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In this paper we analyze a new temperature-dependent model for adhesive
contact that encompasses nonlocal adhesive forces and damage effects, as well
as nonlocal heat flux contributions on the contact surface. The related PDE
system combines heat equations, in the bulk domain and on the contact surface,
with mechanical force balances, including micro-forces, that result in the equation
for the displacements and in the flow rule for the damage-type internal variable
describing the state of the adhesive bonds. Nonlocal effects are accounted for by
terms featuring integral operators on the contact surface.

The analysis of this system poses several difficulties due to its overall highly
nonlinear character, and in particular to the presence of quadratic terms, in the
rates of the strain tensor and of the internal variable, that appear in the bulk
and surface heat equations. Another major challenge is related to proving strict
positivity for the bulk and surface temperatures.

We tackle these issues by very careful estimates that enable us to prove the
existence of global-in-time solutions and could be useful in other contexts. All
calculations are rigorously rendered on an accurately devised time discretization
scheme in which the limit passage is carried out via variational techniques.

©2022 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we investigate a PDE system describing adhesive contact between a thermoviscoelastic

body and a rigid support, in the presence of nonlocal thermo-mechanical effects. Its overall highly nonlinear

character is in particular manifest in the heat equations in the bulk domain and on the contact surface. To

prove the existence of global-in-time solutions we develop some techniques that could be of interest for the

analysis of other thermodynamically consistent systems in solid mechanics.
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1.1. The model and the PDE system

The study of adhesive contact and delamination phenomena is of applicative interest due to the extensive
presence of layered structures in several industrial contexts, cf. e.g. [1,2] and the references therein. In this
paper we address a temperature-dependent model for adhesive contact that originates from the theory by
M. FREMOND [3], in the broader framework of the theory of generalized standard materials [4] (see [5] for a
(partial) survey of adhesive contact and delamination models pertaining to this cadre). Our model includes
nonlocal adhesive and damage forces as originally proposed, in the isothermal case, in [6], as well as nonlocal
heat sources on the contact surface. Its derivation, based on the principle of virtual power also encompassing
‘microscopic movements’ as in the approach from [3], was carried out in [5].

The motivation for including nonlocal effects in adhesive contact modeling stems from experiments
showing that elongation, i.e. a variation of the distance of two distinct points on the contact surface, may
have damaging effects on the substance gluing the body to the support along such surface. This is thoroughly
illustrated in [6] also via numerical experiments. The analysis of the isothermal model from [6] was first
carried out in [7]. In the model derived in [5] we have additionally encompassed a nonlocal interaction
between the body and the adhesive substance as far as it concerns heat exchange on the contact surface.

More precisely, during a time interval (0,7"), T' > 0, we consider a thermoviscoelastic body located in
a smooth and bounded domain 2 C R? and lying on a rigid support on a part of its boundary, on which
some adhesive substance is present. Hence, 92 = I'p U I'y U I'c with (1) I'c the contact surface, hereafter
assumed flat and identified with a subset of R?, (2) I'p the Dirichlet part of the boundary, with positive
measure, on which homogeneous boundary conditions are prescribed, and (3) I'v the Neumann part, on
which a traction is applied. The state variables in the bulk domain {2 are the absolute temperature 6 of the
body and its displacement u (at small strains); the state variables defined on the contact surface I'c are the
absolute temperature 0 of the adhesive substance, and a surface damage-type parameter y representing the
fraction of fully effective links in the bonding. As such, x takes values in [0, 1], with x = 0 for completely
damaged bonds, x = 1 for fully intact bonds, and x € (0,1) for the intermediate states. The distinction
between the temperature 6 of the bulk domain and the temperature 65 of the adhesive substance is typical
of FREMOND’s approach to the modeling of thermal effects in rate-dependent adhesive contact, cf. e.g. [8,9].
Nonetheless, it has also been discussed in the context of the rate-independent modeling of delamination,
see [10, Sec. 5.3.3.3].

The evolution of the variables (6, u, 65, x) during the time interval (0,7T) is governed by a system of PDEs
in the bulk domain and on the contact surface derived from the general laws of Thermomechanics and
from suitable choices for the free energy and pseudo-potential of dissipation that also account for nonlocal
interactions between the body and its support. Indeed, the principle of virtual power leads to the quasistatic
momentum balance for the macroscopic movements

—div(Ee(u) + Ve(uy) +00) =f  in 2 x (0,7), (1.1a)

supplemented by the following boundary conditions

u=0 in I'p x (0,7),
(1.1b)

(Ee(u) + Ve(w) +6In=g in I'n x (0,7,
(1.1c)

(Ee(u) + Ve(uy) + 00)n + xu + 0l 0)(u - n)n + /F w(lz—y)ua(z)x(z)x(y)dy 20 in I'c x (0,T).

