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A B S T R A C T   

Being a driver of failure consequences, forecasting the severity of events where design traffic load 
limits on bridges have been exceeded (DLEEs) is fundamental for road safety. Previous research 
has focused on estimating failure consequences by direct and indirect cost metrics. Only recently 
has research assessed severity unconventionally, in which the type of DLEEs was predicted by 
applying econometric models through Binomial Logistic Regression (BLR). Since machine 
learning models using Artificial Neural Networks (ANN) have not yet been explored, this study 
will enhance the literature as follows. First, two different ‘severity’ models were set up as a 
function of bridge-side, temporal-context, and traffic load hazard variables. Whilst the former 
relied on a BLR, the latter used an ANN. Second, the performance of these models was assessed 
using confusion matrixes, some performance indicators, and a cross-entropy parameter. Raw 
Weigh-In-Motion data on 7.4 M+ individual vehicle transits on a bridge along a primary roadway 
in Brescia (Italy) were processed. Although a similarly strong performance was achieved for BLR 
and ANN, the results indicated that ANN was able to predict severity records with a higher level of 
confidence than BLR on the case study dataset, with the cross-entropy of the ANN less than one 
third of that of the BLR. These analyses can support road authority traffic management to safe-
guard bridges from traffic load hazards. Finally, this study recommends future developments, 
such as considering the structural effects of traffic loads in the modelling, prioritizing traffic 
management actions among bridges at network level, and exploring the impact of ANN models in 
risk assessment.   

1. Introduction 

Vehicular traffic is one of the main hazards that undermine bridge safety. Indeed, according to Ref. [1], vehicular traffic actions (i. 
e., overloads and collisions) are the most frequent sources of bridge failures after hydraulic actions (e.g., flood and scour). Focusing on 
the overload risk, exceptionally loaded vehicles pose a serious risk to the soundness of bridges [2]. In fact, truck loads along road 
infrastructures have been found to frequently exceed legal load restrictions as traffic volumes have increased, and occasionally this has 
led to bridge failures [3]. Data on extremely high traffic load conditions on bridges can be collected by emerging Intelligent Trans-
portation Systems (ITSs) based architectures. On the one hand, these data can be gathered, saved, and examined for supervising traffic 
load, which would help Road Authorities (RAs) with bridge maintenance and operational planning. On the other hand, the data can be 
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a useful tool for setting up models that forecast bridge failure events induced by traffic load hazards, and thus for aiding data-driven 
traffic management actions. Amongst ITS-based architectures, Weigh-In-Motion (WIM) systems have been shown to be a valuable way 
to gather data about traffic loads on bridges [4]. 

WIM systems provide a dynamic measurement of vehicle mass, allowing for enforcement measures against overloaded trucks and 
the prevention of roadway and bridge damage [5]. Additionally, these systems can collect information on the total amount of traffic 
that passes on any given roadway, the date, and time that it passes, as well as the speed and the size of the vehicles, the number of axles 
on those vehicles, the mass acting on each axle, the type of axles, and the interaxle distances [6]. The main advantage of WIM systems is 
their ability to capture vehicle parameters in real-time for all passing traffic without the need for a human checker to estimate these 
data by selecting random vehicles and performing manual weighing operations [7]. On the one hand, WIM systems are common in 
certain countries (e.g., China, Canada, and United States), where they are exploited for several purposes, involving, for example, 
freight movement analysis, traffic flow simulation, weight enforcement, bridge design and management, and road pavement design 
and management (e.g. Refs. [8–13], and [14]). On the other hand, less research has been done in Europe, where WIM are often 
considered as experimental devices (e.g. Refs. [5,7], and [15]). 

Concentrating on the design and management of bridges, much research has utilized WIM data records to achieve several ob-
jectives. These goals include enhancing bridge safety by developing customized traffic load models grounded in WIM data, taking into 
account, e.g., uncertainties stemming from the specific traffic conditions at bridge sites, evolving environmental factors, and the 
growing number of multi-lane and long span cable-stayed bridges (e.g. Refs. [16–20], and [21]). 

A prerequisite for the management of bridge safety is processing WIM data so that the frequency and the severity of failure events 
induced by traffic load hazards can be promptly predicted. Indeed, without the ability to foresee such events beforehand, it is difficult 
to take traffic management action to lessen the threat posed by extremely overloaded vehicles. Additionally, the frequency and severity 
of bridge failure events could be viewed as two key components of risk assessment models. In fact, frequency, and severity are often 
understood as drivers of the probability and consequences of failure events caused by traffic load hazards, respectively [22]. 

Particularly, as for the severity, which is the focus of this study, prior research has assessed the consequences of bridge failure 
events in terms of cost metrics that are direct (e.g., rebuilding and repair costs) and indirect (e.g., increase in vehicular operating costs, 
increase in users’ travel time, injuries, and fatalities), (e.g. Refs. [23–25], and [26]). 

However, the procedures for estimating these metrics are time and resource consuming because they require: i) detailed cost 
analyses to assess rebuilding and repairing costs (e.g. Ref. [26]); ii) refined traffic models that account for the road network topology to 
determine increases in vehicular operating costs and user travel times (e.g. Refs. [24,27]); iii) complex impact speed/injury probability 
models to forecast injury and fatality occurrences and, thus, to derive the related costs (e.g. Ref. [26]). Hence, implementing dynamic 
bridge safety management strategies driven by direct and indirect cost metrics might be problematic. Moreover, financial restrictions 
often hinder RAs from calibrating such refined cost, traffic, and impact speed/injury probability models. 

