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ABSTRACT 

 
 

Rationale: Atherosclerosis is a chronic inflammatory disease responsible for nearly 50% of all 

deaths in western countries. It is characterized by the formation of lipid-laden plaques in the 

arterial wall reducing the lumen, decreasing the elasticity of the walls and causing many 

cardiovascular diseases. In response to environmental cues, vascular smooth muscle cells 

(SMCs) can de-differentiate, proliferate and migrate in a process known as phenotypic 

modulation. Recently, it has been shown that they can transdifferentiate into other cell types 

which are important for the formation of atherosclerotic plaques and which determine their 

ability to rupture and induce thrombosis. 

 
Objective: The purpose of this work is to use the most recent technologies in the field of 

transcriptomics, such as scRNAseq and spatial transcriptomics, to identify new SMCs-derived 

phenotypes induced by a pro-atherosclerotic environment and to characterize their role in the 

pathology, obtaining a specific gene signature that will help their identification in patients and 

consequentially to target them in the context of a precision medicine approach. 

 
Methods and Results: The SMC-deriving cells dissociated from the aortic arch and thoracic 

artery of a cohort of atheroprone ApoE knockout mice and of a control one, were analyzed by 

scRNAseq with 10x Chromium platform. Then, the bioinformatic analysis of the data was 

performed identifying a new SMC-derived cell cluster, characterized by the expression of the 

Adamtsl1 gene, not yet described in the literature. Furthermore, we found that this cell type is 

metabolically active, produces ECM, has a proinflammatory phenotype, and is a transitional 

state between contractile SMCs and other cellular phenotypes whose role within atherosclerotic 

plaques is already known. Subsequently, the presence of this cluster was also demonstrated in 

human and murine scRNAseq datasets from another work. Finally, two human atherosclerotic 

samples were analyzed using the Visium Spatial transcriptomics (10x genomics) highlighting 

the presence of this SMC phenotype within human plaques. 

 

Conclusions: The identified SMC-derived Adamtsl1+ cell type could be a good target to block 

the transdifferentiation of SMCs towards phenotypes involved in plaque formation and to 

improve the prognosis of patients with atherosclerosis. 
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INTRODUCTION 

1.1 Blood vessel morphology and composition 

The arteries, together with the veins and the heart, form the cardiovascular system which carries 

out the task of transporting body fluids and nutrients to the various parts of the body. The 

cardiovascular system is the first functional organ system to appear within the embryo. its 

development begins during the third week of gestation, when the placenta is unable to meet the 

requirements of oxygen and nutrients to all tissues of the growing embryo1. 

Arteries, except for the pulmonary ones, carry oxygenated blood from the heart to the rest of the 

body. As the arteries move away from the heart they branch out into arterioles until they branch 

into capillaries where gaseous and nutrient exchanges take place between the blood and the 

peripheral district of the body reached. The wall of the arteries consists of three layers. the 

innermost layer is called the intima and consists of endothelial cells (ECs) that line the surface of 

the lumen of the arteries; immediately after we find the media which is made up of connective 

tissue and smooth muscle cells (SMCs) that allow the contraction and dilation of the arteries in 

order to keep the blood flow pressure consistent and finally we find the adventitia layer which is 

mainly composed of elastin, collagen, extracellular matrix (ECM), and fibroblasts2, 3 (Figure 1). 

The aorta is the largest vessel in the human body, it originates from the left ventricle of the heart 

from where it rises upwards, with a section that takes the name of ascending aorta, then curves 

backward, forming the aortic arch, and continues into the descending aorta composed by the 

thoracic aorta and the abdominal aorta. 
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Figure 1. Schematic representation of the composition of the walls of arteries. The wall of 

the arteries is composed of three concentric tunics called the intima, composed mainly of EC, 

media, where we find the SMCs and adventitia, composed of collagen, fibroblasts, adipocytes 

and nerve endings. Adapted from Y. Zhao et al.;Journal of Pharmacological Sciences xxx 

(2015) 1e124. 

1.2 Arteriosclerosis and Smooth Muscle Cells 

Atherosclerosis is the leading cause of cardiovascular disease (CVD), which includes myocardial 

infarction (MI), angina and heart failure, and collectively constitute the leading cause of death 

globally5, 6, 7. Atherosclerosis is defined as a multifactorial degenerative disease affecting the 

medium and large arteries caused by the deposition of fat, white blood cells, calcium salts and 

fibrotic tissue in the intima layer that give rise to atherosclerotic plaques (or atheromas). Over time, 

atherosclerotic plaques increase in volume, reducing the elasticity of the arteries and hindering 

blood flow. Numerous epidemiological studies and animal experiments have established that 

atherosclerosis is a product of chronic inflammation of the intima where a lesion is created that 

causes a thickening of the endothelium with the infiltration of other elements at the origin of the 

plaques. The factors that contribute to the onset of this inflammatory state of the artery walls are 

diabetes, smoking, hypertension, hyperlipidemia, obesity, and first of all the high concentration of 

circulating cholesterol in the blood. 

 
Cholesterol is transported in the blood by low-density lipoprotein (LDL). LDLs are composed of a 

hydrophobic core, made up of triglycerides and esterified cholesterol, coated with phospholipids, 

free cholesterol and a single apolipoprotein B100 (APOB)7. These factors cause an inflammatory 

state that can affect the walls of arteries, even in distant locations, through the release of soluble 

inflammatory mediators, such as cytokines. 

Media 

Adventitia 
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The alteration of the endothelium occurs early during atherogenesis and manifests itself as follows: 

increased expression of adhesion molecules, chemokine secretion and leukocyte adhesion, 

increased LDL oxidation, platelet activation and increased cell permeability8. However, the main 

initiation process of atherogenesis is the subendothelial retention of LDL particles due to the 

binding between APOB and ECM molecules, in particular proteoglycans9. As a consequence of 

this retention, LDL particles are trapped in the intestine, where they are subject to oxidative 

modifications caused by enzymes such as myeloperoxidase and lipoxygenase, or by reactive 

oxygen species (ROS) generated during inflammation. Accumulation of oxidized LDL particles 

(oxLDL) together with abnormal haemodynamic forces cause monocytes and other immune cells 

to be recalled to the site of the atherogenic lesion10,11. The adhesion of monocytes to the lesion site 

depends on the very late antigen-4 (ITGA4), which can bind to certain fibronectin isoforms, and 

on the vascular cell adhesion molecule-1 (VCAM1), a molecule of the immunoglobulin family 

highly expressed in endothelial cells near atherosclerotic lesions11. Subsequently, the monocytes 

arriving in the intima are stimulated by the colony stimulating factor of macrophages (M-CSF), 

released by the activated endothelial cells, to differentiate into macrophages (Mϕs). Monocyte- 

derived Mϕ upregulates their scavenger receptors which can absorb oxLDLs. These cells engulf 

lipids and become foam cells, the hallmark of atherosclerotic lesions. Parallel to monocytes, T 

lymphocytes are recruited by similar mechanisms. T lymphocytes are not as abundant as Mϕs (with 

a Mϕs / T ratio between approximately 4:1 and 10:1 in human lesions), however, these have also 

been observed to contribute to the growth of atherogenic lesions and disease development. 

 
Vascular smooth muscle cells (VSMCs) are highly specialized and differentiated cells in adult 

animals that have a very low rate of proliferation and low synthetic activity. The inflammatory cells 

present in the atherogenic lesion, together with platelets and EC, release mediators that cause the 

SMCs to become de-differentiated and lose their contractility. This phenomenon goes under the 

name of phenotypic switching and these SMCs become proliferating, metabolically active and 

migrate from the media to the intima where they contribute to the formation of the fibrous cap of 

the atherosclerotic plaques producing ECM12 (Figure 2). Contractile SMCs have the function of 

regulating blood vessel diameter (vasodilation and vasoconstriction) and blood flow and are 

characterized by the spindle shape and the expression of contractile proteins such as alpha smooth 

muscle actin-2 (ACTA2), myosin-11 (MYH11), transgeline (SM22) and calponin (CNN1). 