(1.1d)
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Here, E and V denote the elasticity and the viscosity tensors, I the identity matrix, n the outward unit
normal vector to the boundary df2. Moreover, f is a volume force while g is a traction applied on Iy.
Condition (1.1d), coupling the evolution of u (hereafter, we shall denote its trace on I'c by the same symbol)
to that of x, can be understood as a generalization of the classical Signorini contact conditions. Indeed, it
features a selection § € Ol(_q oj(un)n, with 0I(_ o the subdifferential of the indicator function of the
interval (—o0, 0], that represents a reaction force activated when the non-interpenetration constraint u-n < 0
on ¢ holds as an equality, i.e. when u-n = 0. The normal reaction on the boundary condition described by
(1.1d) also includes the nonlocal contribution

/F u(z—y)u(z)x(@)x(y) dy,

where the positive function p accounts for the attenuation of nonlocal interactions as the distance |z — y|
between two points x and y on the contact surface increases. Observe that in (1.1d) (and in the forthcoming
(I1.1e), (1.1i) and (1.1j)), we have written explicitly the dependence of the unknowns (6, u,0s,x) on the
variable € I'c only in the nonlocal terms involving integrals (with respect to the spatial variable y € I'c).

As customary in FREMOND’s approach, the principle of virtual power leads to a micro-force balance on
the contact surface that results in the following flow rule for the damage-like parameter y

Xt — Ax + 0.1 (x) +7'(x) + N (x)(0s — 0.)

1 1 . 1.1e
> 5l =5 [ty (u@) + )P dy v T x 0.7), (1-1e)
C
supplemented by the no-flux boundary condition
Onx =0 in 0I'c x (0,T). (1.1f)

In (1.1e)—(1.1f), ng denotes the outward unit normal vector to OIc, 6, > 0 is a phase transition temperature,
the function \ is related to the latent heat while v describes possible non-monotone dynamics for x (it may
model some cohesion in the material). Moreover, the subdifferential term 91 1j(x) (/[o,1(-) denoting the
indicator function of the interval [0, 1]) enforces the physical constraint that x takes values in [0, 1]. The
source of damage on the right-hand side of (1.1e) features local and nonlocal terms and, in particular, it
may differ from zero even in the case in which u = 0, due to the nonlocal, integral contribution that renders
the damaging effects of elongation.

The equations for the bulk and surface temperature variables 6 and 6 are recovered from the first principle
of Thermodynamics. The internal energy balance equation written in the bulk domain reads

0, — 0div(u,) — div(a(0)V0) = h + (u,)Ve(uny)  in 2 x (0,7), (1.1g)
with prescribed boundary conditions

a(0)VO-n=0 in (I'pUly) % (0,7), (1.1h)

a(0)V0 -n = —0 (k(x)(9—9s)+ /FC p(lz—y[)(0(2)—0s(y))x(z)x(y) dy) in I'c x (0,T). (1.1i)
It is coupled to the internal energy balance equation on the contact surface

0105 — 0N (x)x¢ — div(a(6,) V)

=0+ |xe|* + 65 (k(x)(9—95)+/F p(lz—y)(0(y)—0s(z))x(z)x(y) dy) in I'c x (0,7),

3
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a(fs)Vls -ng =0 in 0I'c x (0,7). (1.1k)

Here, the positive function « represents the heat conductivity coefficient both in the bulk domain and on the
contact surface, k is a surface thermal diffusion coefficient, while h and [ are volume and surface heat sources.
The evolutions of the bulk and surface temperatures 6 and 65 are coupled by the boundary condition (1.1i),
featuring two distinct contributions. The first one has a ‘local’ character, as it depends on the quantity (6—6s)
evaluated at the same point x € I'c (again, we keep on denoting by € the trace of the absolute temperature
on I'c). Instead, the second term on the right-hand side of (1.1i) has a nonlocal character, as it involves the
quantity

/Pu(|x—y|)(9(x)—05(y))x(w)x(y)dy

featuring the thermal gap between different points = and y on the contact surface.

Actually, in what follows we will tackle the analysis of a generalized version of system (1.1), in which the
nonlocal integral terms are replaced by more general nonlocal operators and where the various, concrete,
subdifferential operators are replaced by general maximal monotone nonlinearities. Nonetheless, throughout
this Introduction we shall confine the discussion to system (1.1).

