vector
of joint positions. The subset Cobs ⊂ C comprises configurations that
lead to collisions with obstacles. Defined cl(·) as the closure of a set,
Cfree = cl(C \ Cobs) is the set of collision-free configurations.

Given an initial configuration qstart ∈ Cfree and a goal configura-
tion qgoal ∈ Cfree, solving the path planning problem involves deter-
mining a curve σ : [0, 1] → C, namely a path, such that σ(0) = qstart

and σ(1) = qgoal. A curve that lies entirely in Cfree is referred to as a
feasible path, while one that intersects Cobs is termed an infeasible path.
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Note that the goal may not be a single configuration qgoal but a set of
desired configurations Qgoal ⊂ Cfree.

Furthermore, many applications necessitate a feasible path that ful-
fills particular requirements. For instance, you could be searching for
the shortest path. Hence, path planners typically seek for a feasible path
that optimizes a desired objective. Definition 2 presents the optimal path
planning problem.

Definition 2: The Optimal Path Planning Problem

Let Ω be the set comprising all paths, both feasible and unfeasible,
that connect qstart ∈ Cfree to qgoal ∈ Cfree. Define Σ ⊂ Ω as the subset
containing only feasible solutions. Paths are assessed using a cost
function c : Ω → R≥0, which assigns a non-negative real number
as the cost to any feasible path σ ∈ Σ, and assigns infinity to any
infeasible path.

An optimal path is a feasible path σ∗ that satisfies the following
condition:

σ∗ = argmin
σ∈Σ

{c(σ)|σ(0) = qstart, σ(1) = qgoal} (2.1)

One of the most simple and popular cost function c(σ) measures the
length of the path, so that the optimal solution is the shortest collision-
free path from qstart to qgoal.

Depending on whether the planner is able to solve the problems de-
fined by Definitions 1 and 2 or not, it can be classified as complete and/or
optimal. A path planner is said to be complete if it ensures finding a solu-
tion in a finite amount of time, if one exists. Furthermore, if it also guar-
antees finding the optimal solution, the planner is referred to as optimal
[94]. By definition, the optimality of the planner implies its complete-
ness. Completeness and optimality are fundamental characteristics of
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path planning algorithms. However, currently, there is no algorithm that
possesses these properties. Instead, algorithms typically offer weaker no-
tions, like resolution or probabilistic completeness and resolution or almost-
sure asymptotic optimality. Further details regarding these properties will
be provided in Section 2.3.

It is also important to distinguish multi-query planning scenarios from
single-query planning scenarios. In the first case, the robot needs to nav-
igate through the same area multiple times, and Cobs remains relatively
constant over time. In such cases, it is beneficial to gather information
about the entire search space before any motion occurs. This informa-
tion can then be utilized to efficiently solve multiple planning problems.
This approach requires an initial preprocessing step to comprehensively
explore the search space.

On the other hand, in single query planning scenarios, the robot ei-
ther does not repeatedly navigate the same area or Cobs changes signifi-
cantly over time. In this context, exploring the search space beforehand
becomes inefficient because the gathered information would quickly be-
come outdated. Consequently, the path planning problem is addressed
just before each individual movement [46]. It is important to note that
this does not imply the absence of collisions with Cobs, if it evolves unex-
pectedly during the robot’s motion. Handling this aspect of the problem
involves online motion planning/replanning.

While there is a standard formulation for motion planning problems
shared among researchers, the same cannot be said for replanning prob-
lems. Definitions 1 and 2 consider only static obstacles, i.e., Cobs is con-
stant as the robot moves. Defining a general replanning problem is chal-
lenging due to the dynamic nature of real-world environments. Obstacles
might move continuously or discretely, and their behavior could range
from predictable to unpredictable [167]. Moreover, the robot’s working
environment can be fully observable, for example by using cameras in a
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collaborative industrial cell, or be discovered during the robot’s motion,
as in the case of mobile robotics. Consequently, formulating a replanning
problem in a general way is intricate. In this dissertation, we will focus on
the replanning problem closest to the classic path planning problem as in
Definition 1. Therefore, the path replanning problem can be formulated
as follows:

Definition 3: The Path Replanning Problem

Let Cfree(t) be the subset of all configurations not colliding with ob-
stacles at a specific time instant t. Consider an initial path σinit :
[0, 1] → Cfree(0), with σinit(0) = qstart and σinit(1) = qgoal and let
qr(t̂) be the robot configuration at time t̂, such that σinit[qr(t̂), qgoal] is
the portion of the path between qr(t̂) and the goal. Path replanning at
time instant t̂ means finding a new path σnew : [0, 1] → Cfree(t̂), with
σnew(0) = qr(t̂) and σnew(1) = qgoal, such that:

c(σnew) < c(σinit[qr(t̂), qgoal]) (2.2)

where c(σ) is equal to infinity when σ is not feasible (e.g., in collision
with obstacles).

Notably, path replanning can occur either when the existing path be-
comes obstructed by new obstacles, or when the solver identifies a po-
tentially better path (i.e., with a lower cost). While some algorithms are
designed to address only the first situation, more advanced ones can ef-
fectively handle both cases.

Furthermore, it is worth noting that the inherent unpredictability of
the replanning context complicates the provision of formal guarantees
for these algorithms, such as completeness and optimality. Such properties
cannot be conclusively proven for replanners without making assump-
tions about obstacle dynamics. Counterexamples can be constructed
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where an obstacle obstructs any newly proposed solution, preventing the
robot from finding a path to its goal. Nevertheless, these properties can
be proved for a replanning algorithm if we assume that, starting from
time t̂, Cfree remains constant.

2.2.1 The configuration-time space

In dynamic environments planning, extending the configuration space to
incorporate time as an additional dimension gives rise to what is known
as the configuration-time space, introduced the first time by Fraichard in
[45]. This approach, widely utilized in various strategies for path plan-
ning and replanning in non-static environments, allows for the consider-
ation of obstacles movement. As a result, it becomes possible to identify
paths that steer clear of intersecting with obstacles precisely when they
pass through specific points [167].

Let’s define the time interval of interest as T = [0, tmax], where 0 de-
notes the initial time. The resulting space CT := C × T comprises pairs
⟨q, t⟩, where q ∈ C and t is a scalar between 0 and tmax representing time.
If the robot configuration q collides with obstacles at time t, then ⟨q, t⟩
belongs to CTobs. Consequently, both stationary and moving obstacles in
the configuration space become static obstacles in the configuration-time
space.

In CT , planning entails charting a trajectory. Conventional meth-
ods involve searching for a path and calculating the timings needed to
reach waypoints, taking into account the robot’s maximum velocity con-
straints. It is important to note that in this space, the goal typically com-
prises not just a single configuration ⟨qgoal, t⟩, but rather a locus defined
by qgoal and multiple possible t.

The inclusion of time in the search space could enable more informed
planning. When dealing with obstacles whose trajectories are known in
advance, it is possible to plan a trajectory that avoids intersections. Dur-
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ing online planning, if you can predict the obstacle’s motion, you can
devise a new trajectory that obviates the need for further replanning. For
example, there may be no necessity to alter the route if one can accu-
rately predict the imminent removal of the obstacle in the near future.
However, it is important to highlight that this approach introduces an
additional layer of complexity to the search space. This is attributed to
the inclusion of an extra dimension and the necessity for a reliable pre-
dictive estimate of the obstacle’s motion. This presents a significant chal-
lenge, as such estimations are not always readily available. Furthermore,
when they are, they tend to be short-term and subject to noise. The high
level of uncertainty in these estimations often leads to conservative long-
term planning, which can result in either the inability to identify a viable
path or the generation of very conservative and therefore inefficient so-
lutions. This is particularly problematic in scenarios involving shared
workspaces between humans and robots, where safety and efficiency are
paramount objectives. Moreover, within the realm of human-robot coop-
eration, obtaining dependable estimations proves to be a daunting task,
which falls beyond the scope of this thesis. As a result, this thesis places
its emphasis on techniques confined to the configuration space. Specifi-
cally, we aim to develop a reactive algorithm with the capacity to swiftly
adapt the path in response to human movements.

However, the upcoming section will explore solutions to the motion
replanning problem from the perspectives of both search space formula-
tions.

2.3 Path planning and replanning techniques

This section delves into the primary techniques employed for tackling
both path planning and replanning problems. Four distinct categories of
approaches commonly used to address motion planning challenges will
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Figure 2.1: Distribution of different path planning approaches before and after
2015 (data retrieved from [158]).

be highlighted, the sampling-based approach, the graph-based approach,
the optimization-based approach and the learning-based approach [158].
Within these categories, certain methods naturally possess the ability to
address path replanning problems from the outset. On the other hand,
for other approaches, the algorithms designed for path replanning are
developed as an extension of the existing path planning solutions.

Figure 2.1 shows the distribution of the different approaches before
and after 2015 [158]. Notably, the sampling-based approach remains the
most prevalent, even though the popularity of certain learning-based
methods has grown in recent years. This enduring prevalence can be
attributed to its relative simplicity, efficient scalability even with expand-
ing search spaces, inherent flexibility, and the added advantage of not ne-
cessitating a direct representation of the search space. It is important to
emphasize that the emerging artificial intelligence strategies often com-
plement sampling-based algorithms [67, 140, 178, 193]. Consequently,
it is reasonable to expect that sampling-based methodology will remain
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highly relevant and popular in the years ahead.

Among the strategies we will discuss, the sampling-based approach
will receive the most comprehensive exploration, as it forms the founda-
tional methodology behind the algorithm proposed in this thesis. Con-
versely, the other strategies will be briefly overviewed.

2.3.1 The optimization-based approach

Optimization-based approaches exploit optimization techniques to find
solutions that minimize a specific objective function, typically related to
collision avoidance and trajectory smoothness. The problem is usually
formulated as follows:

min
q1,q2,...,qN

N

∑
i=1

c(qi) +
1
2

n

∑
j=1
||Aqj||2 (2.3)

Here, qi ∈ Rn is the i-th point of the trajectory, qj ∈ RN represents the
trajectory of the j-th joint, N the number of points in the discretized tra-
jectory and n the number of DoF. The function c(·) is an arbitrary state-
dependent cost function that may encompasses terms related to obstacles
avoidance, joints limits and torques constraints. The matrix A ∈ RN×N is
employed to approximate dynamic quantities through finite differencing:

A =



1 0 0 0 0 0
−2 1 0 . . . 0 0 0
1 −2 1 0 0 0

...
. . .

...
0 0 0 1 −2 1
0 0 0 . . . 0 1 −2
0 0 0 0 0 1


(2.4)
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Consequently, ∑n
j=1 ||Aqj||2 approximates the second order derivative of

the trajectory and is minimized to reduce accelerations and attain smooth
solutions.

Optimization-based approaches mainly differ on how they solve the
problem of Equation (2.3). They are generally categorized into gradient-
based optimizations and stochastic optimizations. One well-known exam-
ple of a gradient-based optimization algorithm is CHOMP (Covariant
Hamiltonian Optimization and Motion Planning) [142]. It starts with an
initial, possible infeasible, trajectory and employs a covariant gradient
descent technique to find a smooth, collision-free, trajectory through the
configuration space between two defined end points. CHOMP has been
applied in various scenarios, including 6-DoF robotic arms and walking
quadruped robots, and has been integrated into numerous motion plan-
ning algorithms [100, 141, 172]. However, it relies on the cost function
being smooth and differentiable, which is not always the case, especially
when dealing with motor torques constraints.

To address this limitation, STOMP (Stochastic Trajectory Optimiza-
tion for Motion Planning) [72] uses an approach that does not require
knowledge of the cost function’s gradient. It generates noisy trajectories
to explore the space around an initial, possibly infeasible trajectory and
combines these to approximate the gradient and achieve a lower-cost so-
lution.

Nevertheless, gradient-based methods may become trapped in local
minima, impeding the discovery of the optimal solution.

Further optimization-based approaches have been developed trying
to solve the local minima problem and speed up the convergence towards
the global optimum. Among the main strategies, Particle Swarm Opti-
mization (PSO) and Genetic Algorithms (GA) are popular solutions [1,
62, 79, 136, 176]. Generally, stochastic optimization methods are better at
avoiding local minima and improving planning efficiency than gradient-
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based methods due to their capacity to explore a wider solution space.

Moreover, ongoing advancements in numerical optimization algo-
rithms have significantly improved the computational efficiency of
optimization-based algorithms, making them more widely adopted due
to their enhanced ability to search for optimal solutions.

The aforementioned approaches are mainly designed for applications
with static environment. However, such strategies have been used as the
basis for online planning algorithms capable of adapting the original plan
to changes in the environment.

ITOMP (Incremental Trajectory Optimization for Real-Time Replan-
ning in Dynamic Environments) [124] aims to address motion planning
in dynamic environments using an optimization-based approach. This
method does not distinguish between an initial planning phase and a re-
planning phase during the execution of the trajectory. Instead, it adopts
an incremental approach to plan in real-time. At each iteration it esti-
mates the trajectory of the obstacles in a limited time horizon. Then, it
computes a trajectory from the robot configuration to a final configura-
tion by solving the optimization problem of Equation (2.3) to avoid colli-
sions and satisfy trajectory smoothness and torque requirements. This al-
gorithm operates within a framework that interleaves planning with ex-
ecution, allocating a time budget for planning. The solver is interrupted
when the time limit is reached, a strategy necessitated by the need for
rapid responses and the limited time validity of obstacle trajectory infor-
mation. This architectural approach has been leveraged in several other
works and extended to accommodate varying planning and execution
time intervals [59, 119, 125, 127]. While the solution found may be sub-
optimal and not satisfy all requirements, it is recursively employed as
input for the optimization in the next iteration, leading to potentially im-
proved results more quickly. Additionally, [125] introduces GPU-based
parallel processing to accelerate ITOMP.
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PTOMP (Progressive Trajectory Optimization-based Motion Planning
algorithm for Human-Robot Interaction Scenarios) [119] builds upon the
ITOMP framework by updating online the parameter of the optimiza-
tion process and integrating an interaction-oriented cost function. These
advancements are designed to facilitate more seamless and natural inter-
actions within of Human-Robot Interaction (HRI) scenarios.

RAMP (Real-Time Adaptive Motion Planning) [169] tackles online
motion planning by drawing from evolutionary computation. It still em-
ploys a planning and execution framework but plans trajectories in the
CT space. The algorithm maintains a population of trajectories and im-
proves their quality (fitness) at each planning time using random opera-
tors (such as inserting, deleting, or swapping trajectory points). RAMP
is demonstrated to effectively handle drastic changes in the environment
through global planning of diverse trajectories. Another real-time motion
planner based on genetic optimization is presented in [168].

In broad terms, optimization-based approaches offer the flexibility to
seamlessly incorporate new constraints into the planning process by ad-
justing the cost function. Nevertheless, it is important to note that these
methods come with certain drawbacks: they tend to be computation-
ally demanding, lack assurances of reaching the global optimum, and
frequently necessitate to predefine the trajectory duration.

2.3.1.1 The Artificial Potential Field approach

The Artificial Potential Field (APF) method is a widely employed tech-
nique in the field of motion planning. Its popularity stems from its in-
tuitive concept, simplicity, lightweight nature, and excellent real-time
performance. Consequently, it finds extensive application in real-time
obstacle avoidance algorithms. It deviates from the optimization-based
algorithms discussed earlier, adopting a distinct strategy while still in-
corporating a gradient descent approach.
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Originally proposed by O. Khatib in 1985 [78], the core idea behind
APF is to guide a robot through an artificially generated potential field.
This field creates attractive forces towards the goal and repulsive forces
around obstacles, ultimately determining the direction and magnitude of
the robot’s velocity vector.

The foundation of this approach is the concept of the operational space,
which defines a coordinate system where x represents a set of indepen-
dent parameters describing the end-effector’s position and orientation in
a reference frame R0. Control of the manipulator in the operational space
is based on the selection of a command force F applied to the end-effector.
In order to produce F, joint torques Γ need to be computed through the
relation:

Γ = JT(q)F (2.5)

Here, J(q) represents the Jacobian matrix for the robot configuration q.

The artificial potential field is computed as the sum of two compo-
nents:

Uart(x) = Uxgoal(x) + Uobs(x) (2.6)

Which leads to:

U(x) = Uart(x) + Ug(x) (2.7)

Here, Uxgoal is the artificial potential field which attracts the robot to the
goal, Uobs repels from obstacles and Ug is the potential energy of gravity.

Using the Lagrangian formalism and the end-effector dynamic de-
coupling equations, the end-effector equation of motion can be written
as:

Λ(x)F∗art + µ(x, ẋ) + p(x) = F (2.8)
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Λ(x) denotes the kinetic energy matrix, µ(x, ẋ) represents the centrifugal
and Coriolis forces, and p(x) the gravity forces. F∗art(x) is the command
force vector of the decoupled end-effector which becomes equivalent to
a single-unit mass. F∗art(x) can be written as:

F∗art(x) = F∗xgoal
(x) + F∗obs(x) (2.9)

where:

F∗xgoal
(x) = −grad[Uxgoal(x)]

F∗obs(x) = −grad[Uobs(x)]
(2.10)

Uxgoal(x) is typically defined as:

Uxgoal(x) =
1
2

k(x− xgoal)
2 (2.11)

where k represents the position gain. The attractive force F∗xgoal
(x) can be

derived as:

F∗xgoal
(x) = −k(x− xgoal)− ξ ẋ (2.12)

The term ξ ẋ is introduced to achieve asymptotic stability of the system.

The Uobs(x) component is designed to satisfy the manipulator stabil-
ity condition and create a potential barrier at each point on the obsta-
cle’s surface. It must be a non-negative, differentiable function and that
approaches infinity as the end-effector nears the obstacle’s surface. The
resulting Uart(x) should have global minimum at x = xgoal. To prevent
unwanted perturbations beyond the vicinity of the obstacle, the influence
of Uobs(x) should be confined to a limited region surrounding the obsta-
cle. A potential description of Uobs(x) is the following:
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Uobs(x) =

 1
2 η( 1

ρ −
1
ρ0
)2 ρ ≤ ρ0

0 ρ > ρ0

(2.13)

Where ρ and ρ0 represent the minimum distance from the obstacle and
the limit distance of the potential field’s influence, respectively. The re-
sulting force Fobs(x) is defined as:

F∗obs(x) =

η( 1
ρ −

1
ρ0
) 1

ρ2
∂ρ
∂x ρ ≤ ρ0

0 ρ > ρ0

(2.14)

This approach can also be extended to have multiple points on the robot
subjected to the potential. [78] provides further details.

The inherent adaptability of this strategy makes it highly suitable for
dynamic environments. Extensive research has been devoted to address-
ing the challenge of local minima [126, 173, 189, 192], and enhancing
robot behavior by factoring in the relative speed between obstacles and
the robot when defining the potential field [52, 137, 156].

While the APF method enjoys widespread popularity in mobile robo-
tics, it has also found application in more intricate systems like robot ma-
nipulators [22, 23, 144, 171, 177]. In this approach, besides directing the
motion of the end-effector, repulsive forces are strategically applied to
the robot’s point nearest to obstacles, effectively pushing it away from
potential collision points.

Drawing inspiration from the APF paradigm, the Elastic Band [139]
and Elastic Strips [10] frameworks dynamically deform a precomputed
trajectory, respectively, in configuration space and operational space, in
response to moving obstacles. These frameworks apply two types of
forces: a repulsive force from obstacles to avert collisions, and an internal
elastic force within the trajectory. Consequently, the trajectory contin-
uously adapts to steer clear of obstacles while maintaining smoothness
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and shortening when possible.
However, it is worth noting that while this approach excels at making

local adjustments, it may face challenges when acting as a global plan-
ner. For instance, if a previously accessible path suddenly becomes ob-
structed, these algorithms may struggle to find an alternative route to
the goal. Additionally, the calculation of repulsive forces is based on a
limited number of key-points along the robot’s kinematic structure and
the obstacles. Consequently, collision avoidance can be assured only for
these designated points.

In practice, optimization-based techniques necessitate simplifying in-
tricate obstacles into a series of simpler components, such as smaller
spheres. However, for complex robotic environments, this strategy be-
comes impractical. Attempting to incorporate additional test points on
both robots and environmental obstacles can result in heightened com-
putational complexity and greater resource demands.

2.3.2 The learning-based approach

The learning-based category encompasses a range of strategies employ-
ing artificial intelligence techniques to address motion planning in both
static and dynamic environments. Notably, popular techniques include
Artificial Neural Networks (ANN) and Reinforcement Learning (RL).

Motion planning utilizing neural networks is gaining traction due
to their ability to model nonlinear functions and their reduced compu-
tational complexity during inference [112, 172, 179, 187]. A prominent
strategy involves employing neural networks to define trajectory way-
points, whether in joint or Cartesian space, and then establishing smooth
connections between them using polynomial functions.

For example, Meziane et al. [112] introduced SPADER, a two-layer
neural network capable of generating trajectory waypoints in Cartesian
space to move around dynamic obstacles. The robot’s motion unfolds in
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a set of subspaces within a shared workspace, which are interconnected
to obtain smooth movements and prevent collisions with dynamic ob-
stacles, such as a human’s limb. Specifically, the neural network gener-
ates waypoints in intermediate subspaces necessary for guiding the robot
end-effector along a collision-free path. These points are then connected
using quintic polynomials to ensure continuity in velocities, accelera-
tions, and minimize abrupt changes. However, it is important to note
that since the algorithm operates in Cartesian space, it applies solely to
end-effector motion planning and does not guarantee that the robot links
will not collide with humans.

Wang et al. [172] employed a Collaborative Waypoint Planning net-
work (CWP-net) to generate all crucial waypoints for dynamic obstacle
avoidance in joint space based on environmental data. Quintic polynomi-
als are then used to create a seamless trajectory through these waypoints,
adhering to velocity and acceleration constraints. A modified version of
STOMP is then utilized to perform localized trajectory optimization in
cases where the segments between waypoints, as computed by the CWP-
net, lead to a collision.

Duguleana et al. [34] used Q-learning and a double neural network
to iteratively plan the motion online and avoid obstacles. As the plan
is constructed incrementally, it is not feasible to pre-calculate the trajec-
tory’s cost and its smoothness.

Reinforcement Learning stands as another widely adopted technique
for manipulator motion planning in dynamic environments. It empow-
ers robots to iteratively learn optimal behaviors through interactions with
their surroundings. Unlike conventional approaches that require explicit
solutions, RL relies on a scalar objective function to assess the robot’s per-
formance in each step [83]. Operating within the framework of Markov
decision processes, an agent engages with the environment by perceiving
a state, executing an action, transitioning to a subsequent state, and re-
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ceiving a reward. This reward signal encapsulates the fundamental objec-
tive and furnishes the agent with performance feedback. Consequently,
the agent’s aim is to acquire a policy that maximizes the overall expected
reward function [140].

While previously effective primarily in simple planning problems,
RL has recently found applicability in high-dimensional challenges, fa-
cilitated by the use of neural networks for estimating the reward func-
tion. This approach, known as Deep Reinforcement Learning (DRL), has
demonstrated its ability to tackle intricate tasks and solve complex prob-
lems. The conventional method involves implementing model-free RL
techniques and conducting training phases focused on learning the opti-
mal policy from scratch, without any human guidance, to move the robot
while avoiding obstacles [148, 175].

For example, Nicola et al. [114] presented an online motion planning
framework leveraging DRL for applications in human-robot cooperation.
Notably, they advocate for a formulation where the robot’s action is char-
acterized as a trajectory with a duration corresponding to a timestamp.
This stands in contrast to conventional methods that typically produce
a joint speed command or variations in joint speed. This adjustment is
geared towards attaining smoother trajectories. Furthermore, this ap-
proach eliminates the necessity to deduce human intentions, discern the
task being performed by the human, or predict the specific workspace
occupied by the human.

