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Abstract (Italian)

Una delle più importanti sfide dell’Intelligenza Artificiale (IA) è progettare agenti

autonomi in grado di agire in ambienti complessi per raggiungere un obiettivo finale

rispettando molteplici vincoli. Questa sfida è attualmente affrontata dalla Pianifi-

cazione Automatica, un campo dell’IA che si occupa del problema della sintesi di una

sequenza di azioni, ovvero un piano, per raggiungere un insieme di obiettivi. Una

parte rilevante della ricerca scientifica si concentra sui modelli di pianificazione clas-

sica, in cui gli obiettivi sono definiti come condizioni che devono essere soddisfatte

nello stato finale raggiunto dall’esecuzione del piano. Tuttavia, questo approccio

presenta alcune limitazioni significative; molti obiettivi degli agenti autonomi pos-

sono coinvolgere il mantenimento di una condizione di safety durante l’intera ese-

cuzione del piano, reazioni a determinati input entro un periodo di tempo limitato,

ed obiettivi aggiuntivi da raggiungere. Inoltre, diversi vincoli possono influenzare il

comportamento dell’agente e la struttura dei piani desiderati. Questa tesi affronta il

problema della pianificazione con queste specifiche, ed esplora tre diverse modalità di

formulazione di questi vincoli. In primo luogo, vengono considerati i vincoli sulla trai-

ettoria degli stati definiti in PDDL3, uno dei linguaggi di pianificazione più diffusi.

In secondo luogo, viene introdotto un nuovo formalismo per esprimere vincoli di trai-

ettoria sulle azioni di un piano. Infine, vengono consideriati goal temporali espressi

in Pure-Past Linear Temporal Logic. Per ciascun formalismo, viene proposto uno

schema di compilazione per tradurre problemi di pianificazione con queste specifiche

in rappresentazioni equivalenti gestibili da pianificatori già esistenti. Tutte le com-

pilazioni proposte sono polinomiali, corrette, complete e preservano la dimensione

della soluzione. Un’analisi sperimentale mostra che gli approcci proposti ottengono

prestazioni migliori rispetto ad altre tecniche all’avanguardia nella maggior parte dei

domini di pianificatione considerati.



Abstract

A significant challenge in Artificial Intelligence (AI) is to design autonomous systems

that can act in complex environments to achieve a final objective while adhering to

many constraints. This challenge is tackled by Automated Planning, which is a

field of AI that deals with the problem of synthesizing a sequence of actions, i.e. a

plan, to achieve a set of goals. A significant body of research focuses on classical

planning models, where goals are defined as conditions that must hold in the final

state reached by the plan execution. However, there are some major limitations to

this approach; many goals of autonomous agents may involve the maintenance of a

safety condition over the whole plan execution, reactions to certain inputs within

a limited time frame, and intermediate objectives to achieve. Moreover, multiple

constraints may dictate the agent’s behavior and influence the structure of desired

plans. This thesis addresses the problem of planning under these specifications and

explores three different ways of formulating these constraints. Firstly, we consider

state trajectory constraints as defined in PDDL3, one of the most popular planning

languages. Secondly, we introduce a new formalism for expressing trajectory con-

straints over actions rather than traversed states. Lastly, we consider temporally

extended goals expressed in Pure-Past Linear Temporal Logic. For each formalism,

we propose a compilation schema to translate planning problems with these specifi-

cations into equivalent representations that can be handled by off-the-shelf classical

planners. All proposed compilations are polynomial, sound, complete, and preserve

the size of the solution. Experimental analysis shows that the proposed approaches

perform better than other state-of-the-art techniques in the majority of the consid-

ered benchmark domains.



Chapter 1

Introduction

“Artificial Intelligence” (AI) is the discipline that studies rational agents, and an

agent is rational if it does the “right thing”. Rational agents are capable of gathering

and interpreting data to reach a complex objective. Moreover, by reasoning on

the knowledge acquired from the environment, such systems can choose the correct

actions to reach the final goal. Rational agents are capable of reasoning on symbolic

rules or can learn numeric models and can adapt their behavior by analyzing how

the environment responds to their actions. Moreover, rational agents must be able

to act autonomously, that is, without human intervention [Russell and Norvig, 2010].

This Thesis focuses on the reasoning aspect of rational agents. In particular,

we address the challenge of designing rational systems that can act autonomously in

complex environments to achieve a final objective while adhering to many constraints.

This challenge is tackled by Automated Planning, which is a field of AI that deals

with the problem of synthesizing a sequence of actions, i.e. a plan, to achieve a

set of goals. A significant body of research focuses on classical planning models,

where goals are defined as conditions that must hold in the final state reached by the

plan execution. Although this type of solution may be adequate to capture many

theoretical problems, real-world scenarios often involve complex temporal constraints

that must be taken into account when computing the plan. For example, many goals

of autonomous agents may involve the maintenance of a safety condition over the

whole plan execution, reactions to certain inputs within a limited time frame, and
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intermediate objectives to achieve [Bacchus and Kabanza, 1998].

To overcome these limitations of classical planning, many previous works ad-

dress the problem of planning with goals that are temporally extended [Bacchus and

Kabanza, 1998, 2000], with trajectory constraints [Gerevini et al., 2009] and with

temporal preferences [Gerevini et al., 2009, Baier and McIlraith, 2008]. Temporally

extended goals and trajectory constraints are temporal properties that every valid

plan must satisfy, while preferences represent desirable properties that a good quality

plan would satisfy.

From a representation point of view, many formalisms have been studied to ex-

press trajectory constraints and temporally extended goals. Linear Temporal Logic

[Pnueli, 1977] over finite traces (ltlf ) [De Giacomo and Vardi, 2013] is the most pop-

ular language for expressing temporally extended goals, while pddl3 is a planning

language that standardized constraints and preferences over the state trajectories

generated by a plan. Recently, Pure-Past Linear Temporal Logic [De Giacomo et al.,

2020], a variation of ltlf that predicates on past events, has been considered for

expressing temporally extended goals. Other formalisms, such as LPP , focus on

temporal preferences over states and action occurrences [Bienvenu et al., 2011].

From a computational perspective, handling these types of constraints requires

the design of dedicated planning systems [Bacchus and Kabanza, 1998, Benton et al.,

2012, Hsu et al., 2007] or compilation approaches [Baier and McIlraith, 2006a,b,

Edelkamp et al., 2006a, Torres and Baier, 2015, Wright et al., 2018, Percassi and

Gerevini, 2019]. Compilation is a technique that works by reformulating a planning

problem with temporal constraints into a new equivalent problem without them.

By adopting compilation, we can exploit existing classical planners for solving the

compiled problems, and there is a clear separation between the module that handles

the constraints from the search engine, making this approach more modular and

extensible. However, compilation significantly increases the size of the resulting

problem and this makes the overall planning process more challenging. Therefore,

a critical challenge is to design compilation approaches that minimize the overhead

introduced in the resulting planning problems.

This Thesis explores three different ways of formulating these constraints. Firstly,

we consider pddl3 state trajectory constraints. Secondly, we introduce a new for-

2



malism, called pac, to express trajectory constraints on actions rather than traversed

states. Lastly, we consider temporally extended goals expressed in Pure-Past Linear

Temporal Logic. For each of these formalisms, we propose a compilation schema

and various optimizations thereof to translate planning problems with these specifi-

cations into equivalent representations that can be handled by off-the-shelf classical

planners. Moreover, we formally prove that the resulting compilations are polyno-

mial, sound, complete, and preserve the size of the solution. Each compilation system

is thoroughly tested in an in-depth experimental analysis involving novel benchmarks

specifically designed to test the scalability and effectiveness of each approach. The

results show that the proposed approaches perform better than other state-of-the-art

techniques in the majority of the considered benchmark domains.

1.1 Thesis Outline and Contributions

This section details the structure of this Thesis and reports the contributions in

terms of publications, tools developed, and the design of new benchmarks featuring

trajectory constraints and temporally extended goals.

1.1.1 Outline

Chapter 2

This chapter provides preliminary notions on classical planning problems. In partic-

ular, Section 2.1 gives an overview of PDDL [McDermott et al., 1998], the standard

language used to formalize classical planning problems. This section also provides

an intuitive explanation of some advanced topics, such as planning with first-order

specifications and how to obtain a ground representation of a planning problem.

Finally, Section 2.2 formally defines classical planning problems.

Chapter 3

In this chapter, we formally review state-of-the-art languages for expressing tempo-

rally extended goals and trajectory constraints in planning problems. Section 3.1
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formally defines ltlf and ppltl, two of the most popular temporal logic formalisms

to express temporally extended goals. Section 3.2 formalizes the class of pddl3 state

trajectory constraints that are called “qualitative” [Gerevini et al., 2009]. Section

3.3 formalizes pac, which is a new language for expressing temporal trajectory con-

straints over action sequences rather than states. This chapter also provides known

relations between ltlf , ppltl, pddl3, and pac.

Chapter 4

This chapter reviews the state-of-the-art approaches to handle temporally extended

goals in ltlf and pddl3 state trajectory constraints. Section 4.1 provides back-

ground notions on Nondeterministic Finite-State Automatons, which are the basis of

many techniques discussed in this chapter. Section 4.2 reviews an automata-based

compilation for handling ltlf goals which is worst-case exponential and solution

size preserving, while Section 4.3 shows a compilation technique to handle ltlf

goals which is polynomial but increases the size of solution plans. Lastly, Section 4.4

reviews native planning systems supporting pddl3 state trajectory constraints.

Chapter 5

In this chapter, we propose a novel compilation approach, named tcore, for han-

dling classical planning problems with pddl3 constraints. tcore uses the notion of

regression to determine the relationship between each action and each trajectory con-

straint. By doing so, and with the introduction of a few additional variables, tcore

efficiently compiles a pddl3 planning problem into a classical planning problem that

can be solved by any off-the-shelf classical planner supporting disjunctive precondi-

tions and conditional effects. Section 5.1 details the tcore compilation schema and

presents formal results on the soundness and completeness of the approach. Section

5.2 presents an experimental analysis involving tcore, state-of-the-art compilation

approaches supporting ltlf goals, and native pddl3 planners.
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Chapter 6

This chapter presents a technique for planning with pac constraints via compilation

to classical planning. The compilation approach, named pac-c, works by extend-

ing the model of actions to (I) prevent the execution of actions that would violate

constraints encoding safety conditions, and (II) force the planner to schedule all ac-

tions that must be executed to satisfy pac constraints. The result is an encoding

that is polynomial, sound and complete, and that preserves the size of the solution

plans. Section 6.1 presents the pac-c encoding and details some theoretical results

of the compilation. Section 6.2 experimentally shows the usefulness of pac in the

context of expressing control knowledge to improve solution coverage and plan qual-

ity of a classical planner. This Section illustrates how we designed our benchmark

suite featuring control knowledge expressed as pac action constraints. Moreover, we

show how the same knowledge can be expressed in ltlf and pddl3 (when possible),

and we report an experimental comparison between pac-c, a state-of-the-art ltlf

compilation approach, and tcore.

Chapter 7

This chapter presents an encoding to translate problems with temporally extended

goals in ppltl into classical planning problems. The encoding, called Plan4Past,

exploits the observation that to evaluate a ppltl formula it is sufficient to consider

(I) only a relevant subset of temporal formulas, and (II) only the current step and

the previous step. Leveraging these observations, we devise an efficient encoding

that uses only a few additional variables, at most linear in the size of the ppltl goal,

is sound, complete, and does not add any spurious action. As a result, we obtain a

classical planning problem that can be solved by any classical planner, such as lama

Richter and Westphal [2010], supporting conditional effects and derived predicates.

Section 7.2 details the Plan4Past encoding and formally proves the correctness of

the approach. Section 7.3 empirically compares Plan4Past with the state-of-the-

art encodings for ltlf temporally extended goals on a set of benchmarks featuring

semantically equivalent ltlf and ppltl formula.
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1.1.2 Publications and Contributions

The research outlined in this Thesis stems from different publications that have

been presented and published at prestigious AI conferences. In particular, the work

related to pddl3 constraints has been published in Bonassi et al. [2021] and Bonassi

et al. [2022b]. The tcore compilation system is publicly available at https://

github.com/LBonassi95/tcore, while all benchmarks featuring pddl3 and ltlf

constraints employed for the experimental analysis are publicly available at https://

github.com/LBonassi95/Benchmarks-ICAPS-2021. Moreover, the work on pddl3

presented in this thesis has been further extended to other forms of planning in

Bonassi et al. [2024].

The pac language for expressing action trajectory constraints and pac-c have

been presented in Bonassi et al. [2022a]. The pac-c compilation has been imple-

mented in Python and is publicly available at https://github.com/LBonassi95/

PAC-C, while the newly designed benchmarks featuring domain knowledge expressed

in pac, pddl3 and ltlf are publicly available at https://github.com/LBonassi95/

PAC-benchmarks-IJCAI22.

Lastly, the work on Pure-Past Temporal Logic has been done in collaboration with

Francesco Fuggitti, Giuseppe de Giacomo, and Marco Favorito. In particular, the

work on the Plan4Past (https://github.com/whitemech/Plan4Past) encoding

is one of the main contributions of Francesco Fuggitti’s dissertation [Fuggitti, 2023].

The publications related to this work are Bonassi et al. [2023a] and Bonassi et al.

[2023b]. My Thesis complements Fuggitti’s dissertation in the formalization of some

theoretical results, in the design of the experimental analysis, and in the design of

the temporal logic formulas employed in the benchmarks, which can be found at

https://github.com/whitemech/Plan4Past-data.
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Chapter 2

Background on Classical Planning

Automated planning is a discipline that, given an initial state of the world, addresses

the problem of finding a sequence of actions (a plan) to achieve the specified goals.

The action sequence is computed from a formal description of the planning model

which is called the planning problem. The most popular and standard language used

to define planning problems is the Planning Domain Definition Language (pddl)

[McDermott et al., 1998]. pddl is a knowledge representation language designed to

capture rich planning models in a natural and compact way. The first version of pddl

was presented during the first edition of the International Planning Competition

(IPC) in 1998 [McDermott et al., 1998]. In this first iteration, the pddl language is

based on the notions of propositional and first-order logic and allows one to model

the class of so-called classical planning problems. Over the next years, pddl has

evolved to support more complex planning models; in version 2.1 [Fox and Long,

2003], pddl was extended with numeric variables and durative actions to capture

numeric and temporal planning problems. Version 2.2 [Edelkamp and Hoffmann,

2004] introduced derived predicates and axioms, while version 3 of pddl [Gerevini

et al., 2009] formalized preferences and constraints as a subclass of temporal logic

formulas [Pnueli, 1977, De Giacomo and Vardi, 2013] over state trajectories.

This Thesis heavily relies on the concepts of classical planning problems. As such,

this Chapter is dedicated to the background notions of classical planning, and it is

divided into two sections:

7



1. Section 2.1 provides an informal overview of the class of classical planning

problems that can be specified in pddl. The purpose of this section is to

familiarize the reader with the foundational concepts of pddl, such as actions,

states, and the first-order constructs employed in pddl. Moreover, this section

introduces the distinction between first-order and ground representations of a

planning problem.

2. Section 2.2 provides the formal definitions of a classical planning problem and

its components.

2.1 Classical Planning in PDDL

pddl uses many notions of first-order logic notions to compactly represent planning

problems. We will illustrate how these notions are employed using a running example

featuring the well-known Blocksworld domain. For a complete treatment of first-

order logic and how it is used in planning, we refer the reader to Russell and Norvig

[2010].

In Blocksworld, there is a set of blocks on a table, and the objective is to arrange

the blocks in a particular configuration using a robotic arm. The arm can pick up a

block, put it on the table, or stack it on top of another block. The goal is to create

one or more towers of blocks. In pddl, the main components of a planning problem

are objects, predicates, action schemas, initial state, and goal.

Objects, predicates, and state representation. One of the main concepts of

pddl is the state, which is a structure that is meant to capture the current status

of the world. A planning state is derived from the objects and the predicates of

planning problems. Objects are a set of unique symbols. In Blocksworld, objects are

used to represent the available blocks, which in our example are a, b, c. Predicates are

first-order logic structures that define the relations between objects. For example, in

Blocksworld, the predicate On(?x, ?y) defines a relation between two generic objects

?x and ?y. As the name suggests, On(?x, ?y) captures whether block ?x is currently

placed over block ?y. In Blocksworld, we usually have the following predicates:

8



• On(?x, ?y) - captures whether block ?x is on top of block ?y.

• Ontable(?x) - captures whether block ?x is on the table.

• Clear(?x) - captures whether block ?x is clear (no other block is on top of ?x).

• Handempty - captures whether the arm is not holding any block.

• Holding(?x) - captures whether the arm is holding block ?x.

A predicate compactly represents a set of ground atoms. A ground atom is a

propositional symbol obtained by substituting every variable of a predicate with

an object and represents a Boolean variable that can be either true or false. For

example, if we substitute ?x with a and ?y with b in the predicate On(?x, ?y) we

obtain the ground atom On(a, b). In planning, these ground atoms are often called

either atoms or fluents. Furthermore, we use the term literal to refer to an atom f

(positive literal) or to a negated atom ¬f(negative literal).A state is a collection of

atoms that are currently true. For example, the state

s1 = {On(a, b), Ontable(b), Holding(c), Clear(a)}

tells us that: a is over b, no block is over a, b is on the table, and the arm is

holding c. Figure 2.1 shows a graphical representation of this state. In planning, the

closed-world assumption holds; that is, all atoms that do not belong to a state are

considered false. In our example, Ontable(c) is false in s1. Every planning problem

has an initial state, representing the initial status of the world. In this case, the

initial state tells us the initial configuration of the blocks.

Action schemas and ground actions. Action schemas provide the definition

of the actions that can be executed. In Blocksworld we have the following action

schemas:

• Pick-Up(?x) - to pick up the block ?x from the table.

• Put-Down(?x) - to put down the block ?x on the table.

9



Figure 2.1: A graphical representation of a state of the Blocksworld domain.

• Stack(?x, ?y) - to stack the block ?x on top of block ?y.

• Unstack(?x, ?y) - to un-stack the block ?x that was over ?y.

Each action schema has a name, a set of variables, a precondition, and a set of

effects. For example, the action Stack(?x, ?y) can be formalized as follows:

Action: Pick-Up(?x)

Precondition: Clear(?x) ∧Ontable(?x) ∧Handempty

Effect:{¬Handempty,¬Clear(?x),¬Ontable(?x), Holding(?x)}

The name of the action is Pick-Up and the only variable is ?x. The precondition

represents a property that must be met before executing an action. To pick up a

block ?x from the table, we must have that the arm is not currently holding a block,

?x is on the table and no block is over ?x. Effects describe how the action induces

the successor state. Intuitively, after Pick-Up(?x), the hand will be empty, ?x will

not be clear (because in the arm), ?x will be removed from the table, and the arm

will hold ?x. The notion of action schema should not be confused with the concept

of “action”; the schema is a compact representation of a group of ground actions.

10



Ground actions, or simply actions, are obtained by replacing all variables of an action

schema with objects. For example, by replacing ?x with a we obtain the action:

Action: Pick-Up(a)

Precondition: Clear(a) ∧Ontable(a) ∧Handempty

Effect:{¬Handempty,¬Clear(a),¬Ontable(a), Holding(a)}.

Actions define exactly how the new successor state is generated and the precon-

ditions that must be met. The precondition is a first-order formula, while the effect

is a set of literals. An action with precondition ϕ can be executed in a state s if and

only if s |= ϕ. The symbol “|=” is the logical entailment operator, and we say that “s

satisfies ϕ” to indicate s |= ϕ. Since the states are complete (that is, a state assigns

a truth value to each atom), it is always possible to determine whether a state s

satisfies (|=) or does not satisfy ( ̸|=) a formula ϕ. Effects describe how a new state is

generated in terms of what changes after the action. Specifically, executing an action

in a state s induces a new state s′, which is obtained starting from the set of atoms

formed by s, removing the negative literals in the action’s effects, and adding the

positive literals mentioned in the action’s effect. As we can see, Pick-Up(a) removes

(that is, makes false) Handempty, Clear(a), Ontable(a) from a state s, and adds

(that is, makes true) Holding(a) to a state s.

Goal. The goal is a first-order formula representing the objective to achieve. It

could be a simple condition such as “Create the tower a-b-c” or a complex condition

such as “Place any block on top of c”. To represent such complex goals, pddl allows

the use of first-order quantifiers ∀ (for all) and ∃ (exists). For example, we could

capture the complex goal with the formula ∃ ?x · On(?x, c). First-order quantifiers

can also be used to compactly specify the preconditions of actions.

Solutions. A solution to a planning problem is a sequence of actions (that is, a

plan) that transforms the initial state sI into a state sG that satisfies the goal. Sup-

pose that, initially, every block is on the table, that is, sI = {Ontable(a), Ontable(b),

Ontable(c), Clear(a), Clear(b), Clear(c), Handempty}. A solution π to achieve the
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goal G = ∃ ?x ·On(?x, c) could be:

π = ⟨Pick-Up(a), Stack(a, c)⟩

Indeed, after executing Pick-Up(a) and Stack(a, c) we will reach a state where

On(a, c) is true, satisfying the goal G.

This discussion covers the fundamental concepts of classical planning in pddl.

Moving forward, we delve into an analysis of two advanced features of pddl known as

conditional effects and derived predicates. Subsequently, we conclude by exploring the

methodologies employed by modern planners to compute the ground representation

of a planning problem.

2.1.1 Conditional Effects

Conditional effects are constructs that allow one to naturally model actions whose

behavior depends on the execution state. A conditional effect is a pair c ▷ e where

c is a first-order formula and e is a pddl effect. When we execute an action in a

state s with a conditional effect c ▷ e, if the condition c is satisfied by s, then the

effect e is considered in the generation of the successor state s′. Otherwise, when c is

not satisfied, e is ignored. Conditional effects can be used to naturally capture more

complex problems. For example, consider a version of Blocksworld where the arm

has a battery and can function only when it is charged. In this alternative domain,

some blocks are heavy, and picking up a heavy block consumes the battery. With

conditional effects, we can easily express “If the arm picks up a heavy block, then

the battery discharges” by rewriting the Pick-Up action schema as follows:

Action: Pick-Up(?x)

Precondition: Clear(?x) ∧Ontable(?x) ∧Handempty ∧ Charged

Effect:{¬Handempty,¬Clear(?x),¬Ontable(?x), Holding(?x),

Heavy(?x) ▷ ¬Charged}

This action schema says that when we pick up a block ?x, if the condition

Heavy(?x) is satisfied, then the action has ¬Charged as an effect. Otherwise, the
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arm remains charged. At the current state-of-the-art, many planning systems sup-

port conditional effects, making it a central feature of pddl. Moreover, this Thesis

heavily exploits conditional effects to deal with more complex planning specifications

such as trajectory constraints.

2.1.2 Derived Predicates and Axioms

Derived predicates have been introduced in the 2.2 version of pddl [Edelkamp and

Hoffmann, 2004], and are a special type of first-order predicate representing a group

of atoms whose truth is derived from the truth of other atoms in the current state

via some rules called axioms. Derived predicates provide a natural way to capture

complex formulas, and can be used to simplify the formulation of preconditions,

conditions of conditional effects, and goals. However, unlike basic atoms, the truth

of an atomic derived predicate in a state cannot be affected by the effects of an action,

but is instead determined by axioms. Axioms are rules of the form d ← ϕ, where d

is a derived predicate and ϕ is a first-order formula, possibly involving other derived

predicates. For example, we can naturally capture properties such as “block ?x is

above block ?y” with the Above(?x, ?y) derived predicate, whose truth is derived by

the following axiom:

Above(?x, ?y)← On(?x, ?y) ∨ ∃ z ·On(?x, ?z) ∧ Above(?z, ?y).

Intuitively, this axiom defines that ?x is above ?y iff either ?x is over ?y or

there exists a block ?z such that ?x is over ?z and ?z is above ?y. This rather simple

example shows that we can formulate very complex axioms. However, there are some

limitations; namely, we must restrict ourselves to a set of axioms that are stratified.

Without entering in detail, a stratified set of axioms guarantees that, given a state s

and a derived predicate d, it is possible to efficiently and uniquely determine whether

d holds true in s. Thus, it is always possible to determine whether a formula ψ

involving derived predicates is satisfied by a state s. We refer the reader to Thiébaux

et al. [2005] for a complete discussion on this topic. We conclude by remarking that,

like for basic predicates and actions, it is possible to obtain propositional derived

predicates (i.e., derived atoms) and axioms by substituting with objects all variables
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of the first-order derived predicates and axioms.

