Nanocatalysts from Ionic Liquid Precursors for the Direct Conversion of CO₂ to Hydrocarbons

Zara Shiels^{1,2*}, John Harrison², Peter Nockemann¹ and Nancy Artioli¹ ¹School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast (UK) ²Renewable Engine, South West College, Cookstown (UK) *zshiels02@qub.ac.uk

Introduction

The direct conversion of carbon dioxide (CO₂) into lower olefins (C₂-C₄) is a highly desirable process as a sustainable production route. Lower olefins, i.e., ethylene, propylene and butenes (C₂-C₄), are key building blocks in the current chemical industry. The reaction proceeds *via* two main consecutive reactions: Reverse Water Gas Shift (RWGS) to produce CO followed by the further conversion of CO to hydrocarbons *via* the Fischer–Tropsch reaction². This process is achieved by a multifunctional iron-based catalyst supported on zeolites providing three types of active sites (Fe₃O₄, Fe₃C₂ and acid sites), which cooperatively catalyse a tandem reaction¹.

To date, attempts at synthesising a suitable catalyst for the direct hydrogenation reaction follow a conventional precipitation procedure, whereby Iron Oxide Nanoparticles (*IONs*) are produced and then embedded within a zeolite structure by granule mixing. This method provides limited control over the size and shape of the IONs formed; a characteristic of imperative importance due to its significant effect on the hydrocarbon product distribution obtained. In our novel approach, ionic liquids are utilised for the synthesis of the *IONs* resulting in better control over size and morphology of the nanostructured material, and as a consequence, better conversion and selectivity towards the olefins.

Materials and Methods

Na–Fe₃O₄ nanocatalysts obtained by a one-pot synthesis method, already demonstrated in literature², employed a precipitation method (**PM**) involving a mixture of iron (II) and iron (III) chloride hydrate, deionised water and HCl to result in a clear solution. Subsequently, NaOH has been added as a precipitating agent, which resulted in the formation of a black precipitate, which consisted of magnetite, Fe₃O₄ (**PM-Na**). To prepare an Fe₃O₄ sample without sodium, ammonium hydroxide was used as the precipitating agent. These samples were then used as a benchmark for the following novel method. An ionic liquid-assisted synthesis method consisted of heating two iron precursors of Fe (II) and Fe (III) chloride hydrates in a reaction medium of [C₄mim][OAc] ionic liquid (**IL**). After the synthesis, the Fe₃O₄ particle were embedded in either HZSM-5 (SiO₂/Al₂O₃ = 300) or HZSM-5 (SiO₂/Al₂O₃ = 80) zeolite by either granular mixing or mixing in a ball mill at a mass ratio of the two components of 1:1.

 CO_2 hydrogenation reactions were performed at 320 °C, 25 bar and a H/CO₂ ratio of 3:1, in a stainless steel fixed-bed reactor with an inner diameter of 15 mm. Typically, 0.75 g of catalyst Fe₃O₄/Zeolite was mixed with alumina (20–40 meshes) in a 1/1 mass ratio. Prior to reaction, the catalyst was reduced *in-situ* at 350 °C for 8 h in a pure H₂ flow at atmospheric pressure. All products from the reactor were analysed with an online gas chromatograph (GC) equipped with ShinCarbon and PONA columns.

The materials were characterized with ICP-OES (Agilent 5100 ICP-OES), PXRD (PANanalytical X'Pert Pro Diffractometer), TEM (G2 Talos) operated at 200 kV, H_2 Chemisorption (Micromeritics AutoChem II 2920).

Results and Discussion

The ionic-liquid assisted synthesis of a nanocrystalline magnetite precursor showed that ionic liquids provide a controlled precipitation method thanks to their dual functionality as solvent and templating agent. Characterization of the prepared catalysts with the IL method by PXRD shows high phase purity for magnetite, Fe_3O_4 , small particle size and TEM shows good dispersion with the zeolite component. The compounds obtained by ionic liquid method result in amorphous XRD patterns before calcination, however, show phase purity and good crystallinity after calcination at 420° C under a flow of N₂. This has also been confirmed by SEM and TEM (Figure 1.a, b). Hydrogen temperature-programmed reduction (H₂-TPR) was used to determine the reducibility of the Fe₃O₄ and the hydrogen uptake.