Kamali et al. [74] introduced a dynamic goal DRL approach for ef-
fective path planning of a robot arm. Their work proposed an intuitive
method for translating human hand motion into corresponding move-
ments of the robot arm with collision avoidance.

Sangiovanni et al. [147] presented a novel approach to obstacle avoid-
ance in robot manipulators, utilizing a hybrid control scheme incorporat-
ing DRL. This scheme employs a dual architecture, where an initial plan
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is generated using a standard motion planner to accelerate the trajectory
creation process. The robot initially adheres to this plan, and upon meet-
ing specific obstacle-distance criteria, the DRL-based control, specialized
in collision avoidance, is engaged. This hybrid switching methodology
harnesses the strengths of both classical algorithms and DRL-based con-
trols, thereby ensuring a heightened level of stability, particularly when
adhering to a predetermined path. Simultaneously, it reduces the need
for intricate hand-engineering, especially in scenarios involving complex
operations like full-body collision avoidance.

Several studies leverage RL, ANN, and learning-based techniques
to support various categories of planners, particularly sampling-based
ones. This approach aims to expedite certain planning phases (e.g., the
sampling phase, detailed in Section 2.3.4.1) to reduce computation times
and achieve faster responses [21, 67, 68, 181, 186, 193]. Learning from ex-
perience allows to generate more effective and efficient sample nodes in
a way that decreases the planning steps required.

Ichter et al. [67] proposed a non-uniform sampling procedure where a
sampling distribution is learned from demonstrations and subsequently
used to bias the sampling process. A conditional variational autoencoder
generates samples within regions of the configuration space likely to con-
tain the optimal solution. When combined with a sampling-based path
planner, this strategy effectively harnesses the underlying structure of a
planning problem while retaining the theoretical guarantees of sampling-
based approaches.

Zucker et al. [193] introduced an RL-based adaptive sampling strat-
egy, which involves sampling the discretized workspace and the corre-
sponding joint configuration. Each episode is assigned a reward, and the
process is optimized through gradient descent of the reward with respect
to the parameters of the workspace sampling probability distribution.

Conversely, [186] focuses on learning a rejection sampling technique
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aimed at discarding samples deemed ineffective in addressing the prob-
lem at hand, while [65] employs Q-learning for the tree-expansion pro-
cess, aiming to prevent collisions and reduce expansion into irrelevant
areas.

This category of methods has garnered substantial interest from the
scientific community, leveraging the impressive capacity of ANN to ap-
proximate complex functions, coupled with RL’s proficiency in acquir-
ing optimal behavior in dynamic environments. Nevertheless, it is cru-
cial to acknowledge that these methods present certain limitations, pri-
marily related to the training process. They often necessitate significant
amounts of data and computational resources for effective training, typ-
ically tailored to a specific robot within a defined environment. Further-
more, while these models demonstrate proficiency in the environments
they were trained on, their performance may experience a decline when
faced with unfamiliar settings featuring entirely unpredictable obstacles.

2.3.3 The graph-based approach

A very common and well-known methodology to solve the path plan-
ning problem is represented by the graph-based approach. Basically, it
consists of approximating the search space with a graph of discrete states,
called vertices, connected by edges. With this methodology, the problem is
dual. Firstly, the continuous search space needs to be discretized to build
the graph. Then, the graph must be searched to find the path from the
starting vertex to the goal vertex.

Choosing the correct space discretization strongly affects the accu-
racy of the space representation and the performance of the path plan-
ner. Low resolution allows for a faster search but produces a worse path
quality. High resolution allows for smoother paths but requires expen-
sive search. Thus, researchers have spent a lot of effort on different type
of discretization, including visibility graphs, regular, non uniform and
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multi resolution graphs [19, 106, 116].

Formal guarantees of the graph-based algorithms respect to the con-
tinuous path planning problem depends on the a priori discretization. In
particular, an algorithm is said resolution complete if it guarantees to find
a solution to a given problem at the chosen resolution, if one exists. If it
guarantees to find the optimal solution, if one exists, it is said resolution
optimal. By definition, resolution optimality implies resolution complete-
ness [46].

The most popular algorithms to find a path in the graph are the Di-
jkstra’s algorithm [31] and A* [57]. These algorithms solve single-query
planning scenarios and find the optimal solution in an efficient way by
ordering the search based on cost. In this way, the optimal solution is
found only after all possibly better paths have been considered [46].

Dijkstra’s algorithm orders the search based on the cost-to-come, which
is the cost to reach a specified vertex from start. Basically, the algorithm
uses a queue of vertex ordered by the cost-to-come. At each iteration,
the lowest-cost vertex is extracted, the costs of the descendants vertices
are computed and then they are inserted into the queue. The process
continues until the goal is extracted from the queue, that means that all
the vertices with lower cost-to-come have been already considered. This
process avoids expanding all the vertices with higher cost-to-come that
could not provide a better path. Moreover, the algorithm can be adapted
for multi-query problems, concluding only when the queue is completely
empty instead of just waiting for the goal to be extracted.

A* improves the efficiency of the search ordering the queue based on
the potential solution quality. Each vertex v is evaluated by the function
f (v) = g(v) + h(v), where g(v) is the cost-to-come of v, while h(v) is an
heuristic estimate of the cost-to-go of v, which is the cost to move from
v to the goal on the optimal path. If h(v) never overstimates the real
cost-to-go of v, f (v) is an admissible estimate of the cost of the optimal

29



2.3. Path planning and replanning techniques

solution from start to goal constrained to pass through v. This admissible
estimate allows to exclude those vertices that certainly will not provide
a better solution. The resulting search is optimally efficient in the number
of vertices expanded since any other resolution-optimal algorithm using
the same heuristic will expand at least the same number of vertices as A*
[57]. Enhancing the precision of the heuristic leads to the expansion of
fewer vertices. Heuristic h1 is considered more informed than heuristic
h2 if, for all vertices v, it holds that h1(v) > h2(v). The least informed
heuristic corresponds to h(v) = 0 for all vertices, which transforms A*
into Dijkstra’s algorithm.

The notion of admissible heuristics holds significant importance in the
realm of path planning and will be a recurring theme in this thesis. In
essence, a heuristic is considered admissible when it consistently provides
an estimate that is never higher than the actual cost of transitioning be-
tween two points. For instance, consider a graph in a plane where edge
costs are defined by the Euclidean distance between vertices. In this con-
text, the Euclidean distance to the goal stands as an admissible heuris-
tic, representing the absolute minimum distance needed to connect two
points—a lower-bound for the potential solution’s cost.

The illustration of Figure 2.2 depicts the A* search algorithm in ac-
tion, finding a path from the initial point S to the destination point G.
This visualization highlights how the pre-defined grid resolution signif-
icantly impacts the resulting solution’s cost. Increasing the resolution
would indeed yield a shorter and smoother path; however, this enhance-
ment comes at the cost of expanding a greater number of vertices, conse-
quently prolonging the time needed to find the solution.

The primary limitation of both Dijkstra’s algorithm and A* lies in
their tendency to explore numerous vertices in order to identify the op-
timal solution, a challenge that becomes particularly pronounced in ex-
pansive search spaces, where they lead to increased running time and
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Figure 2.2: An illustration of how A* [57] solves the problem of finding a fea-
sible path from S to G. The continuous search space is discretized into a grid,
(a). Starting from S, nodes are expanded ordered by the cost-to-come plus an
admissible heuristic of the cost-to-go, (b), (c), (d). The optimal solution is found
when the goal node is expanded, which means that all the possible less-costly
paths have already been considered, (e). The resulting path is the resolution opti-
mal one, (f).
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memory requirements. Further researches have been done to speed-up
the search process, including near resolution optimal algorithms, replan-
ning or incremental searches and anytime searches. These approaches aim to
accelerate path finding, a crucial aspect not only for swiftly determining
the initial solution but also for the potential adaptation or modification of
the path in real-time, especially in response to new environmental data.

Near resolution optimal algorithms expedite the search process by loos-
ening the strict optimality criterion of the sought solution. In numerous
applications, attaining the absolute optimal path may not be critical; in-
stead, achieving an almost optimal solution (the near resolution optimal
solution) in a shorter time suffices.

One effective approach is to inflate the heuristic by a factor ϵ > 1,
as introduced in Weighted A* [132]. This adjustment biases the search
towards states closer to the goal, resulting in a reduced number of ex-
panded vertices needed to find a solution. Importantly, the solution ob-
tained is guaranteed to have a cost no greater than ϵ times that of the
resolution-optimal path. It is noteworthy that ϵ can be dynamically ad-
justed throughout the search process [133]. Additionally, Cohen et al.
proposed Lazy Weighted A*, a modification of Weighted A* that evalu-
ates the cost of edges only when absolutely necessary, thereby minimiz-
ing time spent in extensive search spaces [25]. Ebendt et al. [35] provide
a comprehensive overview and analysis of this strategy, along with its
various adaptations.

Multi-Heuristic A* (MHA*) [3] leverages a combination of inadmissi-
ble heuristics alongside an admissible one, effectively integrating diverse
sources of information into the search process. By doing so, it enables the
discovery of solutions that are nearly optimal, with the degree of devia-
tion from the optimal path controlled by a user-defined parameter.

Replanning or incremental searches are tailored for graphs that undergo
dynamic changes. This makes them especially adept for environments
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that evolve over time, where new information about the surroundings
may be gathered during navigation, such as the emergence or movement
of new obstacles. These algorithms strategically plan a path, considering
it unobstructed in areas where environmental details are lacking, and dy-
namically adjust it in real-time using existing knowledge to swiftly refine
the solution. As a result, they adapt the plan without the need to start A*
from scratch. While the overall path taken by the robot may not always
be the most efficient, each time these algorithms compute a resolution
optimal solution from the current robot position to the goal.

Dynamic A* (D*) [153], Focused D* [154], D* Lite [84], and Lifelong
Planning A* (LPA*) [85] stand out as widely used algorithms for graph
replanning.

Notably, LPA* [85] represents a variant of A* that dynamically up-
dates the graph to maintain resolution optimality in response to changes
in edge costs or when new vertices are added or deleted. Essentially, the
algorithm identifies and adds inconsistent vertices to a queue, which are
vertices with a cost-to-come different from the best cost obtained from
their neighbors, referred to as the lookahead value. Like A*, the search is
prioritized based on the potential cost of the solutions. While the initial
search of LPA* mirrors that of A*, all subsequent searches are signifi-
cantly faster. LPA* yields, at a minimum, the search tree that A* con-
structs. However, it achieves a substantial acceleration over A* by reuti-
lizing the parts of the prior search tree that align with the new search
tree. Figure 2.3 illustrates how LPA* updates the graph search following
an obstacle’s displacement.

D* Lite [84] is a streamlined and more efficient version of the D* al-
gorithm [153], specifically tailored for robot navigation. It can be viewed
as an adaptation of LPA* with distinct characteristics. Unlike LPA*, D*
Lite reverses the search direction, initiating from the goal and progress-
ing towards the robot’s current position. Additionally, it incorporates a
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clever strategy to circumvent the need for recalculating the priority of
each vertex in the queue after a robot motion, thereby significantly re-
ducing computation time.

Different speed-up techniques can be integrated, as demonstrated in
Truncated D* Lite and Truncated LPA* [2], which blend replanning with
a nearly optimal search. These methods prematurely halt the propaga-
tion of changes, effectively lessening the computational burden while still
maintaining a solution that is nearly optimal, with a cost no more than a
user-defined parameter worse than the resolution optimal one.

Anytime searches play a vital role in circumventing time constraints in
robotics path planning. While A* guarantees a solution only if there is
enough time to find the resolution optimal path, this behavior is not al-
ways practical in real-world scenarios. It is often preferable to discover
the best-possible solution within a given time frame. This allows for con-
tinuous refinement of the solution during the remaining time or execu-
tion. The anytime approach is widely employed in motion planning and
will be extensively discussed in this thesis. It proves especially valuable
in applications involving obstacle avoidance, where a collision-free path
must be computed rapidly. In such cases, prioritizing a safe path over
an optimal one is paramount. Therefore, it is more practical to initially
compute a lower-quality solution and subsequently improve it over time.

Anytime A* [191] involves repeated executions of A* with progres-
sively less inflated heuristics and Anytime Repairing A* (ARA*) [102]
leverages progress from prior iterations for faster execution compared to
Anytime A*. Both algorithms ensure suboptimality bounds.

Similarly, Anytime D* (AD*) [101] combines near optimality and in-
cremental searches, allowing it to accommodate dynamic graphs. Addi-
tionally, Truncated AD* [2] introduces a strategy for prematurely halting
changes propagation.

Numerous other methods have been introduced to enhance the speed
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Figure 2.3: An illustration of how LPA* [85] solves the problem of finding a
feasible path from S to G in the presence of dynamic obstacles. Initially, the
problem is addressed as depicted in Figure 2.2, (a) and (b). As the obstacle shifts
its position, the inconsistent vertices (orange cells) are inserted into the queue
and their cost change is propagated to their respective descendants, (c). The
resultant path is determined by updating the search locally, avoiding the need
to restart A* from the beginning, (d).
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and efficiency of graph-based searches [55, 103, 111]. However, graph-
based algorithms have some drawbacks. They require pre-defining the
resolution. This is not a trivial task as it heavily depends on the spe-
cific nature of the problem. Finding the optimal resolution, one that en-
sures both high-quality solutions and efficient computation times, can be
a non-trivial challenge. Furthermore, it is important to note that the com-
plexity of the search grows exponentially with the increase in the dimen-
sions of the search space, a phenomenon known as the curse of dimension-
ality [6]. Therefore, while graph-based algorithms are a favored choice for
simple planning problems, such as those involving mobile robots, they
become less suitable when dealing with manipulators with a high num-
ber of degrees of freedom. This limitation becomes particularly apparent
when aiming for reduced computation times, as in the case of online re-
planning.

2.3.4 The sampling-based approach

2.3.4.1 Preliminaries

The sampling-based approach to path planning has garnered prominence
in recent years due to its inherent advantages, including simplicity, flex-
ibility, scalability with respect to the dimensionality of the search space,
and its independence from direct configuration space representation.

Sampling-based planning algorithms have demonstrated their effec-
tiveness in addressing high-DoF planning challenges. However, they tra-
ditionally operate under the assumption of static and known environ-
ments. Recent advancements in sampling-based planning have extended
these techniques to real-time planning in dynamic or uncertain environ-
ments, unlocking novel behaviors for high-DoF robotic systems [151].

This approach surpasses the limitations of the graph-based paradigm
by obviating the need for a predefined discretization of the search space.
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Instead, it constructs a representation in an anytime fashion through ran-
dom [4] or deterministic [9] sampling. This representation becomes more
accurate with increasing computational time and significantly mitigates
the curse of dimensionality.

In a sampling-based algorithm, the key components include:

• The Sampler: It is responsible for generating samples within the
search space. Its primary function is to search for a solution within
this space. While the standard approach involves uniform random
sampling, extensive efforts are continually invested in refining and
guiding this process to efficiently discover improved solutions [48,
49, 67, 165].

• The Local Planner: This component is responsible for establish-
ing connections between two sampled points. It must operate with
speed and computational efficiency, as it is executed repeatedly in
a sampling-based algorithm. The visibility region of a node un-
der a specific local planner refers to the set of states in the search
space that the local planner can successfully connect to the node.
A broader visibility region indicates a more powerful local planner,
often entailing higher computational requirements. Thus, finding
the right balance between these factors is paramount. In most in-
stances, the local planner aims to connect two samples through a di-
rect line [53]. However, there are exceptions, such as kinodynamic
planners, where local connections are determined by the robot’s dy-
namics and are costly to compute [32].

• The Collision Checker: It verifies the feasibility of a sample or con-
nection, ensuring it does not result in a collision. This step is vital
as it enables the identification of collision-free paths. However, it is
typically the most resource-intensive operation in a sampling-based
algorithm, accounting for up to 90% of the computational time [36].
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Artificial intelligence and parallelization techniques have been em-
ployed to accelerate this process [18, 28, 123].

• The Neighbor Set: This set comprises nodes in close proximity to
the new samples, which the local planner can attempt to connect
with. Generally, this subset is defined by nodes within a certain
distance or the K closest nodes, reducing the number of connec-
tion attempts. This is essential as the probability of successfully
establishing a connection significantly diminishes with increasing
distance from the new samples.

Formal guarantees of these algorithms in relation to the original con-
tinuous feasible or optimal planning problem (Definitions 1 and 2) are
often probabilistic.

Definition 4: Probabilistic Completeness

A planner is said to be probabilistically complete if, as the number of
samples tends to infinity, the probability of finding a feasible solution,
if one exists, approaches unity:

lim
Nq→∞

P
(
σ ∈ Σ, σ(0) = qstart, σ(1) = qgoal

)
= 1 (2.15)

where Nq is the number of samples, σ denotes the path found by the
planner using those samples, and Σ represents the set encompassing
all feasible paths.
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Definition 5: Almost-Sure Asymptotic Optimality

A planner is said to be almost-surely asymptotic optimal if, as the num-
ber of samples tends to infinity, the probability of converging asymp-
totically to the optimal solution, if one exists, approaches unity:

lim
Nq→∞

P (c(σ) = c(σ∗)) = 1 (2.16)

where Nq is the number of samples, σ denotes the path found by the
planner using those samples, σ∗ represents the optimal path and c(·)
the cost function.

2.3.4.2 The algorithms

The two prevailing sampling-based algorithms in the field are the Prob-
abilistic RoadMap (PRM) [77] and the Rapidly-exploring Random Tree
(RRT) [93].

Probabilistic RoadMap (PRM) [77] is a multi-query method that first
constructs a representation of the search space and then searches for a
path within the created graph, called roadmap. For this reason, it does not
differ much from graph-based approaches, except in how the roadmap
is constructed. To mitigate the curse of dimensionality, the roadmap is cre-
ated by randomly sampling the search space. Each new sample is con-
nected to the roadmap through a local planner, typically resulting in a
direct connection. This connection is established if it proves collision-
free. Note that, within the sampling-base algorithms, the naming vertex
and edge is often replaced with that of node and connection. As outlined
in Algorithm 1, this phase is known as the learning phase and is focused
on creating an accurate representation of the search space. It is critical
in this phase to integrate the inherent connectivity of the search space
into the roadmap. Note that, in line 7 of Algorithm 1, the local plan-
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Algorithm 1 Probabilistic RoadMap (PRM) - learning phase
Require: Configuration space C, number of samples Nq, local planner,

collision checker
Ensure: PRM graph G

1: Initialize empty graph G
2: for i = 1 to Nq do
3: Sample random configuration q in C
4: if CollisionChecker→ isFree(q) is True then
5: Add q as a node to G
6: for all n ∈ a subset of G containing nodes neighboring q do
7: if LocalPlanner(n, q) is not in collision then
8: Add edges (n, q) and (q, n) to G
9: return G

ner attempts to establish connections only with nodes within a distance
threshold or with the K nearest nodes. The subsequent phase, known as
the query phase, involves solving a specific planning problem by connect-
ing the start and goal configurations to the roadmap and searching for
the path using a graph-search algorithm (such as Dijkstra’s algorithm or
A*). The start and goal are connected to the roadmap by the local planner
in the same manner as new samples during the learning phase. PRM is
probabilistically complete and, with an appropriate connection scheme,
almost-surely asymptotically optimal [76]. Figure 2.4 illustrates both the
learning and query phases of the PRM algorithm.

Roadmaps invest time in covering the entire search space during pre-
processing, which in turn enables rapid responses to multiple queries
once established. However, for single-query tasks or in dynamic set-
tings, creating a roadmap solely for one use is often an unnecessary ef-
fort. While extensive research has been conducted to enhance PRM [8,
115, 117], for single-query applications an incremental search for a solu-
tion remains the more efficient approach.

Rapidly-exploring Random Tree (RRT) [93] stands as a foundational
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Figure 2.4: PRM [77] finds a feasible path from S to G using a two-phase ap-
proach. In the learning phase, a roadmap (i.e., a graph) is constructed to represent
the search space. New samples are connected in the collision-free space using a
local planner, (a) and (b). This process continues until a satisfactory space repre-
sentation is achieved, (c). In the query phase, S and G are connected to the closest
roadmap nodes, (d), and the best path is determined using a graph-search algo-
rithm (e.g., A*), (e) and (f). The algorithm is probabilistically complete and, with
an appropriate connection scheme, almost-surely asymptotically optimal.
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Algorithm 2 Rapidly-exploring Random Tree (RRT)
Require: Configuration space C, initial configuration qinit, goal configu-

ration qgoal, number of iterations Nq, max step size η

Ensure: RRT tree T
1: Initialize tree T with root node qinit
2: for k = 1 to Nq do
3: Sample random configuration qrand in C
4: Find nearest node qnear ∈ T to qrand
5: Extend qnear towards qrand with a max distance η to create qnew
6: if (qnear, qnew) is collision free then
7: Add qnew as a child of qnear in T
8: if (qnew = qgoal) then
9: return T

10: return T

approach in addressing continuous single-query planning problems. It
operates by iteratively constructing a tree within the collision-free space,
originating from the initial node (see Algorithm 2). During each itera-
tion, a random sample is drawn (line 3) from the search space. The algo-
rithm then extends the tree toward this sample, effectively steering the
exploration towards uncharted areas. Specifically, the nearest node in
the tree is selected, and a connection is established with a user-defined
maximum length, provided it is collision-free (line 7). Notably, the sam-
pling process is typically biased towards the goal using a user-defined
goal-sampling probability, significantly enhancing the chances of finding
a solution. When the algorithm successfully links the goal to the tree,
it produces a solution to the continuous planning problem by retracing
from the goal. Figure 2.5 illustrates the sequential steps undertaken by
RRT in its quest for a solution. While RRT exhibits probabilistic com-
pleteness, it falls short of achieving almost-sure asymptotic optimality
[76].

RRT-Connect [87] enhances the basic RRT approach by growing two
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Figure 2.5: An illustration of how RRT [93] solves the problem of finding a fea-
sible path from S to G. The continuous search space, (a), is represented by a
sampling-based tree rooted at the start S. The accuracy of the representation
improves with additional time in an anytime fashion by randomly sampling the
search space and growing the tree with nodes and connections with maximum
length equal to η in the collision-free space, (b)-(c). The algorithms guarantees
to find a feasible solution, if one exists, but not to almost-surely converge to the
optimal one, (d).
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trees, one starting from the initial node and the other from the goal node.
In each iteration, a random sample is drawn, and the two trees take turns
trying to extend towards it. Unlike the original RRT algorithm, RRT-
Connect extends the tree from the closest node until it reaches the new
sample or an obstacle. This dual-tree structure enables faster exploration
of the search space, generally leading to quicker solutions compared to
standard RRT. Similar to RRT, RRT-Connect is probabilistically complete
but not almost-surely asymptotically optimal, thus solutions often re-
quire post-processing [107].

While nodes may be optimally connected within the current tree, con-
nections may need to be adjusted as the trees continue to grow to main-
tain optimal node connectivity. RRG and RRT* [76] achieve almost-sure
asymptotic optimality by taking into account both incoming and outgo-
ing connections of newly added nodes to enhance the cost-to-come of
existing nodes. RRG constructs a graph, whereas RRT* maintains a tree
structure. Specifically, what sets RRT* apart from RRT is its incorpora-
tion of the local rewiring procedure. Instead of directly connecting a new
sample to the nearest node, it links to the neighbor that offers a reduc-
tion in the cost-to-come. Subsequently, neighbors that stand to benefit
from the new node as their parent undergo rewiring. This continuous
rewiring process enhances the tree’s internal connectivity. Selecting the
appropriate neighborhood size is crucial for achieving asymptotic opti-
mality [76]. It is important to emphasize that optimality is theoretically
guaranteed with infinite samples; therefore, the rewiring process persists
even after discovering an initial feasible solution. However, in practical
applications, a maximum limit on iterations or computation time is typi-
cally set, at which point the algorithm terminates. Figure 2.6 provides an
illustration of how the algorithm almost-surely asymptotically converges
to the optimal solution.

