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1. Introduction

In this paper we aim to study, from an analytic and numerical point of view, the damped transverse vibrations of
a dynamical system which models a double suspended bridge system under compressive axial loads. The interest in the
dynamic of suspension bridges relies on the fact that the analysis of their nonlinear vibrations is crucial for understanding
the stabilization of the oscillations, especially when the coupling between the road bed and the suspension main cable
is taken into account. In the literature, starting from the pioneering papers [1-3], the dynamic response of the bridge
was mainly investigated with models where the road bed has been simpler considered as a vibrating one-dimensional
beam (see for instance [4-17]). The main cable holding the cable stays, instead, is treated as a vibrating string and it
is coupled with the road bed by different types of springs. For such a models, doubly nonlinear elastic and viscoelastic
coupled systems were analyzed and the longtime behavior of solutions deeply investigated in [18-22].

Here, we consider a more realistic system, since the road bed is modeled as a sandwich structure composed of
two lateral beams connected by an elastic rug [23,24]. The dynamics of each beam is coupled with a single cable, also
considered as a vibrating string, and the coupling is carried out by a distributed system of vertical one-sided elastic springs
(see Fig. 1).
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Fig. 1. The double suspended bridge model: two lateral beams connected by an elastic rug model the road bed and the coupling of each beam,
with a single cable, is obtained through one-sided elastic springs.

In order to exhibit the mathematical model, we suppose that the two beams describing the mechanical structure of
the road bed are equal and complied with the nonlinear model of Woinowsky-Krieger [25], so that large deformations are
allowed. The beams are supposed to have the same natural length £ > 0, constant mass density, and sectional dimensions
which are negligible in comparison with their length (for the sake of convenience, in the following we will assume that
¢ = 1). At their ends, they are simply supported and subjected to evenly distributed axial loads. A system of linear springs
models the elastic filler connecting the beams: when the system lies in its natural configuration, the beams are straight
and parallel. The distance between the beams is equal to the free lengths of the springs. Each suspended beam acts on
its cable just through the suspenders (a distributed system of non-linear springs), so yielding a transversal distributed
load on it. This nonlinear part connecting each beam to its string is able to pull the cable down and to hold the road
bed up, but not the reverse. Hence, collecting all the previous observations, we propose the following dimensionless,
doubly-nonlinear, coupled system

Aeetr () + otta () + ety + (p1 — ”axul”fz(o,l))axxul(t)

Fie[ur(t) — vi(E)] + «*[wa(t) — ua(6)] = fr,
B v1(t) — Bev1(t) + 9evy — ke [uq(t) — va ()1 = g1,
)

Oreiz(t) + Oyomtiz(t) + Otz + (p2 - ||axu2||i2(011))8xxu2(t)

i [uz(t) — v — *[ur(t) — ux(t)] = fo,
By v2(t) — B v2(t) + B vy — K [ux(t) — v2()1 = ga,

where the unknown variables u; : [0, 1] x R — R (i = 1, 2) represent the downward deflection (in the vertical plane) of
each beam midline, v; : [0, 1] x Rt — R (i = 1, 2) the vertical displacement of each string with respect to its reference
configuration (of unitary length) at rest. The sources, f; and g;, are the (given) vertical load distributions. In addition, the
beams are connected by linear springs with common stiffness «* > 0, and the suspender cables (ties) are assumed to
be one-sided elastic springs with common stiffness ¥ > 0, where w* stands for the positive part of w. Finally, every
parameter p; summarizes the effect of an axial force acting at one end of each beam: it is negative when both beams
are stretched, positive when compressed. Both beams are hinged at their ends and both main cables have fixed ends,
namely

ui(0, t) = ui(1, £) = 0xxui(0, t) = Oxtti(1,t) =0, t€[0,00),i=1,2, 2)
vi(0,t) = v(1,t) =0, te[0,00),i=1,2.

In addition, the unknown fields u; and v;, i = 1, 2, are required to satisfy the following initial conditions:
ui(x, 0) = ui(x), dui(x,0) = ui(x), x€[0,1],i=1,2, (3)
vi(x, 0) = vi(x), Orvi(x, 0) =vi(x), x€[0,1],i=1,2,

where u;, v, Ui; and ¥;, i = 1, 2, are given functions which fulfill conditions (2).

In this framework, we present original results concerning the existence and uniqueness to problem (1)-(3) and its
longtime behavior. To this aim, we write the original problem as an ordinary differential one through a suitable operator
and we apply the theory of strongly continuous semigroups. Regarding the time asymptotic behavior, it is proved that
the solution decays exponentially to zero when some restrictions on each p; are imposed. A numerical analysis is also
performed by using the finite element method to approximate the spatial variable and the implicit Euler scheme to
discretize the time derivatives. An a priori error estimates result and numerical simulations are shown.
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Finally, we remark that, even if the introduced mathematical model is characterized by some approximations and,
hence, it does not take into account all the features of the complex behavior of an actual bridge, it exhibits some important
dynamical properties and it gives the advantage of rigorous results within a precise mathematical setting. This justify the
interest in the proposed mechanical problem. In addition, since a wide literature can be found for double beam systems
(see, for instance, [26-32] and references therein), especially for their recent applications in nanostructures [33,34], to
our knowledge this seems to be the first paper where the proposed kind of coupling is considered and mathematically
analyzed.

The outline of the paper is the following. In Section 2 the abstract formulation of the problem is presented. The well-
posedness result and the exponential decay are analyzed in Section 3. A numerical algorithm for the introduced mechanical
problem is described and studied in Section 4, providing a main a priori error estimates result. Finally, in Section 5 some
numerical results are presented to verify the behavior of the described numerical method.