Metabolically active SMCs are characterized by a rhomboid shape and the production of growth 

factors, such as platelet-derived growth factors (PDGF), endothelin-1 (EDN1), thrombin, fibroblast 

growth factor (FGF1) and interleukin-1 beta (IL1B)3. 

SMCs undergoing phenotypic switching therefore form a fibrous cap in the intima that wraps 
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around a central region, called the lipid core, composed of foam cells, cholesterol and other lipids, 

thus forming what is called atheroma. Over time, apoptotic cells and cellular debris also begin to 

accumulate in the plaque due to a reduced capacity for efferocytosis by phagocytes. Pro- 

inflammatory phenotype M1 may reduce the number of beneficial Mϕ, thus inducing a relative 

deficit of those Mϕ known to have a high phagocytic capacity13. Furthermore, ROS can impair the 

phagocytic abilities of Mϕs and dendritic cells. As a result, foam cells accumulate to promote lesion 

expansion and apoptotic tissue undergoes secondary necrosis to accelerate vascular inflammation 

and lesion instability. Many atherosclerotic plaques are prone to calcification, a process that 

consists of the accumulation of calcium minerals resulting from the dysregulation between 

deposition and clearance14. The progression of the lesion can occur silently for many decades. 

Eventually, the growing atherosclerotic plaque begins to invade the arterial lumen and can lead to 

the formation of flow-restricting lesions. These plaques can then face complications: for example, 

infiltrated immune cells help create a pro-inflammatory environment that can destabilize the plaque 

and make it prone to rupture15, 16, 17. When the material contained in the plaques comes into contact 

with the blood it is able to trigger coagulation and the formation of a thrombus which can lead to 

heart attack, ischemia, stroke, etc. 

Recently it has been shown that SMCs in arteriosclerotic plaques can also undergo 

transdifferentiation phenomena in other cell types such as a macrophage-like type18 that could 

contribute to the formation of foam cells (Figure 2) responsible for the formation of the lipid core 

into the plaques or to contribute creating a pro-inflammatory environment that destabilizes them, 

facilitating the rupture. On the other hand, there are other possible cell types in which SMCs can 

transdifferentiate such as fibromyocytes, which contribute to the formation of the fibrous cap 

making it more resistant to rupture19. Therefore SMCs and the cell types that derive from them 

seem to have a leading role both in the onset of arteriosclerosis and in its clinical impact on patients.                                   
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Figure 2. Phenotypic switching and transdifferentiation of SMCs in the arterial wall 

VSMCs play a role of primary importance in the formation of plaques during atherosclerosis: they can 

undergo phenotypic switching, become proliferating and produce ECM constituting the external cap of the 

atheroma as well as undergoing transdifferentiation into macrophages, aggravating the inflammatory state 

and plaque development and increasing the foam cell population of the lipid core. Figure from Allahverdian 

S, et al. Cardiovasc Res. 2018 Mar 15;114(4):540-55020. 

 

Although genetic factors also contribute to the development of atherosclerosis, it has been observed 

that adopting a healthy lifestyle can prevent the development of the disease. From a therapeutic 

point of view, the introduction of statins has revolutionized the prevention and treatment of 

atherosclerosis. Statins are drugs that limit the synthesis of endogenous cholesterol by inhibiting 

the 3-hydroxy-3 methylglutaryl-CoA reductase (HMGCR) enzyme7. Although statins are a 

milestone in the treatment of atherosclerosis, identifying a SMC-derived cell type underlying 

plaque formation could offer a valuable therapeutic target to be used in precision medicine to 

further improve patient prognosis. 

 

 
1.3 Transcriptomic 

The 2000s saw the advent of Next Generation Sequencing which introduced the possibility of 

analyzing a huge amount of sequences in parallel quickly and at a low cost. This new technology 

has profoundly revolutionized the way of doing science in the clinical field and beyond, allowing 
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an omic approach to the study of genomes, mutations, proteins and transcripts. The study of all the 

sequences of the transcripts, therefore of all the mRNA produced by the transcription activity of 

the RNA polymerase from the DNA, is defined as transcriptomics. 

The basic steps of a transcriptomics analysis involve the extraction of the mRNA from a sample, 

its conversion into cDNA by reverse transcription, the amplification of the cDNA and the 

preparation of libraries for sequencing, maximum sequencing and generation of a huge number of 

sequences called "reads", the use of bioinformatics techniques to align the reads obtained on the 

genome sequence of the reference organism in order to see from which genes the reads originate 

and to count the reads mapped to each gene. At the end of these steps, a matrix of raw counts is 

obtained which, with appropriate normalization, gives an inference of the level of expression of 

each gene in the sample. 

Thanks to transcriptomics it is possible to identify how the gene expression of individual organs 

and organisms changes in response to certain stimuli, to reconstruct the interaction networks 

between genes, to study the isoforms of transcripts and much more. However, until the last few 

years, the study of transcriptomics involved starting from a tissue or cell culture and extracting the 

entire mRNA. This approach did not allow us to know which cell types were expressing the genes 

of interest but only returned what was the transcriptional profile of the average cell in the tissue 

and masked any cell subtypes present in a small number that eventually responded to the stimulus 

under examination during the experiment. So the average signal of a heterogeneous population of 

cells does not necessarily represent the state of each component of the tissue. Moreover, it is known 

that even the smallest population of cells can have a huge impact on personalized medicine. For 

these reasons, a single-cell approach has been introduced in modern analysis. 

 

 
 

1.4 Single-cell RNA sequencing 

To increase the resolution of NGS transcriptomic analyzes at the single-cell level, the scRNA-seq 

technique was introduced: this technique consists of the analysis of the transcriptome of every 

single cell obtained from a tissue after dissociation thus allowing to investigate tissue heterogeneity 

and the behavior and relationships of cell subtypes present. 

This technology was first published in Nature Methods in 2009, but it became more popular after 

2014 when sequencing costs decreased, and new more validated protocols were designed. 

All platforms available on the market to perform a scRNA-seq analysis are mainly based on four 

types (Figure 3) that differ in the mode of cell capture21: Fluorescence-Activated Cell Sorting 

(FACS) based platforms which exploit antibodies and flow cytometry techniques; droplet-based 
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and microwell-based platforms where the cells are separated by microfluidic techniques and 

trapped, respectively, in oil droplets or in microwells and microfluidics platforms like Fluidigm C1 

which separates the cells making them circulate along a fluidic path. Droplet-based platforms 

capture a large number of cells, they are the ones with the lowest cost but have a low number of 

genes detected due to the low depth of sequencing; platforms with microwells achieve a much 

greater sequencing depth than those droplets but capture fewer cells; microfluidic platforms, on the 

other hand, have a high number of cell capture and sequencing depth, however, their cost is a 

limiting factor in their use. 

 

 
Figure 3. Main techniques of cell capture on which the platforms for scRNA-seq are based. The 

different platforms for the single-cell differ in the method of cell capture. The main isolation strategies are 

shown here: A) the FACS platform isolates the cells using flow cytometry; B) droplet based methods; C) 

methods based on microwells; D) methods based on microfluidics. Figure from Ye, F., et al. . J Hematol 

Oncol 10, 27 (2017)22. 