2.1.3 Ground Representation

Before searching for a solution, many planning approaches transform the first-order

representation of a planning problem into a ground representation. In the literature,

a ground problem is obtained by substituting (or instantiating) all action schemas

with ground actions and by substituting all predicates with atoms. This could be

done by enumerating all possible substitutions of variables in actions and predicates

with the objects. This very expensive process is often performed rather efficiently

by using state-of-the-art grounding techniques [Helmert, 2009].

These approaches aim at determining the set of actions and atoms that are reach-

able. A reachable atom is a proposition that is true in some reachable state, while

reachable actions are those that can be executed in some reachable state. A state s is

said to be reachable if there exists a sequence of actions that lead to s starting from

the initial state of a problem. Clearly, actions and atoms that are not reachable can be

safely deleted from the planning model; no solution will ever contain a non-reachable

action nor will make true a non-reachable atom. However, in planning, determining

whether an action’s precondition or an atom can be achieved in some reachable state

is as difficult as solving the original planning problem. Therefore, state-of-the-art

approaches perform a reachability analysis on a simplified representation of a plan-

ning problem, which is obtained with the so-called delete-free relaxation. With this

relaxation, grounders can directly determine the set of reachable atoms and actions

without considering those that are not (in the relaxed representation). For example,

the FastDownward grounder [Helmert, 2009] implements this relaxation technique

and can compute compact ground representations very efficiently. For example, in

the well-known Logistics planning domain, the naive (brute-force) grounding ap-

proach generates 5.82 ·1010 ground actions, while FastDownward cuts the number

of possible actions to 1.51 · 105. A similar procedure is also employed to produce

the set of reachable ground axioms and derived predicates. For the remainder of the

Thesis, we will often adopt a ground representation of a planning problem, that is:

1. Action schemas are replaced with ground actions.
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2. Basic predicates are substituted with atoms.

3. Derived predicates are substituted with ground derived predicates.

4. Axioms are substituted with propositional axioms.

5. First-order formulas are rewritten as propositional formulas.

Regarding the last point, we remark that in planning it is always possible to

rewrite a first-order formula with quantifiers as a propositional formula. This is

done by rewriting universal quantifiers as conjunctions and existential quantifiers as

disjunctions. For example, if we have three blocks {a, b, c} then the formula ∀ ?x ·

Ontable(?x) can be rewritten as the equivalent Ontable(a)∧Ontable(b)∧Ontable(c).

2.2 Classical Planning Problems

This section formally defines the components of a classical planning problem. Our

definitions inherently assume a ground formulation.

Definition 1 (Classical planning problem). A classical planning problem is a tuple

Π = ⟨F,D,X,A, I,G,Pre,Eff ⟩ where F is a set of fluents (atomic propositions), D

is a set of derived predicates, X is a set of axioms, A is a set of action labels, I ⊆ F

is the initial state, G is a formula over F representing the goal of the problem, and

Pre and Eff are two functions mapping an action a to a precondition and a set of

conditional effects, respectively.

As usual, following a closed world assumption, a planning state s is represented

as a set of fluents, with the meaning that an atomic proposition f holds true in s

if f ∈ s; otherwise, f is false in s. Moreover, we use Lit(F ) to indicate the set of

literals that can be obtained by F , that is, Lit(F ) = F ∪ {¬f | f ∈ F}. Axioms

have the form d ← ψ where d ∈ D and ψ is a formula over F ∪ D. An axiom

d ← ψ specifies that d is derived to be true from a state s if and only if we can

prove that s |= ψ, possibly using other axioms from X. We assume that the set

of axioms X is stratified [Thiébaux et al., 2005]; as discussed in Section 2.1.2, a
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stratified set of axioms guarantees that given a state s and a derived predicate d,

it is possible to efficiently and uniquely determine whether d holds true in s. Thus,

it is always possible to determine whether a formula ψ over F ∪ D is satisfied by

a state s. Throughout this Thesis, for the sake of clarity and succinctness, we will

write Π = ⟨F,A, I,G,Pre,Eff ⟩ to indicate a planning problem Π without axioms

and derived predicates, as these components are employed only in some cases.

Actions are split into a set of labels A representing the unique name of the

available actions and into two functions that store the preconditions and effects of

each action. The precondition function Pre : A→ 22
F∪D1 maps an action label a to a

formula Pre(a) representing the preconditions of A, whereas Eff : A→ 22
F∪D

×2Lit(F )

is a function mapping an action label a to a set of conditional effects.

Definition 2 (Conditional effect). Let F be a set of fluents. A conditional effect is

a pair c ▷ e, where c ∈ 22
F∪D

is a formula over F ∪ D, and e ∈ 2Lit(F ) is a set of

literals from F . With e− and e+, we indicate the partition of e that features only

negative and positive literals, respectively.

An action a can be executed in a state s only if s |= Pre(a), while a conditional

effect c ▷ e is triggered in a state s if c is true in s. Applying a in s yields a successor

state s′ where ∀f ∈ F , f holds true in si if and only if either (I) f was true in s

and no conditional effect c ▷ e triggered in s deletes it (¬f ∈ e−) or (II) there is a

conditional effect c ▷ e triggered in s that adds it (f ∈ e+).

Definition 3. Let a be an action and s a state. a is applicable in s if s |= Pre(a),

and the application of a in s yields the state s′ defined as follows:

s′ = (s \
⋃

c▷e∈Eff (a)
with s|=c

e−) ∪
⋃

c▷e∈Eff (a)
with s|=c

e+.

We indicate with s′ = s[a] the state resulting from applying a in s, and, similarly

to other works [Röger et al., 2014], we assume a delete-before-adding semantics. That

1Note that with F∪D propositional symbols we can define 22
F∪D

semantically different formulas.
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is, we compute the successor state by applying all the negative partitions e− of effects

before the positive partitions e+. Conditional effects c ▷ e without condition, that is,

when c = ⊤, are called simple effects and are simply denoted by e.

The execution of an action in a state s induces a new state s′. Thus, the execution

of a plan π = ⟨a0, . . . , an−1⟩ induces a sequence of states τ = ⟨s0 = I, . . . , sn⟩, which

we call state trajectory. A solution is a plan π that induces a state trajectory τ such

that the last state sn of τ satisfies the goal G.

Definition 4 (Solution). Let Π = ⟨F,D,X,A, I,G,Pre,Eff ⟩ be a classical planning

problem. Then a plan π = ⟨a0, a1, . . . , an⟩ is a solution for Π iff there exists a

sequence of states (state trajectory) τ = ⟨s0, s1, ..., sn⟩ such that:

1. s0 = I

2. ∀ i ∈ [1, . . . , n] si |= Pre(ai) and si+1 = si[ai]

3. sn |= G

In many cases, we are interested in solutions of good quality, that is, in solutions

with the minimum cost. In this Thesis, we assume that actions have unit cost.

Therefore, the cost of a solution π, denoted with c(π), is equal to the number of

actions in π, that is, c(π) = |π|. A solution π is said to be optimal iff no solution π′

with c(π′) < c(π) exists.

2.2.1 Regression for Classical Planning

Regression is a theorem-proving mechanism that has been introduced in the situation

calculus [Levesque et al., 1998]. In classical planning, regression allows systematic

reasoning about actions and provides a mechanism to compute the condition that a

state must satisfy to guarantee the satisfaction of another condition in the successor

state [Rintanen, 2008]. Inspired by this notion of regression, we introduce an operator

R whose objective is to regress a formula over the effects of an action. In this Thesis,

we define regression on formulas that are in Negation Normal Form (NNF), that is,

propositional formulas where the operands of negation are fluents only. Transforming
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a formula into NNF is a linear operation that we assumed performed automatically

when needed.

Definition 5 (Regression operator). The regression R(ϕ, a) of a NNF formula ϕ

through the effects Eff (a) of action a is the formula obtained from ϕ by replacing

every atom f in ϕ with Γf (a)∨ (f ∧¬Γ¬f (a)), where Γl(a) for a literal l is defined as

Γl(a) =
∨

c▷e∈Eff (a)
with l∈e

c.

In Definition 5, the condition Γf (a) captures when the action a makes the atom f

true. Instead, Γ¬f (a) represents the conditions under which a falsifies f . Therefore,

the action a makes f true in the next state only if either Γf (a) holds, or f is true in

the current state and Γ¬f (a) is false. By replacing every atom f in a formula ϕ with

Γf (a) ∨ (f ∧ ¬Γ¬f (a)) we obtain another formula R(ϕ, a) that holds in the current

state if and only if ϕ holds in the successor state induced by a.

Theorem 1 (Rintanen [2008]). Let F be a set of fluents, ϕ be a formula over F ,

and a be an action. Then s[a] |= ϕ iff s |= R(ϕ, a).

Notice that the notion of regression we use does not include the action’s precondi-

tions, as we are only interested in capturing when the execution of the action makes

a formula true.

Example 1. Consider the the action act with:

Eff (act) = {b, c ▷ d, e ∨ f ▷ h, g ▷ ¬h}

Then we have that:

• R(b, act) = Γb(act) ∨ (b ∧ ¬Γ¬b(act)) = ⊤ ∨ (b ∧ ¬⊥) = ⊤ (notice that b is an

abbreviation for the simple effect ⊤ ▷ b).

• R(d, act) = Γd(act) ∨ (d ∧ ¬Γ¬d(act)) = c ∨ (d ∧ ¬⊥) = c ∨ d.
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• R(h, act) = Γh(act) ∨ (h ∧ ¬Γ¬h(act)) = e ∨ f ∨ (h ∧ ¬g).

• R(d ∧ h, act) = R(d, act) ∧R(h, act).

• R(i, act) = Γi(act) ∨ (i ∧ ¬Γ¬i(act)) = ⊥ ∨ (i ∧ ¬⊥) = i.

Notice how, as in the last case, if a literal is unaffected by the effects of an action,

then the regression leaves the literal unaltered.
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Chapter 3

Planning with Trajectory

Constraints

A significant body of research in planning focuses on solving classical planning prob-

lems, where goals are defined as conditions on a final state. In this setting, any

plan that achieves the goal is deemed to be an acceptable solution. However, there

are some major limitations to this approach. Firstly, not all goals are “final state”

goals; some involve maintenance or reaction, where the agent must keep a certain

condition or react within a limited time frame to a condition. These are significant

goals that cannot be achieved in a particular final state. Second, we may have many

constraints to control how the agent behaves and how the solution plans are struc-

tured that cannot be expressed using final state goals ([Bacchus and Kabanza, 1998,

Gerevini et al., 2009]).

To overcome these limitations of classical planning, many previous works address

the problem of planning with goals that are temporally extended [Bacchus and Ka-

banza, 1998, 2000, Baier and McIlraith, 2006b,a, Torres and Baier, 2015] or with

trajectory constraints [Gerevini et al., 2009]. All of these works try to address the

problem of finding solutions to satisfy conditions that are Non-Markovian. In gen-

eral, we can say that a condition is Markovian when all the information needed to

determine the truth of the condition is encoded within the state itself [Bacchus et al.,

1996, 1997]. Indeed, the classical planning model is Markovian. The action’s out-
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come is uniquely determined by the current state, and the goal can be evaluated

only on the last state of the trajectory; all other states can be ignored. However,

a non-Markovian condition must be evaluated taking into consideration the whole

trajectory of stats or the whole plan.

In the current state of the art, non-Markovian goals and constraints are formu-

lated using different temporal logic languages. The aim of this Thesis is to develop

novel techniques to handle:

• The class of state trajectory constraints defined by pddl3.

• Pure-Past Linear Temporal Logic (ppltl) temporally extended goals.

• A new class of constraints over sequences of actions scheduled in a plan. These

action constraints are formalized using a new language called pac, which is a

contribution of this Thesis.

Moreover, when possible, we compare the proposed techniques with state-of-

the-art approaches supporting our class of constraints. When this is not possible,

we perform a cross-language analysis, that is, we express knowledge in different

ways and evaluate which strategy is more effective. A formalism we consider in

all the comparisons is Linear Temporal Logic over finite traces (ltlf ), one of the

most popular languages for expressing temporally extended goals. Therefore, this

chapter provides the definitions of ltlf , ppltl, pddl3, and pac. For the rest of

the Thesis, for the sake of consistency with the previous literature, we will use the

term “Temporally extended goals” when dealing with ltlf and ppltl specifications,

while we will use “trajectory constraints” in the context of planning with pddl3 state

trajectory constraints and with pac action trajectory constraints.

The chapter is structured as follows. The first section provides the syntax and

semantics of ltlf and ppltl. We then define the class of pddl3 constraints that

are called qualitative state trajectory constraints [Gerevini et al., 2009] and show the

relationship between these constraints and temporally extended goals. Lastly, we

introduce pac, the new language that we designed for expressing action trajectory

constraints. Moreover, we discuss how pac can express compelling properties that

cannot be captured by either pddl3 constraints or temporally extended goals.
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3.1 Linear Temporal Logic and Pure-Past Linear

Temporal Logic Over Finite Traces

3.1.1 Linear Temporal Logic Over Finite Traces

Linear Temporal Logic over finite traces (ltlf ) [De Giacomo and Vardi, 2013] is a

formalism for expressing useful temporal specifications for controlling the structure

of solutions in planning problems [Bacchus and Kabanza, 1998, Baier and McIlraith,

2006b,a, Torres and Baier, 2015] and for expressing control knowledge to scale up

planning performances [Bacchus and Kabanza, 2000].

Given a set P of atomic propositions, the syntax of ltlf is defined as:

φ ::= p | ¬φ | φ ∧ φ | Xφ | φUφ

where p ∈ P , X is the next operator and U is the until operator. Intuitively, X(φ)

specifies that the formula φ must hold in the next step, while φ1 Uφ2 requires φ1 to

hold until eventually φ2 holds.

ltlf formulas are interpreted on finite nonempty state trajectories τ = s0 . . . sn

where si at instant i is a propositional interpretation over the alphabet 2P . We

denote the length of τ by length(τ) = n+1 and the last element of τ by last(τ) = sn.

Given a state trajectory τ = s0 . . . sn, we denote by τi,j, with 0 ≤ i ≤ j ≤ n, the

subtrajectory si . . . sj obtained from τ starting from position i and ending in position

j. We define the satisfaction relation τ, i |= φ, stating that φ holds at instant i, as

follows:

• τ, i |= p iff length(τ) ≥ 1 and p ∈ si (for p ∈ P);

• τ, i |= ¬φ iff τ, i ̸|= φ;

• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= X(φ) iff i < length(τ) and τ, i+ 1 |= φ;

• τ, i |= φ1 Uφ2 iff there exists k, with i ≤ k ≤ length(τ) such that τ, k |= φ2 and

for all j, with i ≤ j < k, we have that τ, j |= φ1.
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We also define the following common abbreviations: φ1∨φ2 ≡ ¬(¬φ1∧¬φ2), the

eventually operator Fφ ≡ true Uφ, the always operator Gφ ≡ ¬F¬φ, the weak-next

operator WXϕ ≡ ¬X¬ϕ, and the release operator φ1 Rφ2 ≡ ¬(¬φ1 U¬φ2). These

new operators are also called derived operators since they are defined using the basic

ltlf operators. Furthermore, the semantics of derived operators follow from the

semantics of X and U . That is,

• F(φ) specifies that φ must become true at some point of the trajectory. For-

mally, τ, i |= F(φ) iff there exists k, with i ≤ k ≤ length(τ) such that τ, k |= φ2.

• G(φ) requires φ to always hold in the future. Formally, τ, i |= G(φ) iff for every

k with i ≤ k ≤ length(τ), τ, k |= φ.

• WX(φ) specifies that the formula φ must hold in the next step, but only when

the current step is not the last one. Formally, τ, i |= WX(φ) iff i = length(τ) or

τ, i+ 1 |= φ.

• φ1 Rφ2 specifies that the formula φ2 can become false only when φ1 becomes

true; if φ1 never holds, then φ2 must hold at each step of the trajectory. For-

mally, τ, i |= φ1 Rφ2 iff for every k with i ≤ k ≤ length(τ), either τ, k |= φ2 or

there exists j, with i ≤ j < k, such that τ, j |= φ1.

A ltlf formula φ is true in τ , if τ, 0 |= φ. Moreover, the formula end ≡ ¬X(true)

expresses that the state trajectory has ended.

We denote by sub(φ) the set of all subformulas of φ obtained from the abstract

syntax tree of φ [De Giacomo and Vardi, 2013]. For example, if φ = a∧¬X(b∨(c∨d)),

where a, b, c, d are atomic, then sub(φ) = {a, b, c, d, (c ∨ d), b ∨ (c ∨ d),X(b ∨ (c ∨

d)),¬X(b ∨ (c ∨ d)), a ∧ ¬X(b ∨ (c ∨ d))}. Thus, |sub(φ)| defines the size of a ltlf

formula φ.

Lastly, we define the language of a ltlf formula φ, denoted by L(φ), as the set

of all state trajectories that satisfy φ, that is,

L(φ) = {τ ∈ (2P)∗ | τ |= φ}.
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Note that (2P)∗ indicates the infinite set of possible state trajectories over 2P . We

conclude by showing how ltlf can capture some desirable properties.

Example 2. Compelling ltlf patterns are:

• G(request =⇒ F(response)) means “Every request is eventually met with a

response” [Torres and Baier, 2015].

• Priority(r1, r2) → (¬Delivered(r2)UDelivered(r1) ∧ FDelivered(r2)) means

“If r1 has priority over r2, then r2 must be delivered, but not before r1” [Baier

and McIlraith, 2006a].

• G(Request =⇒ X(Response)) means “Every request is immediately met with

a response” [De Giacomo et al., 2014].

• ¬(F(Task1)∨F(Task2)) “Only one of task 1 or task 2 can be executed” [van der

Aalst et al., 2009].

• F(Task1) ∧ F(Taks2) “Both task 1 and task 2 must be eventually executed”

[Baier and McIlraith, 2006a].

3.1.2 Pure Past Linear Temporal Logic

Pure-Past Linear Temporal Logic (ppltl) is the variant of ltlf that talks about the

past instead of the future. ppltl has been recently surveyed in [De Giacomo et al.,

2020], where it is denoted as pltlf . Given a set P of propositions, ppltl is defined

as:

φ ::= p | ¬φ | φ ∧ φ | Yφ | φ Sφ

where p ∈ P , Y is the yesterday operator and S is the since operator. Intuitively,

Y(φ) specifies that the formula φ must hold in the previous step, while φ1 Sφ2 is

satisfied when φ1 held since φ2 became satisfied.

ppltl formulas are also interpreted on finite non-empty state trajectories τ =

s0 · · · sn. Therefore, we define the satisfaction relation τ, i |= φ, stating that φ holds

at instant i, as follows:
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• τ, i |= p iff length(τ) ≥ 1 and p ∈ si (for p ∈ P);

• τ, i |= ¬φ iff τ, i ̸|= φ;

• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= Yφ iff i ≥ 1 and τ, i− 1 |= φ;

• τ, i |= φ1 Sφ2 iff there exists k, with 0 ≤ k ≤ i < length(τ) such that τ, k |= φ2

and for all j, with k < j ≤ i, we have that τ, j |= φ1.

In addition, we define the following common abbreviations: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧

¬φ2), the once operator Oφ ≡ true Sφ, the historically operator Hφ ≡ ¬O¬φ, the

weak-yesterday operator WYϕ ≡ ¬Y¬ϕ. The semantics of these derived temporal

ppltl operators are the following:

• O(φ) requires that φ held at some point in the past. Formally, τ, i |= O(φ) iff

there exists k, with 0 ≤ k ≤ i, such that τ, k |= φ.

• H(φ) is satisfied when φ always held in the past. Formally, τ, i |= H(φ) iff for

every k with 0 ≤ k ≤ i, τ, k |= φ.

• WY(φ) specifies that the formula φ must hold at the previous step, but only

when the current step is not the first. Formally, τ, i |= WYφ iff i = 1 or

τ, i− 1 |= φ.

ppltl formulas are evaluated by looking at the state trajectory from the last

state back to the first. That is, a ppltl formula φ is true in τ if τ, n |= φ. Moreover,

the formula start ≡ ¬Y(true) expresses that the state trajectory has started.

As done for ltlf , we denote by sub(φ) the set of all subformulas of φ obtained

from the abstract syntax tree of φ. Also in this case, |sub(φ)| defines the size of a

ppltl formula φ. Moreover, we define the language of a ppltl formula φ, denoted

by L(φ), as the set of all state trajectories that satisfy φ, that is,

L(φ) = {τ ∈ (2P)∗ | τ |= φ}.

Example 3 reports some compelling properties that can be expressed in ppltl.
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Example 3. Useful ppltl formulas are:

• H(Bus =⇒ Y(¬Bus ST icket)) means “Every time I took the bus, I bought a

new ticket beforehand” [De Giacomo et al., 2020].

• G∧¬Y(O(G)) means “The current state is the first that satisfies G” [Bacchus

et al., 1996].

• O(Task1∧Y(O(Task2)) means “Task 1 was accomplished, and before that Task

2 was accomplished” [Bonassi et al., 2023b].

• H(Task1 → Y(O(Task2))) “Task 1 has been accomplished strictly after task 2

has been accomplished” [Bonassi et al., 2023b].

We conclude by remarking that, although ppltl and ltlf have the same expres-

sive power, translating a formula from one into the other (and vice versa) can be

prohibitive since the best-known algorithm is 3EXPTIME [De Giacomo et al., 2020].

3.1.3 Planning For Temporally Extended Goals

Classical planning deals with the problem of finding a sequence of actions to achieve

the goal in the last state, while the problem of finding a plan to satisfy a temporal

formula is called planning for temporally extended goals [Bacchus and Kabanza, 1998].

Definition 6. A planning problem with a temporally extended goal is a tuple Π =

⟨F,D,X,A, I, φ,Pre,Eff ⟩, where F,D,X,A, I,Pre,Eff are defined as in a classical

planning problem, and φ is a temporal formula over F expressed in either ltlf or

ppltl.

In this setting, since the goal is a temporal formula defined over the fluents in F ,

we must take into consideration the whole sequence of states induced by a plan.

Definition 7. A plan π for a problem Π = ⟨F,D,X,A, I, φ,Pre,Eff ⟩ is a sequence

of actions ⟨a0, a1, . . . , an⟩ from A; π is valid for Π (a solution) iff there exists a state

trajectory τ = ⟨s0, s1, . . . , sn⟩ such that:
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• s0 = I

• ∀ i ∈ [1, . . . , n] si |= Pre(ai) and si+1 = si[ai]

• τ |= φ

If the temporally extended goal is in ltlf , then we must search for a plan that

induces a state trajectory τ such that τ, 0 |= φ. Otherwise, when φ is in ppltl, then

the induced state trajectory τ must be such that τ, n |= φ. For the remainder of this

Thesis, we write τ |= φ to indicate that τ, 0 |= φ with φ in ltlf and τ, n |= φ with

φ in ppltl.

3.2 PDDL3 State Trajectory Constraints

pddl3 is a popular planning language that has been introduced in the context of the

5th International Planning Competition (https://lpg.unibs.it/ipc-5/). This

formalism allows users to define the quality of solutions by controlling the structure

of desired plans with soft and hard constraints. These constraints are formulated

using a standard set of temporal operators that can be formalized as a subset of

ltlf formulae. Soft constraints, also known as preferences, are temporal specifica-

tions that a good-quality solution should satisfy, while hard constraints are necessary

conditions that every solution plan must satisfy. In this work, we focus on hard con-

straints, particularly those that in pddl3 are called “qualitative” [Gerevini et al.,

2009] (hereinafter pddl3 constraints), because they involve only non-numeric terms.

The rest of this section analyzes the syntax and semantics of pddl3 constraints. A

complete coverage of the pddl3 language can be found in Gerevini et al. [2009].

pddl3 qualitative temporal operators are: always (A), at-most-once (AO),

sometime (ST), sometime-before (SB) and sometime-after (SA). A pddl3 con-

straint c is syntactically defined as follows:

c := A(ϕ) | ST(ϕ) | AO(ϕ) | SB(ϕ, ψ) | SA(ϕ, ψ)

where ϕ/ψ are two propositional formulas that we assume in NNF. Semantically:
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• A(ϕ) is satisfied if every state induced by the plan satisfies ϕ.

• ST(ϕ) requires that there is at least one state traversed by the plan where ϕ is

true.

• AO(ϕ) specifies that ϕ is true in at most one contiguous subsequence of tra-

versed states.

• SB(ϕ, ψ) requires that if ϕ is true in a state induced by the plan, then also ψ

is true in a previously traversed state;

• SA(ϕ, ψ) specifies that if ϕ is true in a traversed state, then also ψ is true in

that state or a later traversed state.

Definition 8 provides the formal semantics of each pddl3 constraint.