1.2. Analytical difficulties

The major difficulties related to the analysis of system (1.1) are the following:

(1) (1.1) encompasses both bulk and surface equations. In particular, the evolutions of the displacement
variable u and of the adhesion parameter x are coupled through the Robin-type boundary condi-
tion (1.1d). This prevents us from applying regularity results for elliptic systems that would lead to
enhanced spatial (e.g., H?-) regularity for u and u;. In turn, such regularity would be handy, for
instance, to better control the right-hand side of the heat equation (1.1g), since, indeed,

(2) the bulk temperature and displacement equation (the surface temperature equation and the flow rule,
respectively) are coupled by the quadratic term e(u;)Ve(u;) (by the term \Xt|2, resp.) that is just in
LY(02x(0,T)) (in L*(I'cx(0,T)), resp.) once the basic energy estimates on system (1.1) are performed.
Other nonlinear coupling terms between bulk and surface equations occur in (1.1d), (1.1e), (1.1i), and
(1.1j), but the L!'-character of the right-hand side of the heat equations poses the most prominent
challenge, together with

(3) proving that the temperature variables 6 and 64 are strictly positive. As a matter of fact, because of
the nonlocal terms in (1.1i) and (1.1j), well-established techniques for proving strict positivity of 8 and
s, based on comparison arguments, fail to apply.

The presence of quadratic terms in the rate of the internal variable (and in the rate of the strain tensor,
when the momentum balance is also included in the system) is typical of thermodynamically consistent
models; strict positivity of the temperature is also a key ingredient for their compliance with the laws of
Thermodynamics. In fact, the challenges in items (2) & (3) of the above list transcend the specific problem
examined here, and have stimulated the development of a variety of techniques over the last two decades.

The first existence result for the ‘full’ model by FREMOND for solid-liquid phase transitions (here ‘full’
refers to the fact the quadratic term, in the rate of the phase-field parameter, on the right-hand side of
the heat equation is not neglected), dates back to [11,12], for (spatially) one-dimensional systems. To our
knowledge, the analysis of a ‘full’ model in the three-dimensional case was first addressed in [13], tackling a
thermodynamically consistent PDE system for damage in thermo-visco-elastic materials. Therein, the heat
equation featured the quadratic terms |y, |* and [Vx;|? (with x the damage parameter), as well as e (uy):e(u),
on its right-hand side, while the heat conduction coefficient o = () was assumed to be constant. In that
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framework, only a local-in-time existence result was obtained. Ever since, in most of the papers addressing
the analysis of thermo-(visco-)elastic models with L! right-hand sides in the heat equation, global-in-time
existence results have been obtained under suitable growth conditions, either on the non-constant heat
conductivity, or on a non-constant heat capacity coefficient.

The latter course has been pursued in a series of papers by T. ROUBICEK, starting from [14] that
addresses the analysis of a broad class of thermomechanical, thermodynamically consistent, rate-independent
processes. In [14] and in several subsequent papers covering a wide range of applications (cf., e.g., [15-18];
see also [9,19] for applications to adhesive contact and delamination) ROUBICEK switches to an alternative
thermal variable, the ‘enthalpy’, defined in terms of a primitive of the heat-capacity. In this way, the nonlinear
character of the heat equation is partially ‘tamed’; its L' right-hand side (featuring quadratic terms in the
rates of the strain tensor and of the internal variables of the model) is dealt with by means of BOCCARDO-
GALLOUET type estimates [20], as adapted in [21]. Such estimates yield a limited spatial regularity for the
enthalpy/temperature variable, which is estimated in the space W7 (§2) for some specific r € (1, 2). Hence,
in the aforementioned papers (global-in-time) existence results are typically obtained for a formulation of
the heat/enthalpy equation with spatially smooth test functions.

In turn, [22] pioneered an alternative approach to the analysis of the heat equation with a L!-right-
hand side in the ‘full’ model for solid-liquid phase transitions by FREMOND. The core assumption in [22]
is some suitable growth condition on the heat conductivity «. This leads to a H!'-spatial regularity for the
temperature variable, albeit in the context of a quite weak formulation for thermal evolution. Specifically,
in [22,23] the heat equation is formulated, consistently with the laws of Thermodynamics, in terms of an
entropy inequality, involving smooth test functions, and of a total energy balance. The ‘entropic’ solution
concept advanced in [22] has proved to be remarkably flexible. It has been extended to various contexts, from
the evolution of non-isothermal nematic liquid crystals [24,25], to models for damage and phase separation
in thermo-visco-elastic solids in R%, d € {2,3}, cf. [26,27]. In the latter papers the existence of ‘entropic’
solutions was proved under the condition that

e, c1 >0 Fu>1 VOERT © co(14+6%) < a(f) < ¢y (1+0M) (1.2)

(cf., e.g., [28] for examples of nonlinear heat conduction). Under the more restrictive condition that

the exponent p in (1.2) satisfies p {2 ((11’ i))’ if the space dimension d = {:2))’ (1.3)
13

the authors of [26] showed the existence of ‘conventional” weak solutions to the PDE system coupling the

momentum balance, the flow rule for the damage parameter, and the heat equation, which was formulated

in a variational way, with suitable test functions.