The primary limitation of RRT* is its slow convergence to the opti-
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Figure 2.6: An illustration of how RRT* [76] solves the problem of finding a fea-
sible path from S to G. The continuous search space, (a), is represented by a
sampling-based tree rooted at the start S, (b). Each new sample is connected to
its best neighbour, (c), and it is used to improve connectivity of existing neigh-
bours, (d). The accuracy of the representation improves with additional time in
an anytime fashion by randomly sampling the search space, (e). The algorithms
guarantees to find a feasible solution, if one exists, and to almost-surely con-
verge to the optimal one with increasing number of samples, (f).
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mal solution. It proves to be inefficient for single-query problems due
to its agnosticism towards the specific planning context. This means it
dedicates effort to finding the optimal path to every state in the problem
domain, even focusing in areas that may not significantly contribute to
the final solution.

In contrast, Informed RRT* [47] addresses this challenge by dynami-
cally shrinking the search space once an initial solution is achieved. Ini-
tially, it follows the same procedure as RRT*, but once a preliminary so-
lution is found, it refines the search by excluding areas that do not con-
tribute to further improvement. Consequently, it is less affected by the
curse of dimensionality and converges more swiftly towards the optimal
solution.

Specifically, define the omniscient set as the subset encompassing all
states q that could potentially belong to a better solution compared to
the current one. Its size diminishes as the solution refines. Denoting f
as the function providing the cost of the optimal path from qstart to qgoal,
constrained to pass through point q, the omniscient set is formally defined
as:

Q f := {q ∈ Cfree | f (q) < c} (2.17)

Here, c represents the cost of the current solution. Obtaining precise
knowledge of the omniscient set necessitates solving the planning prob-
lem. Therefore, informed sets are used as estimations. An informed set is
defined by a heuristic f̂ approximating the function f :

Q f̂ := {q ∈ Cfree | f̂ (q) < c} (2.18)

While an infinite number of informed sets exist, particularly valuable are
the admissible informed sets. An informed set is deemed admissible if the
heuristic f̂ is also admissible, meaning it never overestimates the true
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value of the function f :

∀q ∈ C, f̂ (q) ≤ f (q) (2.19)

An admissible informed set is a representative overestimate of the om-
niscient set and contains it completely. The accuracy of the informed set
in representing the omniscient set is contingent on the precision of the
admissible heuristic f̂ in approximating the function f .

For problems centered on minimizing path length, the Euclidean dis-
tance serves as an admissible heuristic, as it corresponds to the shortest
path length between two points in the search space. This leads to the
admissible informed set defined by the following prolate hyperspheroid
[47]:

I = {q ∈ Cfree | ||q− qstart||2 + ||qgoal − q||2 < c} (2.20)

By directly sampling from the subset defined by Eq. (2.20), as outlined in
[47], it becomes possible to bypass the sampling of states that are guar-
anteed not to enhance the solution, thereby expediting the optimization
process. Figure 2.7 highlights the ability of Informed RRT* to focus the
search in a narrow area containing the optimal solution and Figure 2.8
compares the exploration space of Informed RRT* to that of RRT*.

While [47] presents a clear and effective informed set, adapting this
method to different cost functions can be challenging (i.e., directly sam-
pling diverse informed sets proves to be a complex task). Additionally,
while the proposed approach exhibits strong performance once an initial
solution is obtained, if the planner encounters difficulty in finding this so-
lution, the computation time remains high. Enhancing the speed of this
aspect has been a subject of interest for numerous researchers [58, 80, 97].

Many efforts are spent to improve the performance of these algo-
rithms in finding a solution even in complex scenarios and in reaching
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Figure 2.7: After obtaining an initial solution, Informed RRT* [47] restricts the
search space within an admissible informed set to speed up the search for a bet-
ter solution, (a). As the solution improves, the search area narrows, (b). By em-
ploying the Euclidean distance as an admissible heuristic, the informed set man-
ifests as a prolate hyperspheroid, equivalent to an ellipse in two-dimensional
problems, (c).
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Figure 2.8: Illustration of the search space explored by RRT* [76] (left) and by
Informed RRT* [47] (right). Informed RRT* focus on a narrow area and finds the
optimal solution faster compared to RRT*. Retrieved from [49].

the optimum quickly. However, in dynamic contexts these algorithms do
not provide solution quickly enough to make the robot reactive to obsta-
cle motions. Replanning algorithm usually try to speed up the computa-
tion of new solutions by reusing as much as possible efforts spent during
the past planning phase.

With PRM, it translates into updating node and connection costs and
searching for the optimal path within the updated graph. A popular al-
gorithm derived from PRM is Dynamic Roadmaps (DRM) [95, 96]. The
characteristic of this method lies in mapping the roadmap into a dis-
cretized representation of the workspace. In practice, in a first phase a
roadmap is created in the configuration space C. Differently from other
approaches, the roadmap built corresponds to an obstacle-free environ-
ments. Then, each node and connection in the roadmap is associated with
a cell (voxel) in the workspace. These two phases are specific to the robot,
but are independent of the environment in which the robot will operate.
In the online-planning phase, the planner identifies the voxels occupied
by obstacles and invalidates the corresponding nodes and connections
from the roadmap, using the encoded mapping. Precise collision check
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GS

Figure 2.9: DRM [95] involves partitioning the workspace (depicted on the right)
into discrete cells (grey boxes) and associating each node and connection of the
roadmap (shown on the left) with specific cells. When an obstacle occupies cer-
tain cells (black boxes), the relevant nodes and connections are invalidated (dot-
ted connections).

can be done or reference counting could be exploited to speed-up val-
idation [73]. Then a solution is searched with a standard graph-search
algorithm without the need of further collision checking. Figure 2.9 de-
picts the correspondence between the roadmap and the workspace.

DRM has catalyzed various advancements in its implementation. For
instance, [88] employs efficient distance metrics and data structures to
ascertain neighboring nodes, and utilizes A* for graph traversal rather
than the depth and breadth-first searches found in [95, 96]. Further-
more, [104] integrates DRM with Lazy PRM [8], and streamlines the map-
ping process by focusing solely on nodes. In the event of a cell colli-
sion, all corresponding nodes are invalidated, while connections are as-
sumed to be collision-free. The graph is explored using A*, with collision-
checking to validate the solution. If a connection encounters a collision it
becomes invalid and the search process restarts. This approach enables
swifter mapping without compromising online planning times compared
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to DRM. The Parallel DRM (PDRM) algorithm [149] harnesses the power
of parallel computing to accelerate numerous facets of DRM. This in-
cludes tasks like identifying occupied voxels, connecting start and goal to
the roadmap and searching the graph. Distance-Aware DRM (DA-DRM)
[82] is capable of planning trajectories, even in unknown environments,
which are aware of the distance from the obstacles obtained through a
depth camera system. Respect to the standard DRM approach, it penal-
izes nodes and connections associated to voxels close to the ones occu-
pied by obstacles. As a result, the distance is considered as a cost factor
during the graph-search process in order to prioritize paths away from
obstacles. Cell-PRM (CPRM) [81] employs an anytime approach in con-
structing its roadmap. It partitions the search space into cells and directs
sampling towards cells near the optimal path and that have unconnected
components. When the start and goal points belong to the same con-
nected component, a path can be determined. This approach is anytime
as sampling can continue to refine the resultant path, and replanning can
be executed by resampling the affected cells.

Elastic roadmaps [180] and Reactive Deformation Roadmaps [51] em-
ploy control strategies to dynamically adjust the roadmap in response to
changes in the environment. In [182], a potential field is utilized to steer
nodes away from moving obstacles, although additional collision checks
are needed during the query phase.

Lazy SISPRM [98] introduces time as an extra dimension and lever-
ages a human motion prediction system for real-time planning of safe
and efficient trajectories. The algorithm plans a path considering the fu-
ture states of obstacles and disregarding time. It then constructs a Short-
cut PRM (SPRM) along this path, linking sequential waypoints. Next,
the algorithm introduces time and determines collision-free intervals for
each node. Finally, an optimal graph-search is performed in SPRM× T ,
employing a lazy approach for path validation.

51



2.3. Path planning and replanning techniques

Temporal PRM (T-PRM) [66] augments the nodes in the roadmap
with timing information. It specifically calculates, based on predicted
obstacle movements, the time intervals in which each node remains free
from collisions. These intervals are subsequently factored into the graph-
search process, conducted via a modified A* algorithm, to ensure avoid-
ance of intersections with obstacles.

Methods that incorporate the time dimension often rely on an obsta-
cle motion prediction system, which can be prone to inaccuracies. To
address this issue, [166] tackles the problem by expanding the size of ob-
stacles as the prediction becomes less reliable. The graph is explored in an
anytime fashion using AD* [101], facilitating rapid solution identification
with ongoing refinement.

Yet, in highly dynamic environments, obtaining accurate predictions
of obstacle motion is often challenging, leading to the adoption of overly
cautious motion estimations. This can lead to disconnected components
within the roadmap, rendering it unable to generate new solutions or
resulting in lower-quality paths.

RRT-like algorithms are traditionally single-query planners that grow
a tree from the start configuration and, as such, are problem-specific. This
makes them inherently useful for dynamic planning where the start con-
figuration and workspace can rapidly change. Typical replanning strate-
gies aims to exploit as much as possible information and search efforts
from previous plans.

Execution Extended RRT (ERRT) [11] searches for a new path to the
goal alternating the sampling of new states with the sampling of the way-
points cache, namely the set of nodes that constituted the previous path to
the goal. The algorithm exploits temporal coherence and works well in
scenarios were changes are small and states form previous plans can be
re-used. As a result, the path initially found can be a guideline for find-
ing a new one. Although ERRT proves to be faster than RRT in finding
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the new solution, there is little information it reuses from previous plan-
ning queries. The waypoint cache concept is re-used in a number of other
algorithms presented.

Dynamic RRT (DRRT) [40] employs a different approach, reusing the
valid branches of the RRT tree. In the event of an obstacle obstructing
the current path, the algorithm identifies and prunes the invalid tree
branches. If the tree no longer extends to the goal, it undergoes a re-
growth process to reestablish a connection. It is worth noting that, akin to
D* Lite [84], the tree expands in reverse, originating from the goal and ad-
vancing towards the current robot configuration. This obviates the need
for constant repositioning of the tree root as the robot moves. Addition-
ally, sampling can be biased towards regions affected by changes. DRRT
involves an initial overhead because it necessitates the verification of all
tree branches. Furthermore, the tree is reconstructed using RRT, result-
ing in the new path being suboptimal. Figure 2.10 shows the replanning
process.

Anytime Dynamic RRT [42] serves as an anytime version of DRRT. In
a nutshell, DRRT comes into play when an obstacle hinders the current
path. Following this, Anytime RRT [41] is systematically employed to
improve the existing solution. By discarding nodes whose sum of cost-
to-come and distance to the goal is worse than the current solution cost,
Anytime RRT assembles a sequence of trees that ensure solutions im-
prove the current one. This combination of algorithms enables dynamic
replanning with ongoing optimization.

Connell et al. [27] use RRT* to repair the current path when a potential
collision is estimated. Firstly, the algorithm adds a node corresponding
to the robot’s current position. Then, a node on the current path behind
the obstacle is chosen as the replanning goal. Using the distance to the
replanning goal as a metric, it establishes a sampling area around the
obstacle. The nodes inside this area are rewired to make the node corre-
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Figure 2.10: This illustration shows the dynamic replanning process in DRRT
[40]. Initially, the algorithm generates an RRT, (a). As the robot follows the path,
any movement of obstacles can render the path invalid, (b). The red circle sig-
nifies the current robot configuration. At this juncture, the algorithm prunes
the branches of the tree that have been invalidated by the obstacle, (c). Con-
sequently, the current robot configuration is no longer connected to the goal,
prompting DRRT to initiate a regrowth process to establish a new connection
and ascertain a fresh valid path, (d). The tree is rooted at the goal G to avoid
regrowing the entire tree as the robot moves or new obstacles appear.

54



2.3. Path planning and replanning techniques

sponding to the robot position as their parent node, and new states are
sampled to find a path to the goal. A similar methodology is adopted by
[188], which incorporates obstacle motion prediction and collision prob-
ability assessment.

Reconfigurable Random Forests (RRF) [99] is a multi-query algorithm
that preserves portions of the tree that are disconnected by the appear-
ance of a new obstacle. The algorithm maintains a forest of disconnected
RRTs rooted in different locations to best cover the free space and contin-
uously tries to connect them to each other. Lazy Reconfiguration Forest
(LRF) [50] takes a similar approach but validates only the connections
belonging to the current solution.

Multipartite RRT (MP-RRT) [194] combines the approaches of RRF,
DRRT, and ERRT to mantain a forest of disconnected RRTs and quickly
repair the path to the goal. The sampling procedure probabilistically
samples the root of disconnected subtrees, the goal or random config-
urations.

Sun et al. [157] proposed a parallel version of RRT (MPRRT), which
continuously runs independent RRTs on each available processor core.
The authors demonstrate that MPRRT asymptotically approaches the op-
timal plan as computational power increases.

Online RRT* (ORRT*) and Online FMT* (OFMT*) [16] adapt to start
and end point changes without the need to build an entirely new tree
from scratch. They improve the tree by rewiring without adding new
nodes. This approach allows adapting to changing environments and
cost functions while maintaining constant memory usage.

RRTx [121] operates with both a graph and a tree, employing a rewire
cascade technique to efficiently update the tree when new obstacles ap-
pear or shift. In static environments, it has been demonstrated to achieve
asymptotic optimality with a faster convergence rate compared to RRT*.

Horizon-based Lazy RRT (HLRRT) [20] verifies path feasibility within
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a user-defined time-horizon, eliminating all unfeasible nodes and their
subsequent successors to maintain a single pruned tree. It subsequently
regrows and rewires this tree by using a sampling distribution based on
Gaussian Mixture Models.

Efficient Bias-goal Factor RRT (EBG-RRT) [183] preserves the portion
of the path beyond the obstacle and endeavors to re-establish a connec-
tion to this path by employing an modified waypoint cache.

Broadly speaking, RRT-like methods have experienced significant
growth in dynamic environment planning in recent years [17, 26, 135,
150] and the most common approach typically entails pruning the invalid
branches of the tree followed by regrowing and/or applying rewiring
techniques. Nevertheless, many of these techniques still struggle in sce-
narios characterized by high-dimensional search spaces with many size-
able obstacles.

2.4 Safety requirements for HRC

The factory of the future envisions seamless collaboration between hu-
mans and robots as a means to enhance industrial productivity and im-
prove workers’ conditions [143]. Although there is still no standard and
unambiguous taxonomy for the various modes of Human-Robot Collab-
oration (HRC) in the state of the art [170], a common distinction includes
the following types of interactions [120]:

Coexistence: This scenario entails the human and robot concurrently ex-
ecuting separate tasks in different areas without the need for phys-
ical barriers. For instance, a robot might handle heavy loads while
the operator assesses quality standards.

Synchronization: This method involves the human and robot sharing
the same workspace, albeit at different times and in a sequential
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Figure 2.11: Different HRC modes. Inspired by [174].

manner. They perform specific tasks in a coordinated sequence to
achieve a common objective. For instance, a human may load raw
materials into a machine, followed by the robot executing the ma-
chining process. Synchronization is crucial for successful execution.

Cooperation: In this scenario, robots and humans share a common
workspace while pursuing distinct tasks and objectives. They have
equal access to resources for gathering information about the work
and environment. However, there is no direct interaction between
them. Although their workspaces may intersect, they do not hin-
der each other’s progress as they strive towards a shared goal. An
illustrative example is a human and a robot working in the same
robotic cell, each focused on different objects.

Collaboration: In this mode, humans and robots work in the same
workspace, towards the same objective, and simultaneously. They
operate in close proximity, with controlled contact facilitated by ad-
vanced sensing technologies. Actions taken by one entity have im-
mediate effects on the other. Consequently, their connection can be
physical, involving forces and torques, or non-contact, with infor-
mation exchanged through speech, gestures, intention recognition
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Table 2.1: Different level of interaction in HRC.

Coexistence Synchronization
Work Task ✓

Direct Contact ✓

Simultaneous process ✓

Workspace ✓

Sequential process ✓

Cooperation Collaboration
Work Task ✓

Direct Contact ✓

Simultaneous process ✓ ✓

Workspace ✓ ✓

Sequential process ✓

and eye tracking.

These different modes are summarized in the Table 2.1 and illustrated in
Figure 2.11.

Collaborative applications must comply with safety standards to mit-
igate potential health risks for workers [170]. This is particularly crucial
as the robot is no longer confined to an enclosed space. Safety require-
ments for collaborative applications are defined by ISO/TS15066 (Robots
and robotic devices – Collaborative robots [70]). The document outlines four
collaborative operations, namely Safety Rated Monitored Stop, Hand Guid-
ing, Speed and Separation Monitoring and Power and Force Limiting. Specifi-
cally, the last two are of particular interest for this thesis.

Speed and Separation Monitoring (SSM) focuses on maintaining a min-
imum separation distance between the human and the robot to ensure
that the robot can stop before colliding with the person. Specifically, the
minimum human-robot distance, denoted as S, should always satisfy the
condition S ≥ Sp. Sp represents the protective separation distance. We
can derive the maximum safe velocity vmax of the robot towards the hu-

58



2.4. Safety requirements for HRC

man based on the current separation distance S [12]:

vmax =
√

v2
h + (asTr)2 − 2as

(
C− S

)
− asTr − vh (2.21)

In Equation (2.21), vh denotes the human velocity towards the robot, as

represents the maximum Cartesian deceleration of the robot towards the
human, Tr is the reaction time of the system, and C a parameter account-
ing for the uncertainty of the perception system.

Power and Force Limiting (PFL) allows the robot to come into contact
with a human with non-zero speed, as long as the kinetic energy trans-
ferred to the human does not exceed a certain threshold E ≤ Emax, where
E and Emax are the kinetic energy transferred to the human and the max-
imum energy that can be transferred without harming the operator, re-
spectively. Emax can be translated into a limit on the maximum robot
speed:

vmax =
Fmax√

k

√
m−1

r + m−1
h (2.22)

Here, Fmax and k represent the maximum contact force and spring con-
stant for a specific body region; mr and mh are the effective mass of
the robot and the effective mass of the human body region, respectively
[56, 70].

Their implementation typically results in robot speed limitations and
halts when the human and the robot are in proximity. For this reason,
novel methods must be built upon the safety module, enabling efficient
and secure robot control. Researchers have investigated this problem at
various levels, proposing adaptive task planners [37, 146], motion plan-
ners [33, 38, 122], and controllers [29, 63, 134].

Motion planning is a critical aspect of this endeavor, with researchers
striving to formulate trajectories that account for the operator’s presence
and minimize the activation of the safety module. It is possible to re-
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duce the idle times caused by the safety intervention by optimizing the
robot movements in such a way as to minimize the safety speed limita-
tions. This optimization can be carried out offline, proactively planning
trajectories that minimize the need for safety module interventions based
on a model estimating the human’s occupancy map during the robot’s
trajectory execution. However, these methods are susceptible to unfore-
seen movements of the operator [38, 90]. In contrast, reactive approaches
adapt the robot’s trajectory in real-time based on the current situation
[122, 185]. This alternative will be explored in detail in Chapter 5.

2.5 Discussion and thesis contribution

Path planning is a fundamental field of study in autonomous robotics,
encompassing four primary approaches: optimization-based, learning-
based, graph-based, and sampling-based methods. While conventional
path planning typically assumes a static environment, real-world situa-
tions are dynamic, necessitating robots to dynamically adjust their plans
to steer clear of collisions and reduce disruptions. Planning from scratch
whenever an obstacle obstructs the current path is typically inefficient
and time-consuming. Therefore, replanning algorithms must prioritize
speed and effectiveness in providing viable solutions.

Optimization-based methods provide the flexibility to integrate new
constraints, but can be computationally intensive and may not guaran-
tee optimal solutions. Potential field methods, a subset of this category,
have gained traction for handling local trajectory adjustments, yet they
may encounter challenges in finding global optima due to local minima
issues. Additionally, potential fields calculations often consider limited
key-points on the robot and obstacles, potentially compromising respon-
siveness with an increase in key-point density.

Graph-based methods involve discretizing the search space and then
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conducting a graph search. While efforts have been made to update the
search rather than starting anew when an obstacle moves, these methods
face limitations in higher-dimensional search spaces.

Learning-based approaches, leveraging advancements in artificial in-
telligence, have gained popularity. Reinforcement learning, in particular,
offers a efficient methodology for teaching robots reactive strategies in
the presence of moving obstacles. However, these methods may not be
suited for completly unknown environments with unpredictable obsta-
cles. Neural networks, on the other hand, often play a supportive role in
sampling-based algorithms.

Among the various approaches, the sampling-based method stands
out for its simplicity, adaptability, scalability with search space size, and
lack of necessity for a direct representation of the search space. PRM and
RRT are prominent techniques within this category. PRM-based meth-
ods are largely multi-query, efficiently updating roadmap costs and path
searches in the modified graph. However, sizable roadmaps are required
to approximate the search space and generate high-quality paths. Small
roadmaps may result in disconnected components when new obstacles
arise, rendering a solution unattainable.

A promising direction lies in adapting RRT to dynamic environments,
a field that has witnessed substantial growth. These approaches em-
phasize the reuse of information from prior planning efforts. This often
involves biasing sampling towards specific areas, trimming invalid sec-
tions of the tree, and regrowing to reestablish a connection to the goal,
or updating the existing tree or graph through a rewiring process. De-
spite these advances, challenges persist, especially in scenarios involving
robots with high degrees of freedom and obstacles that invalidate signif-
icant portions of the tree/graph.

This thesis presents a novel approach that leverages the potential of
sampling-based methods while avoiding the need for roadmaps complex
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to maintain or basic tree structures that substantial or numerous obsta-
cles can significantly invalidate. The primary goal of this thesis is to
present a reactive path replanning algorithm capable of swiftly adapting
the robot’s path to accommodate new obstacles. Subsequently, the algo-
rithm will undergo modifications to incorporate human-aware features,
enhancing its efficiency for human-robot collaboration applications. In
particular:

• Chapter 3 introduces a motion replanning architecture. As out-
lined in Chapter 1, motion replanning involves overseeing trajec-
tory execution while simultaneously conducting path replanning
and collision checks on the traversed path. The proposed architec-
ture comprises three primary threads, each assigned distinct tasks:
high-rate trajectory interpolation and command transmission to the
robot’s controller, execution of the replanning algorithm, and colli-
sion checking of the traversed path with updated environmental
data. Notably, this architecture offloads the collision checking re-
sponsibility from the replanning algorithm for both the current path
and the set of precomputed paths that is used by the replanning
algorithm of Chapter 4. This optimization allows the replanning
algorithm to save time by circumventing these computationally ex-
pensive collision checks during the calculation of a new solution.