Definition 8. Let F be a set of fluents, τ = ⟨s0, . . . , sn⟩ be a sequence of states,

ϕ and ψ be propositional formulae over F . A pddl3 constraint c is satisfied by τ ,

written as τ |= c, if the following conditions hold:

τ |= A(ϕ) iff ∀i : 0 ≤ i ≤ n · si |= ϕ

τ |= ST(ϕ) iff ∃i : 0 ≤ i ≤ n · si |= ϕ

τ |= AO(ϕ) iff ∀i : 0 ≤ i ≤ n · if si |= ϕ then

∃j : j ≥ i · ∀k : i ≤ k ≤ j · sk |= ϕ and ∀k : k > j · sk |= ¬ϕ

τ |= SA(ϕ, ψ) iff ∀i : 0 ≤ i ≤ n · if si |= ϕ then ∃j : i ≤ j ≤ n · sj |= ψ

τ |= SB(ϕ, ψ) iff ∀i : 0 ≤ i ≤ n · if si |= ϕ then ∃j : 0 ≤ j < i · sj |= ψ.

We formalize a pddl3 planning problem as a classical planning problem extended

with a collection of pddl3 constraints.

Definition 9. A pddl3 planning problem is a tuple ⟨Π, C3⟩, where Π is a classical

planning problem and C3 is a set of pddl3 constraints.
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The task of solving a pddl3 planning problem is the task of searching for a plan

that is a solution in the classical sense and that satisfies all pddl3 constraints.

Definition 10. A plan π is a solution for ⟨Π, C3⟩ iff it is a solution for Π and the

state trajectory τ induced by π is such that ∀c ∈ C3 · τ |= c.

3.2.1 First-Order Formulation of PDDL3 Constraints

pddl3 state trajectory constraints can also be formulated using first-order quanti-

fiers.

Example 4. The constraint sometime(∃ ?x ·On(?x, a)) expresses that at some point

in the state trajectory, there must be a block placed over a.

Note that in Example 4 the quantification is used in a formula inside the temporal

operator. In these cases, the usual semantics of first-order logic applies. Quantifiers

can also be placed outside the temporal operator.

Example 5. The property “At some point all blocks are laying on the table” can be

represented with the pddl3 constraint: A valid pddl3 constraint is

∀ ?x · sometime(Ontable(?x)).

In this case, the universal quantifier specifies a group of sometime constraints, one

for every block that can be substituted with ?x. For example, with three blocks a, b, and

c, the constraint above is equivalent to the set of constraints: {sometime(Ontable(a),

sometime(Ontable(b), sometime(Ontable(c)}.

First-order quantifiers allow the user to compactly capture complex properties,

as shown in Example 6.

Example 6. The constraint “Only one truck can be in a location at every time” can

be captured in pddl3 with:

∀ ?truck1, ?truck2, ?loc ·

always((At(?truck1, ?loc) ∧ At(?truck2, ?loc))→?truck1 ̸=?truck2).
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There is, however, a limitation to the formulation of such first-order constraints

in the pddl3 language: existential quantification can not be applied to temporal

operators (see the BNF of pddl3 [Gerevini and Long, 2005]). This means that ∃ ?x ·

at-most-once(On(?x, a)) is not a valid pddl3 constraint. Intuitively, this is because

this specification defines a group of constraints where only one should be satisfied,

while pddl3 problems require every constraint to be satisfied. In general, the pddl3

language could be extended with existential quantification and disjunctions between

trajectory constraints, but this is left for future work.

3.2.2 Relation Between PDDL3 Constraints and Temporally

Extended Goals

This section shows the relation between the temporally extended goals and pddl3.

As previously discussed, pddl3 qualitative constraints can be formalized as a subset

of ltlf formulae. This means that every pddl3 constraint can be represented as a

semantically equivalent ltlf formula. Moreover, since ppltl is as expressive as ltlf ,

every pddl3 qualitative operator can also be expressed in terms of a semantically

equivalent ppltl formula, too. These formulations are shown in Table 3.11.

pddl3 ppltl formulation ltlf formulation

A(ϕ) H(ϕ) G(ϕ)
ST(ϕ) O(ϕ) F(ϕ)
AO(ϕ) H(ϕ→(ϕS(H(¬ϕ)∨start))) G(ϕ→(ϕU(G(¬ϕ)∨end)))
SA(ϕ1, ϕ2) (¬ϕ1 Sϕ2) ∨ H(¬ϕ1) G(ϕ1 → Fϕ2)
SB(ϕ1, ϕ2) H(ϕ1 → Y(O(ϕ2)) ϕ2 R¬ϕ1

Table 3.1: pddl3 operators, their equivalent ppltl and ltlf formulas. ϕ, ϕ1 and
ϕ2 are propositional formulas.

Theorem 2 (Camacho et al. [2019], Bonassi et al. [2023a]). Let c be a pddl3 qual-

itative trajectory constraint, φl and φp be the corresponding ltlf and ppltl formu-

1Notice that these are possible translations of pddl3 constraints. For example, SB(φ1, φ2) can
also be translated into ltlf as (¬φ1 U (¬φ1 ∧ φ2)) ∨ G(¬φ1) [De Giacomo et al., 2014].
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lations according to Table 3.1, and τ be a state trajectory. Then τ |= c iff τ |= φl iff

τ |= φp.

By exploiting these equivalences, we can reformulate a pddl3 problem as a plan-

ning problem with a temporally extended goal.

Theorem 3. Let Π3 = ⟨⟨F,A, I,G,Pre,Eff ⟩, C3⟩ be a pddl3 planning problem and

let Πl = ⟨F,A, I,G, φ,Eff ⟩ be a planning problem with a ltlf temporally extended

goal where:

φ =
∧

c∈C3

ϕc ∧ F(G ∧ end)

such that ϕc is the equivalent formulation of c in ltlf according to Table 3.1. Then

π is a solution for Π3 iff π is a solution for Πl.

Proof. Let π be a sequence of actions from A. It is easy to see that π induces the

same state trajectory τ = s0, . . . , sn for both Π3 and Πl, as both problems share the

same action labels and preconditions and effects functions. Then by Theorem 2 we

have that for every c ∈ C3, τ |= c iff τ |= ϕc. Moreover, we also have sn |= G iff

τ |= F(G∧ end) (Camacho et al. [2019]). Therefore, we have that the trace τ induced

by π satisfies every trajectory constraint in C3 and reaches G iff τ |= φ.

Theorem 4. Let Π3 = ⟨⟨F,A, I,G,Pre,Eff ⟩, C3⟩ be a pddl3 planning problem and

let Πp = ⟨F,A, I,G, φ,Eff ⟩ be a planning problem with an ppltl temporally extended

goal where:

φ =
∧

c∈C3

ϕc ∧G

such that ϕc is the equivalent formulation of c in ppltl according to Table 3.1. Then

π is a solution for Π3 iff π is a solution for Πp.

Proof. Let π be a sequence of actions from A that induces the state trajectory τ =

s0, . . . , sn for Π3 and Πl. Theorem 2 implies that for every c ∈ C3, τ |= c iff τ |= ϕc.

Moreover, sn |= G iff τ |= G (Bonassi et al. [2023a]). Therefore, we have that the

trace τ induced by π satisfies every trajectory constraint in C3 and reaches the goal

G iff τ |= φ.
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As shown by Theorems 3 and 4, obtaining a planning problem with a temporally

extended goal from a pddl3 problem is quite straightforward. Instead, it is not clear

how to perform the opposite operation. In particular, pddl3 temporal operators

cannot be nested, and all constraints of a pddl3 planning problem must be satisfied

in conjunction. For these reasons, it is not clear how to represent simple formulas

such as G(a) ∨ G(b) or H(a → Y(b)) in pddl3. However, throughout this thesis, we

will show how the lack of nesting and the restriction to conjunctive properties enable

the design of efficient strategies to handle pddl3 problems.

3.3 Action Trajectory Constraints in PAC

Planning with Action Constraints (pac) [Bonassi et al., 2022a] is a new language

introduced in this Thesis and focuses on a different way of expressing trajectory

constraints. In particular, pac defines a new set of constraints that are interpreted

over sequences of actions rather than states. Therefore, we classify these constraints

as action-trajectory constraints (hereinafter pac constraints). A pac constraint is

defined by combining a pac temporal operator with actions formulae.

3.3.1 Action Formulas

Definition 11. Let A be a set of action labels. An action formula ϕ defined over A

is a propositional formula defined over the set of atoms {a | “a” is an action label

from A}.

The following definition formalizes the semantics of a formula ϕ in NNF.

Definition 12. Let A be a set of action labels. Given a plan π = ⟨a0, a1, . . . an−1⟩,

an action formula ϕ defined over A written in NNF is true at time t in π, i.e. π(t)

satisfies ϕ, iff:

• If ϕ = a then π(t) = a.

• If ϕ = ¬a then π(t) ̸= a.
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• If ϕ = ψ1 ∧ ψ2 with ψ1 and ψ2 action formulae over A, then π(t) satisfies ψ1

and π(t) satisfies ψ2.

• If ϕ = ψ1 ∨ ψ2 with ψ1 and ψ2 action formulae over A, then π(t) satisfies ψ1

or π(t) satisfies ψ2.

In a sequential plan, exactly one action is executed at each time step. That is,

given a plan π = ⟨a0, a1, . . . , an−1⟩ defined over a set of actions labels A, the following

formulas on the action atoms hold for t = 0 . . . n− 1:

π(t) = ai ⇒ π(t) ̸= aj, ∀ai, aj ∈ A, ai ̸= aj

∃ai ∈ A · π(t) = ai

Intuitively, the first property expresses that only an atomic action ai can be

satisfied by a plan π at time t, whereas the second property expresses that at every

time t there exists at least one atomic action ai satisfied by π. Due to these properties

of a sequential plan, it is always possible to identify the set of actions that satisfy

any action formula.

Example 7. the action formula a1 ∨ ¬a2 is satisfied by all action names (atoms)

of a planning problem different from a2. This is because, for every time step of a

plan, the execution of any action except a2 satisfies the formula. Another example is

¬a1 ∧ a2. In this case, a2 is the only action satisfying ¬a1 ∧ a2.

The next theorem formalizes how to compute the set of actions satisfying any

action formula.

Theorem 5. Let ϕ be an action formula in NNF defined over a set A of action

labels. Then we can define a set of positive action literals Lpos(ϕ) such that ∀ a ∈

A · a |= ϕ iff a ∈ Lpos(ϕ).

Proof. We define a function Lpos(·) that takes as input an action formula ϕ defined

over A in NNF and outputs a set of positive action literals. The function Lpos(·) is

recursively defined as follows:
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Lpos(ϕ) =



























a if ϕ = a

A \ {a} if ϕ = ¬a

Lpos(ϕ1) ∪ L
pos(ϕ2) if ϕ = ϕ1 ∨ ϕ2

Lpos(ϕ1) ∩ L
pos(ϕ2) if ϕ = ϕ1 ∧ ϕ2

We now prove that for an action a ∈ A, a |= ϕ iff a ∈ Lpos(ϕ) by structural

induction on the syntax tree of ϕ. Let P (ϕ) be the property that we want to prove,

i.e., P (ϕ) = a |= ϕ iff a ∈ Lpos(ϕ).

Base case: ϕ is a node of the syntax tree that does not have any children. That is,

ϕ is either a positive action literal a′ or a negative action literal ¬a′.

• P (a′): the claim holds because Lpos(a′) = a′ (the transformation Lpos leaves

the formula unaltered).

• P (¬a′): we have to prove P (¬a′) = a |= ¬a′ iff a ∈ Lpos(¬a′)

– (⇒) If a |= ¬a′, then a ̸= a′ by definition. Therefore, a ∈ A \ {a′}, and

the claim holds as Lpos(¬a′) = A \ {a′}.

– (⇐) If a ∈ Lpos(¬a′), then a ∈ A \ {a′}. Therefore, we have that a ̸= a′

and by definition a |= ¬a′.

Induction Step: Based on the induction hypothesis that the claim holds for ψ child

of ϕ, i.e., we assume P (ψ) to prove P (ϕ). ϕ has always two children ϕ1 and ϕ2.

Case ϕ = ϕ1 ∧ ϕ2.

Hypothesis 1: P (ϕ1) = a |= ϕ1 iff a ∈ L
pos(ϕ1)

Hypothesis 2: P (ϕ2) = a |= ϕ2 iff a ∈ L
pos(ϕ2)

Claim: P (ϕ1 ∧ ϕ2) = a |= ϕ1 ∧ ϕ2 iff a ∈ L
pos(ϕ1 ∧ ϕ2)

(⇒) a |= ϕ1 ∧ ϕ2 implies a |= ϕ1 and a |= ϕ2. For P (ϕ1) and P (ϕ2), we have

a ∈ Lpos(ϕ1) and a ∈ L
pos(ϕ2). Therefore a ∈ L

pos(ϕ1)∩L
pos(ϕ2) = Lpos(ϕ1∧ϕ2)

and the claim holds.
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(⇐) a ∈ Lpos(ϕ1 ∧ ϕ2) = Lpos(ϕ1) ∩ L
pos(ϕ2) implies a ∈ Lpos(ϕ1) and a ∈

Lpos(ϕ2). By induction hypothesis P (ϕ1) and P (ϕ2), we have a |= ϕ1 and

a |= ϕ2. Therefore a |= ϕ1 ∧ ϕ2 and the claim holds.

Case ϕ = ϕ1 ∨ ϕ2

Hypothesis 1: P (ϕ1) = a |= ϕ1 iff a ∈ L
pos(ϕ1)

Hypothesis 2: P (ϕ2) = a |= ϕ2 iff a ∈ L
pos(ϕ2)

Claim: P (ϕ1 ∨ ϕ2) = a |= ϕ1 ∨ ϕ2 iff a ∈ L
pos(ϕ1 ∨ ϕ2)

(⇒) a |= ϕ1 ∨ ϕ2 implies a |= ϕ1 or a |= ϕ2. If a |= ϕ1, then a ∈ Lpos(ϕ1)

by induction hypothesis. This implies a ∈ Lpos(ϕ1) ∪ L
pos(ϕ2) = Lpos(ϕ1 ∨ ϕ2)

and the claim holds. Otherwise, if a |= ϕ2, then a ∈ Lpos(ϕ2) by induction

hypothesis. Hence, a ∈ Lpos(ϕ1)∪L
pos(ϕ2) = Lpos(ϕ1∨ϕ2) and the claim holds.

(⇐) a ∈ Lpos(ϕ1 ∨ ϕ2) = Lpos(ϕ1) ∪ L
pos(ϕ2) implies either a ∈ Lpos(ϕ1) or

a ∈ Lpos(ϕ2). In the former, by induction hypothesis P (ϕ1) we have a |= ϕ1

and thus a |= ϕ1∨ϕ2. In the latter, analogously, by induction hypothesis P (ϕ2)

we have a |= ϕ2, a |= ϕ1 ∨ ϕ2, and the claim holds.

In the rest of the thesis, we write a ∈ ϕ to denote a ∈ Lpos(ϕ), which implies that

a satisfies ϕ.

3.3.2 PAC Constraints

In pac, action constraints can be of the following types: always (A), sometime (ST),

at-most-once (AO), sometime-before (SB), sometime-after (SA), always-next

(AX) and pattern (PA). As we can see, pac uses the same qualitative temporal

operators of pddl3 and defines the two new modalities always-next and pattern.

A pac constraint c is syntactically defined as follows:

c := A(ϕ) | ST(ϕ) | AO(ϕ) | SB(ϕ, ψ) | SA(ϕ, ψ) | AX(ϕ, ψ) | PA(ϕ1 . . . ϕk)

where all ϕ/ψ/ϕ1/ . . . /ϕk are action formulas. Semantically:
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• A(ϕ) requires that only actions that satisfy ϕ are in π.

• ST(ϕ) is satisfied if at least one action that satisfies ϕ is executed in π.

• AO(ϕ) requires that an action satisfying ϕ can appear in π only if no action

satisfying ϕ is in π before.

• SB(ϕ, ψ) requires that if an action satisfying ϕ appears in π at a time t, then

an action satisfying ψ is in π at a time before t.

• SA(ϕ, ψ) requires that if an action satisfying ϕ is in π at a time t, then an

action that satisfies ψ is in π at a time after t.

• AX(ϕ, ψ) requires that if an action satisfying ϕ is in π, then it is immediately

followed by an action satisfying ψ.

• PA(ϕ1, . . . , ϕk) requires that, for i = 1 . . . k − 1, there exists an action in π

satisfying ϕi followed at some later time by an action satisfying ϕi+1.

The formal semantics of each pac constraint is provided in the following defini-

tion.

Definition 13. Let A be a set of action labels, and let π = ⟨a0, a1, . . . , an−1⟩ be a

plan where for every t ∈ 0, . . . , n − 1 · π(t) ∈ A. An action constraint c is satisfied

by π, written as π |= c, if the following conditions hold:

π |= A(ϕ) iff ∀t : 0 ≤ t ≤ n− 1 · π(t) ∈ ϕ

π |= ST(ϕ) iff ∃t : 0 ≤ t ≤ n− 1 · π(t) ∈ ϕ

π |= AO(ϕ) iff ∀t1 : 0 ≤ t1 ≤ n− 1 · if π(t1) ∈ ϕ then ∀t2 : t1 < t2 ≤ n− 1 · π(t2) ̸∈ ϕ

π |= SA(ϕ, ψ) iff ∀t1 : 0 ≤ t1 ≤ n− 1 · if π(t1) ∈ ϕ then ∃t2 : t1 ≤ t2 ≤ n− 1 · π(t2) ∈ ψ

π |= SB(ϕ) iff ∀t1 : 0 ≤ t1 ≤ n− 1 · if π(t1) ∈ ϕ then ∃t2 : 0 ≤ t2 < t1 · π(t2) ∈ ψ

π |= AX(ϕ, ψ) iff ∀t : 0 ≤ t < n− 1 · if π(t) ∈ ϕ π(t+ 1) ∈ ψ and π(n− 1) ̸∈ ϕ

π |= PA(ϕ1 . . . ϕk) iff ∃ a sequence of actions ⟨a1, . . . , ak⟩ from

π that are ordered as in π, such that ∀i ∈ {1, . . . , k} ai ∈ ϕi.
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We define a pac problem as a classical planning problem enriched with pac

constraints.

Definition 14. A pac planning problem is a tuple ⟨Π, CA⟩ where Π is a classical

planning problem and CA is a set of pac constraints.

The solution plans of ⟨Π, CA⟩ are the solution plans of Π that satisfy all constraints

in CA.

Definition 15. A plan π is a solution for ⟨Π, CA⟩ iff it is a solution for Π and

∀c ∈ CA · π |= c.

3.3.3 First-Order Formulation of PAC Constraints

Similarly to pddl3, we allow pac constraints to be specified using a first-order

representation. This feature is extremely important in the pac language, as most

actions involve many variables.

Example 8. In the well-known Zenotravel domain [Penberthy and Weld, 1994, Long

and Fox, 2003], we can specify “Plane1 should fly to city1 at least one time” with:

sometime(∃ ?from, ?fl1, ?fl2 · Fly(plane1, ?from, city1?fl1, ?fl2)).

In this example, ?fl1 and ?fl2 represent the level of fuel of the plane. Since we are

not interested in constraining these values, we use the ∃ quantifier to express that

any of these values are acceptable.

Like for pddl3, we restrict the language to conjunctions of constraints, and we

allow universal quantification of temporal operators (see Example 9).

Example 9. With the constraint:

∀ bus · sometime(∃ city ·Drive(bus, city, citya) ∨Drive(bus, city, cityb))

we are declaring an equivalent set of (instantiated) action constraints requiring all

buses to drive to city-a or city-b at least once.
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3.3.4 Relation Between PAC Constraints and Temporal Spec-

ifications Over the State Trajectory

Given the close relation between action constraints and temporal specifications over

the state trajectory, such as pddl3 constraints and ltlf temporally extended goals,

one could wonder if there are some differences in terms of expressivity. That is, given

a constraint c in pac, is it possible to capture c using pddl3 constraints or with a

temporally extended goal? Example 4.1 shows that this is not the case.

Example 10. Let Π be a planning problem where the set of actions A is {a1, a2, a3}

and where:

• Pre(a1) = p0, Eff (a1) = {e0}

• Pre(a2) = p1, Eff (a2) = {e0}

• Pre(a3) = e0, Eff (a3) = {goal}.

Suppose that the initial state is I = {p0, p1} and the goal is G = goal. It is easy to

see that both plans:

π1 = ⟨a1, a3⟩

π2 = ⟨a2, a3⟩

solve the problem and induce the state trajectory

τ = ⟨{p0, p1}, {p0, p1, e0}, {p0, p1, e0, goal}⟩.

Consider now the pac constraint ST(a2). While π2 satisfies such action constraint,

π1 does not. However, it is not possible to distinguish π1 from π2 simply by looking

at the (same) sequence of states induced by π1 and π2: no state trajectory constraint

rules π1 out. Similarly, no temporal goal in either ltlf or ppltl can capture the

pac constraint.

Therefore, we must conclude that pac is incompatible with both pddl3 con-

straints and temporally extended goals. However, many pac constraints can be

formulated as temporally extended goals.
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Example 11. The constraint sometime(Pick-Up(a)) can be captured by the ltlf

formula

F(Ontable(a) ∧ X(¬Ontable(a))).

Clearly, the only action that can achieve (Ontable(a)∧X(¬Ontable(a))) is Pick-Up(a).

Hence, the F operator ensures that the action is executed at least once.

Determining a class of formulas where a systematic translation between pac and

ltlf (and ppltl) is possible is an open research direction. Lastly, it is worth ob-

serving that pac constraints could be seen as a subset of ltlf or ppltl formulas

interpreted over sequences of action propositions (see, e.g., De Giacomo and Vardi

[2015] and Aminof et al. [2019]).
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Chapter 4

State of the art

This chapter presents state-of-the-art techniques for solving automated planning

problems with trajectory constraints and temporally extended goals. In the current

state-of-the-art, there are two approaches for handling these temporal specifications,

which can be categorized as native approaches and compilation approaches.

By native approaches, we mean planning systems that handle trajectory con-

straints and temporally extended goals directly into the heuristic search engine us-

ing specific algorithms and dedicated data structures. In contrast, compilation ap-

proaches take as input a planning problem with temporal constraints and goals and

give as output a new planning problem written in a target formalism that does not

contain them. The resulting problem is then solved by existing planners that sup-

port the target formalism. For example, the input formalism of a compilation system

could be a planning problem with an ltlf goal, and the target formalism could be

classical planning. In general, compilation techniques change the structure of the in-

put problem by adding new atoms, goals, actions, preconditions, and effects. There

are several advantages to adopting compilation:

• The best planners that do not support the trajectory constraints and tempo-

rally extended goals can be used off-the-shelf.

• Technological advancements in classical planning, such as new search algo-

rithms and heuristics, can be applied directly.
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• The planning system is modular, with a clear separation between the mod-

ule responsible for managing new operators and the module responsible for

searching for a plan. Moreover, this separation makes the overall system more

robust.

• Parallelization becomes possible, allowing multiple planners to run in parallel.

The main drawback of compilation is that the input problem increases in size,

which negatively impacts the time a planner spends finding solutions. Additionally,

certain types of search strategies cannot be introduced at the compilation level. On

the contrary, native methods offer the possibility of designing new search algorithms

and heuristics that are specific to trajectory constraints and temporal goals.

Many state-of-the-art compilation approaches exploit automatons to deal with

temporally extended goals and trajectory constraints. Therefore, we introduce some

background notions on Nondeterministic Finite-State Automatons. Then, we review

two state-of-the-art compilation techniques to deal with ltlf temporally extended

goals, and we briefly introduce some native planning systems supporting pddl3 state

trajectory constraints.

4.1 Automata Representation of Temporal Logic

Formulas

One of the most common approaches to systematically deal with temporal goals in

automated planning is to use automaton representation. An automaton is a structure

made up of nodes (or automaton states) connected by transitions. Each automaton

has an initial state and a set of final states. There are different classes of automatons,

and we focus on those that can represent finite state properties.

Definition 16 (Non-Deterministic Finite-State Automata [Baier and Katoen, 2008]).

A nondeterministic finite-state automata (nfa) is a tuple A = ⟨Σ, Q, qI , δ, Qf⟩,

where:

• Σ is a set of input symbols called “alphabet”.
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Figure 4.1: An example of a nfa.

• Q is a set of labels representing the automaton states.

• δ : Q × Σ → 2Q is a transition function mapping a state-symbol pair ⟨q, σ⟩ to

a set of successor states δ(q, σ) ⊆ Q.

• qI is the initial automaton state.

• Qf ⊆ Q is a set of accepting automaton states.

