
  

  

Abstract— An increasing focus on extending automated 

surface electromyography (EMG) decomposition algorithms to 

operate under non-stationary conditions requires rigorous and 

robust validation. However, relevant benchmarks derived 

manually from iEMG are laborsome to obtain and this is further 

exacerbated by the need to consider multiple contraction 

conditions. This work demonstrates a semi-automatic technique 

for extracting motor units (MUs) whose activities are present in 

concurrently recorded high-density surface EMG (HD-sEMG) 

and intramuscular EMG (iEMG) during isometric contractions. 

We leverage existing automatic surface decomposition 

algorithms for initial identification of active MUs. Resulting 

spike times are then used to identify (trigger) the sources that 

are concurrently detectable in iEMG. We demonstrate this 

technique on recordings targeting the extensor carpi radialis 

brevis in five human subjects. This dataset consists of 117 trials 

across different force levels and wrist angles, from which the 

presented method yielded a set of 367 high-confidence 

decompositions. Thus, our approach effectively alleviates the 

overhead of manual decomposition as it efficiently produces 

reliable benchmarks under different conditions. 

 
Clinical Relevance— We present an efficient method for 

obtaining high-quality in-vivo decomposition particularly useful 

in the verification of new surface decomposition approaches.   

I. INTRODUCTION 

The firing times of constituent motor units (MUs) heavily 
dictate force generation in skeletal muscles. Access to such 
information allows for improved characterization of 
neuromuscular control [1] and higher-fidelity human-machine 
interfacing [2] compared to amplitude measurements of 
rectified electromyography (EMG) which lacks specificity and 
is susceptible to amplitude cancellation effects [3].  

The earliest methods of attaining MU firing times were 
invasive, either with concentric needle electrodes or fine-wire 
electrodes [4]. Surface decomposition techniques have since 
been developed to estimate MU spike trains (MUSTs) from 
high-density surface EMG (HD-sEMG) in a non-invasive 
manner [5], [6]. Typically, these algorithmic approaches work 
towards the compensation of MU action potentials (MUAPs) 
under the assumption of signal stationarity [2]. While some of 
these methods have only been validated via model simulations, 
comparisons with manually decomposed intramuscular EMG 
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(iEMG) remain the “gold standard” for verification of their 
accuracy [7]. 

   Recent developments have focused on extending surface 
decomposition to real-time dynamic applications where the 
stationarity assumption may no longer hold [8]. That is, 
changes to the joint condition may alter the volume conduction 
characteristics between neuromuscular junctions and 
recording electrodes, thereby altering MUAP manifestations at 
observation points. Current works have yet to be verified with 
the same degree of rigor as established batch decomposition 
techniques, however [8], [9]. As such, a database of concurrent 
HD-sEMG and iEMG recordings across non-stationary 
conditions can prove to be a valuable resource for the 
development and verification of robust, real-time 
decomposition algorithms. One difficulty in leveraging iEMG 
recordings, however, is the substantial effort required to 
manually decompose signals [7]. Though several automatic 
spike-sorting algorithms have been presented [10], [11], 
inspection by an experienced operator remains an integral step 
in obtaining a high-confidence decomposition. Given that in 
most cases only a subset of iEMG decomposed MUs can also 
be identified from concurrently recorded HD-sEMG signals 
[7], a partial decomposition of iEMG may be adequate for the 
purposes of verifying surface decomposition accuracy. 

In this work, we present a semi-automated method for 
extraction of MUs with action potentials simultaneously 
present in iEMG and HD-sEMG. We verify this technique on 
a series of isometric contractions of the extensor carpi radialis 
brevis (ECRB) recorded from five subjects. To support the 
verification needs of more robust decomposition methods, this 
study incorporates trials that span a range of contraction 
intensities and joint configurations. 

II. METHODS 

A. Subjects  

Five subjects (four male, one female) participated in the 
experiment. Subjects were between the ages of 29 – 34 and 
were all right-handed. The study was approved by the local 
ethical board of Aalto University (approval number 
D/505/03.04/2022). Prior to the experiments all participants 
gave their written informed consent in accordance with the 
Declaration of Helsinki. 
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B. Experimental setup 

Subjects were seated for the duration of the experiment 

with their dominant arm placed on a tabletop and secured by 

a specialized rig constraining the wrist at various joint angles 

(Fig. 1). A load cell (TAS606, HT Sensor Technology, China) 

was used to measure isometric extension force at a sampling 

rate of 100 Hz. The subject’s maximum voluntary contraction 

(MVC) forces were first measured at wrist joint angles 

corresponding to 0%, 12.5%, and 25% of their maximal 

extension, with 0% relating to a neutral position. 