Hydrogen temperature-programmed reduction (H₂-TPR) was used to determine the interaction between Fe species and the support. As shown in Figure 1.c, all the catalysts present two peaks with increasing reduction temperature, which are assigned to the conversions Fe₃O₄—FeO and FeO—Fe, respectively. It is observed that catalyst (**PM**) starts to be reduced at lower temperature compared to the catalyst (**IL**), indicating the interaction between iron oxides and the support is weaker in the first sample.

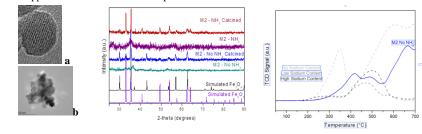


Figure 1 - TEM of catalysts synthesized by PM-Na (top) and IL (bottom), PXRD analysis of ionic liquid method (middle), TPR of ionic liquid method against precipitation method (right).

Significance

We report here on a novel methodology for the controlled synthesis of a Fe₃O₄/HZSM-5 multifunctional catalyst for the direct hydrogenation of CO₂ to gasoline. The product composition and selectivity can be tuned by the choice of by the choice of ionic liquid in the synthetic method and the Fe precursors. This study provides a new pathway for the synthesis of nanocatalysts to produce liquid fuels by utilising CO₂ and H₂, which may in the future lead to alternative approaches to overcome issues with the intermittency of storing and/or utilising energy from renewable sources (photovoltaics, wind energy).

References

¹Y. Yuan, S. Huang, H. Wang, Y. Wang, J. Wang, J. Lv, Z. Li, and X. Ma, ChemCatChem 2017, 9, 3144 – 3152.

² J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat Comm, 2017, 8:15174, doi: 10.1038/ncomms15174.

List of Talks UKCC 2021

#	Title	Authors
PI 01	Constructing and Modifying Indoline and	Anthony Burke
	Chromane Cores: A Catalytic Story	
PI 02	Mechanochemical and mechanocatalytic	Ferdi Schüth
	reactions in ball mills – from voodoo to	
	science	
PI 03	Approaches to catalytic emissions control	Todd Toops
	at low temperature	
PI 04	Accelerating Catalyst Development Using	Sarah Haigh
	Advanced 3D and in-situ Scanning	
	Transmission Electron Microscopy	
К 01	Photocatalysis with plasmons: from light	Jacinto Sá
	absorption to charge generation and utilization	
К 02	Kinetics, Modelling and Process Design of	Dmitry Murzin
K UZ	Hydrogen Production by Aqueous Phase	Dmitry Murzin
	Reforming of Polyols	
К 03	Catalytic Cascade Reactions of Ethanol to	Robert J. Davis
K US	Butanol and Butadiene over Metal	NODELE J. DAVIS
	Phosphate and Metal Oxide Catalysts	
К 04	Dual functional materials development for	Chunfei Wu
	integrated CO ₂ capture and conversion	
K 05	Catalytic materials under investigation	Silvia Bordiga
	through the eye of a spectroscopist	, , , , , , , , , , , , , , , , , , ,
K 06	Fuels and chemicals from waste and low	James McGregor
	value co-products	_
K 07	Tailoring lamellar materials: a crucial key	Octavian Pavel
	for enhancing their catalytic efficiency in	
	the synthesis of fine chemicals	
K 08	Controlling Hydrogenation Rates in	Oliver Gutierrez-Tinoco
	Aqueous Environments via Applied	
	Potential and Brønsted Acidity	
К 09	Nano-structured multicomponent catalysts	Tomas Ramirez Reina
	for gas-phase CO ₂ conversion	
К 10	New Insights into Homogeneous Catalysis	Ulrich Hintermair
	from operando FlowNMR spectroscopy	
К 11	Catalytic Valorisation of Lignin: Are We	Gary Sheldrake
	Nearly There Yet?	