Conversely, indirectly measuring the consequences of bridge failure events induced by traffic load hazards could become a 

Nomenclature 

ANN Artificial Neural Network 
BLR Binomial Logistic Regression 
CE Cross Entropy 
CM Confusion Matrix 
CPU Central Processing Unit 
DLEE Design Load Exceedance Event 
EM Econometric Model 
FP Filtering Procedure 
GLR Generalized Liner Regression 
GVM Gross Vehicle Mass 
ISLS Irreversible Serviceability Limit State 
ITS Intelligent Transportation System 
LS1 Load Scheme 1 
MLM Machine Learning Model 
OIML Organisation Internationale de Métrologie Légale 
PI Performance Indicator 
QCA Quality Control Algorithm 
RAM Random Access Memory 
RA Road Authority 
RSLS Reversible Serviceability Limit State 
SVM Support Vector Machine 
TC Traffic Code 
ULS Ultimate Limit State 
WIM Weigh-In-Motion  
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straightforward task. Additionally, it could provide a contribution to the cost metrics estimated by previous literature. This process 
involves detecting different types of events where the design traffic load limits of the bridge have been exceeded (referred to as Design 
Load Exceedance Events - DLEEs). Particularly, after identifying various levels of design traffic loads according to existing Structural 
Design Codes, a severity metric can be established. This metric would indirectly measure the consequences of possible bridge failure 
events1 by classifying the types of DLEEs according to the different magnitude levels. This severity metric could then be estimated by 
some models that link it to several traffic-related predictors, to understand both their effects and the significance of the severity. These 
models could be Econometric Models (EMs) and Machine Learning Models (MLMs). 

By applying EMs, [22] specified, calibrated, and validated a Generalized Linear Regression (GLR) model to forecast the severity of 
DLEEs. This model was a component of a wider framework set up to assess the risk related to traffic load hazards on road bridges. 
According to ISO 39001 [28], intermediate safety factors have been recognized as predictors of severity. Results indicate that a GLR 
model can be an interesting tool for predicting the severity component. Notably, parameters associated with adherence to the mass 
limits stipulated by the Traffic Code (TC) are what exerted the most substantial impact on these predictions. 

As for the MLMs, they have been widely recognized computational tools extensively utilized in the field of engineering (e.g. Refs. 
[29–32], and [33]). Focusing on bridge engineering, MLMs have achieved encouraging levels of performance for several purposes. For 
example, they can: (a) establish data-driven bridge condition deterioration models at a regional level by relying on inspection reports; 
(b) develop fragility functions for bridges subjected to pier scour under vehicular loads; (c) quantify bridge damage by processing 
accelerometric signals ([34,35], and [36]). 

Hegde & Rokseth ([37]) categorized MLMs based on their prediction accuracy with varying data availability. When data are 
limited, boosting techniques and Support Vector Machine (SVM) methods tend to excel, although their performance declines with 
larger datasets due to extended training times ([38,39]). Conversely, Artificial Neural Network (ANN)-based models are commonly 
used for forecasting risk components due to their strong predictive capabilities, particularly when ample data, even if noisy, are 
available ([38]). ANNs can automatically learn essential latent features, making them well-suited for situations like analysing 
extensive datasets from WIM systems. 

Comparing ANNs to GLRs reveals certain strengths and weaknesses that both approaches have shown. On the one hand, ANNs 
typically offer superior predictive performance and excel in modelling non-linear phenomena ([40]). Conversely, ANNs are considered 
“black box” models, which means that the parameters of their functional relationships lack physical significance. This poses a chal-
lenge for the comprehension of the precise influence of each predictor on the response variable. Nevertheless, methods employing 
feature importance indicators can efficiently rank predictors based on their significance ([41]). 

Ventura et al. [41] had applied an ANN model to forecast the frequency of the occurrence of DLEEs caused by traffic load hazards on 
bridges. They had obtained promising results; however, no study has yet adopted an MLM to predict the severity component. Hence, 
there appears to be the need to explore the suitability of ANN models for predicting the severity of DLEEs due to traffic load hazards on 
bridges. This represents an intriguing research gap that ought to be addressed, including a comparative analysis of their performance in 
relation to traditional GLR models. 

Therefore, to summarize, the main innovations introduced by this study are:  

• The introduction of a severity metric that indirectly measures the consequences of possible bridge failure events by classifying the 
type of Design Load Exceedance Events (DLEEs).  

• The specification, calibration, validation, and testing of two severity prediction models using Binomial Logistic Regression (BLR) 
and Artificial Neural Networks (ANN).  

• The provision of an extensive quantitative comparison on the fit and predictive performance of both models. 

Raw WIM data from 7.4 M+ individual vehicle transits collected near a major bridge along the heavily trafficked ring road in 
Brescia (Italy) during a 15-month observation period were processed to fit and compare these models. 

The remainder of the paper has been organized as follows: Section 2 describes materials and method used to acquire and process 
WIM data, detect severity predictors, and to build the BLR and ANN models whilst comparing their performances. Section 3 presents 
and examines the results of these analyses. Lastly, Section 4 draws some conclusions and offers new perspectives. 

2. Materials and method 

The overall method was organized into four blocks, according to the scheme outlined in Fig. 1. Each block meets a specific function 
described below. The first block leveraged WIM systems to acquire data related to the traffic load flow on the monitored bridge. These 
data were then processed to evaluate the severity predictors and measure the response variables for that severity. Next, the second 
block established a model for predicting severity through an EM, which involved fitting a BLR and analysing the significance and effect 
of each predictor integrated into the model. Similarly, the third block built a severity prediction model through an MLM, by using an 
ANN and scrutinizing the importance of each predictor within the model. Lastly, the fourth block conducted a comparative evaluation 
of the performance of the two severity models using a set of quantitative metrics. 

More details regarding the four blocks are provided in the following subsections. 

1 In this study, the term “failure event” does not exclusively signify a collapse. Rather, it encompasses any circumstance that could result in the 
inability of an existing bridge or its components to meet the specified design and construction requirements. 
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2.1. BLOCK 1: data type and collection 

The data for this study were collected from a bridge on the South Ring Road in Brescia, Italy. Brescia is the second-most populous 
city in the Lombardy Region and one of Italy’s major industrial and economic hubs ([42,43]). The South Ring Road was selected in 
agreement with the local RA (i.e., the Province of Brescia) because it is a portion of the primary road network and one of the arterial 
roads with the largest traffic volume and proportion of heavy vehicles in the Province [44]. The case-study bridge (23.5 m span length) 
is a simply supported overpass structure, with two lanes in each direction of each carriageway, over a secondary urban road (Fig. 2). 

An experimental WIM system was installed on the north roadway transition embankment to gather data about the traffic loads 
passing over the bridge during a monitoring period (denoted by T). Only the right lane was instrumented, both because heavy vehicle 
transit is not allowed in the left lane and because of financial constraints (Fig. 3). The WIM device consisted of two stainless steel plates 
that were positioned on the road pavement, outfitted with fibre optic sensors, and connected to a data logger. According to the 
Organisation Internationale de Métrologie Légale (OIML) criteria for WIM devices it was classified as a “10 accuracy class” instrument 
[45]. 