• Chapter 4 introduces a novel Multi-pAth Replanning Strategy
(MARS) tailored for robots with numerous degrees of freedom.
This algorithm leverages a set of pre-computed paths to the same
goal, significantly expediting the online replanning process. The
underlying idea is that within the search space, multiple viable
paths exist and can be harnessed to swiftly redirect the robot’s path
when the current one becomes infeasible. By avoiding the need
to search for solutions directly connected to the goal, MARS effi-
ciently connects the current path to nodes on other available paths,
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especially those closer than the goal, streamlining the search. This
is achieved through techniques like subtree reuse, lazy collision
checks, and informed sampling, culminating in a quicker and more
efficient solution discovery process. Additionally, MARS contin-
uously refines the solution in an anytime fashion. The algorithm
has been validated to be probabilistic complete and can approach
asymptotic optimality when coupled with an optimal planner such
as RRT*. Unlike PRM-based approaches, MARS does not require
the maintenance of a complex roadmap, but only a few paths to the
same goal. In contrast to DRRT-type replanners, it does not rely on
a single tree which can be largely invalidated by obstacles. Instead,
it endeavors to connect to already available (and closer) paths to
exploit their subpaths to the goal. This approach also distinguishes
itself from RRF-like methods. Indeed, in RRF-like approaches, mul-
tiple disconnected subtrees are linked together. However, it is im-
portant to note that the connection of two subtrees does not guar-
antee a solution to the goal. In contrast, with MARS, once the cur-
rent path is connected to an available one a solution is assuredly
obtained. The algorithm then proceeds to seek even more refined
solutions. An experimental campaign compares the performance
of MARS with several sampling-based replanning algorithms. No-
tably, MARS demonstrates a superior capacity in avoiding colli-
sions and adhering to shorter paths. This distinction becomes even
more pronounced as the size of the search space expands. This fur-
ther affirms the effectiveness of employing precomputed paths to
expedite the online search for a solution.

• Chapter 5 extends the work presented in Chapters 3 and 4 to en-
hance performance in the context of human-robot collaboration.
In collaborative robotics environments, safety systems oversee the
robot’s behavior and intervene to ensure the operator’s well-being.
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However, this often leads to reduced robot speed or even halts, re-
sulting in inefficient collaboration and idle time. To address this, the
replanning algorithm is modified to generate new paths as the op-
erator moves, minimizing the need for safety system interventions
and thus enhancing collaboration efficiency. This enhancement is
embodied in Human-Aware Multi-pAth Replanning Strategy
(MARSHA), which combines MARS with a safety-aware cost func-
tion to guide the search towards safety-compliant solutions. As
this cost function is more computationally demanding than the Eu-
clidean distance metric used in MARS, the original algorithm un-
dergoes modifications to effectively handle this increased compu-
tational load. Extensive simulations and real-world experiments
were conducted to assess the performance of MARSHA in compar-
ison to standard approaches commonly employed in the context of
human-robot collaboration.

• Chapter 6 presents OpenMORE, an open-source sampling-based
path replanning library designed to tackle the challenge of dynamic
obstacles in real-world environments. Unlike traditional path plan-
ning algorithms that assume static obstacles, OpenMORE enables
the robot to adapt its path in real-time without halting, ensuring
effectiveness in changing conditions. While established sampling-
based path planning libraries exist, the same level of development
has not been seen in the field of replanning until now. OpenMORE
leverages the framework outlined in Chapter 3, providing devel-
opers with a pre-built architecture and facilitating the implemen-
tation of new path replanning algorithms. Additionally, it serves
as a valuable tool for users seeking to easily solve motion replan-
ning problems, incorporating state-of-the-art sampling-based algo-
rithms.
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CHAPTER 3
Path replanning framework

This chapter introduces an architecture able to manage the replanning
process during the execution of the robot’s trajectory. Initially, it will ex-
plain why such a framework is necessary in dynamic applications, and
why it is not required in structured contexts where standard path plan-
ning suffices. Subsequently, the chapter will clarify the composition of
the architecture and outline the functions of its various components.

The chapter is mainly based on the materials published in [163].

3.1 The need for an architecture

Conventional path planning algorithms usually assume a static environ-
ment. They determine a feasible path based on the robot’s initial and
goal configurations, or a set of potential goal configurations, and a model
describing the obstacles. Subsequently, the path is temporally parame-
terised to define a trajectory for the robot to follow. Notably, certain al-
gorithms directly generate a trajectory as output, bypassing the need for
an additional time parametrisation step [72, 142]. Figure 3.1 shows the
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Figure 3.1: The conventional pipeline for path planning algorithms begins with
the input of initial and goal configurations, along with a model of the environ-
ment. An algorithm like RRT* [76] is employed to calculate a feasible path σ.
Subsequently, this path is temporally parameterised to generate a trajectory de-
noted as τ. This trajectory is then dispatched to the robot’s controller for execu-
tion.

standard pipeline deployed for path planning algorithms.
The assumption of an unchanging environment proves highly effec-

tive in controlled environments, such as those commonly encountered in
industrial settings with enclosed workspaces. In these contexts, once a
trajectory is calculated, it can be executed without concern for it becom-
ing invalid, as the environment remains constant. If an operator needs
to access the robot’s workspace for inspection or maintenance, the robot
is temporarily halted. It is noteworthy that in these applications, human
interventions are typically minimized to maintain the robot’s high pro-
ductivity.

However, this approach falters when faced with dynamic and unpre-
dictable surroundings. As industry evolves towards greater collabora-
tion between humans and robots, the need to remove physical barriers
has become imperative. This introduces the challenge of accommodating
an environment that is no longer static. For instance, the robot’s initially
calculated path may need adjustments due to unforeseen changes dur-
ing the robot’s motion. This necessitates the robot to adapt and replan its
path on-the-fly.

The stop-and-replan method, where the robot halts and recalculates
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Figure 3.2: Visualisation of a robot manipulator dynamically adjusting its trajec-
tory to avoid a moving obstacle. The initial path (depicted in blue) is modified
during the motion, resulting in the generation of a collision-free path (the one in
yellow) which the robot begins to follow without interruption.

the path from scratch upon detecting an environmental change, is a rudi-
mentary strategy. While suitable for situations where replanning is infre-
quent, it proves inefficient when repeated replanning is required. Start-
ing a planning from scratch consumes valuable time, rendering the robot
temporarily idle. In a human-robot collaboration scenario, where the op-
erator may frequently obstruct the robot’s path, the robot must respond
swiftly, possibly without halting, to maintain optimal collaboration ef-
ficiency. Achieving this demands not only advanced replanning tech-
niques capable of adapting to environmental shifts in a very short time
(few hundreds of milliseconds), but also an architecture to oversee the re-
planning process concurrently with the execution of the robot’s original
trajectory. The architecture must execute the replanning process while the
robot is moving, and must facilitate a seamless transition to the new trajec-
tory once identified, possibly without halting, as depicted in Figure 3.2.

The combination of a path replanning algorithm and this kind of ar-
chitecture facilitates path modifications during motion, ensuring a seam-
less transition towards the newly calculated trajectories. This enables the
robot to maintain continuous and agile movement, even in the face of re-
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peated obstructions by the operator. This architectural requirement rep-
resents a paradigm shift from conventional path planning, which, aside
from safety systems that monitor the robot and potentially regulate its
speed for operator safety (refer to Section 2.4), lacks real-time supervi-
sion during execution.

For the effective implementation of an online path replanning algo-
rithm, the following three tasks must be considered:

1. Execution of the current trajectory: The robot’s trajectory needs to
be followed, continuously sending new commands to the robot’s
controller at high rate.

2. Management of the replanning process: Concurrently, the replan-
ning algorithm must continuously run to identify new collision-free
solutions.

3. Collision checks along the traversed path: Using up-to-date en-
vironmental information, the current path must be continuously
monitored for potential collisions. Should a collision be detected,
the replanning algorithms must swiftly identify an alternative fea-
sible path.

By ensuring the continuous and simultaneous management of these
three aspects, the robot will be able to move and modify its trajectory
online effectively in the face of environmental changes, which is a crucial
task in modern dynamic workspaces.

3.2 The replanning architecture

The proposed architecture, outlined in Algorithm 3, effectively manages
the robot’s trajectory execution while concurrently executing the path re-
planning algorithm. Notably, it is adaptable to various replanning al-
gorithms. It also leverages real-time obstacle information for collision
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3.2. The replanning architecture

Algorithm 3 The replanning architecture

Thread Trajectory execution
1: t← t + ∆t
2: state← sampleTrajectory(τ, t)
3: sendToController(state)

Thread Collision check
4: σsubpath ← σcurrent[qcurrent, qgoal]
5: P ← S ∪ σsubpath
6: for σj ∈ P do
7: free, qbefore, qafter ← checkCollisions(σj)
8: if free then
9: cσj ←

∥∥σj
∥∥

10: else
11: cσj ← +∞

Thread Path replanning
12: qcurrent ← projectOnPath(state, σcurrent)
13: σreplanned, solved← replan(σcurrent, qcurrent,S , max_time)
14: if solved then
15: σcurrent ← σreplanned
16: τ ← computeTrajectory(σcurrent)
17: else if distance from obstacle ≤ minimum allowed distance then
18: sendRobotStop()
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detection along the robot’s current path, enabling the replanning algo-
rithm to generate a new solution based on the latest environmental data.
Furthermore, this approach offers the advantage of relieving the collision
check of the current path from the replanner, consequently reducing its
computational burden.

Specifically, the architecture comprises three threads operating in par-
allel, each dedicated to one of the three essential tasks for motion replan-
ning presented in Section 3.1:

Trajectory Execution Thread: This thread is dedicated to micro interpo-
lating the robot’s current trajectory, leading to the determination of
the subsequent robot state (line 2 of Algorithm 3). This state, rep-
resented as a tuple ⟨q, q̇, q̈⟩ denoting joint configuration, velocity,
and acceleration respectively, is then transmitted to the robot’s con-
troller (line 3). The component of the state employed for moving the
robot depends on the type of command employed by the controller,
such as position or velocity control. Since this thread directly inter-
faces with the robot’s controller and oversees trajectory execution,
it operates at the highest frequency among all threads (e.g., 1 kHz).

Collision Checking Thread: The primary focus of this thread is to check
the current path σcurrent for potential collisions. It specifically con-
siders σsubpath, which constitutes the portion of σcurrent from the cur-
rent robot configuration qcurrent to the goal (refer to line 4). At line 5,
a set of P paths is considered, comprising both σsubpath and another
set of available paths S . At this stage, S may be considered empty,
as its relevance will be clarified in Chapter 4 in connection with
the proposed replanning algorithm. Collision checking is specifi-
cally carried out at line 7. Additionally, this thread identifies qbefore

and qafter, which represent the nodes preceding and succeeding the
collision on the current path. These values will also be utilized in
Chapter 4.
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If the path is found to be free of collisions, its cost is set equal to its
length, computed using the Euclidean norm (line 9). Otherwise, its
cost is set to infinity, as in line 11.

The collision check in this thread relies on up-to-date environmen-
tal information provided by a sensor. As a result, its operational
frequency is determined by the rate at which the sensor provides
environmental data (e.g., 30 Hz for a standard RGB-D camera).

Path Replanning Thread: The core function of this thread is to trigger the
replanning algorithm for the generation of a new path (see line 13).
It’s not bound to any specific replanning algorithm. Depending on
the chosen replanning approach, it may be activated either when an
obstacle obstructs the current solution or even when the current so-
lution is unobstructed but a potentially superior one can be found.

Before this, a procedure projects the robot state onto σcurrent to de-
rive qcurrent. This step is essential because time parameterisation al-
gorithms may introduce slight deviations from the path computed
by the path planner (e.g., due to blending radii), whereas the re-
planning algorithm strictly operates on nodes belonging to the path
or tree.

If the replanner discovers a new path, it is assigned to σcurrent. Then,
a time parameterisation is computed for σcurrent to obtain a new
trajectory τ (line 16). This newly computed trajectory will be em-
ployed by the Trajectory Execution Thread to control the robot’s mo-
tion.

The duration of a single cycle for this thread hinges primarily on the
maximum computational time allotted to the replanner. This time
can be adjusted based on specific circumstances. For instance, in
cases of path obstruction, a shorter time frame may be designated
to achieve a quicker, though potentially less refined, solution. Con-
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versely, in scenarios where the path is unobstructed, a more gener-
ous computation time can be granted, affording the solver greater
leeway to refine the current solution. As a general guideline, in a
human-robot collaboration setting, replanning should ideally con-
clude within 200 milliseconds to emulate the reaction time of a hu-
man [151].

It is worth noting that the replanning algorithm receives updates
on the current path cost from the Collision Checking Thread. This
proactive data provision alleviates the need to recalculate the cost
of the current path, thereby reducing the computational burden of
the algorithm.

In the event that the replanner fails and the robot’s proximity to an
obstacle becomes critical, a stop signal is activated, and a contin-
gency plan must be implemented.

Hence, this architecture boasts a modular design, with each thread
assigned a specific task. This modularity facilitates flexibility, enabling
replacement or modification of individual modules to suit application-
specific requirements.

3.3 Summary

This chapter introduced an innovative architecture tailored for seamless
trajectory execution and concurrent path replanning in dynamic environ-
ments. Unlike static environments, new obstacles can emerge and inval-
idate the initially calculated trajectory in a real context. It is, therefore,
necessary for the robot to react quickly to these changes. Thus, a ro-
bust architecture at the motion planning level becomes imperative-one
that adeptly handles replanning while the robot is in motion, ensuring a
seamless transition to a new trajectory when faced with emerging obsta-
cles. The proposed framework manages three essential tasks: executing
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the current trajectory, checking for collisions along the current path based
on updated environmental information, and replanning the robot’s path.
Notably, this architecture offers modularity and adaptability while un-
burdening the replanning algorithm from the onus of collision checking
along the current way.
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CHAPTER 4
Path replanning algorithm

This Chapter presents MARS, a sampling-based Multi-pAth Replanning
Strategy that enables a robot to move in dynamic environments with un-
predictable obstacles. The novelty of the method is the exploitation of a
set of precomputed paths to compute a new solution in just a few hun-
dred milliseconds when an obstacle obstructs the robot’s path. The algo-
rithm expedites the search process through the use of informed sampling,
constructs a directed graph to recycle results from prior replanning itera-
tions, and continually refines the current solution in an anytime fashion,
ensuring the robot remains highly responsive to changes in its surround-
ings.

In the latter part of the chapter, MARS is compared against state-of-the-
art sampling-based path-replanning algorithms through extensive simu-
lations in complex, high-dimensional scenarios. The results demonstrate
the ability of MARS to provide better success in avoiding obstacles and
higher-quality solutions.

The chapter is based on the work published in [163].
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4.1 Introduction

Moving a robot in the real world poses several challenges, including
adapting the robot’s motion to a dynamic and ever-changing environ-
ment. This concern has gained paramount importance in recent years
owing to the proliferation of mobile robotics [61], social robotics [118],
and the integration of human-robot collaboration in industrial setups
[113].

Typically, path planners chart a path from an initial position to a des-
ignated goal position, taking into account static obstacles. However, un-
structured environments may feature moving and unforeseeable obstruc-
tions that invalidate the initially calculated trajectory. In these cases, path
replanning algorithms are needed to enable the robot to react rapidly to
environmental changes, quickly correcting the robot’s path to avoid col-
lisions and reach the goal safely.

As presented in Chapter 2, four principal categories of approaches
emerge to tackle the replanning problem: the optimization-based, the
learning-based, the graph-based, and the sampling-based approach. In
particular, the sampling-based method shines for its simplicity, adapt-
ability, scalability with search space dimensions, and its lack of depen-
dency on a direct representation of the search space. Notably, PRM and
RRT emerge as leading techniques in this category. PRM-based meth-
ods grapple with dynamic obstacles by detecting the roadmap segments
affected by moving obstacles via a mapping between the configuration
space and the workspace, subsequently reinitiating the search for a new
feasible solution [73, 95, 96, 104]. Nonetheless, sizable roadmaps are re-
quired to approximate the search space and generate high-quality paths.
Small roadmaps may lead to disjointed components upon the emergence
of new obstacles, rendering a solution unattainable. Another promising
solution lies in adapting RRT to dynamic environments. Many existing
algorithms typically involve a computationally demanding phase for tree
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pruning, followed by a reconstruction step [40, 42, 99, 194]. Alternatively,
some approaches focus on updating the existing tree or graph through a
rewiring process [27, 121]. Additionally, biasing the sampling towards
specific areas proves to be a common strategy [11, 184].

However, formulating an algorithm capable of rapidly replanning
the robot’s path in complex scenarios, such as high-dimensional search
spaces with many obstacles, remains an ongoing challenge.

4.1.1 Contributions

This thesis suggests a novel method to address the shortcomings of cur-
rent algorithms. Rather than depending on a roadmap complex to main-
tain or a basic tree structure that can be easily disrupted by new obstacles,
this approach uses a set of pre-computed paths to find and progressively
refine new solutions. The outcome is a Multi-pAth Replanning Strategy
(MARS), able to quickly provide a suitable solution in complex, high-
dimensional search spaces.

At its core, MARS involves the construction of a graph that connects
paths to a common goal, allowing the exploitation of a set of paths pre-
calculated. When an obstacle blocks the current path, MARS seeks out an
alternative by endeavoring to connect the current path to the other avail-
able ones. The algorithm employs a heuristic to ascertain which nodes of
the other available paths to connect with. If a connection is found, it can
search for better solutions during the remaining time.

Exploiting a set of pre-computed paths in a replanning algorithm is
a somewhat novel concept in the literature. The few state-of-the-art ap-
proaches that exploit a population of trajectories for replanning use evo-
lutionary computation [169], or Gaussian processes and factor graphs
[64, 86]. Instead, our multi-path strategy connects the current path before
the obstacle to a node closer than the goal and then uses the available
subpath from that node to the goal. This approach serves to diminish
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the complexity of the search. Informed sampling [47], subtree reuse, and
a directed graph contribute to reduced computations and an augmented
convergence rate of the solution, even within complex, high-dimensional
scenarios.

A video of the algorithm is also available 1.

4.2 Multi-pAth Replanning Strategy

4.2.1 Preliminaries

This section provides an introduction to key concepts and notation that
will be employed in the chapter.

We denote the sequence ofM waypoints (nodes) constituting a path
σ as wσ = (q1 . . . qM). σ[qj, qk] is the subpath of σ commencing at node
qj ∈ wσ and concluding at node qk ∈ wσ. Furthermore, σi ∪ σj : Ω ×
Ω → Ω represents a function that concatenates σj with σi, subject to the
requirement that the final node of σi matches the initial node of σj.

We consider two types of data structures embedded in the configura-
tion space C: a graph G := (V , E) and a tree T := (VT , ET ) (Figure 4.1).
V and E are the sets of nodes and connections (or edges) of G, respec-
tively, while VT ⊂ V and ET ⊂ E are the sets of nodes and connections
of T . Every node of T possesses a single parent and can have multiple
children except the tree’s root, which has no parent. Denote as:

first-order connections: these refer to the connections between nodes in
T , and are denoted as ET . Once the tree is connected to the goal
node, the path is obtained following the parents from the goal.

second-order connections: connections to nodes that already have a par-
ent in the tree and, therefore, an incoming first-order connection.

1Video: https://youtu.be/QDOqNPn9lCk
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Figure 4.1: MARS leverages two data structures: a tree, represented by green
connections, and a graph that expands upon the tree using light green connec-
tions. Arrows indicate the direction of travel of the directed graph.

The set of second-order connections is cl(E \ ET ). G, which extends
T , knows about these connections, but T does not.

This formulation handles multiple paths and interconnecting portions of
the same tree. Both T and G will be exploited: T is used to build multiple
new solutions, and G is queried to extract the best one.

Without loss of generality, we will consider that the cost of a path is
represented by its length:

c(σ) = ∥σ∥ =
M−1

∑
i=1
∥qi+1 − qi∥ (4.1)

where qi ∈ wσ. This cost function is commonly used, but the method
can be easily extended to other cost functions as well, provided that an
admissible informed set is available (see Chapter 5).

4.2.2 Replanning algorithm at a glance

This section introduces MARS, a path replanner that exploits a set of pre-
computed paths to find a new solution quickly, even in high-dimensional
and complex scenarios. MARS computes a free path when the current
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Algorithm 4 MARS: high-level description
1: Define P as the set of available paths containing those from input set S and the valid

part of σcurrent
2: Define Q1 as the queue of the nodes of σcurrent between qcurrent and the obstacle
3: Sort Q1 by some criterion
4: for each node qn ∈ Q1 do
5: Insert the nodes of each σ ∈ P into a queue Q2
6: Sort Q2 by some criterion
7: for each qj ∈ Q2 do
8: Define the informed set on the best cost up to now
9: Get the subtree rooted in qn from the informed set

10: Grow the subtree in the informed set to reach qj

11: Update Q1 if a solution was found
12: Get the best path from the graph

one becomes infeasible and optimizes it during the execution. It follows
an anytime approach so that it gets the first solution quickly and then
tries to improve it over time.

Consider Algorithm 4, where a high-level pseudo-code is reported,
while the details of the implementations are in Section 4.2.3. The initial
step involves incorporating the valid portion of the current path into the
pool of available paths given as input and denoted as S . Simultaneously,
all nodes along the current path between the robot and the obstacle are
placed in a queue, denoted as Q1. This queue is then sorted based on
a defined criterion (e.g., the closest nodes to the robot’s current configu-
ration are the first processed). Subsequently, the algorithm endeavors to
establish connections between each node qn ∈ Q1 and the nodes from
the other available paths, which are organized in a queue labeledQ2 and
sorted according to a specified criterion (e.g., the distance from the node
qn). The next step involves seeking a path connecting a node qn ∈ Q1

to a node qj ∈ Q2. The algorithm begins by establishing an admissible
set using the cost of the best solution found thus far. It then identifies
the subtree with qn as its root that lies within this set. Subsequently, it
calls upon a sampling-based path planner to expand the subtree until it
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reaches qj (refer to Figure 4.2a). It is worth noting that this step is not
constrained to a specific path planning algorithm. Since qj possesses a
parent node in the tree, a second-order connection is employed to link the
subtree to qj. These second-order connections are not visible within the
tree but they are in the directed graph. MARS generates multiple solu-
tions from the robot’s configuration to the goal, ultimately extracting the
optimal one from the graph (as depicted in Figure 4.2b).

4.2.3 Detailed description of the replanning algorithm

Algorithm 6 is the meta-code of MARS. First, MARS merges the current
path tree with those of the available paths (Sub-Algorithm 6a). MARS
connects paths that may have been computed with independent trees and
builds a graph to extract the best solution. The trees of the available paths
need to be merged with that of the current path. Since all trees have
the same root (paths start at the same configuration), this procedure is
trivial. Ultimately, all paths share the same tree, which belongs to graph
G. Figure 4.3 depitcs the procedure.

The solution path σreplanned is initialized with the subpath from qcurrent

to the goal. The set of available paths S given as input is enriched with
the valid portion of the subpath σreplanned to form the set P .

All the nodes of σreplanned[qcurrent, qbefore] are inserted into the queue
Q1. Note that qbefore and qafter are provided by the Collision Check Thread
in Algorithm 3 (Chapter 3). Then, the algorithm computes multiple paths
connecting qn ∈ Q1 to the other available paths using connectToPaths

and assigns the best solution to σqnqgoal ; now, the algorithm builds the can-
didate solution concatenating the subpath from qcurrent to qn with σqnqgoal .
If the candidate solution has a lower cost than σreplanned, it becomes
σreplanned. At this point, Q1 is updated (e.g., Q1 is emptied, and the nodes
of the new solution not previously used are inserted into the queue).
Note that the number of nodes in Q1 is small, so the sorting function is
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(a) The grey-dotted ellipse is the admissible informed set. The
green-dotted branches are outside the ellipse, so they are not con-
sidered in the subtree. The second-order connection to qj is the light
green line, which is not visible on the tree but is visible on the graph.

(b) Simplified representation of MARS outcome. The light blue
paths connect the current path to the other available ones. The blue
path is the best solution extracted from the graph.