The insertion of three iEMG electrode pairs was then 

conducted. The insertion points were centered at the bulk of 

the ECRB and aligned along the muscle axis at approximately 

4 mm intervals (Fig. 1). Location of the subject’s  ECRB was 

guided by [12] and palpation during wrist extension and radial 

deviation movements. Fine-wire stainless steel/silver (SS/Ag) 

electrode pairs with Teflon insulation (DIMW1105030102, 

Spes Medica s.r.l., Italy) were used. The wires had a diameter 

of 0.11 mm with the final 3-5 mm of the recording tip stripped 

of insulation. The fine-wire pairs were inserted using 25G 

cannulae to a depth targeting MUs proximal to the surface of 

the ECRB. Signal inspection was conducted after each 

individual insertion. If the signal was invalid (short circuited, 

excessive noise, low selectivity or no viable units detected) 

and could not be remedied by light manipulation of the fine-

wires, the wires were removed and another insertion was 

made slightly lateral to the original insertion point. The 

maximum number of insertion attempts was bounded to five 

for the sake of subject comfort, at which point the experiment 

proceeded so long as at least one valid iEMG channel was 

attained. Each electrode pair was connected to an adapter 

(ADx5JN, OT Bioelettronica, Italy) which preamplified the 

differential signal with a gain of 5. These were then sampled 

by a benchtop bioamplifier (Quattrocento, OT Bioelettronica, 

Italy) at 10240 Hz with 10-4400 Hz hardware bandpass 

filtering. The acquired iEMG signals were then high-pass 

filtered [13] using a zero-phase shift 1st order Butterworth 

filter with a cut-off of 250 Hz to lower baseline noise while 

narrowing action potentials. 

 

Placement of the overlaying HD-sEMG matrix was 

performed 8 minutes after fine-wire insertions to allow for 

sufficient coagulation. This minimized the leakage of blood 

and plasma to the surface recording site which otherwise may 

cause signal shunting. A 64-channel rectangular electrode 

matrix (GR08MM1305, OT Bioelettronica, Italy) was placed 

on the ECRB, centered above the fine-wire insertion sites 

(Fig. 1). The signals were buffered by a preamplifier (AD64F, 

OT Bioelettronica, Italy) with a gain of 150 and 

simultaneously acquired using the same hardware and filter 

settings as iEMG. Two reference electrodes (Neuroline 720, 

Ambu A/S, Denmark), one for the preamplifier and one for 

the bioamplifier, were placed at the medial epicondyle and 

olecranon process. Preprocessing of the HD-sEMG signal for 

subsequent automatic decomposition included downsampling 

to 2048 Hz and 5th order Butterworth bandpass filtering with 

10-900 Hz cut-offs. 

 

 Prior to the commencement of recordings, subjects were 

asked to perform slow dynamic wrist extension movements, 

up to 25% of the maximum range of movement, to allow the 

settling-in of fine-wire electrodes. The recording and cueing 

of trials were facilitated by a custom Matlab R2021b 

(MathWorks Inc., USA) framework. All subject cues along 

with the real-time force feedback were displayed on a 

computer screen (Fig. 1). 

C. Experimental protocol  

Isometric contractions with trapezoidal force profiles (5 s 
ramp, 20 s plateau) were recorded at different conditions of 
wrist extension angle and contraction intensity. For subjects A 
and B, contractions at 5%, 10%, and 15% of MVC were 
recorded at 0% and 25% of maximum wrist extension. For 
subjects C, D and E, contractions at 5%, 7.5%, and 10% of 
MVC were recorded at 0%, 12.5%, and 25% of maximum 
wrist extension. Three trials were recorded for each 
contraction condition with periodic breaks taken to prevent 
subject fatigue. In total, this protocol yielded 117 trials. All 
subsequent analysis was performed on the central 12 s section 
of the 20 s plateau. 

D. Semi-automated method for extraction of MU activity 

concurrent in iEMG and HD-sEMG  

To efficiently identify MUs present in both surface and 
intramuscular signals, we leveraged established surface 
decomposition techniques. For each trial, a set of MUSTs were 
first extracted via the batch decomposition method presented 
in [6]. For each of these spike trains, intramuscular MUAPs 

                  

Figure 1: (Left) Three fine-wire electrode pairs inserted into the subject’s ECRB. (Middle) A 64-channel high-density electrode matrix 

placed on top of the subject’s ECRB and centered above the fine-wire insertion points. (Right) Experimental setup: rig for measurement of 

isometric wrist extension forces and a display for force feedback and experimental prompting. 



  

(iMUAPs) were then computed via spike-triggered averaging 
with 20 ms windows. MUs detectable in concurrently recorded 
HD-sEMG and iEMG, will thus trigger viable iMUAPs. 
Specifically, these are stereotypical monophasic and 
multiphasic action potentials with amplitudes well above the 
baseline noise [4]. Meanwhile, MUs not detectable in the 
iEMG channels will trigger flat action potentials. This process 
is illustrated in Fig. 2. The spike-trains of MUs exhibiting 
viable iMUAPs were then imported to EMGLAB [13], a 
Matlab-based spike annotation software, for manual correction 
by an experienced operator, similar to past studies [14], such 
that a high-confidence decomposition may be achieved. 

E. Source verification 

To verify that the identified MUs correspond to genuine 

sources in iEMG, their contribution to the signal power was 

quantified. Specifically, we calculated the reduction ratio in 

signal power when iMUAP trains were removed from the 

iEMG signals. Each iMUAP train was formed through 

convolution of the iMUAP and its respective MUST.  For 

comparison, the power reduction ratio with a perturbed source 

signal was also calculated. Here, a jitter modelled by a normal 

distribution with a standard deviation of 1 ms was added to 

the intervals used for triggering iMUAPs.   