Nowadays, single-cell sequencing is used to study transcriptional dynamics by the identification of 

novel and rare cell types or unknown cellular states. In addition, these techniques allow the 

measurement at the single-cell level of chromatin accessibility, methylation, mutation and CNV 

(scDNA-seq). Currently, there are different protocols that can be used: SMART-seq2, CELL-seq, 

Drop-seq, etc. There are also commercial platforms available, including the Wafergen ICELL8, the 

Fluidigm C1 and the 10X Genomics Chromium. 
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Other works have already used the single-cell method to study the phenotypes assumed by SMCs 

during atherosclerosis. However, in these works, as in Wirka, R.C. et al.19 and Huize Pan et al.23, 

scRNAseq analysis was applied on the SMCs of ApoE KO mice fed with the WD diet alone, 

ignoring the possible effects of diet and genotype in influencing the transdifferentiation of SMCs 

towards various phenotypes they may assume. In this work, we apply the scRNAseq analysis 

only on tdT+ cells of the previously described experimental groups providing a complete and in-

depth overview of all the phenotypes/cell-state assumed by SMCs and elucidating whether the 

ApoE-/- genotype predisposes to having a certain type of SMC-derived cells with respect to the 

others and the impact of diet on their distribution. 

 

1.5 Bioinformatic analysis of scRNAseq data 

1.5.1 Pre-processing 

The scRNAseq technology has allowed transcriptomics to go down to single cell resolution, 

however, this method is characterized by low capture efficiency and high dropouts and the data 

obtained are much noisier and more variable than those obtained with a bulk RNAseq24. For these 

reasons the quality control (QC) of the obtained data is a key step that needs a lot of attention during 

the in silico analysis of this type of data. A schematic overview of the main steps of a scRNAseq 

data analysis is shown in Figure 4. 

In general, once we proceeded with the alignment of the reads produced by the sequencing versus 

the reference genome and the assignment of the mRNA counts obtained to the corresponding cell, 

we generated a count matrix where in each row there is a gene and in each column a cell barcode. 

QC should be performed on this matrix to remove low quality cells in order to obtain clusters of 

cells with a transcriptional profile with as little noise as possible. To date, there is no standard 

pipeline to perform QC however, the main quality indices used are the number of genes found, the 

number of total counts and the fraction of reads that map to mitochondrial genes24, 25. These indices 

allow us to affirm, once a threshold based on the distribution of these values within the sample has 

been chosen, if a cell has reached a sufficient sequencing depth for the analysis or, in the case of 

droplet-based methods, if we are in front of an empty droplet; the fraction of mitochondrial counts 

also indicates us if the cell was damaged at the time of capture since in such case cytoplasmic 

mRNAs will escape from the cell while the mitochondrial mRNA will not and therefore the number 

of mitochondrial gene counts will be more high relatively to nuclear gene counts. Some protocols 

also use intrinsic spike-ins to estimate cell quality. Sometimes, it can happen that the cell isolation 

method does not work perfectly and therefore more than one cell ends up in the same micro-well 

or in the same droplet (doublet). This error could then lead to obtaining "dirty" gene signatures as 
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we may have assigned two different cell types to the same cell barcode and therefore the previous 

quality indices can also be used to identify a threshold beyond which to consider the cell barcode 

as a sequencing product of two cells. 

Another typical QC practice is to remove the genes expressed by a few cells, these are poorly 

informative of cellular heterogeneity and could cause noise in the identification of cell clusters. 

Following the QC, we proceed with the normalization of the count matrix, in order to have a 

transcriptional profile of each cell comparable with the others, and with the possible removal of the 

batch effect or the integration of more datasets. ScRNAseq experiments are often conducted on 

multiple samples analyzed at different times, prepared with different protocols and by different 

operators. These factors introduce a source of non-biological variation in the dataset that goes by 

the name of “batch effect”. This variation can lead to mistakenly consider two cells completely 

identical from a biological point of view to be different and therefore it is necessary to eliminate 

this bias with suitable algorithms that correct the count matrix, making the data coming from 

several samples comparable. Furthermore, you may want to combine samples from different 

experiments, from different organisms or prepared from different platforms: in such case, a batch 

correction algorithm would risk eliminating the biological variance really existing between the 

samples and therefore it is appropriate to use integration algorithms such as Canonical Correlation 

Analysis (CCA)26 or Mutual Nearest Neighbors (MNN)27. While batch effects are typically 

corrected using linear methods, non-linear approaches are used for data integration. A further 

correction of the counts, that is often done, is the retrieval of the expression in which algorithms 

are applied that are able to infer a dropout event, which are a common problem in single-cell RNA 

sequencing technologies, of a gene and impute a plausibly count for that gene.
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Figure 4. Schematic representation of a typical single‐cell RNA‐seq analysis workflow. The analysis of 

scRNAseq data consists mainly of two parts: a part of data pre-processing in which the alignment to the 

reference transcriptome is carried out, obtaining the matrices of the counts for each cell, the QC, the 

normalization and correction of the counts; and a second part, called downstream analysis, in which the 

biological meaning of the data is extrapolated by identifying the cell clusters present, the trajectories, the 

DEGs and the compositional analysis of the samples. Figure from Luecken MD, Theis FJ. Mol Syst Biol. 

2019 Jun 19;15(6):e874625. 
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Some genomes, such as the human one, have tens of thousands of genes and not all genes are 

important to classify the cells into meaningful clusters based on their expression profiles. Thus, it 

is necessary to use, in terms of the data science field, a feature selection and to identify the most 

relevant features to reduce the number of dimensions used in downstream analysis and to reduce 

the complexity of the data. This allows subsequent analyzes to be computationally less expensive 

and easier to handle. Typically we select between 1000 and 5000 high variable genes (HVGs). 

In order to view the characteristics of a dataset with many features such as those deriving from a 

scRNAseq analysis, it is necessary to execute dimensionality reduction methods that project the 

data into a lower dimensional space by optimally preserving some key properties of the original 

data. Once the size reduction has been performed, it is possible to project the dataset into a two- 

dimensional space where the cells are grouped into subpopulations. The methods that can be used 

to do this can be linear, such as the main component analyis (PCA), or non-linear, such as the t- 

distributed stochastic neighbor embedding (t-SNE) and the Uniform Approximation and Projection 

method (UMAP). 

PCA is a linear approach that generates reduced dimensions by maximizing the captured residual 

variance in each further dimension. While PCA does not capture the structure of the data in few 

dimensions as well as non‐linear methods, it is the basis of many currently available analysis tools 

for clustering or trajectory inference. Indeed, PCA is commonly used as a pre‐processing step for 

non-linear dimensionality reduction methods25. The two main methods of non-linear dimensional 

reduction used are the t-SNE and the UMAP. The t-SNE uses Gaussian joint probability measures 

to estimate the pairwise distances between the data points in the original dimension and this allows 

to capture local similarity at the expense of global structure; it is a computationally expensive and 

slow method for large datasets and may also exaggerate differences between cell populations and 

overlook potential connections between these populations. UMAP uses combinatorial topological 

modeling to capture the data and applies Riemannian metrics to enforce the uniformity in the 

distribution. Fuzzy logic is also applied to the graph to adjust the probability distance if the radius 

grows. Once the graphs are built then optimization techniques are applied to make the embedded 

space graph very similar to the original space one. The UMAP method provides the fastest run 

times, the highest reproducibility, and the most meaningful organization of cell clusters than other 

dimensionality reduction approaches24. 
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1.5.2. Downstream analysis 

After pre-processing, the so-called downstream analysis is performed: i.e. the biological insights 

extraction and description of the underlying biological system. 