Figure 4.2: Illustration of the subtree rooted in qn and built to reach qj. The green
path is the current path; the yellow path is another available path. The red circle
represents the current robot configuration qcurrent.
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Figure 4.3: Tree merge: The tree associated with the current path (green) com-
bines with that of an alternative path (yellow). Ultimately, a single unified tree
emerges, represented in blue. As both paths connect the same goal node, the
final connection of the yellow path becomes a second-order connection (depicted
by the light blue line) within the graph.

not computationally demanding. As shown in Figure 4.4, previous runs
of the replanner may have produced segments within the graph G that
enhance the current best solution, such as shortcuts connecting nodes
along the same path (indicated by the light blue lines in the figure). Con-
sequently, at the end of the algorithm, if there is any time remaining,
MARS initiates a search across the graph G to identify a path superior to
σreplanned.

The core of the replanner is connectToPaths (Sub-Algorithm 6d), ex-
ecuted for each qn ∈ Q1. This function takes as input qn ∈ Q1 and tries
to find paths connecting it to the nodes of the available paths in P . As
output, it returns the best path σsol from qn to qgoal found so far. To do
this, first, it populates the queue Q2 with the nodes of each path σj ∈ P
and sorts it based on some criteria (e.g., on the distance from qn). Then,
a path from qn to each qj ∈ Q2 is computed by informedPlan; the path
σqnqj found is then concatenated with the subpath σqjqgoal from qj to qgoal if
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(a) The best solution built by the algorithm is the blue one, but the
graph G contains a shorter path between qj and qk (depicted in light
blue) than that taken by the current solution.

(b) The graph search improved the current solution (in blue) by
considering the shortest available path between qj and qk.

Figure 4.4: MARS generates a solution, but further enhancements are possible
by incorporating segments of the graph constructed in earlier iterations. The
green, yellow, and blue paths represent the current path, an alternative available
path, and the best solution discovered thus far, respectively. The light blue path
improves the segment between qj and qk compared to the corresponding section
of the yellow path and is integrated into the current solution through the graph
search.
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Algorithm 6 MARS: detailed description
Input: σcurrent, qcurrent, S = {σ1, . . . , σN}, G, max_time
Ensure: replanned path σreplanned
1: mergeTrees(σcurrent,S ,G)
2: σreplanned ← σcurrent[qcurrent, qgoal]; creplanned ← c(σreplanned)
3: P ← S
4: if creplanned = ∞ then

5: P +←− σreplanned[qafter, qgoal]
6: Q1 ← wσreplanned [qcurrent, qbefore]
7: else
8: P +←− σreplanned
9: Q1 ← wσreplanned

10: Q1.sortQueue()
11: while ¬ isEmpty(Q1) & t < max_time do
12: qn ← Q1.pop()
13: tMAX ← max_time− t
14: σqnqgoal ← connectToPaths(qn, σreplanned,P , tMAX)

15: if ¬ isEmpty(σqnqgoal ) then
16: σqcurrentqn ← σreplanned[qcurrent, qn]
17: σcandidate ← σqcurrentqn ∪ σqnqgoal

18: if c(σcandidate) < creplanned then
19: σreplanned ← σcandidate; creplanned ← c(σcandidate)
20: solution_found← True
21: Q1.updateQueue(wσreplanned )

22: if solution_found then
23: tMAX ← max_time− t
24: (σreplanned, creplanned)← searchBetterPath(qcurrent, qgoal,G, σreplanned, tMAX)

it results in a better solution than the best one found so far.

The graph search (Sub-Algorithm 6e) takes a lazy approach to colli-
sion checking. The algorithm computes a map of paths sorted by cost;
then, it scrolls through the paths contained in the map until it finds a
valid one. During this validation phase, only connections that have not
been checked during this replanning call are considered: connections that
make up the available paths, those of the connecting paths found, and
others previously checked are not re-checked. Note that MARS takes ad-
vantage of the architecture proposed in Algorithm 3, as the Collision Check
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Sub-Algorithm 6a mergeTrees

Input: σcurrent, S = {σ1, . . . , σN}, G
Ensure: updated tree T and directed graph G

1: T ← σcurrent.tree()
2: for σj in S do
3: T j ← σj.tree()
4: if T j ̸= T then
5: T ← T ∪ T j

6: for σj in S do
7: σj.setTree(T )

8: if T ̸⊂ G then
9: G.add(T )

10: return T , G

Thread checks the entire set of available paths S and σcurrent, relieving the
replanning algorithm from this task.

The map is computed using a depth-first search algorithm starting
from the goal node. Specifically, let be qgoal the goal node, qstart the start
node, qi the node considered at the i-th step of the search, and cqgoalqi the
cost of the branch from qgoal to qi followed during the current iteration.
The search along this branch stops when:

cqgoalqi + ∥qi − qstart∥ > cbetter (4.2)

Note that both first-order and second-order connections are considered
during the search in the graph G.

The most demanding part of Algorithm 6 is connectToPaths (Sub-
Algorithm 6d), which must be very efficient. First, we speed up the
search by purging the nodes qj ∈ Q2 that can not improve the solution.
Let be qn ∈ Q1 and qj ∈ Q2 the the root and goal nodes of the connecting
path σqnqj (Figure 4.5c). The candidate solution σsol = σqnqj ∪ σj[qj, qgoal] is
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Sub-Algorithm 6b growInInformedSet

Input: T , I , qj, tMAX
Ensure: solution_found

1: while ¬ solution_found & iter < max_iter & t < tMAX do
2: iter← iter + 1
3: q← sampleInformedSet(I)
4: qnew ← T .growTree(q)
5: if ||qnew − qj|| < min_dist then
6: if path from tree’s root to qj is valid then
7: create a second-order connection from qnew to qj
8: solution_found← True
9: else

10: hide the invalid branch temporarily from T
11: return solution_found

better than the current best solution σi[qn, qgoal], if:

c(σqnqj) < c(σi[qn, qgoal])− c(σj[qj, qgoal]) (4.3)

The lower bound of c(σqnqj) is the Euclidean distance from qn to qj. So, qj

can lead to an improved solution if:∥∥qn − qj
∥∥ < c(σi[qn, qgoal])− c(σj[qj, qgoal]) (4.4)

If Equation (4.4) does not hold, qj is discarded by connectToPaths (line
9). Note that, if σi[qn, qgoal] is infeasible, Equations (4.3) and (4.4) always
hold as the path has infinite cost. When a solution is found, Equation
(4.4) is updated with the new path’s cost c(σsol), such that:∥∥qn − qj

∥∥ < c(σsol)− c(σj[qj, qgoal]) (4.5)

In this way, only nodes in Q2 with a greater than zero probability of im-
proving the current solution are considered.

To enhance the speed of Sub-Algorithm 6d, we also exploit informed
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Sub-Algorithm 6c informedPlan
Input: qn, qj, cmax, max_time
Ensure: σqnqj from qn to qj and its cost

1: I ← informed set defined by cmax
2: T s← subtree rooted in qn contained in I
3: GTs ← the subgraph of G containing T s
4: (σqnqj , cqnqj)← searchBetterPath(qn, qj,GTs , cmax, max_time)
5: if ¬ isEmpty(σqnqj) then
6: solution_found← True
7: else
8: tMAX ← max_time− t
9: solution_found← growInInformedSet(T s, I , qj, tMAX)

10: if solution_found then
11: (σqnqj , cqnqj)← searchBetterPath(qn, qj,GTs , cmax)

12: return σqnqj , cqnqj , solution_found

sampling [47] in informedPlan (Sub-Algorithm 6c). When searching for a
path connecting qn to qj, the search space can be shrunk to the following
prolate hyperspheroid:

I = {q ∈ Cfree | ∥q− qn∥+ ∥qj − q∥ < ci} (4.6)

where ci = c(σsol)− c(σj[qj, qgoal]). Equation (4.6) represents an admissi-
ble set, so the nodes outside the hyperspheroid are discarded since they
cannot improve the solution (Figure 4.5). informedPlan checks if an exist-
ing path between qn and qj with a cost lower than cmax exists. This search
is in GTs , i.e., the subgraph that contains the first-order and the second-order
connections between nodes of T s or to qj. A ready-to-use solution can exist
thanks to previous replanning iterations. Otherwise, growInInformedSet
invokes growTree that grows the subtree in the hyperspheroid I to reach
qj. growTree is a generic sampling-based planner, and the approach is
easily extendable to bi-directional ones. If a solution is found, replac-
ing the connection to qj with a second-order connection is the only caveat.
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Sub-Algorithm 6d conntectToPaths
Input: qn, σi,P , max_time
Ensure: a new path σsol from qn to qgoal
1: σsol ← σi[qn, qgoal]; csol ← c(σsol)
2: for σj ∈ P , qj ∈ wσj do
3: Q2.addTuple(qj, σj)

4: Q2.sortQueue()
5: while ¬ isEmpty(Q2) & t < max_time do
6: (qj, σj)← Q2.pop()
7: σqjqgoal ← σj[qj, qgoal]; cqjqgoal ← c(σqjqgoal )
8: cmax ← csol − cqjqgoal

9: if
∥∥∥qn − qj

∥∥∥ < cmax then
10: tMAX ← max_time− t
11: σqnqj , cqnqj , solution_found← informedPlan(qn, qj, cmax, tMAX)
12: if solution_found then
13: cnew ← cqnqj + cqjqgoal

14: if cnew < csol then
15: σsol ← σqnqj ∪ σqjqgoal ; csol ← cnew

16: return σsol

growInInformedSet adopts a lazy collision check approach. The connec-
tions already in the subtree are checked only once a path is found. The
branches with a collision are hidden, and growth begins again.

Figure 4.5 reports one iteration of connectToPaths. We select qj ∈
Q2 as a valid node to try to connect to by exploiting σi[qn, qgoal] and
σj[qj, qgoal] (the bold green and yellow lines). The hyperspheroid I (grey
dotted ellipse) is defined by Equation (4.6), and the already existing sub-
tree rooted in qn and contained in I is selected (Figure 4.5a). The con-
nections of the subtree outside I are not considered (dotted green lines).
Then, the subtree is grown in I using a path planner (Figure 4.5b). Once
qj is reached, a second-order connection is created between it and the sub-
tree (light green line). The light blue path (Figure 4.5c) is the path σqnqj

found. If the cost of σqnqj ∪ σj[qj, qgoal] is less than the cost of σi[qn, qgoal], it
becomes the new candidate solution. Then, the procedure is repeated for
each qj ∈ Q2 that satisfies Equation (4.5). Once the whole Q2 has been
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Sub-Algorithm 6e searchBetterPath
Input: qs, qg,P , σc OR cmax, tMAX
Ensure: σbetter from qs to qg and its cost

1: if ¬ isEmpty(σc) then
2: σbetter ← σc; cbetter ← c(σc)
3: else
4: σbetter ← VOID; cbetter ← cmax

5: if tMAX is VOID then
6: tMAX ← ∞
7: sorted_map← G.lowerCostPaths(qs, qg, cbetter, tMAX)
8: while ¬ solution_found & ¬ isEmpty(sorted_map) do
9: (σnew, cnew)← sorted_map.pop()

10: if σnew.valid() then
11: σbetter ← σnew; cbetter ← cnew
12: solution_found← True
13: return σbetter, cbetter

considered, Q1 is updated, and a new qn popped.

4.2.3.1 Considerations on the available paths

MARS relies on pre-calculated paths to find and optimize a solution over
time, and they play a crucial role in shaping the algorithm’s performance.

In principle, the higher the number of available paths, the better chance
MARS has of finding and optimizing a solution. However, a surplus of
paths results in more iterations of the connectToPaths algorithm, driven
by the expanded set of nodes Q2.

Moreover, paths that are excessively optimized may exhibit consider-
able similarity. Consequently, a single obstacle could render significant
portions of all available paths impractical, impeding the rapid discovery
of a feasible solution. Conversely, paths that are inadequately optimized
may lead MARS to uncover solutions of inferior quality.

Both the quantity and the quality of available paths impact the algo-
rithm’s performance. Striking a balance is crucial to ensure an adequate
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(a) The subtree rooted in qn belonging to the ellipse I of
Equation (4.6). The dotted green line are not considered
because not in I .

(b) The subtree is grown to reach qj. The last connection
is a second-order connection.

(c) The connecting path from qn to qj found (light blue
path).

Figure 4.5: Subtree (green) and subpaths (bold lines) considered to reduce the
computational load of connectToPaths.
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number of paths without overburdening computational resources and to
identify paths covering diverse segments of the search space. Although
these aspects deserve further investigation, this thesis limits on experi-
mentally delineating these trade-offs.

Typically, having 2− 4 additional paths alongside the robot’s current
one is sufficient to achieve satisfactory performance.

Moreover, although not infallible, it has been observed that applying
some iterations of local optimizations, such as localized rewiring or short-
cutting methods, to paths generated by non-optimal algorithms like RRT
or RRT Connect is generally effective in computing a diverse set of paths.
It is essential to underscore that these considerations pertain solely to the
calculation of the set of alternative paths S and not to the initial path for
the robot, which is generally intended to be at least near-optimal.

4.2.4 Properties of the replanning algorithm

Sampling-based path planners are considered probabilistically complete
when the likelihood of discovering a solution is equal to one with an
infinite number of samples. Furthermore, if the cost of the solution con-
verges to the optimal value as the sample count tends towards infinity,
these planners are deemed almost-surely asymptotically optimal. For
formal definitions, please refer to Section 2.3.4.1.

It is important to note that these properties cannot be assured for re-
planners without any assumptions regarding obstacle dynamics. Indeed,
it is possible to construct scenarios where an obstacle consistently blocks
any newly provided solution, rendering it impossible for the robot to find
a path to the goal. However, by assuming a static scene starting from a
specific point in time onwards, we can establish and demonstrate these
properties for MARS.
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4.2.4.1 Probabilistic completeness

MARS searches for a path from a generic start node qn ∈ Q1 to a generic
goal node qj ∈ Q2, which do not necessarily correspond to the current
robot configuration and the goal. Note that the subpaths from the robot
configuration to qn and from qj to the goal are always feasible (otherwise
Equation (4.5) in Section 4.2.3 does not hold). The problem, therefore, re-
duces to proving that the algorithm is complete in searching for a path
from qn to qj. A sufficient condition for an RRT-like planner to be prob-
abilistically complete is to draw samples with a probability greater than
zero across the search space. When the current solution is obstructed, we
superimpose that ci equals infinity (see Equation (4.6) in Section 4.2.3).
The hyperspheroid, therefore, comprises the entire search space sampled
with non-zero probability. With an infinite number of samples, the algo-
rithm can find a feasible solution if one exists.

4.2.4.2 Asymptotic optimality

MARS achieves asymptotic optimality by employing an asymptotically
optimal planner, such as RRT*, to grow the subtree in Sub-Algorithm 6b.
When MARS tries to optimize the current path, it chooses pairs of nodes
(qn, qj) such that qn ∈ Q1 and qj ∈ Q2. When qn corresponds to the
current robot configuration and qj corresponds to the goal, the algorithm
behaves like Informed RRT* [49] and is therefore asymptotically optimal.
For all other pairs of nodes, MARS optimizes the connecting path be-
tween the two.
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4.3 Experimental results

4.3.1 Challenges in benchmarking

Experimental tests are crucial for evaluating algorithms, often involving
comparisons with established state-of-the-art methods. However, the re-
sults are greatly influenced by the simulated environment in which the
robot operates and the chosen evaluation metrics. This section succinctly
outlines the complexities and critical considerations involved in conduct-
ing a benchmarking campaign for replanning algorithms.

4.3.1.1 Test design

The definition of the scenario is a critical step in testing, with algorithm
performance susceptible to fluctuations based on factors such as the com-
plexity of the search space and the variability of the environment:

• Numerous elements contribute to the complexity of the problem.
These include the size and dimensionality of the search space, the
proportion of space occupied by fixed obstacles, and the presence
of narrow passages. These aspects can significantly impact the per-
formance of a replanning algorithm. An algorithm that excels in a
small and obstacle-sparse environment may see a sharp decline in
performance when faced with a larger space. Escalating the dimen-
sionality of the search space amplifies the complexity exponentially.
Graph-based algorithms, for instance, are notably susceptible to the
curse of dimensionality, a challenge that also extends to sampling-
based replanners.

• An adequate assessment of a replanning algorithm should consider
the variability in both the problem settings and the dynamic nature
of the environment. Evaluating the algorithm based on just one
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set of start and goal configurations while assuming consistent ob-
stacle behaviour offers an incomplete measure of its performance.
Instead, multiple tests with several sets of start and goal configura-
tions and a diverse range of moving obstacles in terms of quantity,
trajectories, and sizes should be considered. Quantity of obstacles
significantly impacts the algorithm’s efficiency. For example, DRRT
[40] demonstrates the capability to adapt its tree structure dynami-
cally in response to obstacles. However, when faced with many ob-
stacles, a substantial portion of the tree may be invalidated, making
it challenging to find a new solution within a reasonable planning
timeframe.

Generally, a path replanning algorithm must be capable of rectify-
ing the current path within a limited timeframe, ranging from tens to
a few hundred milliseconds. The maximum allowed execution time for
the algorithm significantly influences the outcomes. An excessively small
value may not afford sufficient time to find a solution, while an overly
large value could render the robot unresponsive. Determining the max-
imum time requires careful calibration, striking a balance between the
robot’s responsiveness and the algorithm’s ability to find a solution. The
complexity of the specific problem at hand significantly influences this
calibration process.

4.3.1.2 Metrics design

Benchmarking results are contingent on the metrics employed to evaluate
replanning algorithms. It is imperative to establish comprehensive and
representative metrics that facilitate fair and meaningful comparisons.

Standard motion planning metrics encompass planning success rate
(i.e., whether the planner successfully finds a solution), number of itera-
tions (or planning time) required to find a solution, and path cost (typi-
cally represented by the path length). Given that the primary objective of
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a replanning algorithm is to ensure the robot reaches its destination while
avoiding collisions, the success rate (S%) emerges as a paramount metric:

S% =
tests without collisions

total number of tests
(4.7)

Furthermore, it is crucial to assess algorithms based on the quality of the
solutions they produce. When success rates are comparable or reach simi-
lar values, the algorithm should be selected to yield a higher path quality.
A standard metric for evaluating path quality is its length. However, un-
like path planning, with path replanning the path dynamically adjusts to
avoid moving obstacles. Consequently, a relevant performance measure
becomes the length of the path actually traversed.

For a fair comparison among different tests, this length should be nor-
malized with respect to the optimal path length. However, calculating or
even defining what the optimal path is in a context where obstacles may
appear and disappear multiple times along the robot’s trajectory can be
complex. Therefore, an alternative approach could be normalizing with
respect to the length of the initial path.

Occasionally, the time an algorithm takes to furnish an initial viable
solution is considered a valuable metric. Certain algorithms, like DRRT
[40], cease execution once a feasible solution is found. Conversely, oth-
ers, like Anytime DRRT [42], utilize all available time not only to find a
feasible solution but also to enhance it. Nonetheless, it is crucial that a re-
planning algorithm delivers a solution within a user-defined maximum
time frame, coupled with a high-quality solution. Merely providing a so-
lution in 50 ms, with a maximum time limit set at 200 ms, is less relevant
if the algorithm does not effectively utilize the remaining time.
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(a) Medium 3-DoF scenario. (b) 6-DoF scenario.

Figure 4.6: Screenshots from the tests of MARS. The yellow line is the robot’s
current path, while the other colored lines are the other available paths. Grey
boxes are the fixed obstacles, and red boxes are the moving ones.

Table 4.1: Settings of the different scenarios used for MARS benchmarking.

n. Name
State Fixed Moving
size obstacles obstacles

#1 Small 3-DoF 3m×3m×3m 3 3
#2 Medium 3-DoF 7m×7m×3m 8 6
#3 Large 3-DoF 12m×12m×3m 10 10
#4 6-DoF [−π

2 , π
2 ] rad 6 3

#5 12-DoF [−π
2 , π

2 ] rad 6 3
#6 18-DoF [−π

2 , π
2 ] rad 6 3
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4.3.2 Numerical simulations

Simulations were conducted to compare MARS with some state-of-the-
art path replanners. In particular, MARS was compared with DRRT [40],
Anytime DRRT [42], MPRRT [157], and with [27], which we will refer
to by the acronym DRRT* for convenience. The tests were conducted
on a computer with a 2.80 GHz CPU using ROS [138] and MoveIt! [69]
for scene management and collision checking. The replanners were im-
plemented in C++ using OpenMORE [161] (refer to Chapter 6) and in-
tegrated into the architecture of Algorithm 3. The code can be found at
[160]. Tests were carried out in accordance with the principles outlined
in Section 4.3.1. The algorithms were tested in 6 scenarios, which differ
in the size and dimensionality of the search space (DoF of the robot):

Scenarios 1, 2, and 3 consist of a point robot moving in a 3-dimensional
space. There are fixed obstacles of various sizes in each of the scenarios
(Table 4.1);

Scenarios 4, 5 and 6 provide a 6-, 12-, and 18-DoF robotic manipulator,
respectively. Each of these scenarios shares the same fixed obstacles.

The test consists of 200 executions for each scenario, divided into 20
queries and 10 iterations per query. At each query corresponds a differ-
ent pair of start and goal configurations. For each start-goal pair, the test
is repeated 10 times. Initially, the robot’s path is calculated. In the case
of MARS, the set of the other paths (two paths) is also computed at the
beginning. The planner used is RRT-Connect [87], followed by an opti-
mization procedure [80]. During the execution, new obstacles randomly
appear, obstructing the robot’s path and forcing the replanner to find a
new solution. Table 4.1 shows the number of fixed and moving obstacles.
Each algorithm is assigned a maximum replan time of 200 ms. The fre-
quency of the Trajectory Execution Thread and the Collision Checking Thread
are 500 Hz, and 30 Hz. The queue Q1 of MARS is sorted in descending
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order based on the distance along the path from the current robot config-
uration. The queueQ2 is sorted in ascending order based on the distance
from the processed node qn ∈ Q1.

The algorithms are evaluated using the following metrics:

Success rate (S%): denote Nsuccess and Ntests as the number of tests ex-
ecuted without collisions and the number of tests performed in each
scenario, respectively. The success rate:

S% =
Nsuccess

Ntests
(4.8)

is the percentage of tests in which the robot reached the goal without
collisions.

Collision rate (C%): denote Ncollisions, Ntests and Nobs as the number of
obstacles the robot collided with, of tests performed and of random
obstacles in the considered scenario, respectively. The collision rate:

C% =
Ncollisions

((1− S%) Ntests Nobs)
(4.9)

indicates the number of obstacles the robot collided with when the re-
planner failed. The denominator is the number of obstacles during un-
successful iterations. For robots with a built-in safety stop procedure
that avoid collisions, this metric can be used as a proxy for the number
of safety stops.

Normalized path length (n.p.l.): let ∥σreal∥ and ∥σinit∥ denote the actual
path length traversed by the robot and the initially computed path
length at the beginning of the iteration, respectively. The equation:

n.p.l. =
∥σreal∥
∥σinit∥

(4.10)
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Table 4.2: Success rate (S%) and Collision rate (C%) of the replanning algorithms
in the different scenarios tested. Maximum replanning time 200 ms.

Small 3-DoF Medium 3-DoF Large 3-DoF
S% C% S% C% S% C%

MARS 100.0 0.0 100.0 0.0 100.0 0.0
DRRT* 95.5 33.3 89.5 19.0 52.0 34.8
DRRT 100.0 0.0 18.0 55.2 1.0 79.3
Anytime DRRT 100.0 0.0 17.5 56.3 1.50 80.2
MPRRT 100.0 0.0 79.5 23.2 11.0 29.3

6-DoF 12-DoF 18-DoF
S% C% S% C% S% C%

MARS 94.0 38.9 93.0 36.6 88.5 37.3
DRRT* 66.0 44.8 9.0 77.1 4.0 82.2
DRRT 0.0 98.9 0.0 99.7 0.0 99.8
Anytime DRRT 0.0 99.4 0.0 99.3 0.0 99.7
MPRRT 2.0 92.7 7.5 76.4 9.0 72.2

indicates how longer (due to obstacle avoidance) or shorter (due to
path optimization) the path is compared to the initial one. Since σreal

depends on σinit, its length is normalized to obtain a comparable mea-
sure across tests.