0.01	Desire Cultured his encoded avide system	Vurse Curse and Durse Warse
0 01	Design Cu based binary metal oxide system	Xuze Guan and Ryan Wang
	for cascade NH ₃ oxidation	
O 02	Utilization of CO ₂ by converting into	Nagendra Kulal, Rajappan Vetrivel and
	substituted urea using Sn-Ni oxide catalyst:	Ganapati V. Shanbhag
	Structure-activity correlation and	
	mechanistic studies	
O 03	Conversion of CO ₂ to added value products	Qi Zhang, Laura Pastor-Pérez and Tomas
	via rWGS using Fe-promoted catalysts:	Ramirez Reina
	Carbide or not carbide; that is the question	
O 04	Nanocatalysts from Ionic Liquid Precursors	Zara Shiels, John Harrison, Peter
	for the Direct Conversion of CO2 to	Nockemann and Nancy Artioli
	Hydrocarbons	
O 05	Insights on Ethene Oligomerization with	Nicholas Jaegers, Konstantin
	Supported d8 Metal Atoms	Khivantsev, Libor Kovarik, Jian Zhi Hu,
		Yong Wang and Janos Szanyi
O 06	Precise identification and characterization	Konstantin Khivantsev, Nicholas R.
0.00	of catalytically active sites on the surface of	Jaegers, Ja-Hun Kwak, Janos Szanyi and
		Libor Kovarik
0.07	γ-alumina for alcohol dehydration	
O 07	Controlling Reaction Routes to Maximize	Julian Schmid, Meng Wang, Oliver
	the Rates of C-O bond Cleavage of Aryl	Gutierrez, Donald Camaioni and
	Ethers on Metal Catalysts	Johannes Lercher
O 08	In-situ NMR studies of aerobic oxidations	Carmine D'Agostino, Mick D. Mantle and
	over heterogeneous catalysts	Lynn F. Gladden
O 09	Evolution of atomic site in oxidation	Ryan Wang
	chemistry	
O 10	Ammonia Electro-Oxidation Using Pt	Maryam Bayati, Xiaoteng Liu, Keith
	Decorated Molybdenum Carbide	Scott, Patricia Abellan and Michael
	Nanosphere	Dixon
0 11	Role of catalyst pre-treatment in aqueous-	Rajan Pandya and Chandrashekhar
	phase reforming of glycerol to propylene	Vasant Rode
	glycol	
0 12	The structures of 1-propanol monomer and	Sungmin Kim, Mal-Soon Lee, John
	dimer species on Brønsted acid sites as key	Fulton, Oliver Gutiérrez, Donald
	intermediates for dehydration in zeolites	Camaioni, Roger Rousseau, Niri Govind,
		Thomas Huthwelker and Johannes
		Lercher
0 13	Continuous flow Curtius rearrangement	Megan Smyth, Marcus Baumann,
	coupled with an enzyme mediated	Thomas S. Moody and Scott Wharry
	purification strategy	
0 14	Graphene oxide catalysed N-	Jyoti Ambre, Olviya Gonsalves and Parag
	Heterocyclization of Aniline Derivatives by	Nemade
0.45	Dihalides in aqueous media	
0 15	Smectitic Clays as Clean and Cost Effective	Oscar Kelly, Tom Lamont, Adam
	Heterogeneous Catalysts	Mudashiru, Callum Morris, Pierre
		Chambon and Adam Brookbanks