2. Abstract space setting and a priori estimations

In order to apply the powerful tools of the theory of strongly continuous semigroup, it is convenient to recast the
original system (1) into a space setting. To this aim, let us introduce a suitable functional framework and formulate the
abstract problem. So, following the classical notation, let (H, (-, -), || - ||) be a real Hilbert space, and let

A:®A)eH—>H

be a strictly positive self-adjoint operator. For T € R, we consider the family of Hilbert spaces with inner products and
norms given by

H. = DA, (W), = A7*u,A7),  Jull, = |A7%u|.

The index t will be always omitted whenever zero. For t > 0, H_, denotes the dual space of H, and the symbol (-, -)
will also be used to represent the duality pairing between H, and its dual space H_.. In addition, we have the compact
embeddings H,, € H,, along with the generalized Poincaré inequalities (see, for instance, [35])

Mlwllf < llwl?,.  Yw € Hep, (4)
where A > 0 is the first eigenvalue of A. Then, letting

A =min{iq, v/Aq},

from (4) it follows that

Al + 1102 ) < Tull? o 4+ 100 422 Vit € Hega, v € Hirgaya- (5)
With this notation, we define the family of product Hilbert spaces
H = Hyy2 X He X Heqp X Hy X Hieq2y2 X Hyja X Hizy2)2 X Hepa, T €[0,2].
We are now ready to introduce the abstract Cauchy problem related to problem (1)-(3). Precisely, on #, and for all
pi € R,i=1,2, we can write

Bt + Aug + deuy — (p1 — llug DAY uy + we(uy — vy)*
+i* (g — up) = fi,
duv1 + A0 4+ vy — k(U — o))" =gy,
Bz + Aty + ety — (P2 — U2 IDAY Uy + k(uz — va)T
—Kk*(Uuy — Up) = fa,
devz + A2y 4 vy — k(Up — v2)T = &,
with the following initial conditions

(u1(0), 9¢u1(0), u2(0), d¢u2(0), U1(0) 0rv1(0), v2(0), 9, v2(0))
= (uy, Uy, Uy, Uy, V1, V1, V2, V2) € H.

Henceforth, a solution to the above problem will be denoted by o : Rt — %, where
o (t) = (uq(t), deuq(t), ua(t), deua(t), vi(t), dev1(t), va(t), deva(t)),

and z = (u4, U1, Uy, Uy, U1, U1, U2, V) € H represents its initial data. Unless otherwise indicated, initial data of the problem
are assumed to belong to a ball of radius R in #, namely ||z],, <R
We can also define the total energy of o as

E(o(t)) = £(o (1)) + Z(nu( I3 - pi) +KZ|| ) = wi(O) I + e flua(t) — ua(0)]1%,

i=1
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where £ represents the energy norm of o in H, namely
2

£o(6)) = o2, = >_ (I3 + 18O + w03 + 18vi(0)]?).
i=1
The total energy verifies the following relation, generally called energy identity:

d
LB (D) + 20 (O + 20301 + 2 3e0r (01 + 20320 @)
= 2(0an(0).f1) + 2(0uz(0). fo) + 2(3evi(0), 1) + 2(0rva(0). ).

It is obtained by multiplying (6); by d;u4, (6); by 9;v1, (6)3 by 0:u>, (6)4 by 9;v, in H, and taking into account the (formal)
relation:

1d
{(wit) — w0, Be(uilt) — wilt))) = S (Cui(t) = v 1%), i=1,2.

The usefulness of formulation (6) is based on the fact that, for the particular choice H = L[?(0, 1) and A = 8 With
proper boundary conditions, the original problem (1)-(2) can be viewed as a special case of (6), where a single operator
at different power is present. This justifies our choice of boundary conditions: the coupled system can be described by
means of a single operator A only if the deck is assumed to be hinged at its ends. In fact, the abstract formulation (6)
cannot be applied either when different boundary conditions are given (clamped-clamped and hinged-clamped ends) or
if a two-dimensional model is considered. In addition, the operator A = 9, is strictly positive, self-adjoint, with compact
inverse. Its domain is

D(A) = {w € H¥(0,1) ;  w(0) = w(1) = 3yw(0) = dyw(1) = 0},

and its discrete spectrum is given by A, = n*z* n e N.
We note that the boundedness of the energy norm can be obtained, which is summarized in the following.

Lemma 1. Letfie H, geH jandp; € R, i=1,2. Forall t > 0 and initial data z € H with ||z||, < R, we have
E(o(t)) < Q(R),
where Q : Rg — R denotes a generic increasing monotone function of radius R.

Proof. We introduce the functional L : # — R given by

Ho) = E(0) — 2{u1, f1) — 2 {(v1, &1) — 2 (uz, fo) — 2 (v2, &2) . (8)

Along with any solution o (t) to (6), the time function £(co(t)) is non increasing. Actually, from the energy identity (7) it
follows that

d
at(a(t)) = =2)19us(t)11* — 2[18u2(t)lI* — 21 8cv1(6)]I* — 2[|3pv2(8)]1* < O, 9)
which ensures that

Lo (1)) = Lz) < Q(R),

for all z € H with ||z||; < R. Note that the function Q(R) explicitly depends only on R, but implicitly it also depends on
the structural constants of the problem, and its expression may change even within the same line of a given equation.
Since E > &, from (8) we obtain the estimate

L> 81— 2(uy, f1) = 2(u2, o) — 2 {v1, &1) — 2 (v2, &2)
z €= 201417, + 1L175) — 2(lgi 1%, + llg2ll?5),
which finally gets

o () < 2o (D) + AUlAI%, + L%, + g, + 12:20%,) < QR).

We conclude the section by reminding, for further convenience, the following result regarding the linear part of the
differential operator acting on u;. This result is a slight generalization of Lemma 4.5 in [36].