The first step of the downstream analysis is the organization of the cells in clusters. Clustering is a 

classical unsupervised machine learning problem, based directly on a distance matrix. Cells are 

assigned to clusters by minimizing intracluster distances or finding dense regions in the reduced 

expression space. There are various algorithms for clustering scRNAseq data and they are all based 

on grouping cells based on a similarity score obtained on the basis of distance indices. 

Then, once we have obtained the clusters, we must proceed with their annotation which can be 

done with an automatic annotator, which uses machine learning to compare the expression profile 

of the cells with the data on which the classifier was built, or manually identifying the expressed 

marker genes that all the cells of the cluster have in common and comparing themselves with the 

literature. 

Once the clusters have been identified, the other downstream analyzes usually performed are the 

identification of differentially expressed genes (DEGs) between two or more clusters (or the same 

under different conditions) by means of a statistical test, the comparison between the proportions 

of the cell types present between two samples and the analysis of the trajectories. 

When you perform a scRNAseq analysis what you get is a picture of a cell population in which the 

cells are not synchronous with each other and therefore they will be in different stages of their 

differentiation. Using algorithms for the analysis of trajectories it is possible to order the cells along 

a scale of pseudotimes that reflects their differentiation path or in any case their transcriptional 

similarity. 
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2. MATERIALS AND METHODS 

2.1 Mouse strain 

To identify the SMC-derived phenotypes that formed following an atheroprone insult we used a 

mouse model knock-out (KO) for the ApoE gene (C56BL/6 ApoE−/−), an apolipoprotein that if 

mutated leads to hypercholesterolemia, and a group of wild-type (Wt) mice (C56BL/6 ApoE+/+) as 

a control. Both groups of mice were engineered with a well-characterized BAC transgene 

expressing a tamoxifen-inducible Cre recombinase driven by the Myh11 promoter specific for 

SMCs. This BAC transgene contains a floxed tandem dimer tomato fluorescent reporter so that 

specific SMC-lineage cells can be traced. As the Cre-expressing BAC was integrated into the Y 

chromosome, all lineage-tracing mice in the study were male. 

Five doses of tamoxifen, at 0.2 mg g−1 bodyweight, were administered by intraperitoneal injection 

at 7 weeks of age, with each dose separated by 24 h. 

At 8 weeks of age, the two groups (KO and Wt) of mice were then fed two types of diets: a high- 

cholesterol diet that mimics the Western diet (WD) and a chow diet (CD). The mice were then 

maintained in these alimentary regimes for 16 weeks and finally, we obtained 4 experimental 

groups: CD Wt, CD KO, WD Wt and WD KO mice as shown in Figure 5A. 

 

 
2.2 Mouse aortic root/ascending aorta and thoracic artery cell dissociation 

Immediately after sacrifice, mice were perfused with phosphate buffered saline (PBS). The aortic 

root and ascending aorta were excised, up to the level of the brachiocephalic artery. Tissue was 

washed three times in PBS, placed into an enzymatic dissociation cocktail (2 U ml−1Liberase 

(5401127001; Sigma–Aldrich) and 2 U ml−1 elastase (LS002279; Worthington) in Hank’s 

Balanced Salt Solution (HBSS)) and minced. After incubation at 37 °C for 1 h, the cell suspension 

was strained and then pelleted by centrifugation at 500g for 5 min. The enzyme solution was then 

discarded, and cells were resuspended in fresh HBSS. For the SMClin genotype, five mice were 

used at baseline, and five mice were used at 16 weeks of disease. For the SMClin-KO genotype (apoE- 

/-), five mice were used at baseline (chow diet) and five mice were used at 16 weeks. 

 

 
 

2.3 FACS of mouse aortic root/ascending aorta cells 

Cells were sorted on a BD Aria II instrument. An overview of the cell-sorting process is illustrated 

in Figure 3B. Cells were gated on forward/side scatter parameters to exclude small debris and then 

gated on forward scatter height versus forward scatter area to exclude obvious doublet events. 
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Events passing these criteria were then sorted into one of two 1.5 ml Eppendorf tubes based on tdT 

fluorescence levels. tdT+ cells (considered to be of SMC lineage), while tdT− cells were not 

collected (Figure 5B). 

 

 
 

Figure 5: A, research workflow: the cells analyzed with scRNAseq were dissociated from the four 

experimental groups obtained with the two diets and finally the bioinformatic analysis of the data was carried 

out. B, sorting by FACS of tdT + cells. Figure B adapted from Wirka, et al. Nature medicine vol. 25,8 (2019): 

1280-128919. 

 

 
2.4 Single-cell 10× Genomics Chromium system 

10x Genomics single-cell technology is a powerful tool that allows the identification of 

transcriptomes down to ~1% abundance. It’s a droplet-based technique that enable processing of 

tens of thousands of cells in a single experiment. This technology breaks down reactions into 

nanoliter-scale droplets containing uniquely barcoded beads called GEMs (Gel Bead-In 

EMulsions). This core technology can be used to partition single-cells, nuclei, or high molecular 

weight gDNA to prepare next generation sequencing libraries in parallel. To achieve single-cell 

resolution, the cells are delivered at a limiting dilution: in this way, ~90- 99% of generated GEMs 

will contain no cell, while the remaining should contain a single-cell. Each functional GEM 

contains a single cell, a single Gel Bead, and RT reagents. 

The surface of every microparticle bead has attached an oligo dT sequence, a unique molecular 

identifier (UMI), specific for each molecule of mRNA in order to allow the removal of artifacts 

due to cDNA amplification, a cell barcode, which identifies the cell from which the transcriptome 
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comes, and a PCR primer (Figure 6). Within each GEM reaction vesicle, a single cell is lysed, the 

Gel Bead is dissolved to free the identically barcoded RT oligonucleotides into solution, and 

reverse transcription of polyadenylated mRNA occurs. 

 

 

Figure 6. 10x Gel Bead-In EMulsions of Genomics' Chromium technology. Schematic representation of 

cell capture and library preparation with the 10x Genomics Chromium platform. in each GEM a cell is 

captured from which the mRNA is extracted and captured by probes linked to beads. the probes ensure that 

each cDNA that is produced by RT has a UMI and a cell barcode. Adapted from: Zeng Z et al., 201828. 

 

 
2.5 scRNAseq cells’ preparation, library preparation and sequencing 

All single-cell capture and library preparation was performed and cells were loaded into a 10x 

Genomics microfluidics chip and encapsulated with barcoded oligo-dT-containing gel beads using 

the 10 Genomics Chromium controller according to the manufacturer’s instructions (ChromiumTM 

Single Cell 3’ Reagent Kits v2-rev). The libraries obtained were then evaluated with the 

TapeStation 4200 (Agilent, LifeTechnologies), they were then sequenced on the Illumina 

NextSeq550 platform; on average at least 40.000 reads per single cell were obtained. 

 

 
2.6 10x Visium Spatial Transcriptomics technology 

In recent years, the Visium Spatial Transcriptomics platform (10x Genomics) has been introduced 

which allows to map the transcriptome deriving from spots of 55µm in diameter and 100µm away 

from each other, in which the mRNAs of the cells of a section of tissue are captured, above the 

image of the section itself. This technology is based on a slide with up to 4 capture areas of 6.5mm 

x 6.5mm and contains ~ 5000 barcoded spots (Figure 7). In each spot there are probes that contain 

an oligo dT sequence, the UMI and the spatial barcode, which allows to trace the position of the 

spot in which the capture took place. Then the tissue section placed in the capture area is 
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permeabilized to release the mRNA from the cells, the mRNA is captured, retro-transcribed and the 

libraries prepared. 