Figure 4.6 shows screenshots of two tests of MARS in a 3-DoF and 6-
DoF scenario. Table 4.2 shows the success rate S% and collision rate C%
of the algorithms in each scenario. Figure 4.7 shows the boxplot of the
normalized path length n.p.l. for replanners that achieved at least a 5%
success rate.

All planners have a high success rate for scenario 1. As the complexity
grows, MARS maintains a high success rate (S% ≥ 88.5%). In scenarios
5 and 6, MPRRT and DRRT* achieve a success rate of 9.0% and 4.0%,
respectively, whereas DRRT and Anytime DRRT always fail. MPRRT
performs better than DRRT and Anytime DRRT in scenario 6 because
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(100%) (95.5%) (100%) (100%) (100%)

(a) Small 3-DoF scenario.
(100%) (89.5%) (18.0%) (17.5%) (79.5%)

(b) Medium 3-DoF scenario.

(100%) (52.0%) (11.0%)

(c) Large 3-DoF scenario.
(94.0%) (66.0%)

(d) 6-DoF scenario.

(93.0%) (9.0%) (7.5%)

(e) 12-DoF scenario.
(88.5%) (9.0%)

(f) 18-DoF scenario.

Figure 4.7: Normalized path length (n.p.l.) in each scenario. A boxplot below the
red dashed line indicates the replanner generated shorter paths than the initial
one. The success rate is listed under each replanner’s name. Only replanners
with a success rate exceeding 5% are shown. Maximum replanning time 200 ms.
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Table 4.3: Overview of the properties of the tested algorithms.

Algorithm Replan Anytime Asymptotic optimality

MARS Always ✓
When coupled with an

optimal planner

DRRT
If path is

✗ ✗
obstructed

Anytime DRRT Always ✓ ✗

MPRRT Always ✓
As computation
power increases

DRRT*
If path is

✓ ✗
obstructed

it plans on multiple parallel threads, and its collision rate remains lower
than DRRT and Anytime DRRT.

Table 4.3 offers an overview of algorithms properties influencing the
quality of the solutions they provide. Notably, while DRRT and DRRT*
are selectively triggered only when the path is obstructed, Anytime DRRT,
MPRRT and MARS persistently search for improved solutions even when
there are no obstacles on the current path. Each algorithm adopts an
anytime approach, quickly generating an initial solution and allocating
any remaining time within the same replanning cycle for further refine-
ment. The sole exception is DRRT, which terminates upon discovery of
a feasible solution. Moreover, certain algorithms exhibit the capacity to
furnish optimal solutions within environments that can be regarded as
static from a particular point in time onward. Section 4.2.4.2 shows that
MARS is asymptotically optimal when coupled with an asymptotically
optimal planner. Additionally, [157] proves that MPRRT tends towards
the optimal solution as parallel computing power increases.

Figure 4.7 shows the n.p.l. for the algorithms with a S% ≥ 5%. When
a boxplot is below the red dashed line, it means that the replanner pro-
duced shorter paths than the one computed initially. In scenarios 1-2
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(a) Human skeleton key-points. (b) Each key-point is associated with a
sphere, considered as a dynamic obstacle.

Figure 4.8: The vision system, coupled with a human skeleton tracking algo-
rithm, identifies the presence of a human within the robotic cell and delineates
specific key-points on the skeleton. These key-points, represented as Cartesian
coordinates, serve a dual purpose: they allows SSM computation and act as the
center for spheres considered as dynamic obstacles by the replanner.

MARS, DDRT* and MPRRT provide comparable n.p.l. (Figure 4.7a and
4.7b). The performance difference compared to MARS increases with
the complexity of the problem. MARS outperforms the baselines in all
those situations where the time to compute and optimize the initial path
is critical; the algorithm, in these cases, will act as an online optimizer.
Anytime DRRT seems equivalent to DRRT, probably because most of the
replanning time is spent by DRRT on finding a feasible solution, and the
remaining time devoted to its improvement is short. In scenarios 5 and
6, MARS and MPRRT have comparable n.p.l. results. However, they are
dramatically different in terms of success rate (93% and 88.5% of MARS
compared to 7.5% and 9% of MPRRT).
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(a) Robotic cell. (b) Test on the real cell.

Figure 4.9: Collaborative robotic cell featuring a UR10e mounted upside down
and Intel RealSense D435.

Figure 4.10: Planning scheme overview: The offline planner computes the initial
trajectory and a set of paths for MARS. The path replanning module executes
the robot’s trajectory while seeking enhanced solutions. The speed modulation
module adjusts the robot’s velocity in compliance with SSM from ISO/TS 15066.
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4.3.3 Real-world experiments

MARS and the replanning architecture were tested within the collabo-
rative robotic cell illustrated in Figure 4.9. The setup features a 6-DoF
UR10e manipulator mounted upside down and an Intel Realsense D435
for tracking the operator’s position. The experiments involve the robot
moving from an initial position to a target position. Simultaneously, an
operator obstructs the initially planned path, prompting the algorithm to
search for an alternate valid path and optimize it over time.

4.3.3.1 Software architecture

The planning process, outlined in Figure 4.10, involves a motion planner
to compute the initial trajectory and a set of paths for MARS. The replan-
ning architecture (detailed in Chapter 3) orchestrates the robot’s motion
while concurrently executing the replanning algorithm. This system re-
ceives real-time updates regarding the operator’s pose via the vision sys-
tem, which utilizes a human skeleton tracking algorithm [145] based on
MediaPipe BlazePose [5]. This algorithm provides Cartesian coordinates
corresponding to key-points on the human skeleton (Figure 4.8a). Each
key-point serves as the center for a sphere encapsulating a segment of the
human body, with the sphere’s radius customizable by the user. Together,
these spheres represent the dynamic obstacles within the operational en-
vironment (Figure 4.8b).

Additionally, a safety module based on SSM from ISO/TS 15066 reg-
ulates the robot’s velocity in response to its proximity to the human.

The entire framework has been realized within the ROS ecosystem
[138], where the human tracking system, the SSM module, and the re-
planning architecture operate as distinct ROS nodes. MoveIt! [69] main-
tains the planning scene updated with the dynamic spherical obstacles
derived from the vision system’s output (Figure 4.8b) and provides colli-

105



4.3. Experimental results

sion checking capabilities for the replanning algorithm. Specifically, the
replanning architecture is actually implemented by OpenMORE [161] (re-
fer to Chapter 6). This architecture continually generates the subsequent
robot command, which is transmitted to the robot’s controller utilizing
the ROS Control [24] framework.

4.3.3.2 SSM safety module

The SSM module dynamically adjusts the robot’s velocity as per Equation
(2.21) to ensure safety. It implements a slight variation of the dynamic
SSM 2D (dSSM) introduced in [12]. The module considers a set of m key-
points on the human skeleton H = {h1, h2, . . . , hm} and a set of p key-
points on the robot structure R = {r1, r2, . . . , rp}, where hk, rj ∈ R3 are
Cartesian coordinates relative to a common reference frame. Each point
rj ∈ R is associated with the robot’s configuration q through the forward
kinematic function rj = fkj(q), while the points hk ∈ H are provided
by the vision system and the human skeleton tracking algorithm (Figure
4.8a). The minimum human-robot distance, denoted as S in Equation
(2.21), is computed as:

S = min
k=1,...,m
j=1,...,p

∥rj − hk∥ (4.11)

Algorithm 7 easily solves Equation (4.11).

Let urj,hk represent the unit vector from rj to hk, with ḣk and ṙj denoting
the velocities of hk and rj respectively. The velocity vrj,hk of the robot point
rj toward the human point hk is determined by:

vrj,hk = (ṙj − ḣk) · urj,hk = (Jj(q)q̇− ḣk) · urj,hk (4.12)

where Jj(q) signifies the Jacobian of rj. The maximum velocity of the
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Algorithm 7 Minimum human-robot distance computation
Input: H = {h1, h2, . . . , hm},R = {r1, r2, . . . , rp}
Ensure: minimum human-robot distance S

1: S← ∞
2: for j = 1 to p do
3: for k = 1 to m do
4: S′ ← ∥rj − hk∥
5: if S′ < S then
6: S← S′

7: return S

robot towards the human is:

vrh = max
k=1,...,m
j=1,...,p

(vrj,hk) (4.13)

At each instant, the safety speed slowdown ssafety ∈ [0, 1] is employed to
scale the robot’s velocity and it is calculated as:

ssafety =

min
(

vmax
vrh

, 1
)

if vrh > 0

1 if vrh ≤ 0
(4.14)

where vmax is computed using Equation (2.21). When vrh ≤ 0 the robot is
moving away from the human, and thus no velocity scaling is required.

4.3.3.3 Discussion

The replanning algorithm adeptly adjusts the robot’s path in response to
obstructions caused by the operator. However, its inclination towards
the shortest path leads to frequent decelerations imposed by the safety
module, as the generated solutions often bring the robot into close prox-
imity to the operator. Consequently, while the robot consistently follows
a collision-free path, it may not always select the most efficient one for
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collaborative scenarios. This emphasizes the crucial importance of inte-
grating human awareness into the replanning process, considering how
the safety module influences generated solutions within the context of
human-robot collaboration. This issue will be thoroughly addressed in
Chapter 5.

4.4 Summary

This chapter introduced MARS, a novel sampling-based path replanning
algorithm for robots in dynamic, high-dimensional search spaces. What
sets MARS apart is its utilization of pre-computed paths to swiftly gen-
erate and optimize a new path when the current one is obstructed by
unforeseen obstacles. MARS simplifies the search process by connecting
the current path to nodes from available paths that are closer to the cur-
rent path than the final goal. By assessing the cost of the current solution,
the algorithm selects nodes from existing paths to connect with, progres-
sively constructing a directed graph to leverage efforts from prior itera-
tions. Through the incorporation of informed sampling, subtree reuse,
and efficient collision checks, MARS significantly reduces computational
overhead, enabling faster and more refined solutions.

Comparative evaluations were conducted pitting MARS against four
prominent sampling-based replanning algorithms across diverse high di-
mensional scenarios. Simulations involved moving a robot within an en-
vironment populated with dynamic obstacles capable of suddenly inval-
idating the robot’s intended path. The findings affirm MARS superior-
ity over the baseline algorithms, demonstrating higher success rates and
superior solution quality, particularly in scenarios involving high-DoF
robots.

In addition to simulation-based testing, we also evaluated the algo-
rithm’s performance in a real-world collaborative setting, employing a
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6-DoF robot. The algorithm demonstrated good proficiency in dynami-
cally replanning the robot’s path. Nonetheless, the generated solutions
necessitated frequent safety slowdowns, owing to their proximity to the
human operator. This issue motivated the work of Chapter 5.
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CHAPTER 5
Human-aware motion replanning

This chapter explores the challenge of motion replanning in human-
robot collaborative scenarios, placing emphasis on both reactivity and
safety-compliant efficiency.

In collaborative environments, it is imperative for motion planners to fac-
tor in potential slowdowns introduced by safety protocols. To enhance
collaboration efficiency between humans and robots, in the first part of
the chapter we combine a responsive path replanning algorithm with a
safety-aware cost function. This empowers the robot to dynamically ad-
just its path in real-time, reacting to shifts in the human’s state consid-
ering the safety-related effects. The resultant algorithm, called Human-
Aware Multi-pAth Replanning Strategy (MARSHA), minimizes the ne-
cessity for trajectory slowdowns, subsequently reducing execution time
and enhancing overall operational efficiency.

In the second part of the chapter we conduct a comprehensive se-
ries of simulations and real-world experiments in an industrial collabo-
rative robotic environment to validate our approach. The outcomes ex-
hibit the superior efficacy of our method in comparison to conventional
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human-robot cooperation techniques, showcasing notable enhancements
in terms of both efficiency and safety.

This chapter is based on the work presented in the submitted paper [162].

5.1 Introduction

Collaborative setups introduce inherent risks for human operators. It
is imperative to conduct a comprehensive risk analysis to pinpoint and
mitigate potential hazards. Factors such as the frequency and energy of
human-robot interactions are pivotal in this assessment [170]. As dis-
cussed in Section 2.4, the ISO/TS 15066 safety standard (Robots and robotic
devices – Collaborative robots [70]) guides roboticists in crafting collabora-
tive operations, including the Power and Force Limiting (PFL) and the Speed
and Separation Monitoring (SSM) modes, which delineate safety require-
ments for applications with and without physical contact, respectively.

In typical collaborative applications, safety modules implement these
collaborative modes to modulate the robot’s speed based on its proxim-
ity to the operator, thereby mitigating potential hazards. Conventional
path planning and replanning algorithms often fall short in these con-
texts, as they prioritize the shortest path without considering the possi-
ble safety-related slowdowns. Consequently, researchers have devised
human-aware motion planners to diminish idle times caused by safety
interventions, optimizing robot movements to minimize safety-imposed
speed limitations [38, 90, 122]. These methodologies bolster productivity
by circumventing situations that might otherwise substantially impede
the robot’s performance due to frequent safety interventions, with both
proactive and reactive approaches.

Proactive planners compute offline trajectories that minimize the ex-
pected interference between the operator and the robot. They rely on a
model of the human’s behavior and on the minimization of collision risk
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[15], execution time [38], or human discomfort [109]. While these ap-
proaches are robust to the operator’s presence duration and frequency
of access, they become considerably less reliable when the operator’s oc-
cupancy model is inaccurate or unavailable, potentially leading to unex-
pected interference.

Reactive planners focus on real-time robot trajectory modifications.
This involves dynamic speed adjustments based on the distance from the
operator [12, 108, 110, 185], as well as the ability to alter the path dynami-
cally [66, 122, 163]. Reducing speed works well when there are short and
infrequent interventions in the workspace but becomes inefficient with
frequent and close collaboration, resulting in safety stops whenever the
human is nearby. An emerging trend is to combine both strategies, em-
ploying path modifications during execution to avoid collisions and scal-
ing the trajectory for safety [44, 122, 164]. Nevertheless, it is important
to note that replanning algorithms usually speed up computation by pri-
oritizing path length without considering the subsequent speed scaling,
leading to further slowdowns due to the proximity of the paths found to
the operator.

To overcome the limitations arising from the unpredictability of un-
structured tasks in both approaches, a promising strategy to motion plan-
ning in collaborative operations is blending reactivity with proactivity.
This involves integrating a reactive motion replanning algorithm with
a human-aware cost function to proactively minimize interference. Co-
operation efficiency is greatly improved by optimizing the trajectory for
both travel times and operator-induced safety slowdowns. While previ-
ous studies are limited to offline planning when accounting for human
influence [38, 90], extending this approach to real-time planning presents
a challenge that requires further investigation.
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5.1.1 Contributions

We aim to bridge the gap between human-aware proactive and reactive
methods. Our approach integrates a safety-aware cost function based on
ISO/TS 15066 [70] into a fast replanning algorithm, allowing the robot’s
path to be changed in runtime in a manner that strictly adheres to safety
standards. The primary objective is to minimize the execution time of
the trajectory, taking into account the estimated speed limitations. The
proposed approach effectively addresses the limitations of proactive ap-
proaches, allowing online adaptation of the plan to accommodate un-
expected movements of the operator. It also improves the efficiency of
reactive approaches, going beyond simple collision-free path replanning
and actively seeking safety-aware solutions. For this purpose, we draw
inspiration from [38] to introduce a safety-aware cost function based on
ISO/TS 15066 that can be easily integrated into the replanning algorithm.
We refer to our modified replanning algorithm as Human-Aware Multi-
pAth Replanning Strategy (MARSHA), which extends the capabilities of
MARS (Chapter 4) to the new, computationally expensive cost function,
retaining high responsiveness. We validate MARSHA in simulations and
real-world tests. Our experimental campaign demonstrates that the pro-
posed method outperforms reactive and proactive methods and draws
conclusions on the suitability of different planning approaches to the sce-
narios at hand.

A video of the algorithm is also available 1.

5.2 Related works on human-aware planning

Human-aware motion planners enable robots to move while considering
the presence of humans. Previous works focused on optimizing paths
by considering the human-robot distance, the human field of view, and

1Video: https://youtu.be/2WiNfq9vNcQ
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comfort [109, 152]. Other approaches avoid high-occupancy areas by act-
ing on the planner cost function [60, 159, 190]. For example, [60] biases
the sampling to regions situated far from the current human state [159],
[190] utilized STOMP [72] to minimize a cost function penalizing pre-
viously occupied regions while maximizing the human-robot distance,
and [15] deformed the trajectory based on a repulsion field associated
with checkpoints on the human skeleton. [13] accounts for collision risk,
social norms, and crowded areas. [71] and [75] focused on reducing ex-
ecution time in handover tasks without considering collisions with the
environment. Some studies also evaluated human factors and demon-
strated enhancements in work fluency and operator satisfaction when a
human-aware motion planner is adopted [7, 91].

Recent advancements have focused on integrating safety within mo-
tion planning. Approaches like [38] and [90] employ a cost function to
assess paths by estimating the speed scaling experienced by the robot
during traversal. Additionally, [43] utilizes spatio-temporal human oc-
cupancy maps to devise robot trajectories that anticipate human move-
ments. These techniques eliminate the need for fine-tuning cost function
weights and directly incorporate safety-related speed limitations in mo-
tion generation, minimizing an estimate of the robot’s execution time in
accordance with SSM [38, 43] and PFL [90] guidelines.

However, it is important to note that these approaches perform of-
fline planning based on a model describing human behavior during robot
motion. Consequently, they face challenges in adapting to variations in
expected human behavior and lack real-time adaptability.

5.3 Preliminaries

As stated in Definition 2, solving the optimal path planning problem en-
tails determining a path σ∗ : [0, 1] → Cfree that minimizes a designated

115



5.3. Preliminaries

cost function c:

σ∗ = argmin
σ∈Σ

{c(σ)|σ(0) = qstart, σ(1) = qgoal} (5.1)

c(σ) usually measures the length of σ. Discretizing σ intoM waypoints
q, we have:

c(σ) =
M−1

∑
i=1
||qi+1 − qi||2 (5.2)

In this work, we aim to evaluate paths based on an estimate of the robot
slowdown during execution. One option is to use the estimated path
execution time test as a cost function, considering the human state H, as
in [38]:

c(σ) = test(σ,H) (5.3)

The discretization of σ allows us to express Equation (5.3) as follows:

c(σ) =
M−1

∑
i=1

tnom,iλi (qi, qi+1,H) (5.4)

where tnom,i is the expected execution time in case the robot is not slowed
down, and λi is the average time-dilatation factor (see Section 5.4.1) that
measures the effect of the human on the execution time of connection
qiqi+1 of path σ:

λi =
test,i(H)

tnom,i
≥ 1 (5.5)

However, as detailed in Section 2.1, a prevalent strategy for addressing
motion planning problems involves initially planning a path and sub-
sequently calculating its time parameterisation. Consequently, tnom,i is
typically determined a posteriori utilizing methods such as TOPP [128].
Nonetheless, it can be underestimated by considering the minimum time
required to cross the connection qiqi+1, assuming that at least one joint
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operates at its maximum speed. We adopt this approximation from [38]
to decouple the cost function from the robot’s velocity, which is beneficial
for planners not accounting for velocities and accelerations. It is notewor-
thy that underestimating the time interval results in an overestimation of
velocity in favor of safety. With q̇max the maximum joint speed vector, the
minimum time required to travel qiqi+1 is given by the maximum of the
component-wise ratio (qi+1 − qi)⊘ q̇max; thus, Equation (5.4) becomes:

c(σ) =
M−1

∑
i=1

∥∥∥(qi+1 − qi)⊘ q̇max

∥∥∥
∞

λi (qi, qi+1,H) (5.6)

Note that Equation (5.6) considers constant velocity along connection
qiqi+1, so the following equations hold:

λi =
test,i(H)

tnom,i
=

vest,i(H)

vnom,i
=

q̇est,i(H)

q̇nom, i
≥ 1 (5.7)

where vest,i(H) and q̇est,i(H) are the estimated Cartesian and joint veloc-
ities of the robot along connection qiqi+1, which depend on the human
state H, while vnom,i and q̇nom,i are the nominal ones, obtained consider-
ing the maximum velocity of at least one joint along qiqi+1.

Optimizing a path with this cost function involves finding a solution
that minimizes the estimated execution time, taking into account the hu-
man state. However, [38] does not provide an admissible informed set for
the cost function of Equation (5.6). Including an admissible informed set
in a sampling-based path planner speeds up the convergence rate by dis-
carding areas that do not contain the optimal solution. For this reason,
we approximate Equation (5.6) and derive an admissible informed set
that can enhance planning.
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Figure 5.1: System overview. The offline path planner computes an initial path
and the replanner updates the solution to minimize a safety-aware cost function
when the vision system detects changes in the human state. A safety module
slows down the robot based on ISO/TS 15066.

5.4 Proposed approach

The proposed approach operates within the system shown in Figure 5.1,
adhering to a standard paradigm for human-robot cooperation applica-
tions. This paradigm consists of an offline path planner responsible for cal-
culating the initial path, and a fast safety-aware replanner online updating
the trajectory based on information about the human state. The offline
planner can also proactively compute a trajectory that reduces the acti-
vation of safety rules. A safety module based on the ISO/TS 15066 [70]
is employed to ensure safe cooperation by slowing down the robot based
on the human state. Its implementation is detailed in Section 4.3.3.2.

The replanner modifies the current path whenever the human state
changes, aiming to minimize the intervention required by the safety mod-
ule, thereby enhancing the overall efficiency of cooperation. This goal is
achieved during the replanning procedure by minimizing a safety-aware
cost function, which estimates the trajectory execution time while consid-
ering the slowdown commanded by the safety module. By optimizing
this cost function, the reactive planner can find an efficient solution re-
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specting the safety constraints, leading to smoother and more productive
human-robot cooperation.

The next subsections define the proposed safety-aware cost function,
derive the admissible informed set necessary to speed up planning, and
describe the overall replanning method.

5.4.1 The safety-aware cost function

Our proposal involves the design of a cost function that provides an ap-
proximation to Equation (5.6). The main objective of this cost function is
to minimize the execution time while considering the human state. Si-
multaneously, in Section 5.4.2 we ensure that an admissible informed set
remains available and can be directly sampled to accelerate the planning
process. The proposed cost function is defined as follows:

c(σ) =
M−1

∑
i=1
∥(qi+1 − qi)⊘ q̇max∥2 λi (qi, qi+1,H) (5.8)

Here, the cost function calculates the length of the path segments, weight-
ing each joint by its maximum speed. Additionally, it incorporates the
penalty term λ to discourage paths that reduce collaboration efficiency.

It is worth noting that Equation (5.8) serves as an upper limit com-
pared to Equation (5.6). In fact, Equation (5.8) uses the Euclidean norm
instead of the infinity norm and ∀v ∈ Rn, ∥v∥2 ≥ ∥v∥∞. Thus, we have:

w−1

∑
i=1
∥(qi+1 − qi)⊘ q̇max∥2λi (qi, qi+1,H) ≥

w−1

∑
i=1
∥(qi+1 − qi)⊘ q̇max∥∞λi (qi, qi+1,H)

(5.9)

Therefore, by minimizing the proposed cost function, we decrease the
upper bound of Equation (5.6) and consequently reduce the estimated
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execution time of the path.

The safety requirements of ISO/TS 15066 can be translated into a
human-robot relative speed limit:

vrh ≤ vmax (5.10)

Here, vrh is the robot’s velocity towards the human and vmax is calculated
as in Section 2.4. The computation of vrh follows the same procedure as
outlined in Section 4.3.3.2 for the safety module, which is briefly summa-
rized below.