Example 12. An example of nfa is depicted in Figure 4.1. Here, Q = {q0, q1, q2},

the alphabet is Σ = {0, 1}, the initial state is q0, and the transition function is defined

as follows:

δ(q0, 1) = {q1, q2}

δ(q0, 0) = {q0}

δ(q1, 0) = {q1}

δ(q1, 1) = {q2}

δ(q2, 0) = {q2}

δ(q2, 1) = {q2}

The intuitive behavior of an nfa is as follows. The automaton starts in the state

qI , and then is fed an input word τ = ⟨σ0, σ1, . . . , σn−1⟩ ∈ Σ∗1. The automaton

reads this word symbol by symbol and updates the current state as defined by the

1Remark that (·)∗ is the standard notation for “zero or more repetitions”.
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transition function δ. That is, if the current input symbol σ is read in the state q, the

automaton chooses the successor state from δ(q, σ). If δ(q, σ) contains two or more

states, then the decision for the next state is made at random. When the complete

input word is read, the automaton halts. It accepts whenever the current state is

accepting and rejects otherwise.

Definition 17. Let A = ⟨Σ, Q, qI , δ, Qf⟩ be a non-deterministic automaton and let

τ = ⟨σ0, σ1, . . . , σn−1⟩ ∈ Σ∗ be a sequence of symbols. A run for A is a sequence of

states q0, q1, . . . qn such that:

• q0 = qI

• qi+1 = δ(qi, σi) for i = 0, 1 . . . n− 1.

A run accepts τ if qn ∈ Qf , otherwise the run rejects τ . A fine trace τ is called

accepted by A if there exists a run that accepts τ . Moreover, the accepting language

of A, denoted by L(A), is the (infinite) set of words accepted by A, that is,

L(A) = {τ ∈ Σ∗ | there exists an accepting run for τ in A}

If the transition function of an automaton is deterministic, that is, for every

q ∈ Q and for every σ ∈ Σ we have |δ(q, σ)| = 1, then we say that the automaton is

a Deterministic Finite-State Automaton (dfa).

Automatons are widely used to capture the possible evolutions of a ltlf formula.

That is, given a ltlf formula φ, it is always possible to build an nfa Aφ that accepts

the same language of φ, that is, L(Aφ) = L(φ) [De Giacomo and Vardi, 2013].

Example 13. An example of an automaton Aφ representing the ltlf formula φ =

G(a → F(b)) is depicted in Figure 4.2. Here, Q = {q0, q1}, the alphabet is Σ = 2P

with P = {a, b}, the initial state is q0, the final states are Qf = {q0}, and the

transition function is defined as follows:

δ(q0, b ∧ ¬a) = {q0}

δ(q0, a ∧ ¬b) = {q1}

δ(q1,¬b) = {q1}

δ(q1, b) = {q0}.
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Figure 4.2: An example of a nfa (in this case, a dfa) representing the ltlf formula
G(a→ F(b)).

Notice that, for the sake of succinctness, we use formulas in the transitions to capture

the alphabet, which is the set of interpretations of the propositional symbols. Let τ1 =

⟨{a,¬b}, {¬a,¬b}, {a, b}⟩ and τ2 = ⟨{a,¬b}, {¬a,¬b}, {¬a,¬b}⟩ be two sequences of

interpretations of the symbols a and b. We have that Aφ accepts τ1 with the run

q0, q1, q0 and rejects τ2 with the run q0, q1, q1. Consequently, τ1 |= φ and τ2 ̸|= φ.

Automatons can also be used to capture all pddl3 constraints, as they can be

translated into an ltlf formula. We conclude by remarking that an nfa representing

an ltlf formula has a worst-case exponential number of states [Baier and McIlraith,

2006a,b, De Giacomo and Vardi, 2013].

4.2 An Exponential NFA-Based Compilation for

LTLf Goals

This section focuses on a nfa-based compilation technique for handling ltlf tem-

poral goals. In the literature, two variants of this encoding have been presented,

one supporting propositional ltlf goals [Baier and McIlraith, 2006b], and the other

for handling first-order ltlf goals [Baier and McIlraith, 2006a]. In this section, for

the sake of clarity, we describe the simpler propositional compilation proposed by

Baier and McIlraith [2006b], while in our experiments we adopt the more advanced

compilation [Baier and McIlraith, 2006a].

The compilation, which we call ltl-e, takes a problem Π = ⟨F,A, I, φ,Pre,Eff ⟩

where φ is a temporally extended goal in ltlf and produces a new classical planning

problem Π′ = ⟨F ′, A, I ′, G′,Eff ′,Pre⟩.
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The ltlf goal φ is translated into an nfa Aφ = ⟨Σ, Q, qI , δ, Qf⟩, which is then

merged into the planning problem Π. In the planning domain, each state of the

automaton is represented by a fluent. More formally, for each state q of the automa-

ton, the compilation adds a new fluent Eq. Therefore, F ′ = F ∪ {Eq | q ∈ Q}. The

translation is such that if a sequence of actions π = ⟨a0, a1 . . . , an−1⟩ generates the

state trajectory τ = ⟨s0, s1, . . . , sn⟩ then Eq is true in sn if and only if there is a run

of Aφ on τ that ends in the state q. This is done by updating the effect function

with the dynamics of the nfa.

Let Pred(q) be the set of states that have a transition to q in Aφ, and let λp,q be

the condition that makes p transition to q, that is, λp,q is the formula ϕ if q ∈ δ(p, ϕ),

⊥ otherwise. Then, for every action a ∈ A and for every atom Eq, the compilation

creates a new set of effects C defined as follows:

C = {θ+a,Eq ▷ Eq | a ∈ A and q ∈ Q} ∪ {θ−a,Eq ▷ ¬Eq | a ∈ A and q ∈ Q}.

For an action a and a state q, the conditional effects θ+a,Eq ▷ Eq and θ−a,Eq ▷ ¬Eq are

meant to keep q and Eq in sync; that is, whenever the automaton transitions to q,

then Eq must be true, and when the automaton transition to a state different to q

then Eq must be false. Intuitively, θ+a,Eq represents the condition under which the

execution of a makes the automaton transition to q. This happens whenever (I) the

current state is Ep, (II) p is a predecessor of q (with p ̸= q, otherwise we would

include an auto-transition), and (III) the action a makes λp,q true. Therefore,

θ+a,Eq =
∨

p∈Pred(q)\{q}

Ep ∧R(λp,q, a).

Note that R(λp,q, a) is the regression (see Definition 5) of λp,q through the effects

of a, which is a formula that captures when the execution of a makes λp,q true.

On the contrary, θ−a,Eq encodes when a makes the automaton transition to a state

different to q. In this case, the atom Eq must be deleted from the next state. This

happens whenever the automaton’s next transition is not q. Hence, when θ+a,Eq is
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false, and when there is no auto-transition to q. Therefore, θ−a,Eq is

θ−a,Eq = ¬θ
+
a,Eq
∧ ¬R(λq,q, a).

All conditional effects in C are added to the effects of every action, that is,

Eff ′(a) = Eff (a) ∪ C for every a ∈ A. The initial state must give an account of

which atoms Eq are initially true. Therefore, the new initial state is I ′ = {Eq | q ∈

δ(qI , ϕ) and I |= ϕ}. Lastly, the automaton Aφ accepts a state trajectory τ if and

only if τ satisfies φ. Therefore, the new goal G′ is defined according to the acceptance

condition of the NFA, that is, G′ = {Eq | q ∈ Qf}.

We remark that, since the number of states of Aφ is worst-case exponential, the

resulting planning problem Π′ could be exponentially larger than Π.

4.3 A Polynomial Compilation for LTLf goals

In this section, we show a polynomial compilation approach for translating a planning

problem with a ltlf temporally extended goal into a classical planning problem. This

compilation, which has been presented by Torres and Baier [2015], heavily relies on

Alternating Automatons, a symbolic variation of Non-Deterministic Automatons.

For the sake of clarity, in this section, we reinterpret the automata-theoretic view of

Torres and Baier [2015] under a perspective that only relies on the semantics of ltlf

formulas.

4.3.1 Progression of Linear Temporal Logic Formulas on Fi-

nite Traces

The key theoretical technique that is employed in this compilation schema is the

progression (or fixpoint characterization) of a ltlf formula [Gabbay et al., 1980,

Emerson, 1990] in Negation Normal Form2. Intuitively, progression is a transfor-

2Notice that every ltlf formula can be put in NNF by pushing the negation inside temporal
operators and by using the “Release” and “Weak next” operators (see section 3.1). For example,
the formula ¬(aUX(b)) can be transformed in NNF as follows: ¬(aUX(b)) ≡ (¬aR¬X(b)) ≡
(¬aRWX(¬b)).
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mation that splits a ltlf formula into conditions that must hold in the present and

conditions that must hold in the future. Formally, a ltlf formula is progressed using

the xnf(·) transformation, which is recursively defined as follows:

• xnf(l) = l;

• xnf(end) = end;

• xnf(Xϕ) = Xϕ;

• xnf(WXϕ) = Xϕ ∨ end;

• xnf(ϕ1 Uϕ2) = xnf(ϕ2) ∨ (xnf(ϕ1) ∧ X(ϕ1 Uϕ2));

• xnf(ϕ1 ∧ ϕ2) = xnf(ϕ1) ∧ xnf(ϕ2);

• xnf(ϕ1 ∨ ϕ2) = xnf(ϕ1) ∨ xnf(ϕ2);

• xnf(ϕ1 Rϕ2) = xnf(ϕ2) ∧ (end ∨ xnf(ϕ1) ∨ X(ϕ1 Rϕ2)).

For convenience and clarity, we also introduce the xnf(·) transformation for the

two derived operators “F” and “G”:

• xnf(F(ϕ)) = xnf(ϕ) ∨ X(F(ϕ));

• xnf(G(ϕ)) = xnf(ϕ) ∧ (end ∨ X(G(ϕ)).

A formula resulting from the application of xnf(·) is in Next Normal Form (xnf).

A formula xnf(φ) in xnf has a particular structure: all proper temporal subformulas

(that is, subformulas whose main construct is a temporal operator) of xnf(φ) appear

only in the scope of the X operator. This means that given a state trajectory τ =

⟨s0, . . . sn⟩ to determine the truth of a ltlf formula φ at instant i, that is, τ, i |= φ,

we just need the truth of the atomic proposition in state si plus the truth of some

key formulas ϕ, with ϕ ∈ sub(φ), in the trace ⟨si+1, . . . sn⟩.

Example 14. Consider the formula φ = F(a). The xnf of φ is:

xnf(F(a)) = xnf(a) ∨ XF(a) = a ∨ XF(a).
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Given a state trajectory τ = ⟨si, si+1, . . . sn⟩, we have τ, i |= a ∨ XF(a) iff si |= a and

τ, i + 1 |= F(a). As we can see, to determine the truth of F(a), we only need the

current state si and the extension of the trace τ, i+ 1.

Observe that formulas of the form X(ϕ) appearing in xnf(φ) are such that ϕ ∈

sub(φ) ∪ {end}. Moreover, it is easy to see that the xnf transformation can be

performed in linear time and that the resulting formula is equivalent to the original.

This well-known result has been recently recalled in, e.g., Li et al. [2019].

Theorem 6. Every ltlf formula φ can be converted to its xnf form xnf(φ) in

linear-time in the size of the formula (i.e., |sub(φ)|). Moreover, xnf(φ) ≡ φ.

The xnf provides a systematic way of reasoning on what we need to do to satisfy

a ltlf formula while planning. To evaluate a ltlf formula we need the current

evaluation of the atomic proposition and the truth of the temporal subformulas in

the next step. However, while the planning process goes on and the state trajectory

is generated, we only have the information about the current state, while the future

trajectory has yet to be computed. Furthermore, directly using the xnf(·) transfor-

mation requires reasoning on arbitrary complex temporal formulas; note that xnf(φ)

for a ltlf formula φ is linear only in the size of its subformulas |sub(φ)| (see The-

orem 6). Hence, during planning, we would need to use complex data structures to

compactly represent xnf(φ), and this makes the design of a compilation approach

prohibitive.

Instead, following the recursive definition of xnf(·), we introduce a new trans-

formation δ(·) that only uses propositional atoms to compactly represent the xnf

of a ltlf formula. In particular, given a ltlf formula φ, we introduce the set of

atomic propositions Qφ = {“ϕ” | ϕ ∈ sub(ϕ) ∪ {end}} to capture the truth of the

subformulas of φ. Then, given a planning state s, we recursively define the function

δ(“φ”, s) as follows:

• δ(“l”, s) = s |= l (for l literal);

• δ(“Xϕ”, s) = “ϕ”

• δ(“WXϕ”, s) = “ϕ” ∨ “end”
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• δ(“end”, s) = ⊥

• δ(“ϕ1 ∧ ϕ2”, s) = δ(“ϕ1”, s) ∧ δ(“ϕ2”, s);

• δ(“ϕ1 ∨ ϕ2”, s) = δ(“ϕ1”, s) ∨ δ(“ϕ2”, s);

• δ(“ϕ1 Uϕ2”, s) = δ(“ϕ2”, s) ∨ (δ(“ϕ1”, s) ∧ “ϕ1 Uϕ2”);

• δ(“ϕ1 Rϕ2”, s) = δ(“ϕ2”, s) ∧ (“end” ∨ δ(“ϕ1”, s) ∨ “ϕ1 Rϕ2”).

• δ(“Fϕ”, s) = δ(“ϕ”, s) ∨ “Fϕ”;

• δ(“Gϕ”, s) = δ(“ϕ”, s) ∧ (“end” ∨ “Gϕ”).

It is easy to see that δ(“φ”, s)3 is (I) linear in Qφ and (II) captures the progression

of a formula ϕ after a state s. In particular, given a proposition “ϕ” and a state s,

δ(“ϕ”, s) is a formula representing:

• The literal conditions that must hold in s to satisfy ϕ.

• The temporal subformulas that must hold after s to satisfy ϕ.

• Whether or not s must be the last state to satisfy ϕ.

Example 15. Consider the formula φ = F(a) ∨ (bU c). Given a state s, we have:

δ(“φ”, s) =

(δ(“a”, s) ∨ “F(a)”) ∨ (δ(“c”, s) ∨ (δ(“b”, s) ∧ “bU c”)) =

(s |= a ∨ “F(a)”) ∨ (s |= c ∨ (s |= b ∧ “bU c”))

Depending on the value of the atomic propositions in s, we can determine different

ways we can satisfy φ. For example:

• Suppose s ̸|= a, s |= b and s ̸|= c. In this case, δ(“φ”, s) can be simplified to

“F(a)”∨“bU c”, meaning that F(a)∨ (bU c) holds after s iff either F(a) or bU c

holds after state s.

3Observe that δ(·) is also the transition function of the Alternating Automaton in De Giacomo
and Vardi [2013] and Torres and Baier [2015].
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• Suppose s |= a. In this case, δ(“φ”, s) simplifies to ⊤, meaning that the state

trajectory τ = ⟨s⟩ satisfies φ.

• Suppose s ̸|= a, s ̸|= b and s ̸|= c. In this case, δ(“φ”, s) simplifies to ⊥,

meaning that after s, φ does not hold.

As we can see from Example 15, given a state s and a formula φ, we can effec-

tively use δ(“φ”, s) to determine the temporal subformulas that must hold in the

future to satisfy φ depending on the truth of the atomic proposition in s. How-

ever, δ(“φ”, s) is an arbitrary complex propositional formula, and to keep track

of the truth of δ(“φ”, s) we would need to introduce an exponential number of

variables. For example, monitoring the truth of the ltlf formula G(l1) ∨ G(l2) ∨

G(l3) using δ(“G(l1) ∨ G(l2) ∨ G(l3)”, s) would require introducing 23 fluents, e.g.,

holds“G(l1)”, holds“G(l1)”∨“G(l2)”, holds“G(l1)”∨“G(l3)”, etc. Hence, we cannot keep track

of the truth of all possible models δ(“φ”, s) at the same time. Instead, it is sufficient

to monitor one of the models of δ(“φ”, s) at a time. That is, we determine a set

Qm ⊆ Qφ such that Qm |= δ(“φ”, s). If we manage to satisfy all temporal subformu-

las ϕ such that “ϕ” ∈ Qm, then we will satisfy φ; otherwise, when it is not possible

to satisfy all formulas in Qm, we will consider a different model Q′
m of δ(“φ”, s).

4.3.2 The LTL-P Encoding

Intuitively, the compilation schema introduced by Torres and Baier [2015], which

throughout this thesis is called ltl-p, works as follows. ltl-p uses the set of propo-

sitional variables Qφ = {“ϕ” | ϕ ∈ sub(φ) ∪ {end}} to record all subformulas ϕ of

φ to satisfy at the current step. Initially, the variable “φ” records that φ must be

satisfied in the initial state.

After a new state s is generated, for every “ϕ” atom currently true, ltl-p deter-

mines a set Qm ⊆ Qφ of “ϕ′” atoms to be satisfied at the next step, and such that

Qm |= δ(“ϕ”, s). If Qm is empty, then we achieved the ltlf goal φ. Otherwise, this

process is repeated until we arrive at a state where no formula has to be satisfied at

the next step.
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ltl-p realizes this schema by alternating two phases: the world phase and the

progression phase. During the world phase, the planner can choose to execute only

the actions of the original problem. In the progression phase, the planner is forced to

execute a sequence of progression actions to compute one of the models of δ(“ϕ”, s).

Therefore, a plan for the compiled problem will have the following structure:

⟨p−1, a0, p0, a1, p1, . . . , an, pn⟩

where pi indicates a sequence of progression actions. In particular, let si be a

state such that “ϕ” ∈ s, and let s′i be a state resulting from the execution of the

progression actions pi in si. Then, s
′
i |= δ(“ϕ”, si).

We now show how the encoding works in detail. Given a planning problem

Π = ⟨F,A, I, φ,Pre,Eff ⟩, the compiled problem is Π = ⟨F ′, A′, I ′, G′,Pre ′,Eff ′⟩

where each component of Π′ is detailed in the next paragraphs.

New fluents. The new set of fluents F ′ contains the original fluents in F plus:

• Qφ = {“ϕ” | ϕ ∈ sub(φ) ∪ {end}}.

• Fδ = {evalϕ | ϕ ∈ sub(φ)}. Intuitively, a fluent evalϕ signals that we need to

compute δ(“ϕ”, s) in the progression phase.

• The fluent exec, used to block the execution when “end” must be satisfied in

the current step (that is, execution must end).

• The fluents prog and world, used to represent the world and progression phase.

• The fluent setup, used in the setup of the progression phase.

Formally, F ′ = F ∪Qφ ∪ Fδ ∪ {“end”, prog, exec, world, setup}

World phase. During the world phase, only one of the actions a ∈ A of the original

problem can be executed. The preconditions and effects of these actions are changed
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to allow the execution only in the world phase and to switch to the progression phase

afterward. Formally, for every a ∈ A:

Pre ′(a) = Pre(a) ∧ exec ∧ world

Eff ′(a) = Eff (a) ∪ {setup,¬world}

Progression phase. At the start of the progression phase, we initialize the fluents

that represent the formulas that have to be progressed. For example, consider a

newly induced state si where the fluent “(ϕ1 Uϕ2)” holds. In this case, we had

previously committed to satisfying ϕ1 Uϕ2, and we start the progression phase with

the atom evalϕ1 Uϕ2 . This operation is performed by the new action setup-act, which

is defined as follows:

Pre ′(setup-act) = setup ∧ exec

Eff ′(setup-act) = {“ϕ” ▷ evalϕ, “ϕ” ▷ ¬“ϕ” | ϕ ∈ sub(φ) ∪ {end}}∪

{prog,¬setup}

Notice that the setup-act action also deletes all current “ϕ” fluents. This is

because, after the progression phase, a new set of these fluents will replace the old

one. We now get to the core of the progression phase: the evaluation actions, which

are defined in Table 4.1.

As we can see, there is an action evaluatei(ϕ) for every disjunct of δ(“ϕ”, s), and

the structure of these actions mimics the computation of δ(·). Each evaluatei(ϕ)

action has as preconditions:

• prog and exec to ensure this action is executed only in the progression phase

and when the execution is not blocked.

• evalϕ to ensure that this action is executed only when we need to compute

δ(“ϕ”, s).

Moreover, actions of the form evaluate(l) have l as a precondition; indeed, since

δ(“l”, s) = s |= l, the literal l must be true in the current state.
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Action Preconditions Effects
evaluate1(l) prog ∧ exec ∧ evall ∧ l {¬evall}
evaluate1(end) prog ∧ exec ∧ evalend {¬evalend,¬exec}
evaluate1(ϕ1 ∧ ϕ2) prog ∧ exec ∧ evalϕ1∧ϕ2 {evalϕ1 , evalϕ2 ,¬evalϕ1∧ϕ2}
evaluate1(Xϕ) prog ∧ exec ∧ evalXϕ {“ϕ”,¬evalXϕ}
evaluate1(WXϕ) prog ∧ exec ∧ evalWXϕ {“ϕ”,¬evalWXϕ}
evaluate2(WXϕ) prog ∧ exec ∧ evalWXϕ {“end”,¬evalWXϕ}
evaluate1(ϕ1 ∨ ϕ2) prog ∧ exec ∧ evalϕ1∨ϕ2 {evalϕ1 ,¬evalϕ1∨ϕ2}
evaluate2(ϕ1 ∨ ϕ2) prog ∧ exec ∧ evalϕ1∨ϕ2 {evalϕ2 ,¬evalϕ1∨ϕ2}
evaluate1(ϕ1 Uϕ2) prog ∧ exec ∧ evalϕ1 Uϕ2 {evalϕ2 ,¬evalϕ1 Uϕ2}
evaluate2(ϕ1 Uϕ2) prog ∧ exec ∧ evalϕ1 Uϕ2 {evalϕ1 , “ϕ1 Uϕ2”,¬evalϕ1 Uϕ2}
evaluate1(ϕ1 Rϕ2) prog ∧ exec ∧ evalϕ1 Rϕ2 {evalϕ2 , “end”,¬evalϕ1 Rϕ2}
evaluate2(ϕ1 Rϕ2) prog ∧ exec ∧ evalϕ1 Rϕ2 {evalϕ2 , evalϕ1 ,¬evalϕ1 Rϕ2}
evaluate3(ϕ1 Rϕ2) prog ∧ exec ∧ evalϕ1 Rϕ2 {evalϕ2 , “ϕ1 Rϕ2”,¬evalϕ1 Rϕ2}

Table 4.1: Definition of the evaluate actions. Operators Fϕ and Gϕ are omitted, and
assume to be rewritten as Fϕ = ⊤Uϕ and Gϕ = ⊥Rϕ.

The effects of evaluate actions make true atoms of the form “ϕ” to signal that

ϕ will be achieved in the next step, and atoms of the form evalψ to proceed with

the computation of δ(“ψ”, s). The progression phase ends when all formulas are

progressed, that is, there are no fluents of the form evalϕ. It is easy to see that,

let evalψ be an atom true at the start of the progression phase, at the end of the

progression phases we will have a set Qψ ⊆ Qφ of atoms such that Qψ |= δ(“ψ”, s).

Notice that the progression phase may have many dead ends. This happens when

some literal implied by some δ(“ϕ”, s) is not satisfied. For example, δ(“G(b)”, s) re-

quires s |= b, and this implies that the action evaluate(b) with b as a precondition

must be executed in the progression phase. In addition, the progression phase be-

comes a dead-end when evaluate1(end) has to be executed; this action has ¬exec

as an effect, blocking the execution of all other actions. Indeed, δ(“end”, s) = ⊥

indicates that we cannot satisfy end after another state s. We remark that, at each

progression phase, the planner can choose between different evaluatei(ϕ) actions to

obtain different models of δ(“ϕ”, s). Therefore, the choices to be made in future

progression phases are influenced by the evaluatei(ψ) actions selected in the present.
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When a dead end is encountered, the planner will backtrack to choose different

evaluatei(ψ) actions in a previous progression phase.

At the end of a progression phase, the only action that can be executed is the

world action, which reestablishes the world phase.

• Pre ′(world) = prog ∧ exec ∧
∧

ϕ∈sub(φ)∪{end}

¬evalϕ

• Eff (world) = {world,¬prog}

The new set of actions A′ is A∪{setup-act, world}∪{evaluatei(ϕ) | ϕ ∈ sub(φ)∪

{end}}.

New initial state. Initially, we need to determine which subgoals we want to

achieve given the truth of the fluents in the initial state. Therefore, initially, we

need to perform a progression phase with the starting formula “φ”. Hence, I ′ =

I ∪ {“φ”, setup, exec}.

New goal. Lastly, the goal is to reach a state in which all fluents of the form

“ϕ” are false, except for “end”, which may be true in the last state. Therefore,

G′ = {world, exec} ∧
∧

ϕ∈sub(φ)

¬“ϕ”.