Lemma 2. Let p; < /A7 and Fp,(u;) = Au; — piA?u;, i = 1, 2. Then, we find that

(Foui), wg) = Cpi) uill3 (10)
wherei= 1, 2 and
1 if pp<0,
Clp)) = Di : (11)
1-— if 0 < p; M.
( \/)T1> if pi < «/T
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3. Well posedness and exponential stability

This section provides the main analytical results of the paper. They are related to the well posedness of the system
and to its exponential stability provided that the parameters p; are smaller than a critical value. Precisely, the proof
of exponential stability is firstly based on the general result of Lemma 2 that justifies the restrictive assumptions on
pi, i=12.

Proposition 1. Letfi € H_,, g € H_1 and p; € R, i = 1, 2. For all initial data z € H, the abstract Cauchy problem (6) admits
a unique solution

o = (uq, delUy, Uy, Uy, V1, O¢v1, V2, 3¢ V2) € C([0, T1; H),

which depends continuously on the initial data.

Proof. We omit the proof of the existence result, which is standard. In particular, one can apply a standard Faedo-
Galerkin approximation procedure (see, for instance, [13,15,37,38]), together with a slight generalization of the usual
Gronwall lemma. Indeed, the uniform-in-time estimates needed to obtain the global existence are exactly the same as in
the previous Lemma 1. On the contrary, the uniqueness part deserves a detailed discussion.
Let us assume that there exist two weak solutions:

o = (uj, duj, u}, druj, vy, dvy, v}, dvy),

o2 = (u?, 0u?, u3, deu3, v3, 02, 03, Bv3),
which both solve abstract problem (6) on the time interval (0, T) with the same initial data z. This in turn implies that
each solution fulfills Lemma 1, namely

E0'(t) <QR),  lzll <R i=1,2.
Let w denote their difference
w=0"'—0%= (01,801, 0s, 002, &1, %1, &, 0:62)
with
91=u%—u§, 92:”%—11%, &:U}—U%, §2=U;—U§.
Hence, w takes a vanishing initial condition and solves the following homogeneous abstract problem:
96 + A0y + 801 — p1 AV201 + k*(01 — 6,) + N(uj) — N(u?)
+F(ul —v]) — F(u1 - v1) 0,
0ie€n “I‘A]/zg] + 0:1 — (u1 - v1)+F(u] - U%) =0
36 + Ay + 0:6, — p2 AV?0, — k*(61 — 62) + N(u3) — N(u3)
+F(u) —v)) — F(u2 — vz) 0,
0ie& +Al/2§2 + 0:é — (uz - vz) + F(uz - U%) =0
where N(u) = [u[? AY?u and F(w) = xw.
Proceeding as in [20] and taking advantage of Lemma 1, we obtain the following estimates:
|(N(u}) = N(u?), 8:61)] < Q(R)&(w),
|(N(u3) = N(u3), 8:65)] < Q(R)E(w),
|(F(uj — vi) — F(uf — v}), 9:61 — 3,61}
< cl6ll + & 1D 9Bl + 10e&11) < ¢ E(w),
|(F(u) — vy) — F(u3 — v3), 8:0, — ;&)
< c (1820l + 121D N0:b21l + 10:821) < ¢ E(w),
[{01 — 02, 8:01 — 8:02)| < c &(w),

(12)

where ¢ denotes a generic positive constant, which possibly (but implicitly) depends on the structural constants of the
problem, and whose value may change even within the same line of a given equation.

After multiplying (12); by 9,64, (12), by &1, (12)3 by 9;0, and (12)4 by &, in H, then adding the resulting equations and
taking into account the previous estimates, we obtain

s(w(r Zp,ne, )IF] < QR)E((t)). (13)
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Then, adding and subtracting the terms « (61, 9:61) and 3 (65, 9:6,), with a1, a3 > 0, we have

d

dtg( (t)) < Q(R)E(w(t)), (14)
where

2
= > (i 61} — i ll6il1?).
i=1
By virtue of the interpolation inequality, we have ||6;]|> < [|6;]|[|6:]l> for i = 1, 2, and we can infer that

1 .
5|I9i||§ < 16113 = pill6illT + illil® < bill6l3, i=1,2,

holds for any p; € R provided that «; is large enough and b; = b;(p;, «;) > 1. Accordingly, we find that

2 £() = 6(0) < be(o), (15)

where b = max{b4, b,}. Then, from (14) it follows that

d

2 9@(t)) = QR)G(w(1)).

Now, since w(0) = (0,0, 0,0, 0,0, 0,0) and G(w(0)) = 0, an application of the Gronwall lemma leads to G(w(t)) = 0 for
all t > 0. By virtue of inequality (15), £(w(t)) = ||w(t ||H =0, so that ¢ !(t) = o%(t) and the uniqueness follows.

The same strategy leads to the continuous dependence of the solution with respect to the initial data in %. Indeed, if o'!
and o2 are two solutions corresponding to initial data z; and z,, respectively, then estimate (13) holds with w(0) = z; —
and

2
lo'e)— o)), < e®™ llzv —zl3,. ¥t e(0,T),
which implies the continuous dependence on the initial data.

According to Proposition 1, abstract system (6) generates a strongly continuous semigroup (or dynamical system) S(t)
on H. That is to say, for a given initial data z € H, o(t) = S(t)z and &(t) = ||S(t)z||§{ are the unique weak solution to (6)
and its related energy norm, respectively.

Now, we consider the abstract Cauchy problem (6) under the restrictive assumptions f; = g = 0 (i = 1,2), and
let So(t) be the semigroup generated under vanishing external forces. In the following, we will prove that Sy(t) decays
exponentially.

Theorem 3. Let z € H such that ||z||x < R. Provided that p; < /A1, i= 1,2, all solutions Sy(t)z decay exponentially, i.e.

&(t) < Q(Rye™™,

where &g is a suitable positive constant.