Because the WIM data were collected automatically, they may have included errors that could compromise the reliability of the 
resulting severity analysis. Therefore, the datasets were pre-processed to remove anomalies and outliers. In this study, anomalies were 
records from which the WIM system was unable to accurately determine some or all of the vehicular parameters, such as tire passage, 
out plate borders, or passing speed out of the measurement range. Anomalies were automatically detected by the WIM system through 

Fig. 1. Flowchart of the proposed methodology.  
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a proprietary algorithm and eliminated by a straightforward Filtering Procedure (FP). Conversely, outliers were records having 
inconsistent values for one or more of the vehicular parameters, e.g., if the sum of the mass on each axle was considerably dissimilar 
from the whole gross vehicular mass. Outliers were removed by a set of filtering criteria implemented through an appropriate Quality 
Control Algorithm (QCA) developed by the authors by tailoring existing procedures proposed in the literature ([46,47], and [48]). For 
more details about the QCA, please refer to Ref. [22]. Next, since the arrival of incoming traffic is a stochastic process, the monitoring 
period was partitioned into equally sized and disjoined temporal windows, to account for the temporal variability of the vehicle loads. 
This division also made it possible to analyse the variations over time in the characteristics of vehicles on the bridge and in the severity 
of DLEEs. More formally, let:  

• T be the monitoring period during which the severity was modelled.  
• S be the set of temporal windows and let T(s) be the subset of T in the temporal window s ∈ S.  
• F be the set of severity predictors, let f ∈ F be the generic predictor, and let fs be the value of f ∈ F measured in T(s).  
• Vs be the severity of DLEEs measured in T(s), intended as a driver of the associated consequences. 

According to Ref. [22], the set of severity predictors were referred to as intermediate safety factors. These predictors included 
bridge side factors (describing the bridge’s geometrical properties), temporal context factors (identifying the day and the time during 
which each temporal window occurred), and traffic load hazard factors (describing the traffic load hazards on the monitored bridge). 
Traffic load hazard factors were further allocated into five subgroups: traffic flow characteristics, vehicular characteristics, interaction 
between vehicular and bridge characteristics, compliance with TC requirements and induced actions on the structure. 

Through processing the WIM dataset, the total vehicular load exerted on the bridge lane at each instant t ∈ T was calculated using 
axle mass records. Notably, the preference for disaggregated WIM records of axle masses over aggregated gross vehicle masses arose 
from the possibility of non-integer fractions of vehicles that were simultaneously operating on the bridge lane. Specifically, a motion 
law analysis was conducted for each vehicular axle to determine the application point of each load during periods other than when it 
was transiting over the WIM system. This step was essential because the WIM system recorded axle data at a single point, even though 
the bridge deck spanned a certain length of space. Subsequently, the total vehicle load for each instant t ∈ T was computed by summing 
the masses of the axles present on the bridge lane at that instant and performing the necessary conversions from mass to load units. 

Fig. 2. The case study bridge.  

Fig. 3. Plan of the case study bridge.  
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To measure the severity of bridge overload events, some design traffic lane load thresholds of different magnitude levels were 
defined. These thresholds needed to be compared with the actual traffic loads on the monitored bridge lane during each temporal 
window. Eurocode12 was chosen as a reference among the existing Structural Calculation Codes. Hence, according to the load 
combinations recommended by Eurocode 1 for Ultimate Limit State (ULS), Irreversible Serviceability Limit State (ISLS), and Reversible 
Serviceability Limit State (RSLS), three different design traffic lane load thresholds were established. Specifically, Load Scheme 1 (LS1) 
was preferred because LS1 is the model set for global structural verifications and, therefore, it was the one that best suited the defi-
nition of design traffic load thresholds relating to the whole lane [49]. 

Typically, severity is described mathematically using an ordered discrete response variable. However, due to the infrequent nature 
of ULS-associated design load exceedance – an event that may not occur at all during the monitoring period – the severity of such 
design load exceedance events was represented through a binary variable in the modelling process. Formally, for each s ∈ S, a binary 
variable (denoted by zs), which assumed the value of 0 if the event resulted in merely exceeding the design load associated with RSLS 
and the value of 1 if the event resulted in exceeding the design load associated with ISLS and/or ULS. These values were employed to 
model the severity (Vs). As a result, Vs was defined as the conditional chance that zs would equal 1 in s ∈ S when at least a DLEE was 
detected during T(s), as formalized in eqn. (1). 

Vs≝P(zs = 1 ); ∀s ∈ S : ”At least one DLEE was detected during T(s)”; (1) 

Further information regarding the severity measurement process were offered in Ref. [22]. 

2.2. BLOCK 2: econometric model 

After computing Vs, the severity forecasting model was initially set in a more traditional manner by employing an EM. Specifically, 
considering the binary nature of the response variable, a BLR was chosen, as has been applied in other fields (e.g. Refs. [50,51], and 
[52]). This decision was made to make the results easier to interpret and to suggest possible severity mitigation actions. In fact, they 
were able to be evaluated using the Odds Ratio (OR), which is easily calculated by taking the exponent of the parameter estimate, 
which yields the number of “successes” (a severe event) against each of the “non-successes” (a non-severe event). More formally, let:  

• TR⊂S and TE⊂S be the training and test subsets, respectively.  
• Ṽs be the predicted value for observed Vs.  
• α and βf be the coefficients of the severity model.  
• pGL be the p-value linked to the model, indicating the overall statistical significance of the model based on the chi-square test.  
• pf be the p-value linked to the severity predictor f , indicating the significance of each individual predictor based on the t-test.  
• dr be the deviance ratio, defined as the proportion between the regression deviance and the degree of freedom. 

Thus, the prediction of severity was determined based on the functional form indicated in eqn. (2): 

Ṽs =
e

α+
∑

f∈F
βf fs

1 + e
α+
∑

f∈F
βf fs

; ∀ s ∈ S (2) 

The dataset was randomly divided into training (TR) and test (TE) subsets before the fitting phase to enable the implementation of a 
model validation technique that depended on objective out-of-sample evaluations. Thus, the fitting process began with the detection of 
the model predictors (f). A straightforward selection technique was then used to retrieve the predictors from F. To begin with, an initial 
filtering process was performed to avoid multicollinearity problems by deleting strongly correlated predictors, as outlined below:  

• Calculate the correlation matrix between pairs of predictors f ∈ F, next between each predictor f ∈ F and the response variable Vs.  
• Identify pairs of strongly correlated predictors (i.e., correlation index above 0.8, according to Ref. [53]).  
• For each pair of strongly correlated predictors, remove the one that has the lower correlation index with the response variable Vs. 