Finally, we would like to mention the analysis of a (still thermodynamically consistent) PDE system for
thermo-visco-plasticity at small strains from [29]. Via maximal parabolic regularity arguments, the authors
succeeded in proving the existence of global-in-time solutions to a suitable weak formulation of the system,
without resorting to growth conditions on the heat conductivity «(6) = 1.

1.83. Our results

With our main result, Theorem 1 ahead, we are going to prove the existence of global-in-time, weak
solutions to system (1.1), under the sole, more general condition (1.2): in particular, we are not going
to restrict the range of the exponent p as in (1.3). We highlight that, in the similar contexts of [26,27],
(1.2) previously granted the existence of ‘entropic’ solutions, only, with the heat equation formulated via an
entropy inequality and an overall energy balance. Therefore here, under the same conditions as in [26,27], we

5
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succeed in bypassing entropic solutions and directly conclude the existence of ‘conventional’ weak solutions,
which we will term weak energy solutions. We are also going to obtain the strict positivity estimates

36, 6, > 0 : 6 >0 ae in 2 x(0,T), 6s>0; ae. in I'c x (0,T). (1.4)

We stress that, for proving properties (1.4) the comparison arguments often used in the literature are not
applicable due to the nonlocal terms in the heat equations and related boundary conditions. The cornerstone
of our existence proof for weak solutions, under the sole (1.2), will be a suitable estimate for the temperature
variables, akin to the estimate that lies at the core of the proof of (1.4).

Indeed, for proving (1.4) we will revisit a powerful technique, advanced in [30], that consists in testing
the heat Eqgs. (1.1g) and (1.1j) by the negative powers —0~P and —60;P, respectively, with an arbitrary
p > 2. As it will be shown in Section 3.2, this leads to an estimate for § and 9—15 in L*(0,T; LP~1(£2))
and L>(0,T; LP~1(I¢)), respectively. Letting p — oo yields an estimate for the reciprocal temperatures in
L>(2%(0,T)) and L>*(I'c%(0,T)), which gives (1.4).

It turns out that a closely related idea will also allow us to ‘tame’ the L' right-hand sides of the heat
equations. For that, the key issue is estimating the spatial gradient of the temperatures 6 and 6. This will
result from testing (1.1g) and (1.1j) by #¥~1 and 62—, respectively, for an arbitrary v € (0,1) (cf. Section
3.3.3 ahead). This will lead to the bounds

||9(M+V)/2||L2(O,T;H1(Q)) + ||9§“+V)/2||L2(0,T;H1(FC)) <C (1.5)
(recall that the exponent u featured in the growth condition (1.2)). In turn, via interpolation arguments, (1.5)
shall bring to higher integrability estimates for the temperature variables, which will allow us to estimate
their derivatives 6; and 9,05 in L'(0,T; Wh3+<(02)*) and L*(0,T; W12+¢(I'c)*) for all € > 0, respectively.
Clearly, from the estimates of the gradients and the time derivatives of 8 and 65 we will extract all the
compactness information necessary for dealing with the heat equations. The analysis of the momentum
balance and of the flow rule will follow more standard paths.

The estimates described above will be formally developed in Sections 3.2 and 3.3. Making them rigorous
in the frame of a time discretization scheme for system (1.1), which might be conducive to its numerical
analysis, has been a challenging issue by itself. First of all, in devising the approximation scheme for (1.1)
we have had to carefully balance the terms to be kept implicit with those to be kept explicit. In this way,
we have ensured the validity of a discrete form of the total energy balance associated with (1.1), whence all
the basic energy estimates stem. Secondly, we have had to combine time discretization with an additional
regularization obtained by

(1) adding the higher order terms —pdiv(|e(u;)|”~2e(u;)) and p|x:|“ *x¢ ,w > 4, to the momentum balance
and to the flow rule for y;

(2) replacing the maximal monotone operators in the flow rule for x and in the boundary condition for u
on I'c by their Yosida regularizations.