Let H = {h1, h2, . . . , hm} represent a set of m points of interest for the
human state, and R = {r1, r2, . . . , rp} denote a set of p points of interest
on the robot’s structure. Here, hk, rj ∈ R3 denote the Cartesian positions
of the key-points on the human skeleton and robot structure, respectively.

Each point rj is linked to the robot’s configuration q through the for-
ward kinematic function rj = fkj(q). Additionally, urj,hk signifies the unit
vector from rj to hk, and ḣk, ṙj represent the velocities of hk and rj, respec-
tively. The velocity vrj,hk of the robot point rj towards the human point hk

is computed as:

vrj,hk = (ṙj − ḣk) · urj,hk = (Jj(q)q̇− ḣk) · urj,hk (5.11)

where Jj(q) denotes the Jacobian of rj.

As stated in Section 5.3, robot velocity is overestimated by consider-
ing that at least one joint is moving at its maximum speed. Thus, for
connection qiqi+1 we have:

ui =
(qi+1 − qi)

||qi+1 − qi||2
, q̇i =

(
min

t

∣∣∣ q̇max,t

ui,t

∣∣∣)ui (5.12)

where q̇max,t and ui,t are the t-th component of vectors q̇max and ui, re-
spectively. Therefore, the safety slowdown λ(q) at robot’s configuration
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q can be computed as follows:

λ(q) = max
k=1,...,m
j=1,...,p

(vrj,hk

vmax
, 1
)
≥ 1 (5.13)

To elucidate, the deceleration denoted as ssafety in Equation (4.14) of Sec-
tion 4.3.3.2 and λ(q) embody a parallel concept. However, ssafety is con-
fined to the range [0, 1], whereas λ(q) ≥ 1.

Equation (5.13) computes λ(q) in a single configuration q. However,
in Equation (5.8), λi represents the estimated average scaling factor ex-
perienced by the robot when traversing the connection qiqi+1. To obtain
λi, we divide qiqi+1 into Z equally-spaced configurations qz, compute
λz = λ(qz) for z = 1, . . . ,Z and finally:

λi =
1
Z
Z
∑
z=1

λz. (5.14)

Note that the calculation of λi can be parallelized.

By substituting Equation (2.21) in Equation (5.13) to compute λ(q),
the cost function (5.8) penalizes paths failing to meet the SSM require-
ments. Alternatively, utilizing Equation (2.22) enables the penalization
of paths that do not satisfy the PFL requirements.

5.4.2 The admissible informed set

Admissible informed sets are a powerful tool for sampling-based path
planning algorithms because they speed up the search for a solution and
can significantly impact performance during online replanning. The idea
is to discard regions of the search space that surely do not contain the
optimal solution.

Given a positive cost function, the cost f (q) of the optimal path from
qstart to qgoal constrained to pass through q ∈ Cfree is equal to the cost of
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the optimal path from qstart to q, plus the cost of the optimal path from
q to qgoal. Since f (·) is generally unknown, an admissible heuristic f̃ (·)
is used as an estimate. An admissible heuristic is a function that never
overestimates the real cost f (q). In the case where the cost is the path
length, the Euclidean norm represents an admissible heuristic because
the cost of a path from qstart to qgoal passing through q cannot be lower
than:

f̃ (q) = ∥q− qstart∥2 + ∥qgoal − q∥2 ≤ f (q) (5.15)

It follows that all points outside of the following prolate hyperspheroid:

I = {q ∈ Cfree | ||q− qstart||2 + ||qgoal − q||2 < c} (5.16)

will surely not improve the current solution [49] (here, c denotes the cost
of the current solution). Such a set is called an admissible informed set.

Considering that λ ≥ 1 in Equation (5.8), it is possible to define an
admissible heuristic setting λ = 1:

f̃ (q) = ∥(q− qstart)⊘ q̇max∥2 + ∥(qgoal − q)⊘ q̇max∥2 (5.17)

from which the following admissible informed set derives:

I = {q ∈ Cfree |||(q− qstart)⊘ q̇max||2
+||(qgoal − q)⊘ q̇max||2 < c}

(5.18)

Note that Equation (5.17) differs from Equation (5.15) on the fact that
Equation (5.17) weighs each joint by the inverse of its maximum speed.
If we define q̂ = ĝ(q) = q⊘ q̇max and Ĉfree = ĝ(Cfree), Equation (5.18) can
be written as:

Î = {q̂ ∈ Ĉfree | ||q̂− q̂start||2 + ||q̂goal − q̂||2 < c} (5.19)
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Figure 5.2: Illustration of the admissible informed set sampling procedure.
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Hence, to obtain a direct sample from the informed set described in
Equation (5.18), we can follow a similar sampling procedure employed
by [49] to sample the set of Equation (5.19), illustrated in Figure 5.2 and
which, in summary, involves:

• Uniform random sampling of a unit ball.

• Extending the unit ball to form a hyperellipsoid with a transverse
diameter equal to c and conjugate ones equal to

√
c2 − c2

min, where
cmin represents the minimum cost between q̂start and q̂goal.

• Rototranslating the hyperellipsoid to align the foci with q̂start and
q̂goal.

After sampling q̂ from the set represented by Equation (5.19), we can
then compute q by applying the inverse function ĝ−1.

5.4.3 Human-Aware Multi-pAth Replanning Strategy

This section presents Human-Aware Multi-pAth Replanning Strategy
(MARSHA), a variant of MARS, presented in Chapter 4, to quickly re-
plan with the new presented cost function.

The modifications made to MARS and the framework are highlighted
in red in Algorithm 8 and 9, respectively. Specifically, we addressed
the computational burden associated with the computation of the cost
function, which can be significantly heavier compared to the simple Eu-
clidean norm used in MARS. To tackle this issue, we adopted a lazy ap-
proach that minimizes the need for frequent evaluations of the cost func-
tion (line 10 of Algorithm 9). During the process of subtree expansion,
our algorithm employs a strategy that evaluates the cost of new connec-
tions only when necessary. For instance, if the selected path planning
algorithm does not use a rewiring procedure (e.g., RRT [93]), the cost of
connections is assessed only after the subtree has successfully connected
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Algorithm 8 The modified replanning architecture for HRC.

Thread Trajectory execution
1: t← t + ∆t
2: state← sampleTrajectory(τ, t)
3: sendToController(state)

Thread Collision check
4: H ← updateHumanState()
5: σsubpath ← σcurrent[qcurrent, qgoal]
6: P ← S ∪ σsubpath
7: for σj ∈ P do
8: free, qbefore, qafter ← checkCollisions(σj)
9: if free then

10: cσj ← c(σj,H)
11: else
12: cσj ← +∞

Thread Path replanning
13: qcurrent ← projectOnPath(state, σcurrent)
14: σreplanned, solved← replan(σcurrent, qcurrent,S , max_time,H)
15: if solved then
16: σcurrent ← σreplanned
17: τ ← computeTrajectory(σcurrent)
18: else if distance from obstacle ≤ minimum allowed distance then
19: sendRobotStop()
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Algorithm 9 MARSHA: high-level description
1: Define P as the set of available paths
2: Define Q1 as the queue of the nodes of σcurrent between qcurrent and the obstacle
3: Sort Q1 by some criterion
4: for each node qn ∈ Q1 do
5: Insert the nodes of each σ ∈ P into a queue Q2
6: Sort Q2 by some criterion
7: for each qj ∈ Q2 do
8: Define the informed set on the best cost up to now
9: Get the subtree rooted in qn from the informed set

10: Grow the subtree in the informed set to reach qj with lazy cost evaluation

11: Update Q1 if a solution was found
12: Get the best path from the graph

to its target node. In this way, we limit the calculation of the cost function
only to the connections that belong to the solution.

It is important to note that the evaluation of the cost function requires
the updated human state, H, as an input (line 14 of Algorithm 8). For
example, H can be provided by a human tracking system. The Colli-
sion Check Thread, in addition to verifying collisions along the available
paths, updatesH (line 4) and calculates the cost of the connections for the
paths accordingly (line 10). This approach ensures that MARSHA does
not waste time evaluating the cost of connections of the current path and
of the set of available paths, but only focuses on the connections belong-
ing to the new solutions that have not yet been evaluated during the same
replanning iteration.

Figure 5.3 illustrates the distinct behaviors expected from MARS and
MARSHA. Specifically, MARS focuses on finding the shortest path that
connects the start to the goal (dashed black line), disregarding any effects
the SSM module may have on the path itself. Consequently, part of the
path goes through the yellow region, triggering a limited safety interven-
tion (e.g., limited slowdown), and the red region, which requires a strong
safety intervention (e.g., robot halts). On the other hand, MARSHA fa-
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Figure 5.3: MARSHA prioritizes the fastest path (dashed blue line), taking into
account that entering the yellow and red areas leads to speed reductions and a
complete stop, respectively. On the other hand, MARS gives precedence to the
shortest path (dashed black line).
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vors a longer path that can be traversed more quickly (dashed blue line).

5.5 Experiments

This section assesses MARSHA’s performance in scenarios involving par-
tially unstructured collaborative tasks and various collaboration regimes.

We conducted a comparative analysis between MARSHA and both
reactive and proactive approaches. Specifically, we evaluated two reac-
tive approaches alongside MARSHA. The first approach, dSSM (dynamic
SSM 2D [12]), continually monitors both human and robot statuses, de-
termining the maximum allowable robot speed based on Equation (2.21).
If the robot’s speed exceeds the maximum allowed by safety protocols, it
is scaled by a factor λ. This approach is effectively implemented by the
safety module, as outlined in Section 4.3.3.2. Concerning Figure 5.1, there
is no replanning block. The second reactive approach used in the experi-
ments combines MARS with dSSM. In the first case, the robot slows down
according to the safety criterion defined by Equation (2.21). In the second
case, the robot has the additional capability to replan its path. The dSSM
approach is expected to block the robot as long as the operator is nearby,
while MARS modifies the path to find collision-free solutions, but at the
cost of significantly reduced speed. It is worth noting that MARS modi-
fies the path only when encountering an obstacle or identifying a shorter
solution. Instead, MARSHA predicts the effect of the safety module on
the solutions found and aims to minimize the traversing time, consider-
ing the need for speed slowdowns. MARS and MARSHA are assigned a
maximum calculation time of 200 ms. As per Algorithm 8, the robot con-
troller follows the actual trajectory at a high rate (e.g., 500 Hz) as well as
the safety module, while trajectories may changes every 200 ms or less,
provided the replanning algorithm successfully identifies a suitable solu-
tion within the allocated timeframe.
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Regarding proactive approaches, MARSHA was compared to HAMP
[38], a safety-aware path planning algorithm, and RRT* [76], where the
human expected volume is considered as an obstacle. Both approaches
were combined with dSSM in runtime. HAMP seeks to find a time-
optimal solution that minimizes Equation (5.6). Conversely, RRT* aims
to identify the shortest path. HAMP is expected to generate solutions
that require minimal or no intervention from the safety module as long
as the operator remains within the space expected during the planning
phase. However, if the operator deviates from it, the performance of
HAMP deteriorates. RRT* is expected to find shorter paths but at the
expense of triggering the safety module frequently. Referring to Figure
5.1, both tests with HAMP and RRT* do not implement any replanning
block.

We evaluated the following metrics:

• Execution time: The time taken to complete the task. Results are
normalized relative to the minimum execution time, i.e., the one
computed without human presence.

• Average scaling factor: The average speed override (between 0 and
100) forced by the safety module to ensure safety. A lower scaling
factor indicates a greater level of intervention by the safety module
in reducing the robot’s speed.

We conducted simulated and real-world experiments to have exten-
sive simulation results followed by validation in a real-world collabora-
tive cell. The setup consists of a Universal Robot UR10e (6-degree-of-
freedom collaborative robot) and a shared table. In the real-world exper-
iments (Figure 5.4a), an Intel RealSense D435 tracks the human. We com-
pute the human skeleton bounding boxes and feed them into the SSM
computation. In simulations, we replicate the human body and move-
ments using a translating mannequin (see Figure 5.4b) with added uni-
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(a) Real robotic cell. (b) Simulated environment.

Figure 5.4: Experimental setups.

form noise with a maximum amplitude of 3 cm. The locations of the
mannequin’s head, torso, arms, and hands are used for the SSM compu-
tation. For safety reasons, we limit the robot’s speed to 30% of its maxi-
mum value during real experiments.

It is worth emphasizing that while the proposed cost function could
be potentially utilized in both SSM and PFL applications, as explained in
Section 5.4.1, our focus in this study has been primarily on the former.
Table 5.1 summarizes the parameters used by the SSM (refer to Equation
(2.21)).

The robot control pipeline follows the one in Figure 5.1. MARSHA
and the reactive methods are implemented in the fast safety-aware replan-
ner module, while the proactive methods are implemented in the offline
path planner module. The implementation of the human skeleton tracking
system, safety module, and replanner mirrors the methodology detailed
in Section 4.3.3.

The tasks consist of a common shared workspace scenario, where the
robot’s objective is to move from an initial configuration to a designated
target configuration to execute tasks like pick&place operations. Concur-
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Table 5.1: Parameters of the SSM safety module used for testing.
Tr (s) as (m/s2) C (m) vh (m/s)
0.15 2.5 0.25 1.6

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: (a)-(d) MARSHA enables the robot to dynamically adjust its path in
response to the operator’s approach. (e)-(h) dSSM halts the robot as long as the
operator is in close proximity.

rently, an operator approaches and works on the same table, sharing the
workspace with the robot.

Beyond demonstrating the effectiveness of the proposed approach,
our aim is to offer clear insights into scenarios where the performance
enhancement justifies the added complexity in the system, as well as
cases where it may not. By doing so, we can make informed decisions on
whether the benefits outweigh the costs of implementing the approach.
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5.5.1 Comparison with reactive approaches

The experiments primarily varied based on the duration of the operator’s
presence at the workbench. This variation enabled us to investigate dif-
ferent interaction scenarios and assess their impact on the performance
of the proposed approach. In particular, the tests were carried out as fol-
lows. The robot plans a path from start to goal, while the operator is
still far away. The trajectory initially calculated corresponds to the fastest
one in the absence of the operator. Two additional paths are computed
for MARS and MARSHA. As the robot begins to move, the operator ap-
proaches it to work on the shared table. Depending on the algorithm
being used at the time, the robot simply slows down or replans its path
to avoid the person or to minimize the estimated execution time consider-
ing the need for safety slowdowns. After a pre-established time interval,
the operator leaves the work table. We will distinguish the tests in three
cases: short, medium, and long, which are distinguished by the time dur-
ing which the operator is close to the robot, which is 5, 10 and 20 seconds,
respectively. For each type of test and algorithm, 50 simulations and 20
experiments on the real cell were performed. Fig 5.5 shows snapshots of
MARSHA and dSSM running during the experiments.

Figure 5.6 depicts the outcomes of the short, medium, and long tests
conducted in the simulation environment. It should be noted that a lower
execution time and a higher average scaling factor indicate superior al-
gorithm performance. Upon analysis, it becomes evident that MARSHA
outperforms both MARS and dSSM in all tested scenarios. MARSHA
exhibits the capability to generate path plans that significantly reduce ac-
tivations of the safety module, enabling the robot to reach its goal more
expeditiously. This behavior remains consistent across all three test vari-
ations, regardless of the operator’s duration of interaction with the work-
bench. Conversely, MARS and dSSM exhibit poor performance, particu-
larly when the operator remains near the robot for an extended period.
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(a)

(b)

(c)

Figure 5.6: Comparison with reactive approaches in simulation. (a) short inter-
action (5 seconds), (b) medium interaction (10 seconds), (c) long interaction (20
seconds).
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As anticipated, dSSM restricts the robot’s movement for the entire du-
ration of the operator’s presence nearby. Moreover, MARS’s replanning
feature enhances safety by ensuring collision-free paths but compromises
the achieved performance. Since MARS continuously finds and opti-
mizes new paths in terms of length, the solutions frequently bring the
robot near the operator, eliciting strong responses from the safety mod-
ule. Based on these evaluations, the performance gap between MARSHA
and MARS/dSSM is expected to widen as the operator’s time spent at the
robot increases.

The findings from the simulations are further validated through ex-
periments conducted on the physical robot, as illustrated in Figure 5.7.
However, the performance disparity between the algorithms narrows.
This can be attributed to the fact that, as anticipated, the robot operates at
only 30% of its full capacity during real tests. Consequently, the distance
covered by the robot before the operator departs is significantly reduced.
As a result, the robot often does not reach the portion of the path re-
planned by MARSHA before the operator moves away. In this way, the
advantages offered by MARSHA are not fully utilized, sometimes lead-
ing to a comparable performance with dSSM. This effect becomes more
pronounced as the robot’s maximum speed decreases and the duration
of the operator’s presence at the workstation diminishes.

To confirm this hypothesis, we conducted simulated short tests with
constant scaling at both 30% and 60%, then combined with the scaling
provided by the SSM module. The results, as depicted in Figure 5.8,
clearly indicate that reducing the robot’s speed corresponds to a smaller
performance gap between the algorithms. Consequently, when the robot’s
speed is significantly restricted, and the operator’s interventions in the
cell are brief and infrequent, MARSHA performs as dSSM and it does
not provide notable advantages over dSSM alone. Additionally, other
factors, such as the positioning of the operator and the timing of entry
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(a)

(b)

(c)

Figure 5.7: Real experiments with reactive approaches. (a) short interaction (5
seconds); (b) medium interaction (10 seconds); (c) long interaction (20 seconds).

135



5.5. Experiments

Figure 5.8: The maximum robot speed is scaled to 30% (left) and 60% (right).

into the cell, may partly influence the results, as they are not always the
same during real tests.

However, the results demonstrate that MARSHA excels in identifying
faster executable paths by considering the impact of the safety module
on the robot during execution. Notably, as the duration of the operator’s
presence in the shared space increases, MARSHA exhibits enhanced per-
formance compared to MARS/dSSM.

5.5.2 Comparison with proactive approaches

MARSHA’s performance has been compared to proactive approaches,
aiming to analyze the advantages it offers over them. Unlike proactive
approaches, MARSHA updates its plan in real time to adapt to unex-
pected operator movements. It is important to note that MARSHA is not
meant to replace proactive approaches but rather complement them as
a reactive approach. In the tests, we evaluate MARSHA’s performance
when the initial path is calculated using a proactive approach and when
it is calculated without considering safety protocols. The tests were con-
ducted as follows: the robot’s objective is to move from a starting con-
figuration to a goal configuration while the operator works in the shared
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Figure 5.9: Test with proactive approaches in simulation.

space for 20 seconds. The operator is already near the work table when
the initial path is calculated, allowing proactive approaches to factor in
the operator’s position during the planning phase.

Each algorithm (HAMP [38], MARSHA, and RRT* [76]) was tested
with 50 simulations and 20 trials in the real cell.

HAMP plans a path that minimizes execution time by considering
the operator’s position during the planning phase, while RRT* finds the
shortest path while avoiding collisions with the person. Since RRT* does
not proactively account for safety, it is expected to have longer execu-
tion times. MARSHA was tested with initial paths calculated using both
HAMP and RRT*. Comparing these two methodologies helps us under-
stand if MARSHA’s performance is heavily influenced by the initial path
calculation. The results are illustrated in Figure 5.9 and 5.10. Note that
MARSHARRT* refers to MARSHA with the initial path computed using
RRT*.

The conducted tests yield intriguing conclusions. When the initial
path of MARSHA is safety-aware, HAMP and MARSHA exhibit compa-
rable execution times. Remarkably, in some cases, MARSHA even out-
performs HAMP by efficiently accommodating deviations caused by the
operator. Additionally, the fixed 20 seconds planning time of HAMP can
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Figure 5.10: Test with proactive approaches on the real robot.

lead to suboptimal solutions, whereas MARSHA’s ability to improve the
plan during execution results in time savings. As expected, RRT* per-
forms poorly due to its path’s excessive proximity to the operator, which
results in significant slowdowns of the shortest path. However, an in-
triguing result emerges when the initial path of MARSHA is generated
using RRT*. Surprisingly, even without considering human-awareness
in the initial path, MARSHA’s performance remains relatively unaffected
compared to using a human-aware path. This is a significant advantage,
as MARSHA can provide performance similar to a human-aware plan-
ner using a simpler and faster generic initial path calculation (taking just
a few seconds instead of tens of seconds). This outcome solidifies MAR-
SHA’s position as a hybrid control strategy, skillfully combining elements
from proactive and reactive planners, and showcasing unique character-
istics from both categories.

Note that in real experiments, we observe a narrowing gap between
RRT* and the other algorithms as well. This phenomenon is closely re-
lated to the constant scaling at 30%. When the operator is near the ta-
ble, the robot halts, rendering the scaling effect insignificant during those
20 seconds of stoppage. However, when the operator is farther away,
allowing the robot to move freely, it follows the shortest path, and the
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constant scaling affects a short trajectory. On the contrary, the other algo-
rithms consistently maintain a certain distance from the operator, leading
to longer travels at a reduced speed of 30%. Consequently, the impact of
the constant scaling becomes more pronounced for these algorithms.

MARSHA demonstrates superior adaptability compared to HAMP
when the operator’s behavior deviates from expectations, such as sud-
den movements or walking away. HAMP’s trajectory can experience
significant slowdowns in the event of unexpected operator motion, as
it lacks real-time adaptation capabilities. When the operator moves away
from the designated area, HAMP continues to follow the initially calcu-
lated trajectory, assuming the operator is still in the shared workspace.
This leads to a longer trajectory, as it is computed prior to the operator’s
departure to ensure minimal safety intervention. In contrast, MARSHA
swiftly adjusts its plan by directing the robot along the quickest path to
effectively accommodate the operator’s movement.

5.5.3 Effect of the SSM parameters on the performance

This section focuses on analyzing the impact of SSM parameters (de-
scribed by Equation (2.21)) on MARSHA’s performance and how the per-
formance gap with MARS/dSSM changes accordingly. Table 5.1 summa-
rizes the parameters employed in the experiments conducted in Sections
5.5.1 and 5.5.2. By modifying these parameters, the degree to which the
safety module intervenes to decelerate the robot varies. Certain parame-
ter combinations prompt immediate and pronounced reactions from the
safety module as soon as the operator enters the shared workspace, while
other combinations allow for delayed intervention. It is important to note
that these parameters are typically determined through a safety analysis
conducted on the specific robotic cell, taking into account factors such as
system reaction times (Tr) and the robot’s maximum Cartesian accelera-
tion (as), among others. This section aims to examine algorithm perfor-

139



5.5. Experiments

mance as these parameters are varied, thus extending the applicability of
the findings to robotic cells with different characteristics.

Two values were chosen for each parameter to ensure comprehensive
coverage, resulting in a total of 16 combinations. For each combination,
the long test was repeated 50 times for each algorithm. Table 5.2 presents
the selected parameter values, including those representing a more reac-
tive cell and those simulating a less reactive cell. Additionally, two speed
values were considered for the human operator: 0 m/s, which assumes
the operator is stationary at the work table, and 1.6 m/s, which aligns
with the recommended value by ISO/TS 15066 when measuring the hu-
man walking speed is not feasible. Figure 5.11 shows that varying sets of
parameters have distinct effects on the performance of MARSHA.

MARSHA consistently outperforms MARS/dSSM in the majority of
cases and demonstrates comparable performance in the worst-case sce-
narios. With conservative implementations, MARSHA’s behavior aligns
with that of the SSM because the minimum allowed human-robot dis-
tance prevents MARSHA from generating solutions that do not trigger
strong safety interventions. Less conservative implementations allow for
a smaller safety distance. Consequently the collision-free paths furnished
by MARS become sufficient to achieve commendable performance levels.
In the remaining cases, MARSHA provides shorter execution times.