Proof. Let us introduce the functional
2 2

@ = £ e 3t dew) + (un dew) | - 5 (o

i=1 i=1

Taking into account (11), the constant
. 2
& = min{AC(p;), AC(p2), —— o ,2x, 13, (16)

is positive provided that p; < /A1, i=1, 2.
After recalling the definition of E, we remark that

2

= (Fplw) w)+ Z(natu,n + 19vill?) + Zuuln +Z||v.||%

i=1 i=1 i=1
2

+ K Z (i = i) |* + S[Z((ui, deui) + (i, a[u,))].
i=1
6
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Now, by virtue of (5), (10) and (16), a lower bound is obtained as follows:

o= (1- )i} ||afui||2+||atvi||2)+g(ap — o) il
+(1- —)va,m = e

On the other hand, by applying Young inequality, using (5) and applying Lemma 1 restricted to Syp(t), we can write the
upper bound of @ as

@E[L%W+K“+M) 1 & QR

(17)

A 2x 2 + 202

where |p| = max{|pil, |p2|}.
Estimates (17)-(18) prove the equivalence between € and @, that is

:|€=Q(R)S, (18)

—E<P < 19
2% QR)E. (19)
The last step is to show the exponential decay of @. To this aim, we obtain the identity:
d 2
G reo 20— (1l + o) Znuul

i=1

e (1—e) [Z (O, w) + (@i, v | =0,
i=1

where ¢ is given by (16). Exploiting the Young inequality, (4) and (19), we have
2 2

d g (1—¢)
GO redt(—e) Zl (I9es 1 + 1Bevi]?) < ——— le (2 + 1lvil1?)
¢ 1—¢) .
- 2
from which it follows that
d e(1+¢)
—@ @ <0.
al T ¢=

Letting &9 = ¢ (1 + €)/2, we find that
SSE) =@ () =@ (0) e 0" <Q(R)e” 0,
which concludes the proof.

4. Fully discrete approximation and an a priori error analysis

In this section, we will study the numerical approximation of system (1) with boundary conditions (2) and initial
conditions (3). However, in order to obtain the variational formulation of this problem, we must replace boundary
conditions (2) by a convenient modification as follows:

u;(0, t) = ui(1, t) = 0ui(0, t) = dyui(1,£) =0, te[0,T],i=1,2,
vi(0, ) =v(1,t)=0, tel0,T],i=1,2,

where, from now on, we denote by [0, T], T > 0, the time interval of interest.

Hence, we can now provide a weak formulation and so, we define the variational spaces Y = (0, 1), E = H(}(O, 1)
and V = HZ(0, 1).

Multiplying the equations of system (1) by adequate test functions, using the new boundary conditions (20) and
applying integration by parts, we obtain the following variational formulation of our problem in terms of the downward
velocities e; = d;u; and the vertical velocities ¢; = 0;v; fori =1, 2.

Find the downward velocities e; : [0,T] — V and e, : [0, T] — V, and the vertical velocities ¢; : [0, T] — E and
¢ : [0, T] — E such that e;(0) = iy, e3(0) = i, ¢1(0) = ¥; and ¢(0) = ¥y, and for a.e. t € [0, T] and w,s € V,r,z € E,

(0ce(t), w) + (Outtr(t), dpw) + (e1(t), w) + p1(dnur(t), w)
1 3ur (DI (Betta (£), dew) + e((wa(t) — ua(6))F, w)
Fi*(ur () — ua(t), w) = (fi(t), w), (21)

(20)
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(3cca(t), 1) + (xv(t), 3xr) + (cr(t), 1) — e((wa(t) — va ()", 1) = (ga(8), T), (22)
(8cex(t), s) + (uetia(t), Ouxs) + (€2(t), 5) + P2(dutia(t), 5)
3t (O (3xtiz(t), 3x8) + () = va(t))F, 5)

+ic*(Ua(t) — ui(t), s) = (f2(t), s), (23)
(3eca(t), 2) + (Bxva(t), 3x2) + (Ca(t), 2) 4 K ((v2(t) — ua(£))*, 2) = (ga(t), 2), (24)
where the downward deflections and the vertical displacements are obtained from the following relations:
t t
w(e)= [ es)ds+in w0 = [ ed (25)
0 0
t t
vy(t) = / ci(s)ds + vy, wo(t) = / co(s)ds + vy. (26)
0 0

Now, we will consider the numerical approximation of the above weak problem. As usual, we will do it in two steps.
First, we define a spatial approximation and so, let us construct the finite dimensional spaces E* C E and V! C V as
follows:

={e" €c([0, ) NE; € 4,1 € Pr(lai, aisa]) fori=0,...,N—1}, (27)
Vi =" e ([0, )NV ;5 vy g, € Pa(la, aiya]) fori=0,...,N—1}, (28)

where we have used the uniform partition of the interval [0, 1] divided into M subintervals denoted by aqp = 0 < a; <

- < ay = 1 with a uniform length h = a;;1 — a; = 1/M. Here, P,([a;, ai+1]) (r = 1, 3) is the space of polynomials
of degree less or equal to r for each subinterval [a;, a;1]; that is, the finite element space E" is composed of continuous
and piecewise affine functions and the finite element space V" is made of C! and piecewise cubic functions. Moreover, as
usual, h > 0 denotes the spatial discretization parameter. Then, by using the finite element projection operators over E"
and V" (see, for instance, the work of Clément [39]), we can define an approximation of the initial conditions given as

udh = phiy, udh = pha,, e] =Phiy, e =Py,
h Oh h Oh h (29)
=Pv1, vy =Piuy, 1 = 7321)1, ¢ =Py,

where 734' and Pg‘ denote the projection operator over the finite element spaces V" and E", respectively.

Secondly, we obtain the discretization of the time derivatives and so, we use a uniform partition of the time interval
[0, T], denoted by 0 =ty < t; < --- < ty = T, with a time step size k = T/N and nodes t, = nk forn =0,1,...,N.
For a continuous function f(t) let f" = f(t,) and, for a sequence {w”}’,;’:(], let us denote sw" = (w" — w" 1)/k its divided
differences.