Next, an automated stepwise method incorporating both forward selection and backward elimination was employed to ascertain 
the optimal set of predictors from the list generated during the initial filtering phase. A forward or backward stepwise approach was 
favoured based on the estimated model’s highest d.r. and pGL values. Once the model was fitted, the significance of each predictor (pf ), 
the sign of each coefficient and the associated ORs were evaluated to determine the impact of each variable on the forecasted severity. 

2.3. BLOCK 3: machine learning model 

The severity prediction model was constructed in a more innovative manner, by MLMs. ANNs were preferred over other Machine 
Learning algorithms, according to Ref. [41]. Let: 

2 It is the standard that provides guidelines for the actions to be taken into consideration in the design of bridges within the European Union [72]. 
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• TR⊂S, VA⊂S and TE⊂S be the training, validation, and test subsets, respectively.  
• IN∈ R|S|,|F| be the input matrix for the ANN fitting procedure, i.e., the matrix of the severity predictors (i.e., F) throughout each 

T(s) ∈ S.  
• TG∈ R|S| be the target vector for the ANN fitting procedure, i.e., the vector of the severity of DLEEs (i.e., Vs) throughout each T(s) ∈

S.  
• T̃G ∈ R|S| be the forecasted value for TG.  
• ω be a function that establishes the relationship between the input matrix IN and the target vector TG.  
• ω̃ be an approximation of the function ω.  
• P be the set of ANN hidden layer perceptrons and let p ∈ P represent the generic perceptron. In this context, a perceptron serves as 

the fundamental unit of the network, emulating a biological neuron.  
• θ∈ R|F|•|P|+2|P|+1 be the generic vector including the ANN parameters and let θ0 ∈ R|F|•|P|+2|P|+1 be the vector found in the learning 

phase.  
• PFIf be the permutation feature importance of the predictor f ∈ F.  
• ε ∈ R|S| be the vector of residual values, indicating the difference between the target vector TG and the predicted one T̃G.  
• CE(θ)VA be the cross entropy calculated over the validation subset (VA), depending on the parameter vector (θ). 

Therefore, let us suppose that there is a function ω that links the input matrix IN and the target vector TG, described as TG = ω(IN). 
This can be thought of as a calculation model that connects the causes (IN) with their seen consequences (TG). The ANN establishes a 
mapping TG = ω̃ (IN, θ)+ε and discovers optimal value for the parameter vector that yields the most accurate emulation of ω [54]. The 
two-layer feed-forward ANN was chosen to carry out this mapping [55]. 

In this framework, the data progressed forward from input nodes, traversed the hidden nodes and moved towards the output nodes. 
The network was composed of two layers of perceptrons: a hidden layer with |P| perceptrons and an output layer with a single per-
ceptron. A hyperbolic tangent sigmoid activation function was chosen for the hidden layer due to its antisymmetric form: a quality that 
facilitates the learning of the network ([56,57]). A sigmoid was selected as the activation function for the output layer because of the 
binary nature of the response variable. 

Prior to beginning the training phase, the entire observation set (i.e., S) was randomly separated into three partitions: training, 
validation, and test. During training, the network was given the training set (TR), and the network parameters were tuned to match the 
training data. The validation set (VA) was employed to assess the network generalization and to stop training when generalization 
ceased to advance, to prevent the overfitting phenomenon. The test set (TE) exerted no influence on the training process, thereby 
becoming a reliable indicator of network performance both throughout the training phase and afterwards. Over the course of the 
training phase, θ was calibrated to lessen a specific cost function calculated over the validation subset [58]. Specifically, the CE(θ)VA 
was chosen as the cost function because it was the most appropriate one for classification problems when outputs are interpreted as 
probabilities of membership in an indicated class [59]. Therefore, the formalization of the training procedure was as in eqn. (3): 

θ0 = arg min
θ

CE(θ)VA (3) 

A backpropagation algorithm was chosen, because it is widely recognized as a leading method for training feedforward neural 
networks [54]. Upon completion of the training phase, the optimal parameter vector was identified, resulting in the formulation of the 
functional form of the ANN severity prediction model (eqn. (4)): 

Ṽs = ω̃({fs ∈F}, θ0); ∀ s∈ S; (4) 

Notably, training produced different results because of the different initial conditions and the random partitioning. Hence, many 
instances were generated, and the best model was chosen based on the lowest CE. The relevance of each predictor was then assessed to 
understand how it affected the severity forecast and to suggest possible mitigation actions. The permutation feature importance (PFIf ) 
was chosen to achieve this goal since it has been acknowledged as a reliable indicator, particularly for non-linear or opaque estimators 
[60]. The PFIf was stated as a reduction in a model score while a specific factor was randomly rearranged [61]. This strategy disrupted 
the connection between the factor and the target, causing a drop in the model’s score. The magnitude of this drop indicated the extent 
to which the model was reliant on the specific factor. The benefit of this method is that it can be computed over numerous instances 
with different rearrangements of the factor and that it is model-independent. In this study, the indicator was determined for the test 
dataset instead of for the training dataset to stress the importance of features in out-of-sample prediction. More precisely, let:  

• N be the set of random rearrangement instances and let n ∈ N be the generic instance.  
• INn,f ∈ R|S|,|F| be the damaged form of the input matrix at the rearrangement n ∈ N, which is generated by randomly reordering the 

column related to f ∈ F of the undamaged input matrix IN.  
• CE(θ0)TE be the CE of the trained ANN model, computed over the test dataset TE, using the undamaged input matrix IN.  
• CE(θ0)TEn,f be the CE of the trained ANN model, computed over on the test dataset TE, using the damaged input matrix INn,f .  
• s= − CE(θ0)TE be the reference score of the trained ANN model on the undamaged input matrix IN.  
• sn,f= − CE(θ0)TEn,f be the score of the trained ANN model on the damaged input matrix INn,f . 