The reason for this threefold approximation procedure essentially resides in the fact that, on the time-
discrete level, we shall not be able to fully carry out the arguments from [30], leading to a uniform, in space
and time, estimate for the reciprocal temperatures. Namely, for the discrete bulk and surface temperatures,
we shall only prove a strict positivity property, but not a lower bound by a positive constant as in (1.4).
Therefore, in order to rigorously perform the test of the temperature equations by negative powers of 6 and
05 that leads to (1.5), we will need to work on the regularized version of system (1.1) described in the above
lines, cf. system (3.69) ahead.

We believe that the formal estimates from Sections 3.2 and 3.3, as well as the technical machinery
rigorously supporting them developed in Sections 4 and 5, are robust enough to be applied to other
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thermodynamically consistent models in solid mechanics. In particular, the analysis of a PDE system for
damage in thermo-visco-elastic materials will be carried out in future work, in which the issues related to
the unidirectionality of the evolution of the damage parameter will also be addressed.

Plan of the paper.

In Section 2, after settling some preliminary results and all our conditions on the constitutive functions of
the model, and on the problem data, we will consider a generalized version of system (1.1) and introduce our
notion of ‘weak energy solution’ to the associated Cauchy problem. We will then state our main existence
result, Theorem 1. Throughout Section 3 we will carry out in a formal way all the calculations that provide
the strict positivity properties (1.4), and all the a priori estimates at the core of the proof of Theorem 1.
In Section 3.4 we will then introduce the regularized system (3.69) on which all estimates will be rigorously
performed. The existence of solutions to the Cauchy problem for system (3.69) will be proved, via a careful
time discretization procedure, throughout Sections 4 and 5. Finally, in Section 6 we will take the limit of
the regularized system in two steps, and thus conclude the proof of Theorem 1.

2. The main result

Let us fix some general notation that will be used throughout the paper.

Notation. For a given a Banach space X, we will denote by (-, )y the duality pairing between X’ and X;
to avoid overburdening notation, we shall write || - || x both the norm in X and in any power of it.
We will work with the space

H}D(Q;R?’) ={ve H'(2;R®) : v=0ae. on Ip},

endowed with the natural norm induced by H'(£;R?), and denote the Laplace operator with homogeneous
boundary conditions by

A:HY(Ic) = HY(Te) (A w) g1y ::/ VxVwdz forall x, we H'(Ic).
I'c

Moreover, we shall use special notation for the following function space

Y = HY2 (T R%) = {w e HY*(I'e;R%) : 3% € HY2(992;R%) with % = w in I'c, W = 0 in FD} .
Preliminary results. Throughout the paper, we will also use that

H}«D(Q;Rg) C L*(I'c; R?) continuously, H}D(Q;R:S) € L*7%(I'c; R®) compactly for all s € (0,3], (2.1)

where the above embeddings have to be understood in the sense of traces.
Finally, we shall resort to the following nonlinear Poincaré-type inequality (cf. e.g. [31, Lemma 2.2])

Vg>0 3C,>0 YweH(2):  |[wfwlmg < ColV(wl"w)llr2 (o) + Im(w)|"),  (2.2)

(with m(w) the mean value of w), and to the well-known interpolation formula for Lebesgue spaces, holding
for every measurable O C R¢, d > 1:

for some ¥ € (0,1) (2.3)

= Q=
n | 3D

L™(0,T; L*(0)) N LP(0,T; LY(0)) c L*0,T;L*(0)) with {

with a continuous embedding.
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2.1. Setup and assumptions

We start by detailing our conditions on the reference configuration:

2 is a bounded Lipschitz domain in R3, with
0N =TpUIl'yUTg, Ip, In, I'c, open disjoint subsets in the relative topology of 92, (2.4)
with H?(I'p), H*(I'c) > 0, and I'c C R? is a flat surface,
which means that I'c is a subset of a hyperplane of R? and on I'c the Lebesgue and Hausdorff measures £2

and H? coincide.
Let us now fix

(1) the properties of the elasticity and viscosity tensors: we assume that the fourth-order tensors E = (e;;xn)
and V = (v;;xn) satisfy the classical symmetry and ellipticity conditions

€ijkh = €jikh = €khij » Vijkh = Vjikh = Ukhij, b J,k,h=1,2,3,
deo >0 V&8 =&, 4,5=12,3: eijkn&ii&rn = €0&iéis (2.5a)
vy >0 VE&;:&; =&, 1,7=12,3: Vijkn&ii&rh = V0&iiij s

where the usual summation convention is used. Moreover, we require that
€ijkhs Vijkh € LOO(Q) for 1,7, k, h=1,23. (25b)