Therefore, by using the well-known implicit Euler scheme we derive the following fully discrete approximation of
problem (21)-(26).

Find the discrete downward velocities {e qk" N, C V"and { ellemn_ C Vh and the dlscrete vertical velocities
{chkmN 0 C E" and {Chk" N_) C E" such that "% = 9", €0 — egh, :’kg =c%and " = ¢, and foralln=1,...,N
and w", s" e Vh, 1t Zh eEv’

(867", w") + (Bt e )+(e’;"", ")+ P8ty ", w")

+||8 ul;kn” (3 u);lkn 3 w )+K(( hk,n ulz1kn) ,wh)

it (" —u " w ) (. wh, (30)
(8C?k n7 h) (axv?k n, Bxl’ )+ (Chk n, h) _ K((ufllk.n _ vl]1k,n)+7 I’h)

= (g1, "), (31)

(65", ) (Botty" ", Ds") (€5, ") paliduty" ", ")

+||3 uhkn” (a ugkn 3XS )—l—K(( hkn hkn)+ Sh)

i (ulin _ ien sty _ (gn hy (32)
(scgknvz ) (3 vgkn7axzh)+(cgkn’ )+K(( hkn hkn)+ )

= (g, z"), (33)

where the discrete downward deflections and the discrete vertical displacements are obtained from the following
relations:

u?k‘" k Z ehk] + u, hk T=k Z ehk’ + udh, (34)

hkn — kZChkj + v?h’ hkn — kzchkj ) (35)
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From the assumptions required on the constitutive coefficients, proceeding as in the proof of the existence and
uniqueness result we can obtain that this fully discrete problem has a unique solution.

In the rest of this section, we will derive the numerical analysis of this problem.

We recall an inequality which will be very useful to prove the results provided in this section (see [40] for details
regarding its proof).

Lemma 4. For each pair of functions r,s € H'(0, 1) we find that

2 1 4, 1 4
(e ll“(res $x — 1) < ——lImell™ + — lIs«ll™ (36)
4 4
As a first result, we will prove a discrete stability property.

hk,n  hk,n hkn hkn hk,n _hk,n _hk,n

Lemma 5. Under the conditions required in Section 1, we obtain that the sequences {u;"", u, ~, vy, e ey e,
cgk " ’r‘l’ o generated by discrete problem VP, satisfy the stability estimate:
T O 1 O ) LR T Ly e

hk, hk, e k. hk,
3wy "1 19ty "1 A 1807 " 1% 4+ ™" 117+ 18wy " 1* < C,
where C is a positive constant which is independent of the discretization parameters h and k.

Proof. Taking w" = " as a test function in (30) we have

((Se’;k"” hk, n)+(axxu1kn 3xxehk n)+p](axxuh7<n hk, n)+(ehkn hk, n)
+||auhkn” (8xu111kn 9 ehkn)+K(( hkn 121kn)+! f]lkn)
+i ( hkn _ ugkn hkn (f1 , hk n)'

Now, keeping in mind that
hk.n Rk, hi hk,n—1
(e} €)= k{ne = e,
hk, ok hk, hk,n—1
(B, Bl ,{uaxx "I = "),
hk.n Rk, hk, =1
W, e = {|| "= ),
2k ]
||8x hkn” (8xuhkn ax hk, n) ||3x hkn” (axuhkn ax hk,n ax hk,n— 1)
9o hkn o hknl ]
> o[t || e

where we have used inequality (36), applying the Cauchy-Schwarz and Cauchy’s inequalities we find that

1
{ne"""n — 1§12} 5] Nt = D2
1
21 {”uhkn ”uhkn e }+@{”3 uhkn” TP uhkn b }
hk,n hkn” +||uhkn|| )

+ [19ctty "7 + Jlu
Proceeding in a similar form, we obtain the estimates for the second downward velocity:

hk,n hk,n—1 hk,n hk,n—1
[||e 12 = 12 o a7 — a2

1
S| e = ety ] ALC A

_c(1+||e”"”|| a2 4 I+ 2 )

2k

sc(1+||e’”‘“||

2k

Now, we derive the estimates for the first vertical velocity. Taking " = c?k " as a test function in (31) it follows that

((Sc?k'" hlcn)+(ax hk,n 3x hkn)_,’_(cqlkn C?kn) ((uqkn_vl;k,nﬁ— hkn) (glna hkn),
and so, keeping in mind that
hkn i hk, hk,n—1
(ac, ek 2 fjofine — ofintp)

- 2k
1
(2, v?kn achkn)_ Zk{”a vhkn” — 8! hlen—1),2 }
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we have

1
Sl = ez} 4 o a2 — a1
= (141 +||u’”‘“|| + IR )

Proceeding in an analogous way, it leads to the estimates for the second vertical velocity:

Sl ez = nekr iz} + o fiaaleni? — iawlrte)
= (11 +||u’””’|| + I )

Combining all these estimates, we find that
hk hk,n—1 hk hk,n—1
et ‘”|| Gl e [||axxu‘”|| — 3l

21 {” hien, _”uhkn 1 } { hkn” _”uhkn e }

& e etk 4 x a2 — e 1y?)
21 {”Chkn _”Chkn 1 z} {||3x hkn” Y hkn 2 }
2k{” chem2 _y chn= 1”z] [||8 olem 2 _ g k= 1“2}

o il = yaadiry } Jol 1 — o)
SC(1+||e”"”|| + 18" +||u’”‘"|| U2 A ek 4 gadn 2
ISR 4+ I + eI + g )
Multiplying the above estimates by k and summing up to n, we obtain

i hk, hk, hk, k. i i
lleq ) Boctay 17+ Ny " 1 + [lug " 1% + ey n|| + 10ty " 1% + ey "1
hk, hk, hk, hk, k,
F3x0y 17 lley "1 A 1180y " 1P+ 1l 3euy ) + 18y " 1*

hk,j 2 hk, hk,j 2 hk,j 2 hk.j 2 hk,
SCkZ(H-IIe] T2 4 13t 12 + N 12 + 512 + e 12 + ety )12
hk.j hk,j hk.j hk,j
HIEIZ NI 4+ 1P 4+ 10512 ) € (eI + e8P + St
U 2501y 18I + Q2 NS, )+ 1080 ) -

Finally, using a discrete version of Gronwall’s inequality (see, for instance, [41,42]), we conclude the desired stability
property.