Discussion. It is easy to see that this encoding is linear in the size of the ltlf

goal φ. However, this optimality regarding the size of the resulting problem comes

at the cost of adding many actions to the solutions. In particular, following the

complexity taxonomy of Nebel [2000], this encoding preserves plan size polynomially.

Without going into much detail, this means that the size of the resulting plans grows

by a polynomial factor; this is because, in this case, we have to interleave every

original action with a sequence p of evaluatei(ϕ) actions where |p| is linear in |sub(φ)|.

Whether or not it would be possible to improve the encoding by Torres and Baier

[2015] (e.g., preserving plan size only linearly) is an interesting future direction.
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4.4 Approaches for PDDL3 State Trajectory Con-

straints

In this section, we briefly review the state-of-the-art approaches that can handle

pddl3 state trajectory constraints.

A baseline approach is to translate the pddl3 constraints into ltlf formulas

and then adopt the nfa-based compilation described in Section 4.2. This is the idea

adopted by the planner mips [Edelkamp et al., 2006a,b]. This planner reformulates

every pddl3 constraint c as a nfa Ac, and then encodes the synchronized simulation

of the automata by using atoms of the form At(q,Ac) to indicate that the current

state of the automaton Ac is q. For detecting accepting states of an automaton

Ac, mips utilizes atoms of the form Accepting(Ac). The initial state includes the

start state of the automaton and an additional atom if such a state is accepting.

For all automatons, the goal specification includes automaton acceptance. Lastly,

mips specifies the allowed automaton transitions as planning actions by declaring a

ground action for each automaton transition. These actions are executed during a

synchronization phase to keep the state of each automaton updated. As a solving

engine, mips is tightly integrated with the FF planner [Hoffmann and Nebel, 2001]

to efficiently solve problems resulting from the encoding.

optic [Benton et al., 2012] is a native pddl3 planner that exploits the automaton

representation of pddl3 constraints directly in the search engine and in the relaxed

planning graph heuristic of the planner. In particular, pddl3 constraints are embed-

ded within the planning search by augmenting the states with the current position

of the corresponding automaton. Each time an action is applied during the search,

the positions of the automaton are updated to reflect the state reached directly.

Lastly, the native planner sgplan Hsu et al. [2007] is based on a decomposition-

based approach and handles trajectory constraints using the FF planning system as

a sub-solver.
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Chapter 5

Handling PDDL3 Constraints via

Compilation

This chapter focuses on how to handle pddl3 constraints. The approach we pro-

pose works via compilation, that is, we translate a pddl3 planning problem into a

classical planning problem that can be handled by any classical planner supporting

conditional effects and disjunctive conditions. Our compilation substantially revisits

the automata-less approach proposed by Percassi and Gerevini [2019] for soft tra-

jectory constraints through the lens of hard trajectory constraints. The proposed

compilation schema characterizes the state trajectory constraints into two classes.

The former class encompasses constraints for which it is always possible to prune

any plan prefix that violates them; these are safety conditions that every plan must

satisfy. The latter class encompasses constraints that induce intermediate goals,

landmarks [Richter and Westphal, 2010] that every plan needs to traverse. This

characterization leads to the devising of a simple compilation that, with a minimal

number of additional atoms, exploits the notion of regression to efficiently prune

plan prefixes that do not comply with the first class of constraints, and ensures that

all intermediate landmarks are reached. We formally prove the correctness of this

technique and show that the novel compilation substantially extends the reach of

planning over the considered class of planning problems.
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5.1 TCORE: Trajectory constraints COmpilation

via REgression

This section describes the compilation schema, called tcore (Trajectory constraints

COmpilation via REgression). tcoremakes extensive use of the operator R (Def. 5)

and of a set of monitoring atoms. These are used to extend the action preconditions

and effects to:

1. Block invalid extensions of the plan prefix generated during planning.

2. Keep track of the truth of the relevant formulae (w.r.t. pddl3 constraints) in

the states generated by the plan prefix.

Our technique uses regression to identify the actual influence an action has on

the pddl3 constraint of interest. Monitoring atoms serve the purpose of collecting

relevant facts on the plan state trajectory and asserting their truth/falsity. Our

approach uses two types of monitoring atoms:

• holdc atoms to reflect whether a constraint c has been satisfied

• seenψ atoms to capture whether some formula ψ has ever held in some state

generated by the plan prefix.

We show how the extended action preconditions and effects are constructed by

distinguishing the trajectory constraints into two classes: safety trajectory constraints

(STCs) and liveness trajectory constraints (LTCs). This categorization is inspired

by the well-established classes of safety and liveness temporal properties used in

model checking [Lamport, 1977]. Intuitively, STCs can be checked along any plan

prefix and if they are violated, there is no way the planner can ever re-establish them;

they are invariant conditions that must be maintained over the state trajectory of

the plan.

Example 16. Consider the state trajectory τ = ⟨s0, s1, . . . , si⟩. The constraint c =

A(a ∧ b) requires that every state of τ satisfies the formula a ∧ b. Therefore, if

there exists a state s of τ such that s ̸|= a ∧ b, then c is violated. Furthermore, all
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state trajectories having τ as prefix violate c. Hence, A(a ∧ b) is a safety trajectory

constraint.

LTCs are constraints that require certain conditions to be true in some state of

the state trajectory induced by the plan.

Example 17. Consider the state trajectory τ = ⟨s0, s1, . . . , si⟩ and the constraint

c = ST(a). By definition, τ |= c iff a is true in a state s of τ . Therefore, ST(a) is a

liveness trajectory constraint.

The STCs are A(ϕ), AO(ϕ), SB(ϕ, ψ), while the LTCs are ST(ϕ) and SA(ϕ, ψ).

For each AO(ϕ) and SB(ϕ, ψ), we add the fresh predicates seenϕ and seenψ to record

whether ϕ and ψ have ever held. In this way, we are adding to each state the

necessary information to evaluate the truth of AO(ϕ) and SB(ϕ, ψ) without having

to consider the entire state trajectory. Similarly, for each LTC, we add a predicate

holdc to record whether the constraint c is already satisfied or not according to the

current plan prefix. Note that no additional monitoring atom is necessary for A(ϕ),

since all the information (that is, whether ϕ is true or false) is already present in

each state.

Algorithm 1 The tcore algorithm

1: function tcore(⟨⟨F,A, I,G,Pre,Eff ⟩, C3⟩)

2: F ′ = F ∪monitoringAtoms(C3) ▷ Additional atoms generation

3: I ′ = I ∪
⋃

c:ST(ϕ)∈C3

{holdc | I |= ϕ} ∪
⋃

c:SA(ϕ,ψ)∈C3

{holdc | I |= ψ ∨ ¬ϕ} ∪
⋃

SB(ϕ,ψ)∈C3

{seenψ | I |= ψ} ∪
⋃

AO(ϕ)∈C3

{seenϕ | I |= ϕ}

4: if ∃SB(ϕ, ψ) ∈ C3.I |= ϕ or ∃A(ϕ) ∈ C3.I |= ¬ϕ then

5: return Unsolvable Problem

6: Pre ′,Eff ′ = Pre,Eff

7: for all a ∈ A do

8: P , E = PreAndEff (a, C3)

9: Pre ′(a) = Pre(a) ∧
∧

p∈P p
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10: Eff ′(a) = Eff (a) ∪ E

11: for all LTC c ∈ C3 do

12: G′ = G ∧ holdc

13: return Classical Planning Problem ⟨F ′, A, I ′, G′,Pre ′,Eff ′⟩

14: function PreAndEff (a, C3)

15: P,E = {⊤}, {}

16: for all STCc ∈ C3 do

17: if c is A(ϕ) then ρ = R(¬ϕ, a)

18: else if c is AO(ϕ) then

19: ρ = R(ϕ, a) ∧ seenϕ ∧ ¬ϕ

20: E = E ∪ {R(ϕ, a) ▷ {seenϕ}}

21: else if c is SB(ϕ, ψ) then

22: ρ = R(ϕ, a) ∧ ¬seenψ

23: E = E ∪ {R(ψ, a) ▷ {seenψ}}

24: P = P ∪ ¬ρ

25: for all LTC c ∈ C3 do

26: if c is ST(ϕ) then ρ = R(ϕ, a)

27: else if c is SA(ϕ, ψ) then

28: E = E ∪ {R(ϕ, a) ∧ ¬R(ψ, a) ▷ {¬holdc}}

29: ρ = R(ψ, a)

30: E = E ∪ {ρ ▷ {holdc}}

31: return P , E

Algorithm 1 describes the full compilation. As a very first step, we create the

necessary atoms (line 2) and set up the initial state to reflect the status of the

trajectory constraints; in particular, we need to capture whether a LTC is already

achieved in I, or if a formula (ϕ or ψ) that is necessary for the evaluation of an STC

is already true in I. Depending on the kind of input constraint, we set the associated

monitoring atom: for each c = ST(ϕ) such that ϕ is already true in I1, and for each

1Notice that a ST(φ) constraint is always satisfied whenever I |= φ, meaning that we could

59



c = SA(ϕ, ψ) such that ψ is already true in I or ϕ is false in I, we set holdc true in

I ′. Analogously, for all constraints SB(ϕ, ψ) (AO(ϕ)) we set seenψ (seenϕ) true in I
′

if ψ (ϕ) is true in I. Then we check whether any STC is already unsatisfied; if so,

the problem is unsolvable.

Example 18. Consider the constraint c = SB(a, b). By definition, c requires that

a can become true only if b was true in some previous state. To record whether b

has ever held, we introduce the monitoring atom seenb. If the initial state I satisfies

b, then seenb is set to true in the new initial state I ′. Moreover, according to the

definition of SB(a, b), b must hold strictly before a. Therefore, if a holds in I, then

the pddl3 problem is unsolvable and tcore terminates.

After the initialization phase, the algorithm iterates over all actions and con-

straints (lines 7-10) to modify each original action model (preconditions and effects)

by considering the interactions between the constraints and the action model. In

particular, tcore uses the PreAndEff function (line 14) to determine:

1. A new precondition P that prevents the violation of any STC.

2. A new set of conditional effects E to capture the achievement of some LTC or

some relevant formula.

If the constraint is a STC, the PreAndEff function determines, by regression, a

condition ρ such that, if ρ holds in the state where the action is applied, the execution

of such an action will violate the constraint. The condition ρ models whether the

considered action:

• Makes formula ϕ false (in the case of A(ϕ), line 17)

• Makes formula ϕ true for the second time (in the case of AO(ϕ), line 18)

• Makes formula ϕ true while seenψ is false (in the case of SB(ϕ, ψ), line 21)

The regressed condition ρ is negated and then added to the new precondition P

of the action. In this way, if the action execution violates the constraint in a given

state, such an action is deemed inapplicable by the planner.

remove such constraint from the original problem in this case.
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Example 19. Consider the constraint c = SB(a, b) and the action act defined as

follows:

• Pre(act) = ⊤

• Eff (act) = {d ∨ e ▷ a}

To prevent the violation of c, we must ensure that act does not make a true when

seenb is false. Using regression, we determine that the execution of act in a state s

makes a true only when s |= R(a, act). By Definition 5, we have R(a, act) = d∨e∨a.

Therefore, to prevent the violation of SB(a, b), we extend Pre(act) with the condition

ρ = seenb ∨ ¬(d ∨ e ∨ a).

In the case of STCs, conditional effects are added to keep track of whether relevant

formulae have ever held in the state trajectory of the plan prefix. For instance,

SB(ϕ, ψ) requires to deal with the truth of seenψ: if an action makes ψ true, then

the action must make seenψ true as well. In this way, we can prevent applying an

action a when it makes ϕ true and ψ has not held before in the current plan state

trajectory (lines 21–23).

Example 20. Consider the constraint c = SB(a, b) and the action act defined as

follows:

• Pre(act) = e

• Eff (act) = {b}

An occurrence of act might satisfy b, and we need to update the atom seenb accord-

ingly. We have that the execution of act in a state s makes b true when s |= R(b, act),

and R(b, act) = ⊤. Therefore, to keep track of the truth of b, we add to Eff (act) the

conditional effect R(b, act) ▷ seenb = ⊤ ▷ seenb.

For each LTC c ∈ C3, the algorithm yields a formula ρ that is true only in those

states where the action achieves the targeted formula expressed in c. Note here the

slightly different treatment for the two types of LTCs. While ST(ϕ) only requires ϕ

to be true, for SA(ϕ, ψ) we need to signal the necessity of ψ only when ϕ becomes

61



satisfied; we do so by introducing two conditional effects (lines 28 and 29) affecting

the additional goal holdc ofG
′ (line 11). Also observe that ϕ can become true multiple

times, and each state satisfying ϕ needs to be followed by a state such that ψ is true

again; this state can also be the same state in which ϕ holds, as prescribed by the

semantics of pddl3.

Example 21. Consider the constraint c = SA(a∧ b, d∨ e) and the action act defined

as follows:

• Pre(act) = f

• Eff (act) = {b,¬d}

We have R(a ∧ b, act) = a and R(d ∨ e, act) = e. Therefore, the action act will be

extended with the two conditional effects: a ∧ ¬e ▷ ¬holdc and e ▷ holdc. The first

effect captures when the constraint c is violated due to a∧b becoming true (while d∨e

is false), while the second effect captures when c is satisfied by d ∨ e becoming true

after act.

Note that Algorithm 1 can add irrelevant preconditions and conditional effects

that can easily be omitted by looking at whether regression leaves a formula unal-

tered. For example, for A(ϕ), if ρ = R(¬ϕ, a) = ¬ϕ, there is no need to extend

Pre(a) with ¬ρ = ϕ at line 18. Such optimizations are implemented but omitted

here for clarity and compactness.

As trajectory constraints are monitored along the entire plan, and regression

through effects provides sufficient conditions for ensuring that no STC is violated by

an action and no LTC remains unsatisfied at the end of the plan, it is easy to see

that the compiled problem always finds a solution that conforms with the trajectory

constraints of the problem. Moreover, since the exploited regression also establishes

necessary conditions, the existence of a solution in the compiled problem implies that

the original problem is solvable.

Theorem 7. Let Π = ⟨⟨F,A, I,G,Pre,Eff ⟩, C3⟩ be a pddl3 planning problem, and

let Π′ = ⟨F ′, I ′, A,G′,Pre ′,Eff ′⟩ be the classical planning problem generated by Algo-

rithm 1. A plan π = ⟨a0, a1, . . . , an−1⟩ is a solution for Π iff so does for Π′.
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Proof. Let π = ⟨a0, a1, . . . , an−1⟩ be a sequence of action labels from A, let τ =

⟨s0, s1, . . . sn⟩ be the state trajectory induced by π for Π, and let τ ′ = ⟨s′0, s
′
1, . . . s

′
n⟩

be the state trajectory induced by π for Π′. We prove that π is a solution for Π iff

π is a solution for Π′. We assume that π has at least one action, as the empty plan

case is straightforward. We proceed by analyzing each direction.

(π solution for Π ⇒ π solution for Π′). By contradiction, π is a solution for Π

but π is not a solution for Π′. If π is not a solution for Π′, then at least one of the

following holds:

1. ∃ ai ∈ π such that s′i ̸|= Pre ′(ai).

2. s′n ̸|= G′.

(1.) In this case, we have an action ai in π with its preconditions not satisfied by

s′i. By definition, we have Pre ′(ai) = Pre(ai) ∧ p1 ∧ p2 ∧ . . . ∧ pk. By hypothesis, π

is a solution for Π, and therefore s′i |= Pre ′(ai)
2. Therefore, there exists a formula

pc ∈ {p1, ..., pk} such that s′i ̸|= pc. The new precondition pc is introduced for a

constraint c ∈ C3 that is either A(ϕ), AO(ϕ), or SB(ϕ, ψ).

• (c = A(ϕ)) s′i ̸|= pc and pc is R(ϕ, ai). Therefore, si[ai] ̸|= ϕ, and τ violates

A(ϕ) (contradiction).

• (c = AO(ϕ)). s′i ̸|= pc and pc = ¬(R(ϕ, ai) ∧ seenϕ ∧ ¬ϕ). Therefore, s′i |=

R(ϕ, ai) ∧ seenϕ ∧ ¬ϕ. We have that:

– ϕ is false in si

– s′i |= R(ϕ, ai) implies si+1 |= ϕ

– s′i |= seenϕ implies that ϕ has held in τ ′ before s′i. If I |= ϕ then seenϕ

has been set to true in I ′ by the compilation. Otherwise, a conditional

effect R(ϕ, a) ▷ seenϕ has been triggered by some state before reaching s′i.

2We remark that effects added by tcore only affect the new variables introduced by the com-
pilation. Therefore, si |= φ ⇐⇒ s′i |= φ for any φ defined over F .
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We have that ϕ became true at least twice in τ , and π is not a solution for π

because AO(ϕ) is violated (contradiction).

• (c = SB(ϕ, ψ)). s′i ̸|= pc and pc = ¬(R(ϕ, ai) ∧ ¬seenψ). This can be rewritten

as s′i |= R(ϕ, ai)∧¬seenψ. We have si+1 |= ϕ and seenψ false in s′i implies that

ψ has never held:

– No action can make seenψ false. Hence, no conditional effect R(ψ, a) ▷

seenψ was triggered and ψ was false in the initial state.

We have ϕ true in si+1 but ψ has never been true in the past, therefore τ

violates SB(ϕ, ψ) (contradiction).

(2.) s′n ̸|= G′. By definition, G′ = G ∧
∧

LTC c∈C3
holdc. Since π is a solution for

Π, we have that sn |= G which subsumes s′n |= G. Thus, there exists a constraint

c = ST(ϕ) or c = SA(ϕ, ψ) such that s′n ̸|= holdc.

• (c = ST(ϕ)). s′n ̸|= holdc implies that ϕ has never been true in τ :

– No action can make holdc false, so I ̸|= ϕ. Moreover, no conditional effect

R(ϕ, a) ▷ holdc has been triggered.

Therefore, ST(ϕ) is violated by τ (contradiction).

• (c = SA(ϕ, ψ)). s′n ̸|= holdc implies either:

– holdc is false in the initial state and no action aj makes holdc true. We

have that I |= ϕ ∧ ¬ψ and, analogously to the sometime case, no action

achieves ψ.

– An action ai makes holdc false and after that no action makes holdc true.

ai makes holdc false implies that s′i |= R(ϕ∧¬ψ, ai) and therefore si[ai] |=

ϕ ∧ ¬ψ. If no action makes holdc true after ai, then no action achieves ψ

after ai, as no conditional effect R(ψ, a) ▷ holdc is triggered.

In both cases, there exists a state s such that s |= ϕ ∧ ¬ψ and no future state

satisfies ψ. By definition, SA(ϕ, ψ) is violated by τ (contradiction).
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(π solution for Π′ =⇒ π solution Π). By contradiction, π is a solution for Π′ but

π is not a solution for Π. tcore changes the initial state, goals, preconditions, and

effects of actions. We have that π is not a solution for Π for the following reasons:

1. ∃ i such that si ̸|= Pre(ai). This cannot be the case, as s′i |= Pre ′(ai) subsumes

si |= Pre(ai).

2. sn ̸|= G. This cannot be the case, as s′n |= G′ subsumes that sn |= G.

3. ∃ c ∈ C3 such that π does not satisfy c. We proceed case by case.

• (c = A(ϕ)). If τ violates A(ϕ) then there exists a state s such that s ̸|= ϕ. If

s = I, tcore detects that Π′ does not admit a solution plan (contradiction).

Otherwise, if I |= ϕ, then there exists a state si+1 such that si+1 ̸|= ϕ. As

si+1 ̸|= ϕ, we have that s′i ̸|= R(ϕ, ai). Since Pre ′(ai) has R(ϕ, ai) as a precon-

dition, we have that ai cannot be executed. This makes π not a solution for Π′

(contradiction).

• (c = AO(ϕ)). τ violates AO(ϕ) when there exists i such that ϕ held at some

point in τi−1 = ⟨s0, . . . , si−1⟩, si ̸|= ϕ and si[ai] |= ϕ. This implies si |= R(ϕ, ai).

tcore add the clause pc = ¬(R(ϕ, ai)∧ seenϕ ∧¬ϕ) to Pre ′(ai). We have that

pc is violated by s′i, because s
′
i |= R(ϕ, ai), s

′
i ̸|= ϕ and ϕ held at some point in

τi−1 implies seenϕ is true in s′i:

– If I |= ϕ, then seenϕ holds in I ′ by definition.

– Otherwise, there exists a state sj (j < i − 1) such that s′j triggers the

conditional effect R(ϕ, aj) ▷ seenϕ of Eff ′(aj).

Therefore, ai cannot be executed and π is not a solution for Π′(contradiction).

• (c = SB(ϕ, ψ)). τ violates SB(ϕ, ψ) when there exists a i such that ψ never held

in τi = ⟨s0, . . . , si⟩, and si+1 |= ϕ. W.l.o.g. assume that τi is the shortest prefix

of τ that violates SB(ϕ, ψ), that is, either ϕ is true in the initial state or si+1

is the first state that satisfies ϕ when ψ has never been true. If ϕ is true in I,

then tcore detects unsolvability of Π′ (contradiction). Otherwise, since ψ

has never been true, no conditional effect R(ψ, a)▷ seenψ will ever be triggered

before reaching s′i, making seenψ false in s′i. Moreover, as si+1 |= ϕ, we have
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si |= R(ϕ, a). Since Pre ′(ai) includes the clause ¬(R(ϕ, ai)∧¬seenψ), the action

ai cannot be executed in s′i, and π is not a solution for Π′(contradiction).

• (c = ST(ϕ)). τ violates ST(ϕ) when ϕ is never true in τ . This implies that holdc

is false in I ′ and no conditional effect R(ϕ, a) ▷ holdc gets triggered. Therefore,

holdc will be false in s′n, and (as holdc is a goal of Π′) π is not a solution for

Π′(contradiction).

• (c = SA(ϕ, ψ)). τ violates SA(ϕ, ψ) when I |= ϕ ∧ ¬ψ and ψ is never true, or

when the last occurrence of ϕ ∧ ¬ψ is after the last occurrence of ψ. In the

former case, holdc is false in I
′, and after that, there exists no state that triggers

a conditional effect R(ψ, a) ▷ holdc. In the latter case, let si be the last state

such that si |= ψ and let sj be the last state such that sj |= ϕ ∧ ¬ψ (j > i).

Then there exist a state sk with i ≤ k < j such that sk |= R(ϕ ∧ ¬ψ, ak).

Therefore, s′k triggers the conditional effect R(ϕ ∧ ¬ψ, ak) ▷ holdc of Eff
′(ak)

which makes holdc false. After sk, no state that makes ψ true exists, and holdc

will never be true again. Therefore, holdc is false in s
′
n, making π not a solution

for Π′(contradiction).

5.2 Experimental Analysis

Our experimental analysis compares tcore3 with five other state-of-the-art ap-

proaches that handle trajectory constraints. Specifically, we consider the last avail-

able version of three native pddl3 planners, that is, sgplan [Hsu et al., 2007], optic

[Benton et al., 2012], mips [Edelkamp et al., 2006b], and two compilation-based ap-

proaches supporting ltlf temporally extended goals, that is, the exponential (ltl-e)

and polynomial (ltl-p) compilations by Baier and McIlraith [2006a] and Torres and

Baier [2015], respectively. The compiled problems generated by tcore, ltl-e, and

ltl-p were solved using lama [Richter and Westphal, 2010].

3tcore is implemented in Python, and it can be downloaded from https://github.com/

LBonassi95/tcore.
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5.2.1 Benchmark Suite

Our benchmark suite involves domains from the Fifth International Planning Com-

petition (https://lpg.unibs.it/ipc-5/). Since the competition instances did not

contain qualitative state trajectory constraints, but only preferences, we generated

a new set of instances as follows. For each instance with preferences, we ran some

planners supporting preferences, that is, lama and Mercury [Domshlak et al., 2015]

with the compiler by Percassi and Gerevini [2019], and LPRPG-P by Coles and Coles

[2011], and we collected all plans generated within 30 CPU minutes. Out of this set,

we took up to five plans (those with the larger number of satisfied preferences) and,

for each of them, we generated a new problem instance having all satisfied prefer-

ences converted in qualitative state trajectory constraints. This gave us a total of

416 instances: 79 for Trucks, 90 for Openstack, 55 for Storage, 94 for Rover, and

98 for TPP. For the ltlf approaches, we translated each pddl3 problem into a plan-

ning problem with ltlf temporally extended goals. In particular, we used the most

effective translation from pddl3 to ltlf among those described in Section 3.2.2 and

those provided by the ltl-e and ltl-p tools.

We measured the number of instances solved by each system in each domain

(coverage) and the CPU time spent to find a solution, if any. For compilation-

based approaches, CPU time is the compilation time plus the planning time. All

experiments were performed on an Xeon Gold 6140M 2.3 GHz, with time and memory

limits of 1800s and 8GB, respectively.