Thus, numerous permutation instances (|N|) were operated for each explanatory factor f ∈ F and the related PFIf was computed by 
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averaging the scores across various damaged datasets (eqn. (5)): 

PFIf = s −
1
|N|

∑

n∈N
sn,f ; ∀ f ∈F; (5)  

2.4. BLOCK 4: comparison of performance between econometric and machine learning 

Once the BLR and ANN models were set, they were compared to determine which would be best for fitting and prediction. This 
comparative analysis involved three approaches based on:  

I. Confusion Matrixes (CMs).  
II. Performance Indicators (PIs).  

III. Cross Entropy (CE). 

As for I, the CMs related to the two models were preliminarily graphed for the TR, VA and TE subsets and then compared to one 
another. Precisely, the CM is a two-dimensional matrix with in one dimension the true class of an object and in the other the class that 
the classifier assigns. This matrix was obtained by comparing the observed and the predicted values together. Since the output of the 
BLR and ANN severity models is the predicted conditional probability that the binary variable zs will be equal to 1 in s ∈ S (i.e., Ṽs), a 
cut-off threshold of 0.5 was set to determine the related prediction for zs [62]. More formally, let: 

Fig. 4. Confusion matrix and definitions of Performance Indicators (PIs).  
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• P be the number of real positive cases in the sample, i.e., the total amount of observed zs unit values.  
• N be the number of real negative cases in the sample, i.e., the total amount of observed zs null values.  
• T P be the number of true positive cases in the sample, i.e., the total amount of observed zs unit values that are correctly predicted 

by the model.  
• T N be the number of true negative cases in the sample, i.e., the total amount of observed zs null values that are correctly predicted 

by the model.  
• F P be the number of false positive cases in the sample, i.e., the total amount of observed zs null values that are wrongly predicted 

as unit values by the model.  
• F N be the number of false negative cases in the sample, i.e., the total amount of observed zs unit values that are wrongly predicted 

as null values by the model. 

Therefore, the CM was defined as shown in Fig. 4. Since a binary variable was concerned, the CM turned out to be in a 2x2 matrix 
with the T N and T P values along the main diagonal, and the F P and F N values along the antidiagonal ([63,64]). Next, the CMs 
were compared with the understanding that the closer to 0 that the values were along the antidiagonal, the greater the model per-
formance would be since null values for F P and F N indicate a perfect prediction. 

As for II, some PIs were preliminarily computed on the TR, VA and TE datasets. These PIs included several performance metrics 
commonly employed when dealing with classifier models. Let:  

• T P R be the true positive rate (or sensitivity) of the severity model.  
• T N R be the true negative rate (or specificity) of the severity model.  
• P P V be the positive predictive value (or precision) of the severity model.  
• N P V be the negative predictive value of the severity model.  
• F N R be the false negative rate (or miss rate) of the severity model.  
• F P R be the false positive rate (or fall-out) of the severity model.  
• F D R be the false discovery rate of the severity model.  
• F O R be the false omission rate of the severity model.  
• A C C be the accuracy of the severity model. 

These PIs were defined as stated in the third row and third column of the matrix in Fig. 4. 
From these definitions, all the PIs will always fall within the interval [0,1]. Next, these indicators were divided into two groups 

according to their positive or negative relationship with model performance. The former, i.e., (a), where the higher the values were, the 
higher the prediction performance (i.e., T P R , T N R , P P V , N P V and A C C ) would be. Whilst the latter, i.e., (b), where the 
higher the values were, the lower the prediction performance (i.e., F N R , F P R , F D R , F O R and 1 − A C C ) would be. For ease 
of visualization, in Fig. 4 these indicators were coloured green and red, respectively. Afterwards, the PIs were compared, considering 
that a perfect prediction would be designated by unit values for (a) and null values for (b). 

As for III, the CE parameter was first computed on the TR, VA and TE datasets. Formally, for the training subset (TR), this quantity 
was computed using eqn. (6): 

CE= −
1

|TR|

∑

s∈Va
zs log(Ṽs)+ (1 − zs) log(1 − Ṽs); (6) 

As for the VA and TE subsets, the CE was computed using eqn. (6) by replacing TR with VA and TE, respectively. Next, CE was 
compared considering that: a) CE heavily penalizes outputs that are extremely inaccurate (i.e., Ṽs near 1 − zs), with very little penalty 
for approximately correct classifications (i.e., Ṽs near zs); b) minimizing CE generally leads to good classifiers [65]. 

3. Results and discussion 

3.1. BLOCK 1: data type and collection 

Over the course of a 15-month observation period (T), raw WIM data on 7.4 M+ individual vehicle transits were gathered. Because 
of its nested structure and substantial size (approximately 9.5 GB), managing the dataset with spreadsheets was not feasible. As a 
result, all the processing outlined in Section 2 was carried out using a MATLAB© script installed on a mobile workstation (Intel(R) Core 

Table 1 
Specifics regarding the Weigh-In-Motion (WIM)data collected throughout the monitoring period.  

Beginning date January 1, 2022 
Ending date March 31, 2023 
Quantity of raw vehicular records 7,459,312 
Quantity of validated vehicular records (after performing FP and QCA) 3,650,538 
Length of each temporal window [s] 3600 
Quantity of temporal windows 10,824  
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(TM) i7-10750H CPU @ 2.60 GHz with 2.59 GHz processor, 32.0 GB RAM, Windows 11 Pro 64 bit). Following the pre-processing step, 
the validated traffic dataset still contained 3.6 M+ vehicle records, or roughly 49 % of the overall traffic flow (Table 1). 

Despite the removal of a significant portion of data, this primarily pertains to cars and vans, which are light and quick vehicles for 
which certain metrics were challenging to measure using WIM. The reason behind this finding was that the WIM data were gathered to 
assess the weight of the heavier vehicles rather than the lighter ones. Regardless, since the lighter vehicles contributed only a small 
fraction of the estimated loads acting on the bridge, the accuracy of the subsequent severity analyses was not compromised. 

The WIM system identified seven distinct classes of vehicles (Table 2). Whilst cars and vans were the most prevalent vehicle types, a 
relatively notable percentage (approximately 6.8 %) of commercial vehicles (i.e., classes 2 to 6) were also identified. This observation 
confirms the substantial presence of these commercial vehicles on the South Ring Road. 