Now, we will prove some a priori error estimates on the numerical errors e1 —efln en el en_ ckn and ¢ — ik,
First, subtracting variational Eq. (21) at time t = t,, for a test function w = w" and discrete variational Eq. (30) we have:
(Bee" — 8€M™ ™ wh) 4 (Buu? — u™"), Bywh) + (€7 — ™" wh) + py(Duu — u™"), wh)
31780t} — (1t B2l Byt
e — byt — @ — Ty w4t — uf — (- B, wh) =0,
and so, we find that, for all w" € V",
(3pel — Selm e — MMy 1 (B (ul — ul™"), Bel — €M)+ (e — el en — et ™)
1 (Bt] — 11", €] — &) - ([t} P Bty — [yt u’”‘", ox(e} — ef“™)
el — ul)t — (BT — Ry et — ety ekt — M — (i — B, e — et
= (8" — 5", e — wh) 4 (! — UM, B(e? — w)) + (e — iR et — wh)
DBt — 1), €] — w?) 4 (18051178t} — 3l D", By(e] — wh)
el — ul)t — T — By et — ) ekt — ult — (- Ui, et — wh).

10
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Now, taking into account that

(3pel — s e — ey > (g.e — sen, e — ek

1 _
_{_i{“el_eqknllz_”eq 1_ hkn 1”2}
(DU — UfE™), Bc(el — €1™)) > (Bt — UM™Y, B(Bpul! — SuM))

1 -
o ] = I — ™! = R

(u — ™", e1 — ™My > (ut — Ut Bt — sut)

hk,n n—1__ hkn 1
— u, —u Ll
o i g — 12},
(1ol 20t — (™) axu’;"’“ Bew) = —( | B |2 Bcu’ — oy 2™ ),

(N1 2 Beu — ||au"“|| Bud™ ™, w) = (1112 — 1™ oo, w)
™ B — U™, ),
(o™ % (ul—u’;“xw)sc(na (W — uf M2 + lw)?),
(1312 — 3™ 1 Yag™, w) < Cllwll? + C(lIau? — [|au™"|
< ClIlw1? + llagu? — uf")2),

2
|

?
it follows that, for all w" € V",
1 ,
—{ne';—e’;k"n R R [
+;{||axx(u A [ E e T
llo.e7 — deq I* + l[9puy — Suf ||v + llef —w ||v + llef —

+||axx(u1 T R N T T | A [T T ||u2
+(8e — seln e — wh) ),

-1 hkn—12
T Tha | }

e
"2

™
"2

where, from now on, for a Hilbert space X let | - ||x be the corresponding usual norm.
Proceeding in a similar form for the second downward velocity we have, for all s" € V",

1 hk, 1 _ hk 1 hk -1 _ hI 1
2k{nezﬂ—ez I eyt - e }+ g — b — g — g
hk hk,n—1y,2
o 1 — DI — g — 2]
2 hyp2 hk,
10ces — SeRI + ) — Sull? + l1eh — 5" + e} — "2

hk,ny 2 hk,ny 12 hk,n 2 hk,
FlBe(uz — uz "M+ l0xuz — uz "I+ fluf = up™" 117 + luf — uy "))

hk,n h
+(8ef — ey ,eg—s))
Now, we obtain the estimates for the first vertical velocity. Subtracting variational Eq. (22) for a test function r" € E",

at time t = t,, and discrete variational Eq. (31) we find that

(3ect — 8ct™m 1y 4 (By(vT — o), Bty 4 (cF — "
Cl(u = o) — (w7 gy o,

and so, we have, for all r" € E",

(a[C{' _ 8C41kn Cl _ Cll1k n)+(8 (Ul _ U?k n) 9 (ng hk n))+( hk,n’czlq ankn)
—K((u] _ U?)+ (uhkn hk n) Cl _ C?k n)
= (8,cT — 8" cn r”)+(ax(v1 - vﬁ"‘") (c] ) B o (T e
i O U )

Keeping in mind that

n hk,n hk,n n n hk,n
(3t — 8¢y, cf = ") = (0] — 8¢, cf — ™)

+§{||C1 _qukn” n—1_ hkn e }
(v} — vi"‘”), Al — ™) = (3] — V™), (v} — suT))
o 1] — oI — gyt — k),

11

llcy
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it follows that, for all r € E,

1 hk 1 _ hI 1 hk 2 -1 hk,n—1y,2
Sl er = e et - ) il — oI - ! - w2
2 hkn hk,n
Iecy = 81 + 100} — 80T 12 + 1§ — r*12 + lef — " I + 13,(0f — vf*" )2
hk hk hk,
g — w1 o+ oy — o + (8] — o ",c';—rh)).

Proceeding analogously, we obtain the following estimates for the second vertical velocity, for all z" € E",

hk -1 _ hI 1 hk, 2 -1 _ hl 1

Sl e = i gt - ) il — oI — g - w2
h hk,

= € ((10icg — SSIZ + 1005 — S03IZ + 1§ — 2113 + 1§ — 5" I12 + 134w} — vj“")2

hk,n 2 hk 2 hk, h
g — uf I o+ oy — o o (5 — 8, cf — 2 ) .