Observe that conditions (2.5) are compatible with the properties of an anisotropic and inhomogeneous
material. They ensure that the associated bilinear forms e, v : H'(£2;R?) x H!(2;R3) — R, defined by

e(u,v) = /Q eijknern(w)e;j(v)de  for allu,v € H'(12;R?),
v(u,v) = /Q vijknern(W)g;j(v)de  for all u,v € H'(2;R?)
are continuous and symmetric, i.e.
M >0 e(u,v)|+ |[v(u,v)| < M|ullgro)lIvllg(e) forallu,ve H'(02;R?). (2.6)

Furthermore, since I'n has positive measure, by Korn’s inequality we deduce that the forms e(-,-) and
V(- ) are H'(2;R?)-elliptic on H}, (2;R?) x Hp (2;R?), i.e. there exist Ce, Cy > 0 such that

e(u,u) > C’e||u\|§ﬂ(m, v(u,u) > CVHu||§11(Q) for all u € H}D(Q;Ria). (2.7)

We will in fact deal with a extended version of system (1.1), where the subdifferentials 0I(_, o) and
010,17 will be replaced by general maximal monotone operators. Namely,
(2) we consider a function

n:R — [0,+00] proper, convex, and lower semicontinuous, with 7(0) =0 (2.8)

(note that, if 0 € dom(7), we can always reduce to the case 7j(0) = 0 by a translation). Then, we
introduce the proper, convex and lower semicontinuous functional

-n) dzr iff(u-n) e LY(I),

n:Y —[0,+0c] defined by 7(u):= Jre iu .
+00 otherwise.

We set 7 := 01 : Y = Y*. It follows from (2.8) that 0 € n(0). The subdifferential n(u) shall replace
the term 9I(_ oj(um)n in the boundary condition (1.1d). Observe that the impenetrability condition
u-n <0 a.e. on I'¢ is rendered as soon as dom(n) C (—o0,0].

8
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3) We also generalize the subdifferential 0l 17 to the subdiffential of a function
[0,1]
B: R — [0, +o0] proper, convex, lower semicontinuous, with dom(B\) C [0,1] and 3(0) =0, (2.9

andsetﬁ::(?B:R:iR.
Observe that the integral terms encompassing nonlocal effects in (1.1i), (1.1d), (1.1j), and (1.le) can
be rewritten as

~0*(x)x(z fpc (@, y)x(y) dy + 0()x(x) [1, 5 (2, 9)0s(y)x(y) dy,

u(@)x (@) [, i@ y)x(y) dy,
0s(z)x() fpc x y) W)x(y) dy — x(@)02(x) [p, J (y) dy,
—$lu(@)]* [, iy (y)dy—gfpc x,y)IU( )| X( )dy

with j(z,y) := p(lz —yl).

It is thus natural to generalize these terms by considering

(4) a kernel
j:Tc x I'c — [0,4+00) symmetric, positive, with j € L ((I'cxIc);RT) (2.10)

and introducing the associated nonlocal operator
J:LYIc) = L>=(I¢) Jw](x) :== / j(x,y)w(y)dy for all w e L*(I'c). (2.11)
I'c

Lemma 3.1 ahead will provide some key properties of the operator J.
With the above outlined generalizations, system (1.1) turns into the PDE system

0, — 0div(uy) — div(a(0)V0) = h +e(u) Ve(u,) in 2 x (0,7), (2.12a)
a(@)V0-n=0 in I'pU Iy x (0,T), (2.12b)
a(0)VO-n = —k(x)0(0—05) — I[x]x0% + I[xbs]x0 in I'c x (0,T), (2.12¢)
—div(Ee(u) + Ve(uy) +00) =f  in 2 x (0,7T), (2.12d)
u=0 inIpx(0,7), (2.12e)
(Ee(u) + Ve(uw;) +0)n =g in I'y x (0,7T), (2.12f)
(Ee(u) + Ve(ug) + 0)n+ xu+n(u) + J(x]Jxu>0 in I'c x (0,7), (2.12g)

0i0s — O\ (x)x¢ — div(a(bs)VOs)
=0+ |xel? + k(x)(0—05)05 + [x0)x0s — I[x]x02 in I'c x (0,T),
a(0)Vhs -ns =0 in OT¢ x (0,T), (2.12i)
1 1 1 , .
= A+ 800+ 00 + N ()0 3 —g[uf* = S - Salx(uf) i Tox (0.7),  (212)
Oax =0 indlc x (0,T), (2.12k)

that will be studied in the sequel (note that, here in (2.12j), we have incorporated the term —\ ()6,
featuring on the left-hand side of the former (1.1e), into the function 7). Let us finally specify
(5) our requirements on the heat conductivity: the function « : [0, +00) — R* is continuous and fulfills

deg, 1 >0 Fpu>1 VOe[0,+00) : co(1+6%) <af) <ci(1+6"). (2.13)
We will work with its primitive @ : Rt — RT defined by

a(r):= /OT a(s)ds; (2.14)

9
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(6) our conditions on the nonlinear functions k, v, and A:

k:R — [0,400) has polynomial growth, i.e.