Since the severity modelling was done on a yearly basis, 1 h was chosen as the temporal window duration. This led to the creation of 
a set of 10,824 hourly temporal windows (S) (Table 1). Afterwards, the set of severity predictors (F) was calculated for each of the 6184 
temporal windows during which at least one design traffic load exceedance event was detected. Table A1 in the Appendix provides the 
list of these predictors along with a brief description of each one as well as some descriptive statistics. The severity of DLEEs, which 
occurred during each T(s) (i.e., the response variable Vs) was then calculated by comparing the total amount of traffic load on the 
monitored bridge lane at each slot with the design load thresholds imposed by Eurocode 1. 

3.2. BLOCK 2: econometric model 

Once the WIM data were processed, the severity prediction model was initially fitted by the EM, as shown in eqn. (2). The training 
(TR) and test (TE) subsets were determined using a splitting ratio of 70 % and 30 %, [66]. Table 3 shows the coefficient estimates and 
their significance for each factor of the best fit model. 

This model provided a good data fit. In fact, the statistical χ2 test on d.r. yielded a low pGL-value. As a result, the null hypothesis that 
all the regression coefficients were zero could be refused. The findings demonstrate that many predictors were highly significant (i.e., 
pf≤ 0.05), because they exhibited a powerful regression effect. When examining each highly significant predictor individually, traffic 
flow characteristics and compliance with TC prescriptions were the subgroups that had the strongest influence on severity predictions. 

As for traffic flow characteristic factors, two predictors proved to be highly significant: Class 6 vehicle fractions and mean speed. 
Regarding the former, a unit increase in the fraction of isolated trailers strongly increased the probability of recording severe events, as 
indicated by the very high positive coefficient (i.e., β1> 0) (or, equivalently, by the OR tending toward infinity). This was a novel 
result, which could be explained by assuming that some carriers may have added a trailer to an already overloaded vehicle to carry a 

Table 2 
Vehicle classes identified by the Weigh-In-Motion (WIM) device. The proportion of vehicles within each class pertains to the 
validated traffic database. 
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larger payload and, thus, to optimize operating costs. Clearly, this behaviour would have a negative impact on the safety of the bridge 
because it would lead to an increase in the loads acting on the lane and, thus, to the probability of exceeding ISLS and ULS design traffic 
load thresholds. 

Regarding the latter, the negative coefficient (β3< 0) implies that a 1 km/h increase in the mean speed would decrease the odds of 
severe events by about 24 % (i.e., OR< 1). This outcome might be explained as follows. First, faster vehicles commonly have a lower 
GVM and are more likely to fall into lighter categories [7]. Furthermore, as speed increases, vehicles spend less time on the deck, 
reducing the probability of multiple vehicles being present on the bridge simultaneously. This suggests that implementing excessively 
low speed limits on bridge decks might have an adverse impact on safety. Given that RAs sometimes set extremely low speed limits for 
heavy vehicles travelling on damaged or steep bridge decks to reduce dynamic effects, this is a noteworthy finding that merits further 
attention [2]. 

As for the compliance with TC prescription factors, two predictors emerged as highly significant: the maximum GVM limit ratio for 
all vehicular classes and the maximum GVM limit ratio for Class 5 vehicles. Regarding the former predictor, the severity odds increased 
by about 60 times when the maximum ratio (computed for all vehicle classes) among GVM and the mass limit imposed by the TC took a 
unit increase (β6> 0, or, equivalently, OR> 1). This result suggests that vehicles surpassing the mass limits stipulated by the TC would 
pose a greater risk to the bridge than those that adhere to the specified limits. Moreover, and not surprisingly, these findings were in 
line with those discussed in the literature. Indeed, it has been shown that the likelihood of bridge failure increases with the percentage 
of overweight trucks [67], especially when they cross the bridge simultaneously (e.g. Refs. [24,25], and [67]). Consequently, 
compensation fees for overweight trucks have been recommended to balance the economic costs associated with reduced bridge life 
[68]. 

Regarding the latter predictor, the extremely high OR (or, equivalently, β7 ≫ 0) associated with the maximum ratio (computed 
only for Class 5 vehicles) among the GVM and the mass limits imposed by the TC denotes that, on the one hand, overloaded vehicles 
with more than 6 axles are those that contribute most towards increasing the likelihood of severe DLEEs on the case study bridge. This 
result can be explained considering that Class 5 vehicles are the biggest on the roads. Consequently, the load limits imposed by the TC 
were higher. Thus, the more severe the events will be where design traffic load limits have been exceeded. It is noteworthy that this 
conclusion should be subject to interpretation, especially when one considers that it is only based on the weight of the vehicles and 
because it refers to the total vehicle load acting on the monitored bridge lane rather than to the internal actions induced on the in-
dividual bridge elements. Indeed, in contrast, it has been proven – e.g., the Federal Bridge Formula (FBF) in the United States – that 
heavier trucks with more axles produce smaller stresses on bridge elements compared to semi-trailer trucks with 5 axles [69]. Hence, 
further investigation is required. 

3.3. BLOCK 3: machine learning model 

The severity model was then fitted using an MLM built on an ANN method according to eqns. (3) and (4). To designate the training 
(TR), validation (VA) and test (TE) subsets, respectively, a splitting ratio of 70 %, 15 %, and 15 % was chosen [70]. By tuning the 
hidden layer’s number of neurons and the training procedure, numerous attempts were made seeking improvement. Consequently, a 
network with 35 perceptrons in the hidden layer was selected, as it provided the greatest data fitting. This network was trained using a 
fast supervised learning algorithm called the Scaled Conjugate Gradient algorithm. As shown in Fig. 5, the training operation was 
stopped at epoch 88, which corresponded to the minimum value for the cost function calculated on the validation subset (CE(θ)VA). 

At the best fit, the permutation feature importance of each severity predictor (PFIf ) was computed according to eqn. (5). The results 
are shown in the Appendix (Table A2). According to a general perspective, the interaction between vehicular and bridge characteristics 
and compliance with TC prescriptions were the subgroups of factors with the highest impact on the severity of design load exceedance 
events. Examining the top 10 most influential predictors individually, the following observations emerge. When considering traffic 
flow characteristics factors, only one predictor proved highly significant, i.e., the fraction of Class 3 vehicles, which ranked tenth. The 

Table 3 
Econometric model. Results of the best fit BLR severity prediction model.  