 

 

Figure 7. The Visium Spatial Gene Expression Slide (https://www.10xgenomics.com/) 
 

 

 
2.7 Visium spatial transcriptomics tissue’ preparation, library preparation and sequencing  

We select 4 human plaque samples based on RIN >7. We mounted the selected OCT tissue 

blocks on the specimen stage aligned as previously based on cardinal signs and cut serial 

cryosections which have been placed onto Tissue Preparation Guide (CG000240). For the 

following steps we acted in accordance with Visium Spatial Gene Expression protocol 

(CG000239) with minor modifications. Visium Spatial Gene Expression slide, containing the four 

CRLM sections, was incubated following the Methanol Fixation + H&E Staining guide 

(CG000160). Finally, the slide was dried at 37°C for 5 minutes and mounted with Mounting 

Medium (22.5 μl RNase inhibitor, 7.5 μl Nuclease free water and 170 μl Glycerol). The slide was 

imaged with AxioScan, in brightfield with 20x magnification. After the acquisition, the Spatial Gene 

Expression slides was immersed in a 3x SSC solution in ultrapure water for 20 minutes, to remove the 

coverslip. 25 ng of the amplified cDNA were then used for each sample to construct Illumina sequencing 

libraries following the manufacturer’s protocol (CG000239) using 17 cycles and Dual Index Plate TT set 

A for their generation. Final libraries were checked by Qubit dsDNA HS Assay Kit (Q32854) and the 

Agilent 4200 Tape Station system using the High Sensitivity D5000 ScreenTape (5067-5592) analysis kit 

(Agilent, Santa Clara, CA, USA). Sequencing was performed on the NextSeq550 Illumina sequencing 

platform. 

http://www.10xgenomics.com/)
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2.8 Analysis of single-cell RNA sequencing data 

2.8.1 QC, clustering and DEGs identification. 

The reads obtained from the sequencing of the aortic cells were individually mapped for each 

murine model, to the reference genome mm10, with the addition of the sequence for the Tomato 

gene, using the CellRanger Software v3.1.0 (10x Genomics). The matrixes with the obtained raw 

counts were merged together and were analyzed and filtered using R v4.0.5 and the scater v1.24.029 

and DropletUtils v1.14.230, 31 packages. We used the emptyDrops function  to remove all the 

droplets with a false discovery rate greater than 0.05 and then we filtered out all cells with no count 

for Tomato gene. Then we removed all cells with a number of UMIs, detected  genes or a percentage 

of mapped reads onto mitochondrial and ribosomal genes that were considered outliers compared  

to the median absolute deviation. All genes that did not have a minimum of one count in at least 

the 5% of the cells of the entire dataset were removed. Cells that were imputed arising from 

doublets through the computeDoubletDensity function were excluded. After the quality filter, cells 

were analyzed using the Seurat version 4.0.1 package32. The gene counts of each cell were 

normalized by dividing them to the library size of their cell; the resulting expression values were 

then multiplied by 10,000 and log transformed. Subsequent analyses to obtain the cell clusters were 

conducted using only the top 2000 most highly variable genes in the dataset excluding Apoe and 

Tomato. Fast-mutual nearest neighbors’ correction, performed with batchelor package v1.12.333 

was used for batch correction and dimensionality reduction, followed by clustering in MNN 

corrected principal component analysis space using a graph-based clustering approach.   

Subsequentially, Uniform Manifold Approximation and Projection (UMAP) was used for two-

dimensional visualization of the resulting clusters. Genes differentially expressed among all cell 

clusters derived from SMCs were obtained with the Seurat function FindAllMarkers with 

logfc.threshold = 0.3 and min.pct = 0.2 parameters and using the MAST34 statistical test. Only 

DEGs with p_val_adj <0.05 were kept. 

 

 
2.8.2 Pathways enrichment analysis 

Given a list of genes and a database of metabolic or functional pathways, it is possible to perform 

a pathway enrichment analysis through which a list of pathways is obtained whose genes are 

significantly enriched in the fixed list of genes of interest, as compared to all genes in the genome35. 

The P value of the enrichment of a pathway is computed using a Fisher's exact test and multiple- 

test correction is applied. We performed the pathway enrichment analysis by the online tool 

ENRICH36, 37, 38 with the DEGs found by individually comparing the derived SMC clusters and the 

contractile SMCs with the previous parameters. 
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2.8.3 Inference of the activity of the regulons 

A recently introduced method to confidently define cellular identity and how that identity is 

developed and maintained is Single-Cell Regulatory Network Inference and Clustering 

(SCENIC)39. This tool allows to link gene expression to the gene regulation networks on which the 

cell-state largely depends. Thus, SCENIC allows the identification of the activated regulons in a 

cell. In molecular genetics, a regulon is a group of genes that are regulated as a unit, generally 

controlled by the same regulatory gene that expresses a protein, called transcription factor (TF), 

acting as a repressor or activator. Briefly, the SCENIC pipeline consists of three steps: first, 

candidate regulatory modules are inferred from coexpression patterns between genes; second, 

coexpression modules are refined by the elimination of indirect targets using TF motif information.; 

third, the activity of these discovered regulons is measured in each individual cell40. We inferred 

the activity of the active regulons in the cells and calculated the Regulon specificity Score (RSS), 

a score of how much that regulon is activated only in the cells belonging to that cluster, with 

SCENIC v1.2.4. 

 

 
2.8.4 Trajectory analysis 

We performed the trajectory analysis by assigning a pseudotime to each cell using the slinghot 

package v2.4.041 on the umap reduction of the dataset. Slingshot consists of two main stages: 1) 

the inference of the key elements of the global lineage structure, the number of lineages and where 

they branch, using a cluster-based minimum spanning tree. This allows us to identify novel lineages 

while also accommodating the use of domain-specific knowledge to supervise parts of the tree (e.g., 

terminal cellular states); and 2) the inference of pseudotime variables for cells along each lineage. 

For the second stage, slingshot tool uses a method called simultaneous principal curves to fit 

smooth branching curves to these lineages, thereby translating the knowledge of global lineage 

structure into stable estimates of the underlying cell-level pseudotime variable for each lineage40. 

 

 
2.8.5 Integration with murine tdT- cells and with atherosclerotic patient scRNAseq data  

In our analysis we have identified a cluster of cells characterized by the expression of the Adamtsl1 

gene and therefore called SMC Adamtsl1+. To verify the presence of this cluster also in the mouse 

model of another work and in humans, we downloaded the human and mouse scRNAseq fastqs 

from Huize Pan et al.23 and reanalyzed as we did for our dataset with the exception that the human 
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reads were mapped to the GRCh38 reference genome and not filtered for the Tomato gene. Once 

the datasets were analyzed independently, we proceeded to integrate them with our data to verify 

that our Adamtsl1+ cluster really corresponded to theirs. The integration of the data of our KO WD 

model and the same model at 16 weeks and the human samples from other work was carried out 

by finding the correlation anchors and the Seurat IntegrateData function. For human data we 

transformed the matrix of human genes with murine orthologs by the biomaRt42 package before 

integration. 