5.2.2 Results

Coverage Analysis. Table 5.1 gives an overall picture of the coverage obtained

by all systems. The system that obtained the highest coverage is tcore, which

solved more instances than the competitors in three of the 5 domains and achieved

a substantially higher total coverage overall. The performance of tcore in Rover

is remarkable; here tcore solves three times the instances solved by ltl-e (the

second best performer). However, there seems to be some complementary between

ltl-e and tcore. Indeed, in TPP, ltl-e achieves the best coverage, overcoming

tcore by a substantial margin. Since tcore is tailored for pddl3, one could ex-
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Chapter 6

Handling PAC Constraints via

Compilation

In this chapter, we report on a compilation-based technique to effectively deal with

pac action constraints. The proposed approach is polynomial, generates minimal

overhead in terms of additional atoms, and preserves the size of solutions (no addi-

tional spurious action is required).

We then experimentally study the usefulness of pac constraints as a tool to ex-

press control knowledge. The experimental results show that, for a class of problems,

the performance of a classical planner can be significantly improved by exploiting

the knowledge expressed by action constraints and handled by our compilation, while

the same knowledge turns out to be less beneficial when specified as state trajectory

constraints and handled by tcore and ltl-e [Baier and McIlraith, 2006a].

6.1 Compiling PAC Constraints Away

In this section, we propose a compilation schema, called pac-c (pac compiler),

that translates a pac problem into an equivalent classical planning problem. As

done for pddl3 constraints, our approach for pac distinguishes action constraints

into two classes: Safety PAc Constraints (SPAC) and Liveness PAc Constraints

(LPAC). Intuitively, SPACs are constraints used to express properties that must
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not be violated at any time in the plan, while LPACs enforce that certain actions

must occur in every solution plan. SPACs are: A(ϕ), SB(ϕ, ψ), AO(ϕ) and AX(ϕ, ψ);

LPACs are: ST(ϕ), SA(ϕ, ψ) and PA(ϕ1, . . . , ϕk). pac-c works by preventing the

execution of actions that would violate some SPACs and forcing the planner to

include in the plan the actions necessary to satisfy all LPACs on a state-dependent

basis.

Actions that cannot appear in the plan at some time step t depend on actions

scheduled before t.

Example 22. Consider the constraint AO(a). Having a in the plan at a time t

should be prevented if a has already been scheduled in the plan prefix preceding t.

The same logic applies to the actions that still need to be included in the plan to

satisfy some LPAC. Therefore, similarly to what was done in Section 5.1, we extend

the planning states with the necessary information about the presence in the plan

under construction of the actions relevant to the constraints. We do so by introducing

a set of fresh atoms, built by taking into account the constraint at hand, as described

below.

SPAC Atoms. For every AO(ϕ) and SB(ϕ, ψ), atoms doneϕ and doneψ are used

to record whether ϕ and ψ have ever held. For every AX(ϕ, ψ), atom requestψ is

used to signal that the formula ϕ is satisfied at a plan step t, and the planner has to

schedule an action a ∈ ψ immediately after t.

LPAC Atoms. For every ST(ϕ) and SA(ϕ, ψ), atoms gotϕ and gotϕ,ψ are used

to record whether or not the constraint is satisfied by the prefix plan. For every

PA(ϕ1, . . . , ϕk), we add a set of atoms called stage atoms to keep track of the progress

of the pattern in the plan. The set of stage atoms is defined as follows:

StageAtoms(CA) =
⋃

c=PA(ϕ1,...,ϕk)∈CA

{stage1c , . . . , stage
k
c}

Atoms stageic (i ∈ {1, . . . , k}) will hold in a plan state s iff PA(ϕ1 . . . ϕi) is satisfied

by the plan prefix up to s.
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Example 23. Consider the constraint c = PA(a1, a2, a3 ∨ a4). The stage atoms rela-

tive to c are {stage1c , stage
2
c , stage

3
c}. Each atom represents the stage of satisfaction

of c. For example, stage2c indicates that PA(a1, a2) has been satisfied. Therefore, the

stage atom stage3c signals that the whole pattern has been satisfied.

Algorithm 2 The pac-c algorithm

1: function pac-c(⟨⟨F,A, I,G,Pre,Eff ⟩, CA⟩)

2: ▷ Phase (I)

3: F ′ = F ∪ SPAC-atoms ∪ LPAC-atoms

4: I ′ = I ∪
⋃

SA(ϕ,ψ)

gotϕ,ψ

5: ▷ Phase (II)

6: Pre ′,Eff ′ = Pre,Eff

7: A′ = {a | a ∈ A and for each A(ϕ) ∈ CA, a ∈ ϕ}

8: for all a ∈ A do

9: P , E = PreAndEff (a, CA)

10: Pre ′(a) = Pre(a) ∧
∧

p∈P p

11: Eff ′(a) = Eff (a) ∪ E

12: ▷ Phase (III)

13: G′ = G ∧
∧

SA(ϕ,ψ)∈CA

gotϕ,ψ ∧
∧

ST(ϕ)∈CA

gotϕ∧

∧

AX(ϕ,ψ)∈CA

¬requestψ ∧
∧

c=PA(ϕ1,...,ϕk)∈CA

stagekc

14: return ⟨F ′, A′, I ′, G′,Pre ′,Eff ′⟩

15: function PreAndEff (a, CA)

16: P,E = {⊤}, {}

17: for all c ∈ SPAC(CA) do

18: if c = AO(ϕ) and a ∈ ϕ then

19: P = P ∪ ¬doneϕ

20: E = E ∪ {doneϕ}

21: if c = SB(ϕ, ψ) then

22: if a ∈ ϕ then P = P ∪ doneψ
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23: if a ∈ ψ then E = E ∪ {doneψ}

24: if c = AX(ϕ, ψ) then

25: if a ∈ ϕ then E = E ∪ {requestψ}

26: else if a ∈ ψ then E = E ∪ {¬requestψ}

27: if a ̸∈ ψ then P = P ∪ ¬requestψ

28: for all c ∈ LPAC(CA) do

29: if c = ST(ϕ) and a ∈ ϕ then E = E ∪ {gotϕ}

30: if c = SA(ϕ, ψ) then

31: if a ∈ ψ then E = E ∪ {gotϕ,ψ}

32: if a ∈ ϕ and a ̸∈ ψ then E = E ∪ {¬gotϕ,ψ}

33: if c = PA(ϕ1, . . . , ϕk) then

34: for all ϕi ∈ ⟨ϕ1 . . . ϕk⟩ · a ∈ ϕi do

35: E = E ∪







{stagei−1
c ▷ stageic} if i > 1

{stage1c} otherwise

36: return P , E

Compilation schema. Algorithm 2 specifies the full compilation schema, called

pac-c. There are three different phases: (I) creation of necessary atoms and setup of

the initial state to reflect the status of the constraints; (II) revision of the precondi-

tions and effects of relevant actions; (III) setup of the goal to enforce the satisfaction

of all LPACs and AX constraints.

Phase (I). The necessary SPAC and LPAC atoms are created and initialized (lines

3-4). When a plan has no actions, all SA(ϕ, ψ) constraints are satisfied, and so the

corresponding gotϕ atoms are set to true in the initial state.

Phase (II). The algorithm prunes all actions that do not satisfy the always con-

straints. Then it modifies the actions to keep all constraints in check. For a SPAC,
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pac-c determines new preconditions that must be fulfilled for the actions that in-

teract with the constraint. In particular, pac-c prevents having in the plan actions

that (a) make ϕ true a second time (in the case of an AO(ϕ)), (b) make ϕ true if

doneψ is false (in the case of a SB(ϕ, ψ)), and (c) cannot make ψ true when there

is a request for it triggered by the previous action (in the case of an AX(ϕ, ψ)). For

SPACs, new effects are added to keep track of the execution of relevant actions.

Example 24. An AX(ϕ, ψ) constraint requires restricting the possible actions in

the plan at the next time step when ϕ becomes true. If an action a in the plan

satisfies ϕ at some time t, the triggered request for some action satisfying ψ at time

t + 1 is encoded by disallowing the occurrence of any action not satisfying ψ (lines

25-27). If an action does not trigger the constraint and satisfies ψ instead, then

¬requestψ is added to its effects (lines 25-26), disabling the request of ψ demanded

by the constraint. Consider the AX(a1, a2 ∨ a3) constraint. By following the flow of

the compilation for every action, we observe that:

• requesta2∨a3 is added to Eff (a1). This effect captures that if a1 is executed,

then either a2 or a3 has to be executed at the next step.

• For every action ai with ai ̸= a2 and ai ̸= a3, Pre(ai) is extended with

requesta2∨a3. This is done to prevent the execution of any action different

from a2 and a3 when requesta2∨a3 holds.

• The effects of a2 and a3 are extended with the effect ¬requesta2∨a3. These new

effects are meant to signal that the request has been fulfilled.

For LPACs, pac-c adds a set of effects to keep track of the relevant actions that

appear in the plan. A ST(ϕ) constraint requires that at least one action that satisfies

ϕ appears sometime in the plan. The atom gotϕ is then added to all actions that

make ϕ true. For a SA(ϕ, ψ) constraint, pac-c adds effects to signal the necessity

of ψ whenever ϕ becomes true (lines 31-32). For a PA(ϕ1, . . . , ϕk) constraint, the

algorithm checks if an action satisfies any formula in {ϕ1 . . . ϕk}. For example, if an

action a in the plan makes formula ϕi true and PA(ϕ1 . . . ϕi−1) is already satisfied by

the plan prefix up to a, then PA(ϕ1 . . . ϕi) will become satisfied. pac-c keeps track
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of this information by adding the conditional effect stagei−1
c ▷ stageic to all actions

satisfying ϕi (line 35).

Example 25. Consider the constraint c = PA(a1, a2, a3 ∨ a4). The compilation

extends the effects Eff (a1) with {stage
1
c}, the effects Eff (a2) with {stage

1
c ▷ stage

2
c},

and both the effects Eff (a3) and Eff (a4) with {stage
2
c ▷ stage

3
c}. If, for example, a1,

a2, and a4 are executed (sometimes) in the plan in this order, then it is easy to see

that the newly added conditional effects will make stage1c true after a1, stage
2
c true

after a2, and stage
3
c after a4.

Phase (III). The last step consists in setting up the new goals of the problem:

all the ST(ϕ), SA(ϕ, ψ), AX(ϕ, ψ) and PA(ϕ1, . . . , ϕk) constraints must be satisfied.

This means that in the final state, all gotϕ, gotϕ,ψ and stagekc atoms have to hold,

and there is no pending request of an action to satisfy some AX(ϕ, ψ) (line 13).

Example 26. Consider the AX(a1, a2 ∨ a3) constraint. If a1 is executed, then we

must schedule either a2 or a3 in the next step. Therefore, the plan cannot terminate

after a1. Hence, we add ¬requesta2∨a3 to G′ to prevent the plan from ending when

there is a pending request. Consider the constraint c = PA(a1, a2, a3 ∨ a4). To force

the completion of the pattern, we add stage3c to G′.

The additional preconditions and effects of the compilation prevent the planner

from generating any sequence of actions that violates one or more SPACs, while the

additional goals force the planner to satisfy all LPACs. The following theorem states

that any plan of the original problem Π is a solution of Π if and only if the same

plan with its actions modified by pac-c is a solution for the translated problem Π′.

Note that the original and modified plan have exactly the same lengths.

Theorem 8. Let Π = ⟨⟨F,A, I,G,Pre,Eff ⟩, CA⟩ be a pac problem and Π′ = ⟨F ′,

A′, I ′, G′, Pre ′, Eff ′⟩ the problem obtained by compiling Π through Algorithm 2. A

plan π = ⟨a0, a1, . . . , an−1⟩ is a solution for Π iff so does for Π′.

Proof. We focus on the case in which the plan has at least one action. We prove

the two directions of the implication in the claim separately. We denote with
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τ = ⟨s0, si, . . . sn⟩ the state trajectory induced by π for Π, and with τ ′ = ⟨s′0, s
′
i, . . . s

′
n⟩

the state trajectory induced by π for Π′.

(π solution for Π =⇒ π solution for Π′). By contradiction, assuming that π is a

solution for Π but π is not a solution for Π′. If π is not a solution, at least one of

the following three cases has to hold:

(I) ∃ t such that π[t] ̸∈ A′.

(II) ∃ t such that s′t ̸|= Pre(π[t]).

(III) s′n ̸|= G′.

(I) If an action π[t] ̸∈ A′ then (line 7 of pseudocode) ∃ A(ϕ) · π[t] ̸|= ϕ. π[t] violates

an always constraints, therefore π is not a solution for Π (contradiction).

(II) The precondition of π[t] is as follows: Pre ′(π[t]) = Pre(π[t]) ∧ p1 ∧ . . . ∧ pk.

If s′t ̸|= Pre(π[t]) then also st ̸|= Pre(π[t]) and π would not be solution for Π

(contradiction). Therefore ∃ pc ∈ {p1, . . . , pk} such that s′t ̸|= pc. pc is a new pre-

condition added by Algorithm 2 due to the compilation of either an AO(ϕ), SB(ϕ, ψ)

or AX(ϕ, ψ) constraint.

• (AO(ϕ)). pc = ¬doneϕ, which implies that doneϕ ∈ s′t. doneϕ ∈ s′t plus

doneϕ ̸∈ I ′ imply the existence of an action π′[j] (j < t) with doneϕ as an

effect. This also means that π[j] ∈ ϕ. As pc = ¬doneϕ, π[t] ∈ ϕ, too; therefore

both π[j] ∈ ϕ and π[t] ∈ ϕ making π violate the AO(ϕ) (contradiction).

• (SB(ϕ, ψ)). pc = doneψ, therefore doneψ ̸∈ s
′
t. Since no action can delete doneψ,

it follows that there exists no index j with j < t such that π′[j] achieves doneψ,

which in turn implies that there is no index j with j < t such that π[j] ∈ ψ

either (see line 23 of pseudocode). Since pc = doneψ, we also know that π[t] ∈ ϕ.

Therefore, we have that plan π has the action π[t] ∈ ϕ, but before t there is no

action that makes ψ in π; hence π violates SB(ϕ, ψ) (contradiction).

• (AX(ϕ, ψ)). pc = ¬requestψ, which implies that requestψ ∈ s
′
t. requestψ ∈ s

′
t

implies that π[t − 1] ∈ ϕ (line 25 of pseudocode). pc = ¬requestψ, therefore
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π[t] ̸∈ ψ. We have that π violates AX(ϕ, ψ) because π[t − 1] ∈ ϕ and π[t] ̸∈ ψ

(contradiction).

(III) G′ = G∧
∧

SAφ,ψ∈CA

gotψ∧
∧

STφ∈CA

gotϕ∧
∧

AXφ,ψ∈CA

¬requestψ∧
∧

c=PAφ1...φk
∈CA

stagekc . If

s′n ̸|= G then also sn ̸|= G; thus π is not a solution for Π (contradiction). Therefore,

the only way s′n ̸|= G′ holds is when one among gotϕ, gotψ, stage
k
c does not hold in

s′n or requestψ ∈ s
′
n. We proceed case by case:

• (gotϕ). gotϕ ̸∈ s
′
n implies that there is no action that achieves gotϕ in π. Indeed

gotϕ can never be deleted by any action. This means that there is no action

satisfying ϕ in π, too. Therefore, π violates ST(ϕ) (contradiction).

• (gotψ). gotψ ∈ I
′ (by definition) and gotψ ̸∈ s

′
n (by absurd assumption) imply

that there exists an action π[t1] that deletes gotψ, and no action after t1 that

adds gotψ. This means that there exists an index t1 with 1 ≤ t1 ≤ |π| such

that π[t1] ∈ ϕ, and ∀t2 with t1 ≤ t2 ≤ |π| we have that π[t2] ̸∈ ψ. By definition

of SA(ϕ, ψ), π violates such a constraint (contradiction).

• (stagekc ). stage
k
c is added by the algorithm for a c = PA(ϕ1, . . . ϕk) constraint.

Due to the structure of the compiled problem, atom stagekc is true in the last

state only if there exists a sequence of actions ⟨a1, . . . , ak⟩ from π ordered as in

π such that stage1c ∈ Eff ′(a1), and for each i > 1 stagei−1
c ▷ stageic ∈ Eff ′(ai).

Since we are assuming stagekc ̸∈ s
′
n, such a sequence of actions ⟨a1, . . . , ak⟩ does

not exist. From the algorithm (line 35 of pseudocode), it follows that an action

a1 has stage
1
c as an effect only if a1 ∈ ϕ1, and an action ai has stage

i−1
c ▷ stageic

as an effect only if ai ∈ ϕi. This implies that there is no sequence of actions

⟨a1, . . . , ak⟩ from π, ordered as in π, such that ai |= ϕi for all i ∈ {1, . . . , k}.

Therefore, π violates PA(ϕ1, . . . ϕk) (contradiction).

• (requestψ). requestψ ∈ s′n implies that there exists an action π[t] that adds

requestψ and each other subsequent action does not delete requestψ. Since

requestψ ∈ Eff ′(π[t]), and hence π[t] ∈ ϕ too, π violates AX(ϕ, ψ) (contradiction)

since, by construction, there will be no action a after π[t] such that a ∈ ψ and

a ̸∈ ϕ.
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(π solution for Π′ =⇒ π solution for Π). By contradiction, assuming π is a

solution for Π′ but π is not a solution for Π. Algorithm 2 changes the initial state,

goals, preconditions, and effects of actions. We can have that π is not a solution for

Π for the following reasons:

(I) ∃ t such that st ̸|= Pre(π[t]). This cannot be the case, as s′t |= Pre ′(π[t]) subsumes

st |= Pre(π[t]).

(II) sn ̸|= G. This cannot be the case, as s′n |= G′ subsumes sn |= G.

(III) ∃ c ∈ CA such that π does not satisfy c:

• (c = A(ϕ)). π that does not satisfy A(ϕ) implies that ∃ t such that π[t] ̸∈ ϕ. It

follows that action π[t] ̸∈ A′, line 7 in Algorithm 2 (contradiction).

• (c = AO(ϕ)). π that does not satisfy AO(ϕ) implies that there exist indexes

t1 and t2 with 1 ≤ t1 < t2 ≤ |π| such that π[t1], π[t2] ∈ ϕ. By construc-

tion, doneϕ ∈ Eff ′(π[t1]), and π[t2] will not be applicable since ¬doneϕ is a

conjunct of Pre ′(π[t2]), and there is no action that can ever make doneϕ false

(contradiction).

• (c = SB(ϕ, ψ)). π does not satisfy SB(ϕ, ψ) implies that there exists an index

t1 with 1 ≤ t1 ≤ |π| such that π[t1] ∈ ϕ and for every index t2 with 1 ≤ t2 < t1

π[t2] ̸∈ ψ. Note that doneψ is a conjunct of Pre ′(π[t1]) by construction, and

that no action executed before t1 has doneψ as an effect (lines 22 and 23 of

pseudocode). Since doneψ ̸∈ I
′, we have that doneψ ̸∈ s

′
t1
and π[t1] cannot be

executed in π(contradiction).

• (c = ST(ϕ)). π that does not satisfy ST(ϕ) implies that there is no action

a = π[t] such that a ∈ ϕ. By construction, no action with gotϕ as an effect is

executed in π. Since gotϕ is false in the initial state I ′, gotϕ will be false in the

last state reached by π. Therefore, π is not a solution as G′ requires gotϕ true

(contradiction).

• (c = SA(ϕ, ψ)). π that does not satisfy SA(ϕ, ψ) implies that there exists an

index t1 with 1 ≤ t1 ≤ |π| such that π[t1] ∈ ϕ and for every index t2 with

t1 ≤ t2 ≤ |π| we have that π[t2] ̸∈ ψ. This implies that Eff ′(π[t1]) deletes gotψ
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(line 32 of pseudocode) and that no action executed after t1 adds gotψ. Since

gotψ is a conjunct of G′, π does not achieve the goal (contradiction).

• (c = AX(ϕ, ψ)). π does not satisfy AX(ϕ, ψ) implies that either the last action

of π (an−1) makes ϕ true or there are two subsequent actions π[t] and π[t+ 1]

such that π[t] ∈ ϕ and π[t+ 1] ̸∈ ψ. In the first case, by construction, we have

that a′n−1 adds requestψ. Since requestψ is a conjunct of G′, π does not achieve

the goal (contradiction). In the other case, we have that Eff ′(π[t]) achieve

requestψ, and that ¬requestψ is a conjunct of Pre ′(π[t + 1]) (lines 25 and 27

of pseudocode). Therefore π[t+ 1] is not applicable (contradiction).

• (c = PA(ϕ1, . . . ϕk)). π does not satisfy PA(ϕ1, . . . ϕk) implies that it does not

exist a sequence ⟨a1, . . . , ak⟩ of actions from π, ordered as in π, such that for

every i ∈ {1, . . . , k} ai ∈ ϕi. From the algorithm (line 35 of pseudocode) it

follows that an action a′1 has stage1c as an effect only if a1 ∈ ϕ1, and that an

action a′i has stage
i−1
c ▷ stageic as an effect only if ai ∈ ϕi. This implies that

there exists no sequence of actions ⟨a1, . . . , ak⟩ from π, ordered as in π, such

that stage1c ∈ Eff ′(a1) and for every other action stagei−1
c ▷ stageic ∈ Eff (a′i).

Therefore, by construction, stagekc will not hold in the last state reached by π

(contradiction).

6.2 Experimental Analysis

Our experiments are aimed at evaluating the usefulness of action constraints as

knowledge that can be effectively exploited to improve solution coverage and so-

lution quality (expressed as plan length). We evaluate the behavior of a classical

planner with/without this (compiled) knowledge. For comparison, we also investi-

gate how the classical planner can be enhanced by using the same control knowledge

expressed as (compiled) state trajectory constraints formulated in ltlf or pddl3.

As a classical planner, we used lama [Richter and Westphal, 2010], which was run

on the original benchmark problems and the corresponding problems extended with
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control knowledge. This knowledge was compiled by three different methods: pac-c1

(for action constraints), tcore (for pddl3 constraints), and ltl-e (for ltlf con-

straints) [Baier and McIlraith, 2006a]. To our knowledge, tcore and ltl-e are the

most effective approaches for dealing with the considered class of constraints.

We measured performance in terms of the number of solved instances (coverage),

the CPU time of the planner, and the length of the solution plan (when found).

For the compilation-based approaches, CPU time includes compilation time. All

experiments ran on an Xeon Gold 6140M 2.3 GHz, with time and memory limits of

1800s and 8GB, respectively.

6.2.1 Benchmark Design

Since there are no available benchmarks that feature action constraints, we gen-

erated a new benchmark suite starting from the problems of the 5th International

Planning Competition. We considered the following domains: Trucks, Storage, TPP,

Openstack and Rover. All original instances of Rover, TPP, and Openstack are eas-

ily solved by lama, while the planner struggles to find solutions for some instances

of Trucks and Storage. For this reason, we designed our action constraints with

different objectives for the two groups of domains: in Trucks and Storage, con-

straints were designed to boost problem coverage, while in the other domains, the

constraints were designed to improve solution quality. Our benchmark suite involves

160 instances: 30 in Trucks, Storage, TPP, and Openstack, and 40 in Rover. To

evaluate the use of ltlf and pddl3, for each instance, we generated two additional

instances: one encoding the action constraints into an equivalent formulation in

ltlf , and the other encoding an equivalent instance using pddl3 constraints. Such

instances were not formulated starting from the action constraints specification; that

is, the constraint knowledge was directly formulated into action constraints or state

constraints (pddl3 or ltlf ), without going through action constraints first. Note

that the conversion to pddl3 has been possible only for a subset of the considered

domains. In what follows, we describe the constraints introduced in each domain.

1pac-c can be downloaded at https://github.com/LBonassi95/PAC-C.
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TPP. This domain encodes the Traveling Purchaser Problem (TPP) Ramesh [1981].