Item Description Est. a OR Item Description Est. a OR 

α Regression constant − 1132*** – β4 Axle mass – Maximum 0.000693 1.001 
β1 Class 6 (Isolated trailers) 

fraction 
5828*** ∞ β5 Interaxle - Mean 16.23* 1.118E+07 

β2 Class 7 (Unidentified vehicles) 
fraction 

− 3053* 0 β6 GVM limit ratio – Maximum – All classes 4.09** 59.740 

β3 Speed - Mean − 0.213** 0.808 β7 GVM limit ratio – Maximum – Class 5 
(Vehicles > 6 axles) 

429.9*** 5.049E+186 

Source Degree of 
freedom 

Deviance Mean 
deviance 

Parameter Value 

Regression 7 1382.43 197.490 d.r. 197.49 
Residual 4321 19.36 0.0045 χ2 .001 
Total 4328 1401.79 0.324    

a * Denotes that the factor is significant at 0.10 level or lower. ** Denotes that the factor is significant at 0.05 level or lower. *** Denotes that the 
factor is significant at 0.001 level or lower. 
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greater importance of this vehicular class over the others can be explained by bearing in mind the fact that there were more Class 3 
vehicles among all the commercial vehicles surveyed. When considering vehicular characteristics factors, two predictors turned out to 
be highly significant (GVM – Mean and GVM – Std. deviation), which were both related to the simple vehicular mass and were ranked 
second and seventh, respectively. This was a consistent result, because the greater the GVM of the vehicles passing on the bridge was, 
the greater was the expected severity of design load exceedance events. 

Regarding the factors describing the interaction between vehicular and bridge characteristics, two predictors turned out to be 
highly significant (Normalized GVM – Mean and GVM-length ratio – Std. deviation). The Normalized GVM – Mean was the factor that 
had the strongest impact on predicting the severity of design load exceedance events, since it ranked first. Hence, it outperformed the 
other factors that were related to the simple GVM of each passing vehicle. This was a noteworthy result that reflected the findings of 
[41] for the frequency of design load exceedance events. Indeed, it proved that the load exerted on the bridge deck was more closely 
associated to the interplay between the GVM and the bridge-span-length/vehicle-length ratio than to the simple GVM alone. One 
possible explanation could be that if the bridge span was longer than the vehicle, there would be at least one instant during which the 
whole GVM would be borne by the deck. Otherwise, only a portion of the GVM would be borne by the deck at any given moment. This 
outcome can be seen as a reminder to RAs and carriers that they should thoroughly assess the ratio of bridge span length to vehicle 
length on a case-by-case basis before allowing the passage of exceptionally heavily loaded vehicles over a bridge. 

Then, the GVM-length ratio – Std. deviation predictor was ranked fourth, implying that the mass linear density of the vehicles 
strongly influences severity, which has been a consistent finding in our research. Indeed, (for a fixed GVM) shorter vehicles are ex-
pected to induce a greater overall load on the bridge rather than longer ones since more vehicles can be on the deck at the same time. 
Hence, the greater the number of vehicles on the span the greater the severity. 

Four predictors proved to be highly significant when considering compliance with TC prescription factors. Three of these predictors 
were related to the ratio among the actual GVM and the corresponding limit prescribed by the TC (i.e., GVM limit ratio – Maximum – 
Class 5, GVM limit ratio – Mean – Class 2 and GVM limit ratio – Mean – All classes), which were ranked third, fifth and eighth, 
respectively. These outcomes were consistent with the EM, indicating that the more vehicles that exceeded the mass limits stipulated 
by the TC the higher would be the likelihood of severe load exceedance events. Moreover, these results proved to be in line with 
findings in the literature (e.g. Refs. [24,25,67], and [68]). Hence, there is little doubt as to how crucial it is that RAs exercise greater 
vigilance before granting permits for overloaded vehicles. Additionally, it is strongly advised that more inspections should be con-
ducted to identify illegally overloaded vehicles being driven on bridges without proper authorization. Finally, the last of these four 
predictors, which concerns the fraction of overloaded Class 5 vehicles, and which was ranked sixth, confirmed the evidence from the 
EM that overloaded vehicles with more than 6 axles, being the heaviest in the dataset, pose a significant threat to bridge safety. 

3.4. BLOCK 4: comparison of performance between econometric and machine learning 

To determine the most effective modelling strategy, the fitting, and prediction capabilities of the two severity models were 
compared. Regarding comparison approach I, Fig. 6 (a) and Fig. 6 (b) present the Confusion Matrixes (CMs) associated with the GLM 
and ANN models, respectively, for all TR, VA and TE subsets. On the one hand, the CMs suggested similar performance for BLR and 
ANN models. Indeed, both models exhibited a strong overall fitting and predictive power since they produced only three incorrect 
predictions out of 6150+ records: one on the training dataset (TR), and two on the test dataset (TE), respectively. On the other hand, 
the main distinction among BLR and ANN models was related to the different types of wrong predictions. Whilst two false positives 
(F P ) were predicted by the BLR model, one false positive (F P ) and one false negative (F N ) were forecasted by the ANN model. 

Fig. 5. MLM. The cost function (i.e., cross-entropy) for the ANN severity model plotted against the training epoch. The best validation performance 
was achieved at epoch 88. 
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This result might depend on the different modelling structures. Additionally, from a practical perspective, this finding suggested that 
the BLR was slightly more conservative than the ANN, since no true severe events were missed. Yet, the higher number of the false 
positives (F P ) predicted by the BLR than by the ANN could lead to greater costs due to unnecessary traffic management actions. 

Regarding comparison approach II, the values of the Performance Indicators (PIs) that were computed for the two severity models 
on all TR, VA and TE subsets are summarized in Table 4. Moreover, for ease of visualization, these results are also shown in Fig. 6 (a) 
and Fig. 6 (b) for the BLR and the ANN severity models, respectively. In these figures, green and red coloured text denotes positively 
and negatively oriented PIs, respectively. 

From one standpoint, identical PI values were obtained on the training dataset (TR) for both the BLR and the ANN models. The 
close-to-unity values for the positively oriented PIs and the close-to-zero values for the negatively oriented PIs indicate that both 
severity models can strongly fit training data. On the other hand, a slightly greater true positive rate, i.e., T P R , (or, equivalently, a 
slightly lower false negative rate, i.e., F N R ) was found in the test dataset (TE) for the BLR model. This was because no truly severe 
events were missed by the BLR model, whereas one false negative (F N ) was predicted by the ANN model. 