0 16	Transition Metal Chalcogenide Bifunctional	Aleksander Tedstone
010	Catalysts for Chemical Recycling by Plastic	
	Hydrocracking	
0 17	Catalyst development for carbon	Chunfei Wu, Su He and Xiaotong Liu
	nanotubes production from waste plastics	
O 18	The Right Catalyst Carrier Selection	Rob Parry, Matteo Baraldi, Markus. M.
		Schubert
O 19	Supported oxygen evolution catalysts to	Yagya Regmi
	lower precious metal loading and improved	
	conductivity in proton exchange	
	membrane water electrolyzers	
O 20	Electro-catalysis for Advanced Direct	Cheng Li and Wen-Feng Lin
	Ethanol Fuel Cells Using Higher Energy	
0 21	Liquid Oxygenates Structure Sensitivity during the	Juan Lopez-Ruiz, Yang Qiu, Udishnu
021	Electrocatalytic Hydrogenation and	Sanyal, Katherine Koh, Oliver Gutierrez-
	Oxidation of Biomass-Derived Molecules	Tinoco and Jamie Holladay
0 22	Multiscale imaging and in situ analysis of	Monik Panchal, Emma Gibson, Manfred
_	industrially relevant materials for emission	Erwin Schuster, Timothy Hyde, Andrew
	control	Beale, Richard Catlow, Andrew York and
		Paul Collier
O 23	Carboxymethylation of Bio-alcohols with	Kempanna S. Kanakikodi, Nagendra
	Dimethyl Carbonate: Effect of Morphology	Kulal, K.S. Subramanya, M. S.
	on the Catalytic Activity of CeO ₂	Puneethkumar, Ganapati V. Shanbhag
		and Sanjeev P. Maradur
O 24	Non-metallic Aerobic Oxidation of Alcohols	Jingpeng Zhao, Dan Wu, Willinton Yesid
	over Anthraquinone-Based Compounds	Hernandez Enciso, Wen-Juan Zhou,
0 25	Attenuation of dimethyl ether formation	Mickael Capron and Vitaly Ordomsky David Lennon
025	from the reaction of methanol over an	David Lennon
	alumina based methyl chloride synthesis	
	catalyst	
O 26	Solvation effect on Pd catalyzed C=O bond	Yue Liu, Guanhua Cheng, Andreas
	hydrogenation of benzaldehyde	Jentys, Oliver Gutiérrez, Cathy Chin and
		Johannes Lercher
O 27	Development of the techniques of	Anna Szelwicka, Magdalena Sitko, Anna
	modification of carbon nanotubes to	Wolny, Sławomir Boncel and Anna
	create a unique support for lipase B from	Chrobok
0.20	Candida antarctica	William Finnison Lorge Herrieth
O 28	A computer aided synthesis planning tool	William Finnigan, Lorna Hepworth,
0.20	for biocatalysis: RetroBioCat New strategies for performing	Sabine Flitsch and Nicholas Turner
O 29	New strategies for performing homogeneous catalysis and biocatalysis in	Hasan Imam, Kyle Hill, Peter McNeice, Andrew Reid, Stefan Mix, Paul C J
	water	Kamer, Patricia Marr and Andrew C
		Marr
O 30	Valorization of bio-derived furfuryl alcohol	S Sujith, B J Vaishnavi and Ganapati V
	to make furfuryl acetate over solid acid	Shanbhag

	catalysts: Effect of acidity and porosity on	
	activity	
0 31	Selective Hydrogenolysis of Lignin-Derived Guaiacol under Ambient Hydrogen Pressure	Hui Zhou
0 32	CO Poisoning of Ru Catalyst in CO ₂ Hydrogenation under Thermal and Plasma Conditions	Shanshan Xu, Sarayute Chansai, Xiaolei Fan and Chris Hardacre
O 33	Towards the Utilisation of CO ₂ : Ionic Liquid Sorbents and the Effect of Flue Gas Impurities	Adam Greer, Rebecca Taylor, Helen Daly, Johan Jacquemin, Richard Catlow, Chris Hardacre and Matthew Quesne
O 34	Nano structured Ru-Ni Catalysts for Selective Hydrogenation of Levulinic Acid to gamma-Valerolactone	Gayatri Kasar, P. N. Bhosale and Chandrashekhar Rode
O 35	Catalytic Hydrogenation of Methyl Linoleate using Pyrazolyl Nickel(II) and Palladium(II) Complexes as Catalysts	Oluwasegun Olaoye, Olayinka Oyetunji, Banothile Makhubela, Apollinaire Munyaneza, Gopendra Kumar and James Darkwa
O 36	Aqueous phase hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalyst comprising heteropolyacids and Pt	Mohammad Khan, Huanting Wang, Santosh J. Gharpure, Sanjay M. Mahajani and Akkihebbal K Suresh
0 37	Role of Supports in Pd Catalyzed Furfural Hydrogenation	Nandan Date, Rajeev Chikate and Chandrashekhar Rode
O 38	Novelty of Ru-DTP@MOF-5 as an active and efficient catalyst in one-pot synthesis of flavouring agent allyl 4- cyclohexanebutyrate	Dipti Wagh and Ganapati Yadav
O 39	The application of inelastic neutron scattering to investigate iron-based Fischer-Tropsch to olefins catalysis	Alisha Davidson, Emma Gibson, Giannantonio Cibin, Hendrik van Rensburg, Stewart Parker, Paul Webb and David Lennon
O 40	Structured Silicalite-1 Encapsulated Ni Catalyst Supported on SiC Foam for Dry Reforming of Methane	Huanhao Chen, Yibing Mu, Chris Hardacre and Xiaolei Fan
0 41	The superior hydrothermal stability of Pd/SSZ-39 in low temperature passive NO _x adsorption (PNA) and methane combustion	Konstantin Khivantsev, Nicholas R. Jaegers, Libor Kovarik, Meng Wang, Jian Zhi Hu, Yong Wang, Miroslaw Derewinski and Janos Szanyi
0 42	Pushing the limits of precious metal atom economy for three-way-catalysts (TWC): thermally stable and highly active single Rh atom catalysts (Rh1/ceria) for NO abatement	Konstantin Khivantsev, Nicholas R. Jaegers, Libor Kovarik, Jinshu Tian, Carlos Garcia Vargas, Janos Szanyi and Yong Wang
O 43	Identification of Ru/Ceria among single atom ceria catalysts as a stable and superior material for abatement of diesel and gasoline engine pollutants	Konstantin Khivantsev, Libor Kovarik, Nicholas R. Jaegers, Jinshu Tian, Xavier Periera Hernandez, Yong Wang and Janos Szanyi