5.5.4 Discussion of the results

We compared MARSHA with reactive and proactive approaches in par-
tially unstructured contexts and with different types of interaction.

In contrast to reactive approaches (MARS and dSSM), MARSHA finds
solutions that minimize interventions from the safety module and allows
to reach the goal faster. This behavior is evident when the operator stays
in the cell for longer periods, while it is less significant for sporadic and
brief interventions. This result highlights the importance of the applica-
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Figure 5.11: Long test with the SSM parameter sets in Table 5.2.
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Table 5.2: Different parameter sets for the SSM safety module used to evaluate
MARSHA.

set 1 2 3 4 5 6 7 8
C (m) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Tr (s) 0.15 0.15 0.15 0.15 0.30 0.30 0.30 0.30

vh (m/s) 0.00 0.00 1.60 1.60 0.00 0.00 1.60 1.60
as (m/s2) 0.10 2.50 0.10 2.50 0.10 2.50 0.10 2.50

set 9 10 11 12 13 14 15 16
C (m) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Tr (s) 0.15 0.15 0.15 0.15 0.30 0.30 0.30 0.30

vh (m/s) 0.00 0.00 1.60 1.60 0.00 0.00 1.60 1.60
as (m/s2) 0.10 2.50 0.10 2.50 0.10 2.50 0.10 2.50

tions’ features in the selection of the most effective planning approach.
Roughly speaking, the advantages of a safety-aware planner will be jus-
tified mainly in applications with a long interaction times.

We extensively evaluated MARSHA’s performance under different
configurations of the SSM module. When employing conservative set-
tings, MARSHA’s behavior closely mirrors that of the SSM. However,
with less conservative settings, MARS proves capable of achieving com-
mendable performance levels on its own. In the remaining scenarios,
MARSHA consistently achieves shorter execution times.

MARSHA outperformed offline planners (HAMP and RRT*) because
it can improve solutions in real-time and adjust to unforeseen operator
movements. For instance, if the operator leaves the cell, MARSHA falls
back to the fastest path, while offline methods keep following the pre-
computed path. MARSHA performs well even when its initial path is not
human-aware thanks to the online optimization. This confirms its hybrid
nature, combining the advantages of proactive and reactive approaches.
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5.6 Summary

This chapter presented MARSHA, an innovative motion replanning algo-
rithm enhancing human-robot cooperation applications. MARSHA per-
forms real-time optimization of the robot’s trajectory execution by em-
ploying a safety-aware cost function. This function estimates the time re-
quired to traverse a path, factoring in potential safety-related slowdowns.
The result is a notable reduction in safety stops and slowdowns caused
by the proximity of humans to the robot. To maintain a high level of re-
sponsiveness in the replanning algorithm, we presented an admissible
informed set for the proposed safety-aware cost function.

Compared to reactive approaches, MARSHA significantly reduces the
intervention of the safety module by anticipating safety slowdowns and
dynamically adjusting the trajectory. These benefits are particularly pro-
nounced in scenarios involving extended periods of human-robot inter-
action. Instead, in situations involving rapid and sporadic human in-
terventions, MARSHA performs comparably to a standalone SSM im-
plementation. We thoroughly evaluated the performance of MARSHA
across a diverse range of safety-related parameters. Additionally, unlike
proactive techniques, MARSHA exhibits the capability to accommodate
shifts in the operator’s position, thereby averting further safety interven-
tions.

In conclusion, MARSHA is a promising solution for enhancing human-
robot collaboration by effectively optimizing robot trajectories while con-
sidering safety aspects and remaining flexible to accommodate changing
operator positions. Its hybrid approach opens up new possibilities for
seamless human-robot cooperation across various application domains.
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CHAPTER 6
OpenMORE

With the spread of robots in unstructured, dynamic environments, the
topic of path replanning has gained importance in the robotics commu-
nity. Although the number of replanning strategies has significantly in-
creased, there is a lack of agreed-upon libraries and tools, making the
use, development, and benchmarking of new algorithms arduous. This
chapter introduces OpenMORE, a new open-source ROS-based C++ li-
brary for sampling-based path replanning algorithms. The library builds
a framework that allows for continuous replanning and collision check-
ing of the traversed path during the execution of the robot trajectory.
Users can solve replanning tasks exploiting the already available algo-
rithms and can easily integrate new ones, leveraging the library to man-
age the entire execution.

This chapter is based on the work presented in [161].
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6.1 Introduction

With the advances in industrial, social, and exploration robotics, robots
are increasingly required to work in dynamic environments (e.g., shar-
ing their workspace with humans). For this reason, it is necessary for
the robot to deploy a reactive behavior, enabling it to react promptly to
changes occurring in the work environment. For example, a robot shar-
ing the workspace with an operator will often be obstructed by the latter.
To avoid collisions and reduce downtime, the robot should be able to
promptly change its path without stopping.

Definition 3 (Section 2.2) underscores the heightened complexity of
the path replanning problem in comparison to the standard path plan-
ning problem (as defined in Definition 1). In path planning, a path is usu-
ally computed considering the environment as static, and subsequently it
is used to generate a trajectory for the robot controllers. There is no active
planning during the execution of the path, which may lead to invalid-
ity in the presence of dynamic obstacles. In contrast, a path replanning
problem requires continuous monitoring of the scene during trajectory
execution and repeated online planning to adapt the solution found to
new environmental information. Thus, in order to properly perform its
function, a path replanner requires an architecture that is responsible for
monitoring the scene, triggering the replanning, and contextually execut-
ing the robot’s trajectory.

There are several libraries dedicated to path planning [30, 131, 155],
but the same cannot be said for path replanning. In particular, OMPL
[155] has become the standard library for motion planning. It imple-
ments many state-of-the-art planners and provides integration with other
software tools such as MoveIt! [69]. OMPL deals only with static en-
vironments; that is, it does not implement any architectures to concur-
rently handle scene tracking, current path adaptation and trajectory ex-
ecution, necessary to solve the path replanning problem in dynamic en-
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vironments. Recently, MoveIt! [69] has introduced a hierarchical archi-
tecture (Hybrid Planning) for adapting a motion plan online. It follows
a classic hierarchical approach with a global planner that computes an
initial trajectory and a local planner that interpolates it and makes local
changes. When the latter fails, the robot stops and the global planner
is queried again. This hierarchical architecture is a common strategy in-
spired by mobile robots, yet it prioritizes local changes and invokes the
replanner only when the local planner is stuck. However, our interest
is on continuous and global replanning and execution, for which, to the
author’s best knowledge, no open-source libraries are available online.
This situation significantly complicates the process of using, testing and
comparing new algorithms against the state-of-the-art, as implementing
and evaluating an algorithm is both time-consuming and inherently in-
fluenced by the choices made during the implementation phase.

6.1.1 Contributions

The goal of this chapter is to present OpenMORE, an open-source C++
library based on ROS [138] that implements an entire framework to han-
dle smooth and continuous sampling-based path replanning, scene track-
ing and trajectory execution concurrently. One can easily use the al-
ready available algorithms (the list is expanding) and integrate new ones
quickly, without spending time on building the entire necessary architec-
ture. The library develops abstract classes that limit the effort required to
develop and implement new replanners.

OpenMORE can be used to solve replanning problems in dynamic
environments, where the initially calculated path can be invalidated by
moving obstacles. For example, in Figure 6.1c it was used to allow hu-
mans and robots to share their workspace in a human-robot cooperation
application by modifying online the robot path according to the opera-
tor movements [164]. The library was also used in [163] to benchmark

147



6.1. Introduction

(a) Simulated manipulator (b) Simulated 3D robot

(c) Replanning in human-robot collaboration

Figure 6.1: Examples of application of OpenMORE. In simulated environments,
(a)-(b), red spheres are unexpected obstacles, while green and yellow lines de-
notes the initial and the current path, respectively. In the real robotic cell (c), the
yellow path indicates the robot’s current one, while the other coloured paths are
employed by the replanning algorithm to compute a new solution.
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several replanning algorithms in different scenarios (Figures 6.1a-6.1b).

6.2 Library overview

The purpose of OpenMORE is to provide a tool that makes it easier to
use, test, implement, and benchmark sampling-based path replanning
algorithms for research and education. For this reason, its development
took into consideration the following aspects:

• Efficiency: the library is developed in C++ to obtain a reliable and
fast tool, features needed to get quick reactions from the robot;

• Easy to use: available replanners can be used easily, little code is
needed to launch an execution;

• Easy development: new sampling-based path replanning algorithms
can be easily integrated into the framework, using the guidelines
and tools provided by the abstract classes;

• Easy integration: the library is integrated with ROS, allowing for
easy interaction with additional software components (e.g., replan-
ning and safety speed monitoring runs together in [164])

The library primarily focuses on the development of a framework to
handle replanning, scene monitoring and trajectory execution simulta-
neously. In addition, the library has features that aid in debugging and
benchmarking, such as path visualization, simulation of random moving
obstacles, and collection of useful data. OpenMORE has a few depen-
dencies, many of which are simple internally implemented ROS pack-
ages that support the architecture. The main one is graph_core, a library
that defines the classes needed for a path planning problem and some
sampling-based algorithms to solve it. The only external dependencies
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Figure 6.2: Conceptual overview of the replanner_manager

are Eigen [54] and MoveIt! [69], which is used to track the planning scene
and for collision checking.

6.3 Core concepts

The replanner and the replanner_manager are the key components of
the library. The replanner serves as an abstraction for the path replan-
ning algorithm, while the replanner_manager defines the entire architec-
tural framework.

6.3.1 The replanner

The replanner is the actor that executes the replanning algorithm when
commanded by the replanner_manager. replanner provides a base class
in which to define the replanning algorithm, but its implementation is up
to the user. It defines the structure that a replanner must have to interact
with the replanner_manager and requires that the replan function be
implemented. The information the replanner needs are:

• the configuration of the robot: a new path will be searched starting
from this configuration;
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• the current path and/or tree: they are usually used to find quickly
a new solution by replanning algorithms;

• the maximum replanning time: to get responsive behavior from the
robot, the algorithm should provide a solution in a short amount of
time;

• the path planning problem solver: the algorithm used to find a path
from the current configuration to the goal.

For example, DRRT [40] is a replanning algorithm which deletes the
invalid part of the tree and rebuilds it starting from the goal and working
its way back to the robot’s configuration.

It therefore needs to know the tree, the current configuration of the
robot, and a solver (in this case RRT [93]) to rebuild the tree.

6.3.2 The replanner_manager

Figure 6.2 shows a conceptual overview of the architecture of the
replanner_manager, which implements the framework outlined in Chap-
ter 3, briefly summarized as follows:

• Trajectory Execution Thread: micro-interpolates the robot’s current
trajectory to send the new command to the robot controller at a high
rate.

• Collision Checking Thread: updates the scene information and
checks for the collisions along the path in execution. It considers
the part of the current path from the current robot configuration
qcurr to the goal.

• Path Replanning Thread: invokes the replanner to execute the re-
planning algorithm to find a path when the current one is blocked
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or to optimize the current solution. If the replanner finds a new
path, then it computes a trajectory on it.

These three components are roughly in charge of execution, collection
of obstacle data, and replanning, respectively. The Trajectory Execution
Thread is usually the one that runs the fastest because it is the interface
between the framework and the controller.

The trajectory τ undergoes interpolation at line 2 of Figure 6.2, result-
ing in the state variable (state) which encapsulates joint positions (qstate),
velocities, and accelerations. Subsequently, the interpolated state is pro-
jected onto the nominal path σ at line 4. Denoted as sabs ∈ [0, 1] the
curvilinear abscissa of σ, the projection qcurr is achieved by solving the
following optimization problem:

scurr = argmin
sabs∈[0,1]

∥qstate − σ(sabs)∥

qcurr = σ(scurr)

(6.1)

Algorithm 10 provides a straightforward way to address the problem
of Equation (6.1). This projection step is essential due to the inherent
nature of time parameterization algorithms, which can introduce minor
discrepancies from the path computed by the path planner (e.g., due to
blending radii). In contrast, the replanning algorithm relies on nodes that
strictly adhere to the path or tree.

In parallel, the Collision Check Thread takes a snapshot of the scene (line
12), updates the path cost based on this scene (line 14), and shares the
information with the Path Replanning Thread thread (line 15), which will
rely on this snapshot and the current path cost calculated to search for a
new solution. Finally, the replanning algorithm defined by the replanner
determines how the new path is search and/or improved (line 8).

Information is exchanged between threads by means of shared data
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Algorithm 10 projectOnPath
Input: the path σ, the point to project qstate, the abscissa stepsize ∆abs
Ensure: the projected point qcurr

1: d← ∞
2: abs← 0
3: while abs ≤ 1 do
4: d′ ← ∥qstate − σ(abs)∥
5: if d′ < d then
6: d← d′

7: qcurr ← σ(abs)
8: abs← abs + ∆abs ▷ E.g. ∆abs = 0.01
9: return qcurr

(grey box in Figure 6.2). Specifically, each thread owns a copy of the
current path, which is updated whenever it is updated in the shared
data. This allows threads (especially the replanning and collision check
threads) to carry out their tasks without interblocking. There is therefore
a mechanism for downloading and uploading the shared information at
the beginning and at the end of the threads. For example, the collision
checking thread updates the local copy of the path, if necessary, at the
beginning of each iteration (line 13). After that, it uploads the calculated
cost and scene information into the shared path with the other threads
(line 15). The replanning thread therefore downloads this information
at the beginning of the iteration (line 7) and at the end uploads the new
calculated path and trajectory.

Because the replanner has a planning latency while the robot is mov-
ing, it is necessary to consider the displacement between the expected
and the real position at the end of the replanner query. So, to obtain a
smoother transition from the current path to the new one, the replanner

replans by considering as if the robot were in a state later in time than
the current one (line 8). To do that, the replanning configuration qrepl is
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obtained by sampling the trajectory at time instant t + ∆trepl and then
projecting the state on the current path. This is done by getReplanConf

at line 6. Consequently, when a new path is found, it must be adapted to
have the most recent qcurr as starting configuration (startPathFromConf
function at line 10). ∆trepl should be a value equal to or slightly greater
than the maximum time given to the replanner to find a solution. The
trajectory is then computed considering the robot’s current conditions,
represented by state at line 11. The choice of the time parameterisation
algorithm does not alter either the architecture or the replanning algo-
rithm. As outlined in Section 2.1, we leverage state-of-the-art techniques
that adhere to the kinematic and dynamic constraints of the robot, such
as [89].

The diagram in Figure 6.3 illustrates the workflow of OpenMORE in-
tegrated into the ROS framework [138]. Scene updates are transmitted
from MoveIt! [69] via the moveit_msgs::GetPlanningScene service. Note
that to incorporate new information about obstacles, publishing them
within the MoveIt! scene is imperative (e.g., as done in Section 4.3.3.1).
Simultaneously, the replanner_manager executes the robot’s current tra-
jectory while concurrently planning a new one. To transmit commands
to the robot’s low-level controller, the replanner can either be integrated
into a ROS Controller [24] or send it the new commands using a message
of type sensor_msgs::JointState.

6.3.3 Development of a new replanner

The implementation and integration into the framework of a new replan-
ning algorithm can be summarized with the following pipeline:

1. implementation of a replanner’s child class and its replan func-
tion;

2. implementation of a replanner_manager’s child class that contains

154



6.3. Core concepts

Figure 6.3: OpenMORE pipeline. Scene updates are received from MoveIt! and
new commands sent to the robot low-level controller through ROS Control.

and initializes the replanner object;

3. definition of the triggering condition of the replanner (e.g., replan
when there are collisions along the current path or continuously to
refine the current solution);

4. implementation of the startPathFromConf function: it defines how
to set qcurr as starting configuration of the path. This could happen
simply by adding a node in the tree and extrapolating the path to
the goal, but in general it strongly depends on the implemented re-
planning algorithm, so the definition of the function is left to the
user. Note that this function should not be computationally expen-
sive compared to the actual replanning (line 8);
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Clearly this represents the minimum requirement to be able to inte-
grate a new algorithm within the framework. However, in a replanning
context there are many important aspects, i.e. the generation of the trajec-
tory and the management of moving obstacles for simulations. Default
functions are already provided and may be suitable for many cases, but
the user has the possibility to customize and override them.

6.3.4 Debugging and visualization

The library has useful features for debugging and benchmarking. Among
these we find the real time visualization of the current path on RViz and
the random appearance of unexpected obstacles, as shown in Figure 6.1a
and 6.1b. A data collection thread is also available to collect data for
benchmarking. In particular, the latter carries out statistical analyzes on
the replanning time during an entire execution, the length of the path
actually traversed, the success or failure of the execution and possibly
the number of obstacles with which a collision has occurred. All of this,
together with different levels of verbosity, can be turned on or off by pa-
rameters.

6.3.5 Available replanners

The library currently implements some sampling-based path replanning
algorithms, such as MARS [163], DRRT [40], Multi Parallel RRT [157],
Anytime DRRT [42], and [27], which have been successfully used for
benchmarking in [163]. One can take advantage of the implementation
provided in the library to have a starting point for new developments.
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Figure 6.4: Simple C++ code to solve a path replanning problem using Open-
MORE.

6.4 Example applications

Figure 6.4 shows a simple C++ example to solve a path replanning prob-
lem. First, create a ROS node handle and initilize the MoveIt! move
group. Then, set the robot joints bounds, start and goal configurations,
and initialize the metric (which is used to evaluate the path’s cost, i.e. Eu-
clidean norm), the sampler and the collision checker. Note that the latter
needs a planning scene object to evaluate collisions. Now you can use a
path planning solver to find the initial path. Finally, create the replanner
manager and start the trajectory execution with replanning. More details
and tutorials can be found at [160].

Figure 6.1c shows an application of the framework in a human-robot
collaboration context. A vision system identifies the human’s skeleton
and publishes bounding spheres to the MoveIt! scene. Based on this, the
replanner is able to alter the path to avoid the operator. Thanks to the in-
tegration with ROS, it was possible to make the replanner interact easily
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with an ISO/TS15066-based speed scaling module launched on a differ-
ent node. The replanner was inserted into a controller in the ROS Control
framework [24] which read the commands from the replanner_manager

and sent them to the robot. Figure 6.1a and 6.1b are snapshots from a sim-
ulated environment, where robots are asked to move from a start config-
uration to a goal configuration while some unexpected obstacles appear.

6.5 Summary

This chapter presented OpenMORE, an open-source C++ ROS-based li-
brary for easy use and deployment of sampling-based path replanning
algorithms. The library offers a comprehensive framework for managing
trajectory execution with continuous replanning and collision checking
of the current path. Additionally, it provides a range of valuable tools for
algorithm usage, implementation, debugging, and benchmarking. The
primary objective of this library is to offer researchers and students an
off-the-shelf architecture to use and develop online motion planning al-
gorithms. The library is a work-in-progress actively under development
and can be accessed at [160]. Ongoing efforts involve the creation of ex-
tensive documentation and tutorials to enhance user-friendliness. Fur-
ther developments under evaluation are the generalization of the soft-
ware used for scene monitoring and the integration with OMPL. A ROS-
free version of the library is being developed to allow integration with
other frameworks and facilitate migration to ROS2, offering users plat-
form flexibility.
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CHAPTER 7
Conclusions

This thesis introduced a novel approach to path replanning, motivated by
the growing demand for robots to move in dynamic environments, e.g.,
in scenarios involving human-robot collaboration. While standard path
planning algorithms work well in static environments, real-world situ-
ations often involve changing surroundings, necessitating rapid robot
responses to prevent collisions. The existing literature offers a variety
of strategies to address replanning challenges, including optimization-
based, learning-based, graph-based, and sampling-based methods.
Among these, the sampling-based approach distinguishes itself for its
simplicity, adaptability, and proficiency in managing high-dimensional
search spaces without explicit representation.

However, proposed techniques, like roadmap-based strategies, face
challenges in maintaining consistent quality paths in the presence of nu-
merous obstacles. Additionally, tree-based methods may entail compu-
tationally expensive pruning or rewiring phases, particularly in cases
involving robots with many degrees of freedom, such as manipulators.
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For effective human-robot collaboration in dynamic environments, rapid
generation of new paths in response to operator-induced obstructions is
crucial for safety and operational efficiency.

Moreover, considering that in HRC scenarios safety modules adjust
the robot’s speed based on proximity to humans, it becomes imperative
for the replanning algorithm to account for these effects in solution gen-
eration. This allows to find safety-compliant solutions that optimize col-
laboration efficiency by reducing the need of slowdowns and halts for the
robot.

To address these challenges, this thesis proposes the following contri-
butions:

• Replanning Framework: Conventional motion planning involves
the computation of a path, its temporal parametrisation, and the
subsequent execution of the trajectory. However, real-world en-
vironments with dynamic obstacles require a more adaptive ap-
proach. Chapter 3 introduces an architecture that enables simulta-
neous trajectory execution, collision checking, and replanning. This
system utilizes three concurrent threads, ensuring uninterrupted
motion. Moreover, it offloads collision checking of the current path
from the replanning algorithm, enhancing efficiency.

• Novel Sampling-Based Path Replanning Algorithm: Chapter 4 in-
troduces MARS, an innovative sampling-based path replanning al-
gorithm based on the exploitation of a set of pre-computed paths.
Its key innovation lies in connecting the current path to the nodes
from the other available paths and utilizing subpaths towards the
goal. By prioritizing nodes that are closer to the current path than
the goal, MARS reduces search complexity. The algorithm employs
a dynamic graph structure built over iterations, benefiting from
prior planning efforts. Techniques such as subtree reuse, informed
sampling, and lazy collision checks expedite computations.
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• Safety-Aware Path Replanning Algorithm: Chapter 5 delves into
motion replanning within scenarios involving human-robot collab-
oration. Conventional replanning algorithms often neglect safety
considerations, potentially resulting in paths that necessitate safety
interventions. This chapter introduces a novel cost function that
evaluates paths based on estimated execution time while account-
ing for safety-related slowdowns. Additionally, it presents an ad-
missible informed set to expedite online solution computations.
The proposed cost function is integrated into the algorithm of Chap-
ter 4, which has been adapted to deal with the increased computa-
tional complexity. The resulting algorithm, denoted as MARSHA,
enables more efficient solutions in HRC settings.

• Tool For Developing, Testing and Using Sampling-Based Path
Replanning Algorithms: Implementing a replanning algorithm ne-
cessitates a sophisticated architecture, as outlined in Chapter 3. Un-
fortunately, there are no existing open-source libraries that offer
such a framework, making the development, testing, and utiliza-
tion of replanning algorithms more challenging. OpenMORE ad-
dresses this gap by providing the necessary architecture for manag-
ing trajectory execution alongside simultaneous replanning. Addi-
tionally, it offers implementations of various sampling-based path
replanning algorithms and valuable tools to streamline the devel-
opment and testing process.

The proposed algorithms were evaluated through extensive simula-
tion campaigns and tests in real-world robotic cells. More specifically, we
conducted a comparative analysis between MARS and four alternative
replanning algorithms. Additionally, MARSHA was assessed alongside
both proactive and reactive techniques in the context of human-robot col-
laboration. The findings underscored the algorithms’ ability to quickly
discover new solutions even in complex scenarios involving robots with

161



Chapter 7. Conclusions

many degrees of freedom. Notably, MARS demonstrated a capacity to
uncover shorter paths compared to its counterparts, whereas MARSHA
contributed to reductions in the execution times of the robot’s trajectory.
All the tests were carried out using the proposed architecture and its im-
plementation in OpenMORE.

Collectively, these endeavors were driven by the aspiration to ad-
vance the field of motion planning in dynamic environments by present-
ing pioneering solutions to the challenges of path replanning in HRC.
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