We have a set of markets and a set of products. Each market sells different products

in different quantities, and the objective is to collect and deliver at the depot the

required quantity of products by using trucks. Each truck can drive to different

locations, buy, load, and unload products. While a single truck is sufficient to visit

all markets, we observed that a greedy planner tends to move all trucks back and

forth from depots to markets producing very bad quality plans. To overcome this

problem we forced the planner to use only a single truck driving in a subset of the

roads via the following always constraints:

always(∀ ?from, ?to · ¬Drive(truck2, ?from, ?to))

always(¬Drive(truck1,market2, depot1)∧

¬Drive(truck1,market1,market2))

Moreover, we forced the truck to visit markets in a precise order through the following

pattern constraint:

pattern(Drive(truck1, depot1,market2),

Drive(truck1,market2,market1),

Drive(truck1,market1, depot1))

In TPP a planner is allowed to move a truck multiple times from depots to markets to

deliver a product; a better strategy is gathering the required quantity of a product

and then going back to unload the product. We enforced this by constraint

sometime(∃ ?market · Load(product1, truck1, ?market, levelx))

This constraint is repeated for every product, and in each case, it is satisfiable as

trucks have unlimited storage space. Finally, we require that after buying a product,
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that product is immediately loaded in the truck:

always-next(

∃ ?product, ∃ ?market · Buy(truck1, ?product, ?market),

∃ ?product, ∃ ?market, ∃ ?level · Load(?product, truck1, ?market, ?level))

For TPP, we also designed an equivalent formulation using ltlf constraints by trans-

ferring the constraints over actions to constraints over states. This can be done by

inspecting the action structure and enforcing to traverse only those states that would

be traversed by the actions. E.g., we formulate pattern constraints in ltlf as follows:

F(At(truck1, depot1) ∧ X(At(truck1,market2)∧

X(F(At(truck1,market2) ∧ X(At(truck1,market1)∧

X(F(At(truck1,market1) ∧ X(At(truck1, depot1)))))))))

Overall, we have one constraint in the smallest benchmark instance and 22 constraints

in the largest one.

Storage In this domain the goal is to move some crates inside depots with a set of

hoists. Hoists can operate inside and outside depots, lift crates, and drop them into

depots or containers. Finding a solution in Storage can be a difficult task because

leaving a crate right at the entrance of a depot will prevent hoists from moving

into that depot in the future. To aid the planner, we forced crates to be positioned

starting from the storage areas further away from the entrance. This was encoded

using a pattern constraint. We also prevented the unnecessary lifting of a crate via

the following constraint:

∀ ?crate · at-most-once(∃ ?hoist · Lift(?hoist, ?crate)).

All constraints were also translated into pddl3 and ltlf . E.g., the previous

at-most-once constraint was translated in ltlf by the following formula, for each
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crate c, where ϕ = ∃ ?hoist · Lifting(?hoist, c):

G(ϕ⇒ (ϕU (G(¬ϕ) ∨ last)))

Each benchmark instance has from 2 to 21 constraints.

Trucks. This is a logistics domain concerning delivering packages to different loca-

tions by some trucks. The space inside the trucks is partitioned into areas, and a

package can be loaded in an area only if all areas in between the door and the area in

consideration are free. This requirement must also hold when a package is unloaded.

In addition, some packages must be delivered by a deadline. To improve problem

coverage, we used at-most-once constraints to impose that every package is loaded

inside a truck at most one time. Overall, each benchmark instance has from 3 to 20

constraints.

Rover. The objective is to acquire data about soil, rocks, and images of a planet.

Data are gathered by a set of rovers that can move across waypoints. Each rover has

different equipment to either sample the soil/rocks or take images. The acquired data

must be communicated to the lander. In this domain, many actions are unnecessary

to achieve the goal. E.g., if the goal does not require the data of the rock located

at some waypoint, there is no need to sample it. Such actions can be forbidden

through always constraints. Moreover, by a set of sometime-before constraints,

we required that the rovers communicate data only after all the needed data have

been gathered. Finally, we broke some symmetrical solutions by forcing an order to

the communications:

sometime-before(

∃ ?rover · Send soil data(?rover, waypointx),

∃ ?rover · Send rock data(?rover, waypointy))
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These constraints were also formulated in ltlf and pddl3. E.g., the previous action

constraint in ltlf is:

(¬ϕ∧ψ)R (¬ϕ)

with ϕ = Communicated soil data(waypointx)

ψ = Communicated rock data(waypointy)

Each benchmark instance has from 6 to 138 constraints.

Openstack. This domain models a combinatorial optimization problem where a set

of orders must be shipped. To start the production of an order, a new “stack” must

be opened. Each order can be shipped only if a given set of products associated with

that order has been produced. Once an order is shipped, the previously occupied

stack can be used for new orders. To make a product, all orders that include it must

be in a stack. The objective is to find a production that minimizes the number of

opened stacks. The domain actions can open a new stack, start a new order, ship a

finished order, set up the machine for production, and make a product. An optimal

solution plan has the fewest open-new-stack actions. To aid the planner in finding a

good quality solution, we used two always-next constraints: the first requires that

after opening a new stack an order is immediately started; the second requires that

after setting up the machine, the product is immediately made. Every instance of

Openstack features these two constraints.

6.2.2 Experimental Results

Coverage. Table 6.1 shows the overall coverage achieved using baseline (lama

run on the original instances without constraints), pac-c, ltl-e and tcore. We

first comment on the results obtained for Storage and Trucks, the two domains

featuring constraints formulated to improve coverage. The action constraints in

Trucks help the planner by pruning the search space, and this led pac-c to solve

7 more instances w.r.t. baseline. For Storage, the baseline fails to solve 10

instances, and we advocate this to the fact that hoists can leave crates in areas that
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Domain baseline pac-c ltl-e tcore

Trucks (30) 15 22 11 18
Storage (30) 20 30 13 28

Rover (40) 40 40 20 40
TPP (30) 30 30 17 –
Openstack (30) 30 30 5 –

Total 135 152 66 86

Table 6.1: Coverage of the baseline, pac-c, tcore and ltl-e. In parenthesis, the
number of benchmark instances for a given domain.

will obstruct future movements inside the depot, and this is not captured by lama’s

heuristic. This cannot happen for the instances with action constraints: a hoist can

lift a crate at most once, and crates must be positioned starting from areas that are far

away from the door. With these constraints, pac-c manages to solve all instances of

Storage. These results confirm that action constraints can improve the performance

of a state-of-the-art classical planner. Also, using tcore coverage is increased, but

not as much as with pac-c: 3 and 8 more instances are solved in Trucks and Storage,

respectively. By encoding the same knowledge as state constraints in ltlf and using

ltl-e, we did not obtain any improvement. Rather, the performance of lama was

even worsened (the coverage was reduced for all considered domains). pac-c turned

out to be (much) more effective, coverage-wise, than ltl-e and tcore.

Solution quality. Table 6.2 and Figures 6.1a, 6.1b and 6.1c give an overall picture

of the quality of the solutions (in terms of plan length) obtained by the compilation-

based systems with respect to the baseline across all domains. From Figure 6.1a it

is possible to see that pac-c performs really well in Rover, TPP, and Openstack. In

TPP, the baseline moves trucks in a very suboptimal way to buy all products, while

pac-c substantially reduces the number of drive actions. Plan length is improved for

25 instances, and on average, plans have 40 actions less than the baseline. Also in

Rover and Openstack pac-c performs well, improving quality in most cases. These

results confirm that control knowledge expressed as action constraints can effectively
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Domain
Improved instances Avg improvement

pac-c ltl-e tcore pac-c ltl-e tcore

Trucks 3 1 4 -1.00 -1.27 -0.80
Storage 3 1 2 -6.30 -4.46 -5.70

Rover 22 5 24 7.33 0.55 5.28
TPP 25 12 – 40.13 15.82 –
Openstack 24 5 – 3.03 1.80 –

Table 6.2: Pairwise comparison of pac-c/ltl-e/tcore vs the baseline in terms
of plan length over instances solved by both the two compared systems. The first 3
columns show the instances number with improved solutions, the others the average
improvement.

lead to better-quality solutions. With ltl-e the improvement is limited. tcore

shows good performance in Rover, while for Openstack and TPP it was not possible

to reformulate our action constraints in pddl3 (in the tables indicated with “–”). For

Trucks and Storage, solution quality is worsened by all the compared systems. In

our benchmarks, coverage and quality are not improved at the same time; this is not

surprising, since they were designed with constraints aimed at improving coverage

or solution quality, but not both.

CPU time. Figure 6.1d shows how coverage and CPU time are related. As ex-

pected, all compilation-based approaches tend to increase their coverage over time

more slowly w.r.t. the baseline, since performing the compilation takes some time

that we do not have in baseline. While the coverage of the baseline tails off after

around 26 secs (coverage gets to 132 solved instances), pac-c continues to increase

coverage, outperforming baseline after about 90 CPU seconds.

6.3 Discussion and Conclusions

Imposing constraints on the action trajectory of a plan is useful to guide the planner

search, as well as to generate plans that have some desired properties. In this chap-

ter, we presented a compilation-based approach to plan with pac action trajectory
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exploit knowledge expressed as (compiled) action constraints more effectively than

equivalent formulations using state-trajectory constraints.
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Chapter 7

Handling Pure-Past Linear

Temporal Logic Trajectory

Constraints

In this chapter, we study the problem of planning with temporally extended goals

expressed in ppltl. As discussed in Section 3.1, ppltl has the same expressive

power as ltlf . However, as we show in the following sections, ppltl can be handled

more efficiently than ltlf . Specifically, we demonstrate that planning for ppltl

goals can be translated into classical planning with minimal additional complexity,

introducing a number of new fluents that are at most linear in the size of the ppltl

goal, and preserving plan size exactly [Nebel, 2000].

Leveraging this encoding, we developed a system named Plan4Past, which can

be used alongside any classical planner, such as lama [Richter and Westphal, 2010].

Our empirical analysis studies the effectiveness of Plan4Past, showing that a state-

of-the-art classical planner performs better when utilizing our compilation method

compared to existing ltlf compilation over the considered benchmark instances.
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7.1 Handling PPLTL Goals

In this section, we develop the basis for our technique. First, we observe that any

sequence of actions produces a state trajectory on which ppltl formulas can be

evaluated. Therefore, while the planning process goes on, prefixes are produced,

state trajectories are generated, and over them, ppltl goals can be evaluated. The

difficulty is that evaluating ppltl formulas requires a state trajectory, and searching

through state trajectories is quite demanding. Instead, our technique does not con-

sider state trajectories at all. In particular, it exploits the following intuitions: (i)

to evaluate the ppltl goal formula, we only need the truth value of its subformulas;

(ii) every ppltl formula can be put in a form where its evaluation depends only

on the current propositional evaluation and the evaluation of a key set of ppltl

subformulas at the previous instant; (iii) one can recursively compute and keep the

value of such a small set of formulas as additional propositional variables in the state

of the planning domain. Next, we detail these intuitions.

As discussed in Section 4.3, temporal operators in ltlf can be decomposed into

present and future components using the fixpoint characterization of a ltlf formula.

Analogously, ppltl formulas can be decomposed into present and past components,

given the fixpoint characterization of the since operator:

ϕ1 Sϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ Y(ϕ1 Sϕ2)).

Exploiting this equivalence, the formula decomposition can be computed by recur-

sively applying the following transformation function pnf(·):

• pnf(p) = p;

• pnf(Yϕ) = Yϕ;

• pnf(ϕ1 Sϕ2) = pnf(ϕ2) ∨ (pnf(ϕ1) ∧ Y(ϕ1 Sϕ2));

• pnf(ϕ1 ∧ ϕ2) = pnf(ϕ1) ∧ pnf(ϕ2);

• pnf(¬ϕ) = ¬pnf(ϕ).
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For convenience, we add pnf(Oϕ) = pnf(ϕ) ∨ Y(Oϕ).

A formula resulting from the application of pnf(·) is in Previous Normal Form

(pnf). Note that formulas in pnf have proper temporal subformulas (i.e., subfor-

mulas whose main construct is a temporal operator) appearing only in the scope of

the Y operator. Also, observe that the formulas of the form Yϕ in pnf(φ) are such

that ϕ ∈ sub(φ). It is easy to see that the following hold:

Proposition 1. Every ppltl formula φ can be converted to its pnf form pnf(φ) in

linear-time in the size of the formula (i.e., |sub(φ)|). Moreover, pnf(φ) ≡ φ.

Proof. Immediate from the definition of pnf(·) and the semantics of ppltl formulas.

Example 27. Consider the formula φ = a SY(b). The pnf of φ is:

pnf(a SY(b)) = pnf(Y(b)) ∨ (pnf(a) ∧ Y(a SY(b))) = Y(b) ∨ (a ∧ Y(a SY(b))).

Given a state trajectory τ = ⟨s0, s1, . . . sn⟩, we have that τ, n |= pnf(a S b) iff either

τ, n − 1 |= b (which is equivalent to sn−1 |= b) or sn |= a and τ, n − 1 |= a S b. As

we can see, to determine the truth of a SY(b), we only need the last state sn and the

prefix ⟨s0, s1, . . . sn−1⟩ of τ .

Now, we show that to evaluate a ppltl formula φ, we only need to keep track of

the truth values of some key subformulas of φ. To do so, we introduce Σφ as the set

of propositions of the form “Yϕ” containing:

• “Yϕ” for each subformula of φ of the form Yϕ;

• “Y(ϕ1 Sϕ2)” for each subformula of φ of the form ϕ1 Sϕ2.

Example 28. Consider φ = a SY(b). In this case, Σφ = {“Y(a SY(b))”, “Y(b)”}.

This means that, to evaluate φ, we only need to keep track of Y(a SY(b)) and Y(b)

using the propositional variables of Σφ.

To keep track of the truth of each proposition in Σφ, we define a specific inter-

pretation σ:
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σ : Σφ → {⊤,⊥}

Intuitively, given an instant i, σi tells us which propositions in Σφ are true at instant

i. By suitably maintaining the value of propositions in Σφ in σi, we can evaluate a

ppltl formula just by using the propositional interpretation in the current instant i

and the truth value assigned by σi to propositions related to the previous instant.

Definition 18. Let si be a propositional interpretation over P, σi a propositional

interpretation over Σφ, and ϕ a ppltl subformula in sub(φ), we define the predicate

val(ϕ, σi, si), recursively as follows:

• val(p, σi, si) iff si |= p;

• val(Yϕ′, σi, si) iff σi |= “Yϕ′”;

• val(ϕ1 Sϕ2, σi, si) iff val(ϕ2, σi, si) ∨ (val(ϕ1, σi, si) ∧ σi |= “Y(ϕ1 Sϕ2)”);

• val(ϕ1 ∧ ϕ2, σi, si) iff val(ϕ1, σi, si) ∧ val(ϕ2, σi, si);

• val(¬ϕ′, σi, si) iff ¬val(ϕ′, σi, si).

Intuitively, the val(ϕ, σi, si) predicate allows us to determine the truth value of

any ppltl formula ϕ ∈ sub(φ) by reading a propositional interpretation si from the

state trajectory τ and keeping track of the truth value of the propositions in Σφ by

means of σi.

Example 29. Consider the formula φ = a SY(b). Following Definition 18, we can

obtain the following rules:

• val(a SY(b), σi, si) iff val(Y(b), σi, si) ∨ (val(a, σi, si) ∧ σi |= “Y(a S b)”);

• val(Y(b), σi, si) iff σi |= “Y(b)”;

• val(a, σi, si) iff si |= a

This means val(a SY(b), σi, si), which is meant to capture the truth of a SY(b),

holds iff either σi |= “Y(b)”, or si |= a and σi |= “Y(a S b)”.
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Observe that the rules in Definition 18 basically follow the pnf transformation

rules where subformulas within the Y-scope are interpreted as propositions.

Now, given a state trajectory τ = ⟨s0 · · · sn⟩ over P , we compute a corresponding

state trajectory τ [φ] = σ0 · · · σn over Σφ, where:

• σ0(“Yϕ”)
.
= ⊥ for each “Yϕ” ∈ Σφ;

• σi(“Yϕ”)
.
= val(ϕ, σi−1, si−1), for all i with 0 < i ≤ n.

By constructing the trajectory τ [φ] in this way, we can determine the truth of

every ϕ ∈ sub(φ) at each step i by using val(ϕ, σi, si). This simple operation is shown

in Example 30.

Example 30. Consider the formula φ = a SY(b). Let τ = ⟨{b}, {}⟩. In this case,

using the rules shown in Example 29, we have:

• For i = 0

– σ0(“Yb”)
.
= ⊥

– σ0(“Y(a SY(b)))”)
.
= ⊥

• For i = 1

– σ1(“Yb”)
.
= val(b, σ0, s0) = ⊤

– σ1(“Y(a SY(b)))”)
.
= val(a SY(b)), σ0, s0) = ⊥

Using a state-based representation, τ [φ] can be seen as τ [φ] = ⟨{}, {“Yb”}⟩. Given

τ [φ], we can determine that val(a SY(b)), σ1, s1) holds. Therefore, τ, 1 |= a SY(b).

We now formally prove this result. First, this property holds for state trajectories

of length 1.

Lemma 1. Let φ be ppltl formula over P, ϕ ∈ sub(φ) a subformula of φ, and

τ = s0 a state trajectory over P of length 1. Then, s0 |= ϕ iff val(ϕ, σ0, s0).

Proof. By structural induction on the formula ϕ.

• ϕ = p. By definition of val(·), val(p, σ0, s0) iff s0 |= p.
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• ϕ = Yϕ′. By definition of σ0, σ0(“Yϕ
′”) = ⊥, and by the semantics, s0 ̸|= Yϕ′.

Therefore, the thesis holds.

• ϕ = ϕ1 Sϕ2. val(ϕ1 Sϕ2, σi, si) iff val(ϕ2, σi, si)∨(val(ϕ1, σi, si)∧σi |= “Y(ϕ1 Sϕ2)”).

By definition of σ0, σ0(“Y(ϕ1 Sϕ2”)) = ⊥, hence the formula above simplifies to

val(ϕ2, σi, si). On the other hand, by the semantics, s0 |= ϕ1 Sϕ2 iff s0 |= ϕ2.

Hence, by induction hypotesis the thesis holds.

• ϕ = ϕ1 ∧ ϕ2 or ϕ = ¬ϕ′. The thesis holds by structural induction.

Next, we extend the previous result to state trajectories of any length.

Theorem 9. Let φ be a ppltl formula over P, ϕ ∈ sub(φ) a subformula of φ, τ a

state trajectory over P, and τ [φ] the corresponding state trajectory over Σφ. Then,

τ |= ϕ iff val(ϕ, last(τ [φ]), last(τ)).

Proof. We prove the thesis by double induction on the length of the state trajectory

τ and on the structure of the formula ϕ.

Base case. τ = s0. By Lemma 1, the thesis holds.

Inductive step. Let τ = τn−1·sn. By inductive hypothesis, the thesis holds for

the state trajectory τn−1 of length n− 1:

τn−1 |= ϕ iff val(ϕ, last(τ
[φ]
n−1), last(τn−1))

Now, we prove that the thesis holds also for τn−1·sn:

τn−1·sn |= ϕ iff val(ϕ, last((τn−1·sn)
[φ]), last(τn−1·sn))

To prove the claim, we now proceed by structural induction on the formula, knowing

that last((τn−1·sn)
[φ]) = σn and last(τn−1·sn) = sn:
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• ϕ = p. We have τn−1·sn |= p iff sn |= p. For the val(·) predicate, we have

sn |= p iff val(p, σn, sn). Therefore, the thesis holds.

• ϕ = Yϕ′. We have τn−1·sn |= Yϕ′ iff τn−1 |= ϕ′. By inductive hypoth-

esis, τn−1 |= ϕ′ iff val(ϕ′, last(τ
[φ]
n−1), last(τn−1)). For the val(·) predicate

val(Yϕ′, σn, sn) iff σn |= “Yϕ′”, which in turn is defined as val(ϕ′, last(τ
[φ]
n−1) ,

last(τn−1)). Hence, the thesis holds.

• ϕ = ϕ1 Sϕ2. In this case, it suffices to remember that τn−1·sn |= ϕ1 Sϕ2 iff

τn−1·sn |= ϕ2 ∨ (ϕ1 ∧ Y(ϕ1 Sϕ2)). On the other hand, val(ϕ1 Sϕ2, σn, sn) iff

val(ϕ2, σn, sn)∨(val(ϕ1, σn, sn)∧σn |= “Y(ϕ1 Sϕ2)”). By structural induction we

have that τn−1·sn |= ϕ1 iff val(ϕ1, σn, sn), and τn−1·sn |= ϕ2 iff val(ϕ2, σn, sn).

Furthermore, τn−1·sn |= Y(ϕ1 Sϕ2) iff τn−1 |= ϕ1 Sϕ2, and σn |= “Y(ϕ1 Sϕ2)”

iff val(ϕ1 Sϕ2, last(τ
[φ]
n−1), last(τn−1)). Finally, we have that τn−1 |= ϕ1 Sϕ2

iff val(ϕ1 Sϕ2, last(τ
[φ]
n−1), last(τn−1)) holds by induction on the length of the

state trajectory.

• ϕ = ϕ1 ∧ ϕ2 or ϕ = ¬ϕ′. The thesis holds by structural induction.

Theorem 9 gives us the basis of our technique as it guarantees that by keeping a

suitably updated state trajectory σ, we can evaluate our ppltl goal only using the

propositional interpretation in the current instant and the truth value of the “Yϕ”

formulas in σ, without considering the entire state trajectory.

7.2 Compiling PPLTL Goals Away

We devise a new encoding for planning for ppltl goals by exploiting Theorem 9.

The key idea behind our approach is that, given a ppltl formula and a planning

problem, we keep track of values of formulas in σ as actions are applied.

Similarly to other encoding-based approaches dealing with temporally extended

goals, for example, [Baier and McIlraith, 2006a,b, Torres and Baier, 2015], we address

planning for temporally extended goals in three steps. First, compile the original
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Components Encoding

Fluents F ′ F ′ := F ∪ Σφ

Derived Predicates D′ D′ := D ∪ {valϕ | ϕ ∈ sub(φ)}

Axioms X ′

X ′ := X ∪ {xϕ | ϕ ∈ sub(φ)} where xϕ is






























valp ← p (ϕ = p)

valYϕ′ ← “Yϕ′” (ϕ = Yϕ′)

valϕ1 Sϕ2 ← (valϕ2 ∨ (valϕ1 ∧ “Y(ϕ1 Sϕ2)”)) (ϕ = ϕ1 Sϕ2)

valϕ1∧ϕ2 ← (valϕ1 ∧ valϕ2) (ϕ = ϕ1 ∧ ϕ2)

val¬ϕ′ ← ¬valϕ′ (ϕ = ¬ϕ′)

Action Labels A A := A, i.e., unchanged

Preconditions Pre Pre(a) := Pre(a) for every a ∈ A, i.e., unchanged

Effects Eff ′ Eff ′(a) := Eff (a) ∪ {valϕ ▷ {“Yϕ”},¬valϕ ▷ {¬“Yϕ”} | “Yϕ” ∈ Σφ}

Initial State I ′ I ′ := σ0 ∪ I

Goal G′ G′ := valφ

Table 7.1: Components of the compiled classical planning problem
Π′ = ⟨F ′, D′, X ′, A, I ′, G′,Pre,Eff ′⟩ for a given planning problem Π =
⟨F,D,X,A, I, φ,Pre,Eff ⟩.

planning problem Π with the temporally extended goal into a planning problem Π′

with a final-state goal. Second, invoke any off-the-shelf sound and complete planner

to compute a plan solving the compiled problem Π′. Third, rework the computed

plan to get the solution to the original problem Π. In our approach, we exploit

Theorem 9 to do the encoding in the first step, and since no extra control actions

are introduced, step three trivializes.

Given a planning problem Π = ⟨F,D,X,A, I, φ,Pre,Eff ⟩, the compiled classical

planning problem is Π′ = ⟨F ′, D′, X ′, A, I, G′,Pre,Eff ′⟩. Table 7.1 shows the formal

construction of Π′.

In this encoding, we employ axioms to determine which subformula ϕ of the goal
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φ is true in a planning state s. In particular, the new classical planning problem

includes an axiom valϕ ← ψ for every subformula ϕ ∈ sub(φ). Given a sequence

of states (σ0, I), . . . , (σn, sn), these axioms mimic the rules in Definition 18 and are

intended to be such that the current state (σi, si) |= valϕ iff val(ϕ, σi, si) (in this

section, without loss of generality, we assume that the interpretation σi is represented

as a set of atoms, and we use (σi, si) to denote the state σi ∪ si). Axioms not only

elegantly model the mathematics behind Theorem 9 (that is, val(ϕ, σi, si)), but also

simplify the action schema and goal descriptions without adding control predicates

among fluents. From Table 7.1, it is also easy to see that no new action is added to

the encoded problem and that the precondition function Pre remains unchanged. In

fact, every problem’s action a ∈ A is only modified on its effects Eff (a) by adding

a way to update the assignments of propositions in Σφ. These additional effects

are exactly the same for every action in A. Moreover, since σi maintains values

of “Yϕ” in Σφ, they are independent from the effect of the action on the original

fluents, which, instead, is maintained in the propositional interpretation si. This

means that we can compute the next value of σ without knowing which action has

been executed or which effect such action has had on the original fluents. Observe

that the auxiliary part eff val in Eff ′(a) updates the subformula values in Σφ without

affecting any fluent f ∈ F of the original problem. This is crucial for the encoding’s

correctness.