F. Rates of Agreement 

The accuracies of the initial HD-sEMG decompositions 

were quantified by means of calculating the Rate-of-

Agreement (RoA) between the MUSTs before and after 

operator inspection [6]: 

 

��� =
�

� + � + �
× 100% 

 

where � is the number of spikes identified in both the pre- and 

post-inspection state of the decomposition, � is the number of 

spikes identified only from the initial HD-sEMG 

decomposition, and � is the number of spikes identified only 

by the operator. 

III. RESULTS 

At least two viable iEMG channels were established in 

all subjects. From the 117 trials, 1753 sources were extracted 

via automatic HD-sEMG decomposition, of which, 367 had 

distinct enough iMUAPs to facilitate operator inspection 

against the iEMG signals. Note, this includes potential repeat 

identification of MUs that were present across trials. On 

average, HD-sEMG decomposition of each trial yielded 15±5 

MUs of which 4±2 were concurrently detectable in iEMG and 

resulted in a high-confidence decomposition (Fig. 3). When 

the iMUAP trains of such sources were subtracted from the 

iEMG signals, an average reduction ratio of 0.52±0.23 in 

signal power was observed. In the case of perturbed iMUAPs, 

the corresponding signal power reduction ratio was only 

0.92±0.04. The average RoA between pre- and post-

inspection decomposition results was 95±5% across all 

subjects, and 95±3%, 91±7%, 96±6%, 95±5%, 96±5% for 

subjects A-E, respectively (Fig 3.).  

IV. DISCUSSIONS 

We have demonstrated a method for efficient extraction of 

MUs that are concurrently decomposable in HD-sEMG and 

iEMG. Specifically, these MUs are extractable by surface 

decomposition algorithms and are also identifiable by distinct 

iMUAPS (Fig. 2). This facilitates a semi-automated process 

in which MUSTs are initially extracted by a surface 

decomposition algorithm and then passed for operator 

inspection against the iEMG signal. In past studies involving 

concurrently recorded surface and intramuscular signals, 

manually decomposed spike trains from iEMG are utilized as 

‘gold-standard’ benchmarks from which the accuracies of 

automatic decomposition algorithms can be gauged [6], [7], 

[15]–[17]. However, manual decomposition is a labor-

 

Figure 2: Process flow for identification of MUs that are extractable by HD-sEMG decomposition and are also present in concurrently 

recorded iEMG signals. Spike intervals extracted from decomposition of HD-sEMG are use as triggers for calculation of MUAPs in the 

iEMG signal. MUs that are also captured in the iEMG signal will trigger stereotypical action potentials while those that are not proximal to 

the iEMG insertion points will trigger flat action potentials. In this example, MUs 1,2 5 and 8 qualify as the former and their MUSTs will 

proceed to be manually inspected in EMGLAB. 



  

intensive task that can only be reliably performed by 

experienced operators [4], [7]. Furthermore, only a subset of 

MUs decomposed from iEMG are extractable by surface 

decomposition algorithms [7]. The method presented here 

thus minimizes unnecessary labor as the spike trains from 

MUs that are extractable by the automatic surface 

decomposition algorithms are focused on and initialized for 

subsequent operator inspection. 

 

By using the surface decomposed MUSTs to trigger 

iMUAPs, any resultant waveform can suggest that the 

surface-identified source was also a legitimate source in the 

iEMG signal. The validity of decompositions obtained via this 

method was thus demonstrated by the observable reduction in 

signal power when iMUAP trains were subtracted from the 

original iEMG signals. In other words, the sources extracted 

via decomposition of HD-sEMG, and subsequently selected 

by their iMUAP waveforms, were also sources of the iEMG 

signals. 

While this study includes trials with different contraction 

intensities and joint angles, future work will still need to entail 

the tracking of MUs between trials. Only then, can an 

appropriate benchmark for advanced decomposition 

algorithms be achieved, where algorithms are required to 

account for changes in the sMUAP profiles that occur 

naturally across contraction conditions. 

V. CONCLUSION 

Recently, there has been an increasing focus on extending 

the automated surface EMG decomposition algorithms to 

operate under non-stationary conditions [2], [8], [9]. To assess 

their accuracies rigorously and robustly, benchmarks derived 

from iEMG will need to be considered. However, this can 

quickly become an overwhelmingly laborsome task as it will 

require manual decomposition across multiple contraction 

conditions. As such, our semi-automated approach effectively 

alleviates this overhead as it efficiently produces high-

confidence decompositions under different conditions.  
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Figure 3: (Top) The average number of MUs automatically 

decomposed each trial from HD-sEMG and the subset of MUs with 

activities that were reliably verified in iEMG by an operator. 

(Middle) The reduction in signal power when iMUAP trains were 

subtracted from iEMG signals compared to reduction in signal 

power when using perturbed iMUAP trains. Error bars indicate 

standard deviation. (Bottom) The RoA between pre- and post-

inspection decomposition for each subject. 
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