0.44		
0 44	Detection and characterization of super- electrophilic metal (Pd+2) cations in zeolite SSZ-13: novel chemistry for adsorption (vehicle emissions control) and catalysis applications	Konstantin Khivantsev, Nicholas R. Jaegers, Libor Kovarik, Mark Engelhard, Hristiyan A. Aleksandrov, Georgi N. Vayssilov, Yong Wang and Janos Szanyi
O 45	Synergy in Polyoxometalate-Stabilised Ruthenium Nanoparticle Catalysis	R. John Errington, Lan Feng, Simon Doherty, Julian Knight, Ye Wang, Lasheng Long and Rong Chen
O 46	High throughput XAS reactor system for operando spectroscopy study	Shaojun Xu, Giannantonio Cibin, Diego Gianolio, Veronica Celorrio, Stephen Parry, Emma K. Gibson and C. Richard A. Catlow
0 47	Operando Potassium K-edge X-ray Absorption Spectroscopy: Investigating Potassium Catalysts during Soot Oxidation	Simon Kondrat, Catherine Davies, Alex Mayer, Giannantonio Cibin, Volkan Degirmenci and Stan Golunski
O 48	TowardsDeterminingAdsorbateOrientationonaSupportedPdHydrogenationCatalyst via in-situDRIFTS	Annelouise McCullagh, Emma Gibson and David Lennon
O 49	Understanding structure-function relationship in NH ₃ -SCO using combined spatially resolved operando techniques	Donato Decarolis, Peter Wells, Alexandre Goguet and Emma Gibson
O 50	Formation of active species over ZCuOH and Z2Cu sites in the Cu-CHA catalysts: Cu speciation in SCR reaction with operando XAS	Yiyun Liu, Ryan Wang and Loredana Mantarosie
O 51	Spectroelectrochemical Insights into the CO-Tolerance of Electrocatalysts Modified with Tungsten Oxide	Andy Wain, Tim Rosser, Douglas Stewart, Keith Scott, Edward Brightman, Donald Macphee and Mohamed Mamlouk
O 52	Operando Spectroscopy Kinetic Analysis of Methanol-to-Olefins Conversion over H- SAPO-34 and H-ZSM-5 Molecular Sieves	
0 53	Catalytic reduction of CO by H_2 on the cobalt Co(111) surface	David Santos-Carballal and Nora H. de Leeuw
O 54	Identity of S-containing Species on Sulfated Zirconia Surface: Ab initio Investigation of Surface Properties and Pyrosulfate Formation	Maicon Delarmelina and Richard Catlow
O 55	Morphology of Cu Clusters Supported on Reconstructed Polar ZnO (0001) and (0001) Surfaces	Michael Higham, David Mora-Fonz, Alexey Sokol, Scott Woodley and Richard Catlow
O 56	Influence of Topology and Brønsted Acid Site Presence on Methanol Diffusion in Zeolites Beta and MFI	Cecil Botchway, Richard Tia, Evans Adei, Alexander O'Malley, Nelson Dzade, Carlos Hernandez-Tamargo and Nora de Leeuw

0 57	Resolving deactivation pathways of Co	Yijiao Jiang
	porphyrin-based electrocatalysts for CO2	
	reduction in aqueous medium	
O 58	Catalyst design informed by product and	Mohammad Reza Abbasi, Federico
	process requirements	Galvanin, John Blacker and Asterios
		Gavriilidis
O 59	Processing and analysing large quantities	Abraham Nieva de La Hidalga, Donato
	of data in catalysis science	Decarolis, Shaojun Xu, Santhosh Matam,
		Willinton Yesid Hernández Enciso,
		Corinne Anyika, Brian Matthews and
		Narayanan Krishnan