Example 31 (Compilation Example). We describe in detail the compilation of the

formula φ = t ∧ (¬a S c) that enforces scenarios such as the one in which the agent

must achieve the goal t while a was always false since c became true. The set of

subformulas of φ is sub(φ) = {a, c, t,¬a, (¬a S c), t ∧ (¬a S c)}. Given a planning

problem Π = ⟨F,D,X,A, I, φ,Pre,Eff ⟩, the compiled classical planning problem

Π′ = ⟨F ′, D′, X ′, A, I, G′,Pre,Eff ′⟩ is defined as follows;

• (F ′). The new set of fluents is the union of the original set of fluents F with

Σφ = {“Y(¬a S c)”}. Therefore, F ′ = F ∪ {“Y(¬a S c)”}.

• (D′). The new set of derived predicates is obtained by adding one fluent of the

form valϕ for each ϕ ∈ sub(φ). Therefore, D′ = D ∪ {vala, valc, valt, val¬a,

val¬a S c, valt∧(¬a S c)}.
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• (X ′). Following the rules illustrated in Table 7.1, we have that X ′ is X plus

the following new axioms:

– vala ← a;

– valc ← c;

– valt ← t;

– val¬a ← ¬vala.

– val¬a S c ← (valc ∨ (val¬a ∧ “Y(¬a S c)”));

– valt∧(¬a S c) ← (valt ∧ val¬a S c).

• (Eff ′). We extend the effects of each action act ∈ A as follows:

Eff (act) = Eff (act) ∪ {val¬a S c ▷ “Y(¬a S c)”,¬val¬a S c ▷ ¬“Y(¬a S c)”}.

• (I ′). The new initial state is I ′ = I∪σ0 where σ0 = ∅, meaning that “Y(¬a S c)”

is false in I ′.

• (G′). The new final-state goal is G′ = {valt∧(¬a S c)}.

Consider the plan π = ⟨a0, a1⟩ for Π that induces the state trajectory

τ = ⟨{a}, {c}, {t}⟩.

It is easy to see that τ |= t ∧ (¬a S c); in fact, a is false since c became true in the

second state and t is true at the end of the trajectory. Now we comment on the state

trajectory τ ′ induced by π for the compiled problem Π′. By analyzing the structure of

the compiled problem Π′, and in particular the new effect function Eff ′, we can see

that π induces a state trajectory τ ′ defined as follows:

τ ′ = ⟨{a}, {c}, {t, “Y(¬a S c)”}⟩.

By analyzing the state trajectory, we can see that the derived predicate val¬a S c becomes

true in the second state because c holds. Therefore, the conditional effect val¬a S c ▷
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“Y(¬a S c)” of action a1 makes “Y(¬a S c)” true in the last state. In such a state,

val¬a S c holds because “Y(¬a S c)”∧¬a holds. Furthermore, since t is true in the last

state, we have that valt∧(¬a S c) (the goal of Π′) holds in the last state.

It is easy to see that our encoding is polynomially related to the original problem

and the satisfaction of the ppltl goal φ on the trace τ ′ corresponds to the satisfaction

of valφ in the last instant of τ ′.

Theorem 10. The size of the encoded planning problem Π′ is polynomial in the size

of the original problem Π. In particular, the additional fluents introduced are linear

in the size of the temporally extended ppltl goal φ of Π.

Proof. Immediate by analyzing the construction.

Next, we turn to correctness. Let Π = ⟨F,D,X,A, I, φ,Pre,Eff ⟩ be a planning

problem, and let Π′ be the corresponding compiled planning problem as previously

defined. Any trace τ ′ = s′0, . . . , s
′
n on Π′ can be seen as τ ′ = zip(τ [φ], τ), with

τ [φ] = σ0, . . . , σn ∈ (2Σϕ)+ and τ = I, . . . , sn ∈ (2F )+, where each element of τ ′ is of

the form s′i = (σi, si) for all i ≥ 0. Here, we use the zip(·, ·) function to represent the

aggregation of the two traces τ [φ] and τ . Given a trace τ ′ = s′0, . . . , s
′
n on the encoded

planning problem Π′, there exists a single trace τ ′ |F= τ = I, . . . , sn on the original

planning problem Π. Conversely, given a trace τ = I, . . . , sn on Π, there exists a

unique corresponding trace τ [φ], and hence a single τ ′ = zip(τ [φ], τ) on the encoded

problem Π′. Finally, we observe that every executable action sequence a0, . . . , an−1

in the planning problem Π with ppltl goal φ is also executable in the encoded

planning problem Π′ (and vice versa) since the encoding does not have auxiliary

actions, actions preconditions do not change, and additional conditional effects only

affect the new fluents in Σφ.

Theorem 11 (Soundness and Completeness). Let Π be a planning problem with a

ppltl goal φ, and Π′ be the corresponding encoded planning problem with a reacha-

bility goal. Then, every action sequence π = ⟨a0, . . . , an−1⟩ is a solution for Π iff π

is a solution for Π′.
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Proof. Every executable action sequence a0, . . . , an−1 in the planning problem Π

with ppltl goal φ is also executable in the encoded planning problem Π′ (and vice

versa) since, by definition, the encoding does not have auxiliary actions, actions

preconditions do not change, and additional conditional effects only affect the new

fluents in Σφ.

The action sequence π is a plan if its induced state trace τ is such that τ |= φ.

By Theorem 9, we have τ |= φ iff val(φ, last(τ [φ]), last(τ)). However, by construction

of the encoding for Π′, we have that val(φ, last(τ [φ]), last(τ)) holds iff valφ holds in

the last state of the induced state trace for Π′, that is, in τ ′ = zip(τ [φ], τ). In other

words, val(φ, last(τ [φ]), last(τ)) iff last(τ ′) |= valφ. Hence, the thesis holds.

A direct consequence of Theorem 11 is that every sound and complete planner

returns a plan π for the encoded planning problem Π′ if a plan π for the original

planning problem Π with ppltl goal exists. If Π′ has no solution, then so does Π.

7.3 Experiments

We implemented the approach of the previous section in a tool called Plan4Past1

(p4p). p4p takes as input a pddl description and a ppltl formula and gives as

output a new pddl description, which can be processed by any classical planner

supporting axioms and conditional effects. We also tested an alternative version of

p4p where all axioms are compiled into conditional effects, two for each sub-formula

ϕ encoding the truth value of ϕ after each action. However, the resulting compilation

proved much less effective than that using axioms, so we do not consider it in our

analysis.

Our analysis aims to shed some light on the effectiveness of temporally extended

goals formulated in ppltl and handled by p4p, and semantically equivalent tem-

porally extended goals formulated in ltlf and handled by either ltl-e [Baier and

McIlraith, 2006a] or ltl-p [Torres and Baier, 2015].

1Source code, benchmarks, and supplementary material are publicly available at https:

//github.com/whitemech/Plan4Past.
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To our knowledge, ltl-e and ltl-p are the best approaches for planning for ltlf

goals2. In particular, as discussed in Section 4.2, ltl-e builds a nfa for the ltlf

formula and computes the Cartesian product with the planning domain (cf. [De Gia-

como and Rubin, 2018]), incurring in a worst-case exponential increase in the number

of states of the nfa. On the other hand, ltl-p uses the fixpoint characterization

of ltlf formulas to devise an encoding that is polynomial but that significantly in-

creases the length of solution plans. Dealing with additional spurious actions has

already been studied in Nebel [2000] theoretically and practically from a heuristic

perspective, for example, in Haslum [2013]. Therefore, the theoretical advantage

of p4p is clear: the encoding is polynomial and preserving plan size exactly Nebel

[2000].

Next, we want to determine whether this theoretical advantage manifests itself

in actual planning performance from a practical perspective. To this end, we tested

the three considered systems over a set of benchmarks and analyzed the number

of problems solved (Coverage), the time spent to find a solution (compilation plus

search time), the number of expanded nodes, and the plan length. As a classical

planner, we considered lama [Richter and Westphal, 2010], a planner built on top

of FastDownward [Helmert, 2006], and ffx [Thiébaux et al., 2005]. lama is a

satisficing planner based on a sophisticated search mechanism that runs (in the first

iteration) Lazy Greedy Best-First Search driven by the hff Hoffmann and Nebel [2001]

and the landmarks counting heuristics. lama yields solution plans of decreasing

plan cost incrementally; for our analysis, we take the first generated plan. ffx is yet

another satisficing planner based on heuristic search and enforced hill climbing and

is the one originally used with ltl-p and ltl-e. Both systems handle the compiled

problems, but in the rest of this section, we will focus on lama as it was the system

with the highest overall coverage for all compilations. All experiments were run on

an Intel Xeon Gold 6140M 2.3 GHz, with runtime and memory limits of 1800s and

8GB, respectively.

2We could also include tcore by limiting benchmark formulas to properties that can be captured
by pddl3. However, our empirical evaluation aims to test the scalability of all compilations on
formulas with many nested operators that cannot be expressed in pddl3.
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7.3.1 Benchmark Domains

Our benchmark suite includes Blocks, Elevator, Rover, and Openstack domains.

These domains were introduced in previous International Planning Competitions,

and all except Elevator have also been used by Torres and Baier [2015]. For Blocks,

Rover, and Openstack we have a set of instances with the same temporally extended

goals defined by Torres and Baier [2015] (hereinafter referred to as TB15) and a

second set of instances with temporally extended goals defined by us (hereinafter

referred to as BF23). For Elevator, we only have BF23. TB15 were originally

specified in ltlf , and for p4p we manually translated them to ppltl. We did so for

all but one type of temporally extended goal used in Torres and Baier [2015], namely

that of type “h : αU β” where α or β have n nested U operators, for which we did

not find an easy translation into ppltl. For each ltlf formula that we translated

into ppltl, we formally and automatically proved their semantic equivalence by

verifying that the two formulations yield the same minimal dfa. BF23 were designed

in ppltl directly, and analogously to what was done for TB15, we formulated an

equivalent formulation in ltlf . TB15 are based on predefined families of formulas

that are independent of the domain. Instead, BF23 are specific for each domain

and were designed to stress all compilations and understand the planner’s scalability

over non-trivial and large instances. Indeed, all instances with TB15 proved trivial

for Plan4Past. For TB15, we have 15 instances for Blocks, 7 for Rover, and 10

for Openstack. Their definition is provided by Torres and Baier [2015]. BF23 are

instead described below.

Blocks. BF23 were formulated to study the performance of all compilations with

complex temporally extended goals. Here, BF23 specify two intertwined goals, both

requiring the existence in the state trajectory of the plan of a particular sequence of

states. Consider a problem with n blocks. The first goal in ppltl is

O(On(b1, b2) ∧ Y(O(On(b2, b3) ∧ Y(O(... ∧ Y(O(On(bn−1, bn)))))))).
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Its translation in ltlf is

F(On(bn−1, bn) ∧ X(F(On(bn−2, bn−1) ∧ X(F(. . . ∧ X(F(On(b1, b2)))))))).

The second goal (for an even number of blocks) in ppltl is

∧

j∈{6,8,...,n}

O(On(bj, bj−1) ∧ Y(ϕ))

where ϕ = O(On(b4, b3) ∧ Y(O(On(b3, b2) ∧ Y(O(On(b2, b1)))))) encoding the con-

struction of a bigger stack. The same constraint formulated in ltlf is

F(On(b2, b1) ∧ X(F(On(b3, b2) ∧ X(F(On(b4, b3) ∧
∧

j∈{6,8,...,n}

X(F(On(bj, bj−1)))))))).

The formulation for an odd number of blocks is analogous. We generate a temporally

extended goal for each instance of the domain, starting from that with 10 up to 30

blocks.

Openstack. Here, the BF23 instances require a valid plan to ship all specified

requests following a specific production order. The ppltl formula

H(Made(p3)→ Y(O(Made(p2)))) ∧ H(Made(p2)→ Y(O(Made(p1))))

encodes that p1 is made strictly before p2, which in turn must be made before p3.

The equivalent ltlf formula is

(Made(p2))R (¬Made(p3)) ∧ (Made(p1))R (¬Made(p2)).

Every order must be shipped, and this is encoded with O(Shipped(order)) in ppltl

and with F(Shipped(order)) in ltlf .

Rover. The goal of this domain is to gather and communicate data about soil, rock,

and images to the Earth using a set of rovers. BF23 enforce a total order over the

communications of the data. This temporally extended goal implicitly requires the
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data to be eventually communicated, and is encoded in ppltl as

O(Data(soil) ∧WY(H(¬Data(rock))))∧

O(Data(rock) ∧WY(H(¬Data(image))))∧

O(Data(image)).

The semantically equivalent formula in ltlf is

(¬Data(rock))U (Data(soil)) ∧ (¬Data(image))U (Data(rock)) ∧ F(Data(image)).

Also, when the rover reaches the lander, that rover must re-calibrate all cameras.

For instance, if the lander is at waypoint wl and the rover r has 2 cameras, c1 and

c2, we have, in ppltl, the formula

((¬At(r, wl) SCalibrated(c1)) ∧ (¬At(r, wl) SCalibrated(c2))) ∨ H(¬At(r, wl))

and, in ltlf , the formula

G(At(r, wl)→ (F(Calibrated(c1)) ∧ F(Calibrated(c2)))).

Elevator. This domain models the problem of scheduling passengers in the use

of an elevator. In BF23, we split the passengers into half VIP and half regular

passengers, where VIP passengers must be served before every regular one. For

instance, we enforce this in ppltl with

O(Served(p2)∧Served(p3))∧O(Served(p0)∧Served(p1)∧WY(H(¬Served(p2)∧¬Served(p3))))

and in ltlf with

F(Served(p2)∧Served(p3))∧(¬Served(p2)∧¬Served(p3))U (Served(p0)∧Served(p1)).
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Also, we model that no passenger may share the elevator with another passenger,

and do so in ppltl with

H(Boarded(p0)→ (¬Boarded(p1) ∧ ¬Boarded(p2)))

and in ltlf with

G(Boarded(p0)→ (¬Boarded(p1) ∧ ¬Boarded(p2))).

7.3.2 Experimental Results

Domain I
Coverage Avg RT

p4p ltl-p ltl-e p4p ltl-p ltl-e

Rover
TB15 7 7 7 6 1.43 21.11 1.98
BF23 40 33 6 22 35.36 – 24.24

Blocks
TB15 15 15 15 8 1.41 20.43 13.13
BF23 21 21 1 1 – – –

Openstack
TB15 10 10 10 6 6.11 31.66 8.75
BF23 30 7 5 8 11.88 68.86 19.50

Elevator BF23 29 29 4 29 231.83 – 228.09

Total 122 48 80

Table 7.2: Coverage and average Run-Time (Avg RT) achieved by p4p, ltl-p and
ltl-e. Averages are only among instances solved by those systems that obtain at
least half of the coverage of the best performer. Column I is the number of instances
in a domain. “–” indicates when a system is excluded by the comparison. Bolds are
for best performers.

Tables 7.2 and 7.3 report on the overall performance of all compilations across

all domains. Coverage-wise, p4p performs equally to or better than both ltl-p and

ltl-e over most instances. For the TB15 instances, p4p achieves the same coverage

as ltl-p (the best ltlf -based compilation) but is much faster in terms of average

runtime: p4p is roughly one order of magnitude faster than ltl-p; this seems to be
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Domain Avg EN Avg PL
p4p ltl-p ltl-e p4p ltl-p ltl-e

Rover
TB15 12.67 616.83 12.67 5.33 5.67 (74.50) 5.33

BF23 7665.36 – 7826.32 43.68 – 43.50

Blocks
TB15 22.12 821.62 21.75 7.50 7.88 (132.88) 7.25

BF23 – – – – – –

Openstack
TB15 52.67 3863.33 52.83 22.00 21.67 (349.00) 22.00
BF23 99.80 1207764.80 72.40 24.00 24.00 (841.00) 24.00

Elevator BF23 1712076.48 – 1712090.79 75.48 – 75.48

Table 7.3: Average Expanded Nodes (Avg EN) and Plan Length (Avg PL) achieved
by p4p, ltl-p and ltl-e. For ltl-p, we report in parenthesis the average PL
considering the actions added by the compilation. Averages are only among instances
solved by those systems that obtain at least half of the coverage of the best performer.
“–” indicates when a system is excluded by the comparison. Bolds are for best
performers.

justified by a great reduction in the number of expanded nodes (up to two orders

of magnitude in Openstack). This is somehow expected. Indeed, for each planning

action taken, ltl-p interleaves quite a complex automaton synchronization phase,

from the initial state all the way to the goal. On average, in TB15 instances, 94.3%

of actions in plans obtained with ltl-p come from the automaton’s synchronization

phases.

The situation is different if we look at the BF23 instances. Here, the best per-

forming ltlf compilation is ltl-e, which is superior to ltl-p over all instances.

BF23 are of increasing dimensions and have been constructed to be computationally

more challenging. For example, in Blocks, the hardest instance in TB15 requires a

22-action plan, while BF23 instances require up to 652 actions. In the case of ltl-p,

the planner has to cope with too many synchronization phases and struggles to find

solutions. If we compare p4p and ltl-e, we observe that p4p is again the system

performing generally better. The only exception is for one instance of Openstack.

ltl-e solves this instance in roughly 739s while p4p times out. By looking at the

average number of expanded nodes, lama’s search turned out to be slightly less

informed with p4p in this domain, which leads to timing out in that particular in-

stance. For Blocks, p4p is instead much more effective than ltl-e, which manages
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strated its practical effectiveness through extensive experiments. Here, we focused

only on ppltl. However, in principle, our approach can be extended to goals ex-

pressed in Pure-Past Linear Dynamic Logic (ppldl) [De Giacomo et al., 2020], a

strictly more expressive variant of ppltl involving regular expressions. Indeed, also

ppldl has a fixpoint characterization of the temporal operators. This extension

remains for future work. Finally, although our focus is on classical planning with

ppltl goals, the theoretical and practical advantages observed in this paper suggest

that ppltl could become a promising candidate for expressing temporally extended

properties in other forms of planning, such as nondeterministic planning.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

This thesis gathers most of the research work done during my doctorate program

and presents the main theoretical and empirical results. In particular, this disserta-

tion focuses on planning to achieve complex temporal specifications represented as

trajectory constraints and temporally extended goals.

We considered the well-known pddl3 language to express trajectory constraints

over state sequences, while we formalized a new language, called pac, to express

trajectory constraints on actions in a plan. Both languages can be formalized using a

subset of Linear Temporal Logic formulas, over state trajectories for pddl3 and over

action sequences for pac, and are simple, effective, and can be handled efficiently;

indeed, although we could reformulate pddl3 and pac constraints in ltlf , directly

handling these languages results to be extremely effective. In particular, we designed

two compilation approaches, tcore for pddl3 and pac-c for pac, which introduce a

minimal amount of atoms, do not add spurious actions, and are sound and complete.

Regarding temporally extended goals, we considered Pure-Past Linear Temporal

Logic, which is a temporal logic formalism that has been recently reviewed in De

Giacomo et al. [2020], is as expressive as ltlf , and only uses temporal operators

that predicate on the past. While ltlf requires dealing with possible extensions

of a state trajectory, as remarked in Section 4.3, ppltl formulas can be evaluated
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only using the past state trajectory that has already been computed. We exploit this

observation to derive an encoding for planning with ppltl goals to classical planning,

which is polynomial, sound, complete, and that, differently from the polynomial

compilation for ltlf goals, does not introduce any additional action.

These techniques for pddl3, pac, and ppltl allow modern classical planners,

such as lama, to solve planning problems with such specifications. A crucial aspect

of the compilation techniques we propose is that they share the same theoretical

advantages regarding complexity: the encodings are polynomial and preserving plan

size exactly Nebel [2000]. To assess the practical effectiveness of these theoretical ad-

vantages, we performed a thorough experimental analysis involving novel benchmark

cases.

For pddl3, we used a sophisticated technique to generate pddl3 planning prob-

lems starting from existing domains featuring only preferences. Moreover, we trans-

lated every pddl3 problem as a planning problem with ltlf temporally extended

goals, enabling the comparison between tcore and the two state-of-the-art ltlf

compilations ltl-e and ltl-p. For each compilation approach, we used lama as a

classical planner. We also considered state-of-the-art planning systems that natively

support pddl3 constraints for these experiments. The results show that tcore is

the system that achieves the highest coverage overall.

Regarding pac, we carefully designed new planning instances featuring control

knowledge, expressed as pac constraints, to help a classical planner solve more in-

stances and improve the quality of solutions. For comparison, we expressed the same

knowledge as pddl3 constraints (when possible) and as ltlf goals, enabling an em-

pirical comparison between pac-c and the two compilations tcore and ltl-e. As

a baseline, we measured the performance of the classical planner lama with the

benchmark instances without knowledge. Then, we ran lama over the problems

with the knowledge handled by pac-c, tcore, and ltl-e. The results show that,

overall, the same knowledge was more effective when expressed as pac constraints

and handled by pac-c.

For ppltl, we compared Plan4Past with ltl-e and ltl-p over a set of bench-

marks that feature semantically equivalent ltlf and ppltl goals. In particular, we

took previous benchmark problems with ltlf goals and formulated such instances
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as planning problems with ppltl goals. Since we observed that these instances were

small and trivially solved by all compilations, we designed a new set of instances

with semantically equivalent ltlf and ppltl goals that are more challenging and

increasing in size. The instances obtained by the compilations were solved using

lama. The empirical results show that Plan4Past outperforms both ltl-e and

ltl-p; ltl-e blows up due to the exponential nature of such a compilation, while

lama is not able to cope with the additional spurious actions introduced by the ltl-

p schema. Instead, Plan4Past is neither exponential nor uses additional spurious

actions. As a result, Plan4Past is the most effective compilation over the set of

considered benchmarks.

8.2 Future Directions

The work done so far explores different ways of expressing and handling trajectory

constraints and temporally extended constraints over states and action sequences.

When properties are natural to express using state constraints, we can use pddl3

or ppltl as a specification language, while pac offers a simple and effective way to

express and handle action constraints. A research line that we are currently exploring

concerns the combination of state and action properties in the trajectory constraints

and temporal goals. Indeed, there is a plethora of properties that require such a

combination. For instance, to require that “if the truck is at the depot and there is

free space available, then it must load a package” we could specify the constraint:

always (At(depot) ∧ FreeSpace⇒ LoadPackage)

This constraint combines the position and space inside a truck, encoded in the

state, with the load action. Another example is “sometimes we drive from city1 to

city2 while having 5 units of fuel”, which could be expressed as:

sometime (FuelLevel(level5) ∧Drive(car, city1, city2))

These are compelling properties that cannot be naturally expressed in pddl3, or
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pac. The next step is to formalize a new language that allows expressing constraints

over trajectories of actions and states. We also plan to study a compilation to handle

such a language, and we are interested in theoretically and experimentally proving

the effectiveness of the proposed approach.

Another research line concerns the extension of pac constraints to more com-

plex planning formalisms that allow the parallel execution of actions. Many pac

constraints such as sometime (Drive(truck1, city1, city2) ∧ Load(package2, truck2))

cannot be satisfied by sequential plans. If we allow actions to be executed in parallel,

then this constraint could be interpreted as “The actions Drive(truck1, city1, city2)

and Load(package2, truck2) must sometimes be executed in parallel in the plan”.

Extending the tcore and pac-c compilations to constraints interpreted over

infinite executions would be an interesting direction, as some properties can be cap-

tured only in this setting. Suppose that we have two processes, P1 and P2, a resource

r, and we want to enforce the following constraint: “Process P1 eventually uses r.

Moreover, every time P1 uses r, then P2 has to use r in the future, and vice versa. In

addition, the resource cannot be used concurrently”. This property can be captured

in pddl3 with the following set of constraints1:

sometime (P1(r))

sometime-after (P1(r), P2(r))

sometime-after (P2(r), P1(r))

always (¬(P1(r) ∧ P2(r))).

A valid solution requires alternating r between P1 and P2 infinitely often. To handle

this class of properties2, we could compactly represent pddl3 and pac constraints as

Büchi automatons and then exploit well-known compilations for ltl goals by Patrizi

et al. [2011, 2013] for classical and nondeterministic planning domains.

Lastly, we are interested in developing effective planning approaches that can

handle complex formalisms like ppltl directly into the search engine. Although some

work addresses the problem of planning with temporally extended goals directly in

1This example has been adapted from De Giacomo et al. [2014].
2We remind the reader that ppltl formulas can be interpreted only over finite executions.
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the search engine, such as Bacchus and Kabanza [1998], current approaches have

been developed in the context of using temporal logic as control knowledge to guide

the search, rather than an objective to be achieved. Indeed, developing a planner

that employs a ppltl-aware heuristic is a very relevant challenge in AI planning that

has yet to be addressed.
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