 

 
2.8.6 Study of the communication between Adamtsl1+ cells and macrophages 

Numerous studies have shown that M1 Mϕs promote the inflammatory state of the plaques, 

allowing their growth and the onset of complications11 and have been seen to be responsible for the 

decreased efferocytosis with consequent necrosis of the plaque13. For this reason, we wanted to test 

whether the new SMC Adamtsl1+ phenotype was able to interact with Mϕ promoting their 

polarization in M1. For the study of the interaction between the Adamtsl1+ cells and the Mϕ we 

used NicheNet algorithm implemented in the nichenetr package v1.0.043. NicheNet is based on a 

prior model built on the basis of everything that is already known about that a ligand regulates the 

expression of a target gene. This previous model is generated by integrating data on ligand-receptor, 

signal transduction, and gene regulation interactions from multiple databases into weighted 

networks (Figure 8). These contain protein-protein interactions that cover the signaling pathways 

from ligands to downstream transcriptional regulators and gene regulatory interactions between 

transcriptional regulators and target genes. Finally, a regulatory potential score is assigned among 

all pairs of ligands and target genes based on whether the target gene regulators are downstream of 

the ligand signaling network using network propagation methods over integrated networks to 

propagate the signal from a ligand, on receptors, signaling proteins and transcriptional regulators, 

to terminate at target genes. 

When applying NicheNet to study communication between cells in a scRNAseq experiment, this 

prior model of ligand-target regulatory potential is combined with cell gene expression data to 

prioritize ligands according to how well their prior target gene predictions correspond to the 

observed gene expression changes in receiver cells resulting from communication with sender cells. 

Then, to predict active ligand-target linkages, NicheNet looks for genes that are affected in receiver 

cells and that are possibly regulated by these priorityzed ligands, as indicated by a high regulatory 

potential score43. 
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Figure 8. NicheNet workflow scheme. NicheNet uses a prior model obtained by integrating ligand-receptor 

data, signal transduction, and gene regulation interactions to build a weighted network where a score is 

assigned to each ligand-target pair based on whether the genes that regulate the target are downstream of the 

ligand signaling network. this prior model is then integrated with cell expression data to prioritize ligands 

produced by a sender cell population based on how they predict gene expression changes in receiver cells. 

the actual interactions between the targets and the ligands are subsequently verified on the basis of the 

regulatory potential score assigned to the pair in the prior model. Figure from Browaeys, R., et al. Nat 

Methods (2019)43. 

For the analysis we indicated as target genes in the Mϕ a signature of genes for M1 polarization 

common to in vitro and in vivo experiments coming from Orecchioni M., et al.44 and the possible 

ligands produced by Adamtsl1+ cells were selected from the DEGs of the signature obtained by 

comparing all the clusters of our dataset integrated with all four groups of mice. 

 

 
2.9 Visium Spatial Gene Expression data analysis 

2.9.1 QC of spatial transcriptomic data 

Fastq files were generated with 10x Genomics software Space Ranger v1.2.2 with spaceranger 

mkfastq function. The reads were aligned to the human reference transcriptome GRCh38 with 

spaceranger count command. The obtained count matrices were processed using R v4.0.5 and 

Seurat package v4.0.1. After the removal of the low quality spots (number of counts < 100 and 

percentage of mitochondrial genes > 20) we proceeded to normalize the data with the SCTransform 

function by regressing for the n_Feature_spatial variable and for the percentage of mitochondrial 

genes. 
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2.9.2 Spatial localization of Adamtsl1+ cells in human atherosclerotic plaque 

The spots present in the visium spatial transcriptomic slide have a diameter of 55µm while some 

cell types, such as macrophages, are smaller. Therefore, more cells can be found in a spot and this 

will not allow us to have a resolution of the transcriptional profile at the single cell level. To solve 

this bias it is possible to apply a deconvolution of the transcriptional profile of each spot by 

integrating the expression data of scRNAseq through algorithms such as the deconvolution of 

Spatial Transcriptomics profiles using Variational Inference (DestVI) implanted in the scvi-tools 

package, this allows the tracing of the proportion of cell types present in each spot. The DestVI 

algorithm uses a Bayesian model for multi-resolution deconvolution of cell types in spatial 

transcriptomic data. DestVI learns both discrete cell-type-specific profiles and continuous sub-cell- 

type latent variations using a conditional deep generative model in this way, it recovers cell type 

proportions as well as a cell-type-specific snapshot of the transcriptional state of every spot. The 

deconvolution of the generated spatial transcriptomic data was performed with the scvi-tools46 

package and human scRNAseq data derived from the dataset of Huize Pan et al.23 
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3. RESULTS 

3.1 Analysis of single-cell RNA sequencing data 

3.1.1 QC, clustering and DEGs identification. 

In order to identify cellular subpopulations deriving from the SMC lineage, the mice of the 4 

experimental groups were sacrificed and the cells were dissociated from the aortic arch and selected 

for the presence of Tomato fluorophore by FACS and then we proceeded with scRNAseq (see Figure 

3) using only the fluorophore positive cells. Then, the data obtained underwent a QC where empty 

droplets, doublets and cells with low expression were removed. We obtained the following 

transcriptomic data: 2379 cells for the group KO CD, 1699 for KO WD, 3485 for Wt CD and 970 for 

Wt WD. From these data we obtained 6 clusters, shown in Figure 4A, among which we proceeded to 

derive the differentially expressed genes and we searched among them by integrating with the 

bibliography the possible markers for the phenotype, the identified gene markers and their expression 

are shown in Figure 4C. It was observed that cluster 3 belonging to contractile SMCs shows the 

expression of some genes that characterize it compared to canonical SMCs such as Adamtsl147, a gene 

coding for a secreted protein belonging to the Adamts family, which is absent in contractile SMCs. In 

Figure 4B it is shown that the number of cells belonging to each cluster differs between the four 

groups of mice. 

 

 
Figure 10. Clustering analysis and gene marker expression. A, UMAP visualization of the 6 clusters 

obtained; B, composition of the clusters by separating the cells by experimental group of origin; C, dotplot 

with the expression values of the top gene markers identified for each clusters, the color indicates the average 
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expression level of the gene and the size of the dot the percentage of cells in the cluster that express the 

considered gene. 

Therefore, the clusters were annotated manually based on the expression of the markers obtained as 

follows (see Figure 5A): clusters 0 and 1 are the contractile SMC phenotype, cluster 2 is composed 

of fibromyocytes, cluster 3 has been noted as SMC Adamtsl1+ as characterized in particular by the 

expression of this gene, cluster 4 corresponds to pericytes and cluster 5 to a phenotype called SEM22. 

 

Figure 11. Annotation of clusters, compositional analysis and DEGs identification. A, UMAP with 

annotated cluster; B, percentage composition of the cell clusters for each experimental group; C, heatmap of 

the top DEGs among the clusters. 

In order to verify how the diet influenced the abundance of the identified phenotypes, and therefore 

to verify if the SMC were stimulated by the diet to differentiate towards a certain condition rather 

than another, the relative abundances, in percentage, of the specific cell types was evaluated. We 

observed that both in KO and in Wt with WD there is an increase in contractile SMC2, fibromyocytes, 

SMC Adamtsl1+ and SEM while pericytes and contractile SMC1 decrease. 
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Since the SMC Adamtsl1+ phenotype is the only one not yet described in other works, we have 

concentrated the following analyzes only on this cluster. 

 

 
3.1.2 Pathways enrichment analysis 

The differentially expressed genes between the SMC Adamtsl1+ and the contractile SMC1 and the 

contractile SMC2 have been calculated to highlight the genes that diversified this cluster from the 

canonical contractile SMCs and we proceeded with the analysis of the enriched pathways for the 334 

up regulated and 261 down regulated genes. This analysis allows us to pass from a list of genes, which 

does not provide an immediate overview of the biological functions activated in the cells or of the 

role they could have in the biological context in which they are found, to a list of functional pathways. 