. (2.15)
Is>13C,>0VzeR: k(z) <Cy(lz]” +1);

A:R — R is Lipschitz continuous and §-concave for some ¢ € R; (2.16)

v € CHR) with 4/ : R — R Lipschitz continuous, v-convex for some v € R, and such that (2.17)
ICw >0Vz eR : W(z) == B(x) +(x) > —Cyw ; '

(7) our conditions on the heat sources h and ¢ and on the forces f and g:

h e LY0,T; L*(2)) N L*(0,T; H*(2)*), h>0ae. in 2 x (0,T), (2.18a)
(e LY0,T; L*(I'c)) N L?(0, T; HY(I'c)*), £>0ae. in I'c x (0,7T), (2.18b)
fe H'(0,T; Hp, (92;R)"), (2.18¢)
g€ HY(0,T;Y). (2.18d)

We then introduce the function

Fe H'(0,T; Hp (2;R%)*), (F(t),v)H%D(Q;RS) = <f(t)7V>H;D(Q;R3) +(g(t),v)y fora.a.te(0,7).

(8) As for the initial data 6, 60, ug, xo we suppose that 219
Oy € L'(2)  with zirelfﬁ Oo(x) > 6* > 0, (2.20a)
0° € L' (I'c)  with Iienpfc 0°(z) > 607 >0, (2.20b)
ug € H}D(Q;]R?’)7 ug € dom(n), (2.20c)
Xo € HY(Ic),  Blxo) € L(Ic). (2.20d)

Remark 2.1.
Observe that the J-concavity and v-convexity requirements for A and v mean that

r— A(r) — 72 is concave;

the function 5 .
r = (r) + 5r? is convex.

These properties will be used for devising a time-discretization scheme of system (2.12) such that the validity
of a discrete form of the total energy inequality is ensured, cf. Remark 4.2 ahead.

Also the growth condition for k from (2.15) is functional to our approximation scheme, or rather serves
to the purpose of simplifying it, cf. Remark 3.4 ahead.

2.2. Our existence result

We will prove the existence of weak solutions in the sense specified by Definition 2.2. We mention in
advance that our notion of ‘weak energy solution’ to (the Cauchy problem for) system (2.12) consists of

o the weak formulation of the heat Eqs. (1.1g) and (1.1j) with test functions v € W13T¢(0) and
w € WH2T¢(I') for any € > 0;

o the standard weak formulation of the displacement equation (2.12d), with test functions in H }D (2;R3);

o the pointwise formulation (a.e. in I'c x (0,T")) of the flow rule for the adhesion parameter;

10
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« the total energy balance
E(O(L), 05(t), u(t), x / . KO ) 6 r)=bu(a, )2 da dr
///FCXFC z,y)x(z,7)x(y, 1) (0(x,7)—0s(y,7))? dz dy dr (2.21)
:8(6(8),95(3),u(8),x(8))+/s /thxdr—i-/s Fcfdxdr—k/: o0y a0

for every 0 < s <t < T, featuring the stored energy of the system

&(0,05,u,x) ::/ 0dx+/ 0s dx
Q I'c

et e 5 [ (eulap) de s |

C

(;|Vx|2+W(X)> dz.
(2.22)

Definition 2.2. Given initial data (6,62, 19, xo) fulfilling (2.20), we call a quadruple (6,05, u,Y) a weak
energy solution to the Cauchy problem for system (2.12) if

6 € L*(0,T; H'(2)) N L>=(0,T; L*(2)) n W0, T; Wh3te(2)*), (2.23a)
a(0) € L' (0, T; whHB+9/2+9) () for all € > 0, (2.23b)
0, € L*(0,T; H(I'c)) N L>=(0,T; L*(I'c)) n W0, T; Wh2te(Io)"), (2.23¢)
a(bs) € L0, T; whCFa/0+9 (1)) for all € > 0, (2.23d)
ue H'(0,T; Hr (1;R?)), (2.23e)
x € L*(0,T; H*(I'c)) N L>=(0,T; H'(I'c)) N H'(0,T; L*(I'c)), (2.23f)