Combining the above estimates, we have, for all w", s" € V" and 1", z" € E*,

1
{”el_el’;kn” — et — hkn 12 }+ {”u]_ul;kn” — - hkn 2 }
2k
o ] — M o — l)|| |
hik,n n—-1 _ hkn 1 hk,n n—1__ hkn 1
—1lléan —¢€ e u, —u u,
o fllem — ek — ) R 12}
1 -
o 13ty = I = 0™ = w12
1 bk e
T L el R 1||2]+—[||ax(v L [ N e T
1 _ - _ -
oI =B = e = ) g — I = ey - o)

C ((Nane — 8e§ 1 + Nacuy — Sullf + lle] — w" [} + e — e} |2
13ty = th I o fon(alf — w2 o s = R g — o2 .
+(3e] — Ser"" e — w") + [|are] — S5 + [|us — Szl + llef — s + les — e

| B — u’;"")ll2 + (1 9(ul — ultmy)2 4 - + (el — selikn en —hks") + [19,c? — 8cT||2
+[0 v — SVM|Z + [le — P2 + |l cf — cl‘"ll2 + [[9x(v] — vi“M)I?
+lv1 — ’“‘”||2 4 (8¢ — 8 e — Py 4 [18pct — ScII? + (|9 — Sul|2

hk n hk,n hk n hk,n
+lieg =217 + lleg — 17+ 11805 — vy ")I* 4 llvz — 1> + (8¢5 — 8¢c)"", 5 —Zh)) .

Multiplying the above estimates by k and summing up to n, we have, for all {w"/, s’L"f}j’FZ1 e V" and {r"’j,z"’f}j’?:] €

Eh
hk, hk hk, hk,
llef — et ") ngllul R +||8h>;x(ul—ul |2 "Z{”eZn_ez 2 "
K.Nn K.n n n
+luf — ||2+||3 (u Z + Il — 2 + k(v — vi™"I?

hk n hk n
+||C£‘ I+ ||8x(v2 2

< Ckz (10c€] — 8€ 1P + 13cth, — 1 + 1€ — wh I + 1 — )2

j=1 )

ot — w12 + oy — u DI + oy — ul 2+, — uh )2 ,
+(s¢) —ae’:’” e — whi) + (o€, — 8eh (1 + ([t — Sy 12 + lleh — sh |12 + [|€), — €5 ||

+ 101t —uﬁ’”)||2+ 195 (ty —u’;’”)n2 (kad —6e2’” a —sth+ I19ec] — 8¢ 12

Hldwy = O + lef = I+ ey — I+ v — i IP

) = o2 + (8¢ —54’” J—rhiy+ ||atd — 8|12 + [0,V — 812

+liey —2MIE + ey — IR + 180} — E o+ ) — o)

+(00) = 8§ ] = 209) ) +C (i — et + [ — U + 1 — €3

2 = I+ 15— 2 + 19— 0§+ 152 — B+ 152 — v ) -

12
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Finally, keeping in mind that
kZ((Se’ - Belk] e —whi)y = (el — e e — wh™) 4 (e — iy, el — wh1)
j=1 .
+Z — el —whi — (e — whitT),
kj h.j h h, oh =~ 1 h,1
kZ(&e’—Bez e’z—s’):(e —ey " e) — st 4 () — llp, e5 —s™T)
=1 hk 1
+Z — el el — gt (e — ghity),
kZ((SC’ - (Sc1 S =y = (= MR ey (O — gy, el — T

j=1 L
+z — ] phi (i),

kZ(Sc’ 662’”, ) — 2y = (cf - cg"”, =" 4 (" — By, ) — 2T
j=1 . .
30—, (T - g

using again a discrete version of Gronwall’s inequality (see [41,42]) we conclude the following a priori error estimates
result.

Theorem 6. Let the assumptzons of Lemma 5 still hold. If we denote by (e1, e, C1, C2) the solution to Problem VP and
by {e hk”, egk’f’, c?k" c }N o the solution to Problem VP"™, then we have the following a priori error estimates, for all
{w h]}]:o’ {s"}Ny C VP and {r"}N (2" C EM,

hkn

hkn hkn hkn
maX{||61 1% + fluf — I3 + llezn — 1% + fluh — I3

0<n<N

ik h ik o
Hllef — e+ v = vy E + Nl — P A+ g — n||5}

N
<Cky ( 10:€; — 8€, 17 + [[81d, — 81y I, + llef — w7 1F + [[oreh — s€} )
j=1
+19ctth — SublI7 + e, — s™II5 + 119cch — 811> + 1w — sv) I

ey = M2 + llgec] — 812 + g — 602 + NS, — 2 )

€ max fllef — w4 g — "I 4+ e} = M 4 feg — 22

0<n<N

ISZ(HeJ—w = (&7 — W b — s — () — M2

A - . 4 A - A
+||C]1 B AL L e L _zh,]+l)”2)
~ Oh 2 - Oh 2 ~ Oh 2 - Ohy 2
C ( lug — e 17 + llug —ui'lly + luz — e |17 + llup —uy ' |l
~ Oh 0Oh 2 Oh Oh
1T = M+ (151 — ¥"IF + 1192 — "1+ (192 — v) IIE)

where C is again a positive constant which does not depend on parameters h and k.

From the previous error estimates, we can analyze the convergence order under suitable additional regularity
conditions. For instance, if we assume that the solution to problem VP has the additional regularity:
e1, e € C'([0, T]; H(0, £)) NH*(0, T; V)N H3(0, T3 Y),
c1, ¢ € C'([0, T]; H*(0, £)) N H*(0, T; E)N H?(0, T3 Y),

then there exists a positive constant C, assumed to be again independent of the discretization parameters h and k, such
that

hk, hk hk hk,
max [ lled —er "I+ lluf —up "llv + llezn — e " Il 4+ llug — uy "Iy
0<n<N
hI hk, hk hk,
e [ e o e e e e (1o e [ L Vi [ }f C(h +k),

and so, we can conclude the linear convergence of the approximations.