Therefore, in Adamtsl1+ cells the pathways more enriched due to the up-regulated genes compared to 

the canonical contractile cells concern the organization of the extracellular matrix and the activation 

of neutrophils (Figure 12A) while the down-regulated ones are involved in muscle contraction (Figure 

12B) suggesting that this phenotype is becoming metabolically active and pro- inflammatory. 
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Figure 12. Pathways analysis and Regulon Specificity Score. A-B, respectively: the pathways enriched with 

up-regulated DEGs in Adamtsl1+ and down in contractiles and vice versa; C, dotplot with the transcription 

factors of the regulons identified with SCENIC, the size of the dots reflect the RSS value and the color the z- 

score of their activity. 

 

 
 

3.1.3 Inference of regulon activity 

Due to the high number of dropouts and other technical biases of the scRNAseq technology, the 

pathways extrapolated from the expression data alone do not provide accurate information on the cell-

state assumed by the cell. For this reason, it is necessary to link the expression data to the gene 

regulation networks, identifying the activated regulons, modules of genes regulated by the same 

transcription factor, and thus allowing to have a clearer picture of the functions performed by the cell. 

Therefore, we performed the workflow of the SCENIC tool, inferred regulon activity in each cell and 

computed the Regulon Specificity Score (RSS). The regulons with an RSS score greater than 0.1 in 
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the Adamtsl1+ SMCs are: Prrx2, Sox9, Dlx5, Sox4, Msx1 and Pbx1 (Figure 12C). These transcription 

factors are involved in proliferation, extracellular matrix deposition and osteogenesis; this data 

confirms that this type of SMC is an intermediate state between contractile SMCs and proliferating 

SMCs 

 

 
3.1.4 Trajectory analysis 

To confirm that the Adamtsl1+ cluster was an intermediate state of transdifferentiation from 

contractile SMCs to other phenotypes involved in the formation of the plaques, we performed a 

trajectory analysis with the R Slinghshot tool, ordering the cells along a scale of pseudotimes 

according to transcriptional similarity. As it is shown in Figure 13 we obtained three different 

trajectories: a trajectory that starts from the contractile SMC and through the Adamtsl1+ cells reaches 

the fibromyocytes; a second lineage that starts from the contractile cells and through the Adamtsl1+ 

reaches the pericytes and SEM cluster and finally a lineage that goes from the contractile SMC1 to 

the contractile SMC2. Therefore, the trajectories confirm the existence of a continuity pattern in the 

expression profile between the Adamtsl1+ cells and the contractile SMCs and suggest that them could 

be a possible intermediate state between these and the more transdifferentiated phenotypes making 

us speculate that this phenotype could be a valid target where to block the transdifferentiation of 

SMCs and avoid the formation of atherogenic phenotypes. 

 

Figure 13. Trajectory analysis. Study of the trajectories in umap space of the clusters, the cells are coloured 

according to the pseudotime score. 

 

 
3.1.5 Integration of murine tdT- cells and validation in human scRNAseq data 

Once we identified the Adamtsl1+ cluster, its characteristics and possible biological functions, we 

first wondered whether these cells were also present in other published scRNAseq datasets generated 

from the same model and if the same cluster was identified also in human atherosclerotic plaques. 

Therefore, we downloaded data from the work of Huize Pan et al.23, where the authors performed a 
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scRNAseq analysis using the same mouse model as we did. They performed scRNAseq on the WD 

KO group, also fed for 16 weeks, also on using the tdT- cells, as well as on three plaques derived from 

patients with atherosclerosis. First of all, we performed the pre-processing of their raw data and 

downstream analysis in the same way as done for our dataset and we obtained that both in their mouse 

model and in the human dataset (Figure 14A-B) the Adamtsl1+ cluster is present and from the 

signature transcriptional corresponds to the cluster that they noted as the minor SMC23. For an even 

more robust identification of our cluster in their dataset we performed the CCA integration 

implemented in Seurat between our WD KO group and their model with the same conditions and 

between our integrated dataset of all 4 groups with their human dataset. We found that our Adamtsl1+ 

cells after integration with their cells, rebuilding the SMC Adamtsl1+ cluster. These results confirm 

that, although this phenotype was not previously described, it is not an artifact of our experiment but 

is also present in other datasets. Furthermore, this shows also that Adamtsl1+ cells are present in 

human atherosclerotic plaques. 

 

Figure 14. Clustering of human scRNAseq data. A) umap visualization of annotated clusters obtained with 

human scRNAseq data from Huize Pan et al.23 ; B) Visualization of gene expression of MYH11, gene marker 

for SMC derived-cells, and of ADAMTSL1 and DLX5, main gene marker for ADAMTSL1+ phenotype. 

 

 
3.1.6 Study of the communication between Adamtsl1+ cells and macrophages 

Finally, to verify the pro-inflammatory capacity of these Adamtsl1+ cells, we applied the algorithm 

of the NicheNet R package to test their ability to induce an M1-type response in macrophages. 

Since in our experimental design we performed scRNAseq only on tdT + cells, we integrated our 
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dataset with scRNAseq data from the work of Huize Pan et al.23 performed on the same model but 

also with tdT –. The annotated clusters of integrated datasets are reported in Figure 15A. Then we 

applied NicheNet to prioritize the possible ligands which could predict changes in expression in 

target genes from a list of genes involved in the polarization of macrophages in M144, evaluating 

the interaction between the two cell-types among the genes differentially expressed by Adamtsl1+ 

(Figure 15B). The interactions between the identified ligands and the possible receptors are shown 

in figure 15C. We repeated the procedure with a gene signature for anti-inflammatory M2 polarized 

Mϕ without finding a significant association with the expressed ligands, this confirmed that this 

cluster induces the activation of M1 Mϕ. These results suggest that Adamtsl1+ are able to activate 

the M1 phenotype and therefore they might be considered as proinflammatory SMCs. This 

phenotype could therefore stimulate the growth of plaques and to allow the development of 

complications such as their destabilization and rupture. 

 

Figure 15. Integration with tdT- data and interaction study. A) UMAP of the annotated clusters of the 

integrated dataset with data of mouse from Huize Pan et al.23; B) dotplot with the expression of priorized 

ligands produced by Adamtsl1+ cells, the size of the dots reflects the percentage of cells expressing the gene 
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and the color the mean expression value; C) heatmap with the priorized interactions between Adamtsl1+ cell 

ligands and M1 receptors. 

 

 
3.2 Visium Spatial Gene Expression data analysis 

3.2.1 QC of spatial transcriptomic data 

To verify whether SMC Adamtsl1+ cells were also present in plaques of patients with arteriosclerosis, 

we performed a spatial Visium transcriptomics RNAseq on 4 sections of human plaques. This 

technique involves the permeabilization of a tissue to let the mRNAs spread out of the cells which 

will be captured by probes in the spots underlying the cell; in this way it is possible to see where the 

marker genes of the cell types of interest are expressed and to get an idea of their position and role. 

Following the quality control of the obtained data, we decided to carry out the analyzes on two 

samples, shown in Figure 16A, for which an average number of UMIs per spot and sufficient detected 

genes was obtained. After aligning the transcriptomic data of the spots to the tissue using the 

spaceranger tool, the spots with low-quality data were removed. Then we checked the expression of 

some of the top Adamtsl1+ cell marker genes such as ADAMTSL1 and DLX5. As shown in Figure 

16B, these genes are expressed within human plaques indicating that we have this phenotype in 

humans.  

 

 
3.2.2 Spatial localization of ADAMTSL1+ cells in human atherosclerotic plaque 

Since the spots of the slide for visium transcriptomics are too large to have a single cell resolution, to 

understand where the ADAMTSL1+ are located it was necessary to use a deconvolution algorithm 

such as DESTVI which, using the specific transcriptional profiles of the cell type obtained with a 

scRNAseq analysis, succeeds to infer the composition of the cell types present in the transcriptional 

profile of each spot. Therefore, we proceeded to apply DESTVI using scvi.tools package to 

deconvolve the transcriptional profile of the spots, using human scRNAseq data from Huize Pan et 

al.23 as reference.  