Regarding comparison approach III, the Cross Entropy (CE) values for both models are summarized in Table 4. These results clearly 
show that the ANN model significantly outperformed the BLR model both on fitting and forecasting tasks when the CE parameter was 
considered. Indeed, the CE value for the ANN model was about one order of magnitude lower than for the BLR model, for both the TR 
and TE subsets, respectively. This finding suggests that the ANN model predicted severity records with a higher level of confidence than 
the BLR model. In other words, the predictions of the ANN model were on average farther from the cut-off threshold than those of the 
BLR model. Indeed, the CE parameter is clearly a measure of the discordance between the correct class of each response variable record 

Fig. 6. a) Confusion Matrixes for the best fit BLR severity model; b) Confusion Matrixes for the best fit ANN severity model.  
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and of the probability that the same response variable record belongs to the correct class according to the model’s forecast. 
The reason of these findings could be attributed to the greater capacity of ANNs to model the intricate (non-linear) relationships 

between the severity of bridge overload events and the factors that influence it. Moreover, the outcome appears to confirm what has 
already been observed in other fields of engineering system safety literature (e.g. Refs. [40,71]). Indeed, for example [71], proved that 
ANNs outperformed traditional statistical models in forecasting the severity of traffic crash injuries. Consequently, this result also 
seems to suggest that RAs and practitioners should give preference to ANNs over GLRs when modelling the severity of bridge overload 
events, particularly when the priority is predictive accuracy rather than delving into the effects of individual explanatory factors. 

4. Conclusions 

4.1. Contributions 

Truck weights often exceed legally defined load limits, occasionally leading to bridge failures. Therefore, an essential prerequisite 
to improving bridge safety would be the provision of models to predict the severity of events in which bridge design traffic loads are 
exceeded (DLEEs). 

This research is meant to contribute to the literature by setting up two severity prediction models. The first is an Econometric Model 
that applies a Binomial Logistic Regression (BLR) and the second is a Machine Learning model that applies an Artificial Neural Network 
(ANN). A comparison of the performance of the two models has been accomplished through associating Confusion Matrixes (CMs), 
some Performance Indicators (PIs) and a Cross Entropy (CE) parameter. The large dataset gathered by a Weigh-In-Motion (WIM) 
system near a bridge along a main road in Brescia (Italy) was set up to fit the two severity models. On the one hand, findings indicated a 
similar (and strong) fit and predictive power for the BLR and ANN models when the Confusion Matrixes (CMs) and the Performance 
Indicators (PIs) were considered. On the other hand, the ANN model showed a CE value one order of magnitude lower than the BLR 
model, implying that the former predicted severity records with higher level of confidence than the latter. 

As far as the authors know, this research provides the first empirical contribution into the potentialities of MLMs in predicting the 
severity of DLEEs brought on by traffic load hazards on a road bridge. 

4.2. Implications for research and practice 

The results of this research have important theoretical and practical implications. From the theoretical perspective, the availability 
of straightforward but effective models to forecast severity of design load exceedance events can be a meaningful contribution to the 
existing cost metrics of bridge failure consequences. From a practical viewpoint, grasping the effects and significance of traffic-related 
predictors on severity can serve as a valuable regulatory guide for Road Authorities (RAs). This level of understanding could very well 
empower RAs to deploy efficient traffic management strategies that would enhance the safety of bridges against the risks posed by the 
traffic load hazards. For example, industrial applications derived from Intelligent Transportation System (ITS) architectures, incor-
porating elements such as traffic lights, variable message signals, and cloud computing platforms, could be designed to redirect groups 
of vehicles that might present a significant risk of overloading a specific bridge. 

4.3. Limitations and future developments 

Lastly, this study also recommends the application of new research developments to overcome certain limitations. First, this 
research relied principally on total lane load values as a basic indicator to gauge the severity of overloading events and their 

Table 4 
Comparison of the fitting and prediction performance of BLR and ANN models.  

Parameter Typology BLR model ANN model 

Training Test Training Validation Test 

II comparison strategy 
True positive rate (T P R ) + 99.4 % 100 % 99.4 % 100 % 97.0 % 
True negative rate (T N R ) + 100 % 99.9 % 100 % 100 % 99.9 % 
Positive predictive value (P P V ) + 100 % 97.0 % 100 % 100 % 97.0 % 
Negative predictive value (N P V ) + 100 % 100 % 100 % 100 % 99.9 % 
False negative rate (F N R ) − 0.6 % 0.0 % 0.6 % 0.0 % 3.0 % 
False positive rate (F P R ) − 0.0 % 0.1 % 0.0 % 0.0 % 0.1 % 
False discovery rate (F D R ) − 0.0 % 3.0 % 0.0 % 0.0 % 3.0 % 
False omission rate (F O R ) − 0.0 % 0.0 % 0.0 % 0.0 % 0.1 % 
Accuracy (A C C ) + 100 % 99.9 % 100 % 100 % 99.8 % 

III comparison strategy 
Cross Entropy (CE) − 0.0202 0.0435 0.0059 0.0042 0.0096 

+ : Positively oriented score (more is better). 
− : Negatively oriented score (less is better).  
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subsequent consequences. However, bridge design codes have established limit-state thresholds concerning the effects of traffic loads, 
such as internal forces or structural deformations, which can arise from various configurations of axle loads on the bridge deck. 
Therefore, a more accurate assessment of a bridge’s structural response is recommended. This assessment should also consider the 
dynamic effects of vehicles passing over the bridge. A thorough investigation in this regard would enhance the identification of limit 
state exceedance events caused by traffic overloading. Clearly, these findings will be applicable to future research. 

Moreover, obviously, this study was able to analyse traffic load data from just one WIM station on just one bridge. Consequently, it 
was not capable of establishing any universal patterns for all the bridges within a network. To address this deficiency, the methodology 
ought to be expanded to a network level, which should also involve prioritizing traffic management actions among bridges by 
considering the impact of traffic disruptions on users’ travel times. Finally, it would be of vital importance to investigate the impact of 
ANN modelling approaches in assessing the risks of traffic loads on bridges (e.g. Ref. [22]). 
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