13
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5. Numerical results

In this final section, we describe the numerical scheme implemented in MATLAB for solving problem (30)-(35), and
we show some numerical examples to demonstrate the accuracy of the approximations and the behavior of the solution
with respect to a coupling parameter.

5.1. Numerical scheme

As a first step, given the solution ehk n-1 cq‘k n-1 eg" n-1 and c, ,at tlme ta I variables eh" " cq’k n eg" " and chk " are

obtained by solving the discrete lmear system, for all w", s" € V" and r Zh e EN

hk,n—1

(rie’}"'",wh) (0}, Bt + (€], W) + Pk (0", ) + 1800512, | (0}, ) + (el ", wh)
= (L1 ) (T gty — py(Bd™ T, wh) — [ERT NGRS N R
1 ([ufllkn _ vl]1l<,n]+7 wh)_K*(uflzk,lnq hk mwhy (8, wh),
(O T RG] ™) (e ) = (el Hrh)—(axvi‘k‘“ LA™ s (T — o ) 4 (g, ),
(%egk,n’sh) (B, 3 + (€7, 1) - pak(Bee™", 5+ 13y ugkn”LZOl) (D™, D) + k(e sh)
— (el 1) — (Bt 0) — Pl 51 — I (B i)

hk, hk, hk,n—1 hI,
—e([u" = 0T 1) = k(T = w8,

1 1 _
(62" kB, 02 + ("7 2" = (6" 2 = (B 8 k(8" — 3T, 2 + (g5, 21,

This numerical scheme was implemented on a 3.2 GHz PC using MATLAB by using a Newton iterative scheme, and we
note that a typical run (using the discretization parameters h = k = 0.001) took about 1.35s of CPU time.

5.2. Numerical convergence and discrete energy decay

In order to show the accuracy of the approximations, we solve problem (1), (2) and (3) with the following data:
pi=1 p=1 k=1 «k*=1,
the initial conditions, for all x € (0, 1),
ui(x) = Ui(x) =x*(x — 1) fori=1,2,
vi(x) =v(x) =x(x—1) fori=1,2,

and assuming homogeneous Dirichlet boundary conditions. Moreover, we also suppose that the supply terms vanish,
ie. fi, g1, f2, &2 =0.

Since the problem is nonlinear, we cannot calculate the exact solution and so, we take instead it the one obtained with
the discretization parameters h = 1/2'% and k = 107°. Thus, the approximation errors estimated by

n,hk n,hk n,hk n hk n,hk n hk
max { et —er™ I+ lluf —up™llv + lle) — ey ™|l + llu; — v+ llef — ™l + llvf — l
0<n<N
n,hk n,hk
g = ™+ oz — v} |

are presented in Table 1 (multiplicated by 10?) for several values of the discretization parameters h and k. Moreover,
the evolution of the error depending on the parameter h + k is plotted in Fig. 2. We notice that the convergence of the
algorithm is observed although we note that, for a fixed mesh size, the numerical error increases considerably when the
time step decreases. Moreover, the linear convergence, stated in the previous section, is achieved.

If we use the final time T = 10, the same data than in the previous example and the initial conditions:

ui(x) = Ui(x) = x*(x — 1) fori=1,2,
vi(x) =vi(x)=0 fori=1,2,

taking the discretization parameters h = k = 0.001, the evolution in time of the discrete energy is plotted in Fig. 3 (in
both natural and semi-log scales). As can be seen, it converges to zero and an exponential decay seems to be achieved.

5.3. Dependence of the solution with respect to the coupling parameter k

In this last example, we will investigate the dependence on the coupling parameter « for the solution to problem (1),
(2) and (3).

14
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Table 1
Example 1: Numerical errors (x10~2) for some values of h and k.
hlk— 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001
1/24 0.219722 0.733403 1.504026 1.914019 2.160085 2.327872 2.399697
1/25 0.111566 0.368263 0.753451 0.958395 1.081410 1.165508 1.201979
1/26 0.057543 0.185743 0.378205 0.480617 0.542101 0.584184 0.602455
1727 0.030568 0.094515 0.190611 0.241745 0.272449 0.293509 0.302662
1/28 0.017144 0.048925 0.096824 0.122306 0.137607 0.148144 0.152735
1/2° 0.010552 0.026169 0.049926 0.062557 0.070138 0.075400 0.077711
1/210 0.007462 0.014868 0.026465 0.032613 0.036294 0.038899 0.040075
121 0.006177 0.009358 0.014708 0.017503 0.019155 0.020391 0.021015
350
300 F 1
/
/
250 - - f
- 7
g /
@ 200 7 1
El e
S _
o d
£ 150 P i
S e
z e
100 - |
50 - b
0 . . . . . .
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
h+k
Fig. 2. Example 1: Asymptotic constant error.
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Fig. 3. Example 1: Evolution in time of the discrete energy (natural and semi-log scales).

Now, we assume that there are not supply terms, and we use the final time T = 1, the data

p1:1! p2:]7 K*:lv

and the initial conditions, for all x € (0, 1),
U(x) = u(x) =x3(x— 1) fori=1,2,
vi(x) =10

Taking the discretization parameters h = k = 0.001, the downward deflection u; and the downward velocity e; of the first
component are plotted at final time in Fig. 4 for some values of the coupling parameter «. We can see that the solution
is rather different for each variable, being the differences greater for the downward velocity. As expected, when « tends
to zero the solution also converges to zero.
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Fig. 5. Example 2: Vertical displacement and vertical velocity of the first component for different values of «.

Moreover, in Fig. 5 the vertical displacement v; and the vertical velocity c; of the first component are shown, at final
time, for different values of the coupling coefficient x. Now, we can see again that both solutions are rather different and
the differences are really important. Moreover, for small values of the parameter the solution almost vanishes.
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