In this way it is possible to attribute the position of a cell type on the section in a more accurate way 

than observing only the expression of its marker genes since its entire transcriptional signature is used 

and not just a subset of genes which could also be expressed by similar cell types. 

The results of this analysis are visible in the Figure 16C, where we observed an abundant presence of 

ADAMTSL1+ cells in the plaque, that was more evident in at least one sample where there are spots 

where these cells constitute more than 75% of the mRNA content and therefore we can be confident 
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of the real presence of this phenotype in these spots. Hence ADAMTSL1+ cells appear to be present 

in human plaques and appear to be distributed in the innermost layers of the plaque.

 

Figure 16. Localization of ADAMTSL1+ cells into Visium Spatial Transcriptomic slide. A) H&E sections 

of the two human arteriosclerotic plaque samples on which Visium Spatial Transcriptomic analysis was 

performed; B) H&E sections with overlapped transcriptomic spots colored according to the expression of the 

two main markers of Adamtsl1+ cells; C) H&E sections with overlapped transcriptomic spots colored 

according to the proportions of cell types deconvolved with scvi-tools. 
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4. DISCUSSION AND FUTURE PROSPECTS 

Arteriosclerosis is a problem of primary importance in Western countries and although current statin- 

based treatments have led to a decrease of morbidity and mortality rates48, a considerable fraction of 

patients, does not benefit from this therapy. For this reason, we need to identify new molecular targets 

that allow us to block the onset of plaque formation. 

It is known that the SMCs of the arteries play an important role in the formation of arteriosclerotic 

plaques thanks to their ability to undergo phenotypic switching and therefore to migrate into the 

intima forming the fibrous cap of the plaques12. Their ability to transdifferentiate also seems to play 

an important role in this pathology but this aspect has not been yet fully clarified. Some works, as the 

one of Wirka, R.C. et al.19, have shown that SMCs can transdifferentiate into phenotypes that 

determine the stability and formation of plaques and that scRNAseq technology is a powerful tool for 

identifying new SMCs phenotypes. In our work we performed SMC lineage tracing in a mouse model 

fed with an atherogenic (WD) or a chow diet (CD) to identify phenotypically modulated cells of SMC 

origin in atherosclerotic lesions. scRNAseq analysis highlighted some phenotypes already described 

in the literature, such as fibromyocytes and SEM, and a new phenotype distinct from contractile 

SMCs characterized by the expression of some genes, in which the most selective was Adamtsl1. 

Previous works from Wirka, R.C. et al.19 and Huize Pan et al.23 applied scRNA analysis only on ApoE 

KO mice fed with WD while we started from 4 experimental groups with Wt and ApoE KO mice that 

were also fed with CD in order to verify the impact of genotype and diet on the transdifferentiation 

of SMCs. 

The values of the cluster percentages shown in Figure 11B show that: as far as the genotype is 

concerned, in CD the KO mice have a higher basal level of contractile SMCs while the Wt mice 

present a greater fraction of pericytes and of the cluster named contractile SMC 2; in mice fed with 

WD instead, it seems that the SMCs in KOs are guided to transdifferentiate towards fibromyocytes 

and SEMs while the Wt towards the Adamtsl1+. Regarding the diet, WD seems to drive SMCs to 

transdifferentiate towards fibromyocytes, SEMs and Adamtsl1+ rather than pericytes. 

These results seem to tell us that the SMCs of the model used by the two previous works have a 

predisposition to become fibromyocytes and SEM which are the phenotypes they have principally 

analysed. Applying our scRNA data analysis pipeline to the dataset derived from mice fed for 16 

weeks with WD obtained from Wirka, R.C. et al.19, we found very few Adamtsl1+ cells, and these 

cells did not cluster together. This may depend by the fact that their tdT+ cells, although more 

numerous than ours - 11348 cells analyzed with our pipeline, versus 8533 of our dataset - have a 

lower sequencing depth which allowed us to identify fewer genes per cell: in our own dataset we have 
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a mean of detected genes of 1844 versus 1278 of theirs. Therefore, considering that the Adamtsl1+ 

cluster is a rare population, and given that with KO mice SMCs mainly become fibromyocytes and 

SEM, we can conclude that a greater sequencing depth is required to observed the cluster analyzed in 

our work. On the other hand, analyzing the dataset derived from KO mice fed WD for 16 weeks 

published by Huize Pan et al.23 both alone or integrated with our data, we observed that the cluster 

that they called "minor SMC" corresponds to our Adamtsl1+ cluster. However, in that work they 

focused on SEMs and did not study this phenotype in detail. 

Our analysis showed that the Adamtsl1+ cellular phenotype, identified by scRNAseq in mice is also 

present in human atherosclerotic plaques and that, according to the results of the inference of regulons 

and enrichment of the pathways, these cells are losing their contractility capacities and are 

metabolically active, therefore, this population of SMCs could positively contribute to the formation 

of plaques. 

From the literature we know that Mϕs are very important cells involved in the development of 

atherosclerosis11, 15, 16. They play an atherogenic role by infiltrating atherosclerotic lesions, promoting 

the inflammatory state of the tissue and they can overexpress scavenger receptors to absorb oxidized 

cholesterol and become foam cells, one of the main constituents of the lipid core of atheromas. 

Furthermore, the M1 phenotype can decrease the efferocytosis process, thus preventing the removal 

of apoptotic cells and causing the plaque necrosis with a consequent modulation of its stability. Our 

Adamtsl1+ population seems to have activated pro-inflammatory pathways and through the study of 

cell-to-cell interactions, we have seen that they can produce ligands capable of interacting with 

receptors linked to the polarization of Mϕs into M1. Therefore, this phenotype could not only 

contribute to the development of the plaques but also might allow the onset of their destabilization 

due to the stimulation of Mϕs. 

Finally, the analysis of the trajectories showed that Adamtsl1+ cells could be an intermediate stage of 

SMCs that are transdifferentiating into other phenotypes already known in the literature for their 

atherogenicity. Being a cluster that expresses specific markers with respect to contractile SMCs, such 

as Adamtsl1 itself, whose function is not known to date, and Dlx5, we can eventually think of applying 

the modulation of such genes as a possible therapy to block the transdifferentiation of SMC into the 

arteries and to improve the prognosis of atherosclerosis patients. 

Therefore, in the next future we plan to test whether the Adamtsl1 gene have a role in the 

transdifferentiation of SMCs towards the phenotype identified in this work. Its function will be tested 

through in vitro experiments on cultured SMCs in which its expression will be modulated through 

loss- or gain-of-function approaches and the cellular phenotype will be evaluated. 
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Then the presence of this protein will be also tested in plasma of mice and human patients to assess 

whether it can be used as early diagnostic tool on such conditions. 

Finally, the role of Adamtsl1 in the onset of atherosclerosis will be tested as therapeutic agent, and 

this will be done modulating Adamtsl1 expression in ApoE KO mice in pro-aterosclerotic conditions 

by using a lentiviral system where its specific shRNA will be guided by the promoter of the SM22 

gene.  

If a role of Adamtsl1+ cells in the onset of atherosclerosis will be confirmed, also in light of the 

discoveries made in this thesis, we might hypothesize that this gene could become an innovative and 

promising therapeutic target to prevent the aggravation of atherosclerosis development. Its 

modulation  could block the pathology development, by counteracting the formation of plaques, but 

also reducing the proinflammatory environment. Furthermore, since ADAMTSL1 is a secreted 

protein, it could be used as a marker of plaque pathogenicity. 
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