the quadruple (0, u, 0, x) comply with the initial conditions

0(xz,0) = 0(x), u(z,0)=ug(z) for a.a.x € £2,

; (2.24)
Os(x,0) =05 (z), x(z,0) = xo(x) fora.a.x € I'c,
and with the positivity properties
O(z,t) >0 for aa.(z,t) € 2x(0,T),
(@.1) (0.0) € 2 % (0.7) .
Os(xz,t) >0 for a.a.(x,t) € I'c x (0,T),
and there exist
¢ e L*0,T;Y"), ¢ e L*(0,T; L*(I'c)) (2.26)
such that the functions (0, u, 6, x, ¢, &) fulfill
e the weak formulation of the bulk heat equation
(01, V)y1.54¢ () —/ Odiv(us)v dz +/ V(a(d)) - Vvda —|—/ kE(x)0(0 — 65)v dx
Q Q I'c
+ IIx]x0?%v dz — J[xOs]x0v dx (2.27)

e I'c
= / e(us)Ve(u)vde —|—/ hv dx for all v € WH3T€(2), € > 0, a.e. in (0,7);
2 Q

11
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e the weak formulation of the surface heat equation

<3t98,w>w1,2+5(pc) */ HSA’(X)thdz+/ V(a(bs)) - Vwdx
I'c r

C

3O\ bew da — / Iy Pwde (228)

:/ €wdx+/ |Xt|2wdw+/ k(x)0s(0 — 05)w dx +
I'c I'c I'c I'c I'c

for all w € WHT¢(I¢), € > 0, a.e. in (0,7);

e the weak formulation of the displacement equation

v(ug, v) +e(u,v) +/ 6div(v) dx—i—/ xuvdz + <C,V>Y—|—/ xud[xlvdz = <F,V>H} (2:R3)
D

2 I'c I'c
(2.29a)
for all v € H}D(Q;R?’), with
¢ € L*(0,T;Y*) fulfilling ¢(t) € n(u(t)) in Y* for a.a.t € (0,7); (2.29Db)

¢ the pointwise formulation of the flow rule for the adhesion parameter;
o the total energy balance (2.21).

We are now in a position to state the main result of the paper: for technical reasons related to our
approximation scheme, we will prove the existence of a weak energy solution such that the pointwise flow
rule for the adhesion parameter holds with an additional measurable coefficient o = o(z,t) € [0,1] for the
terms on its right-hand side. However, we point out that the function o can take values different from 1 only
on the set {x = 0}.

Theorem 1 (Global Existence of Weak Energy Solutions). Assume (2.4)-(2.10) and (2.13)~(2.18). Then, for
every quadruple of initial data (6,02, ug,x0) as in (2.20) there exists a weak energy solution (6,65, u,x) to
the Cauchy problem for system (2.12), with an associated selection ¢ fulfilling (2.292)—(2.29b), and a pair
(€,0) € L2(0,T; L*(I'c)) x L®(I'cx(0,T)) such that the pointwise formulation of the flow rule for x holds
in the following form:

1 1 1
Xt + Ax +E+~ () + N (x)bs = f§\u|20 — 531X lu)’o — 53[x\u|2] o ae inlcx(0,T), (2.30a)
with £ € B(x) a.e. in I'c x (0,7, (2.30b)
=1 t)e T): t
andU on {(‘T, ) E C X (03 ) X(l.? ) > 0}’ (23OC)
€1[0,1] on {(z,t) € I'c x (0,T) : x(z,t) =0}.
In addition, 6 and 85 comply with the positivity properties
0>0>0 a.e infx(0T), 0s>60,>0 ae inlcx(0,T) (2.31)

for some positive constants 6 and 0.

3. Formal a priori estimates and strategy of the proof of Theorem 1

In this Section we derive the basic a priori estimates on the solutions to system (2.12), that are at the
core of our definition of weak energy solution, by carrying out a series of formal calculations in Section 3.3
ahead. Prior to that, we will fix some preliminary results in Section 3.1 and, again formally, prove the strict
positivity of the temperature variables in Section 3.2. All the calculations in Sections 3.2 and 3.3 will be

12
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rendered rigorously in the context of (the time discretization scheme for) a suitable approximation of system
(2.12), set forth in Section 3.4. Therein, we will also outline the scheme of the proof of Theorem 1.

In what follows, we shall work under the assumptions listed in Section 2.1; in particular, we will omit to
explicitly invoke them in the statements of Lemmas 3.1 and 3.2.

Finally, let us point out that throughout the paper, we will use the symbols ¢, ¢, C,C’, ..., with meaning
that possibly varies in the same line, to denote several positive constants only depending on known quantities.
Analogously, with the symbols I, I, ... we will denote several integral terms appearing in the estimates.

3.1. Preliminaries

We will extensively use the following result (cf., e.g., [7]), collecting key properties of the nonlocal operator
d from (2.11).

Lemma 3.1. The operator J : L*(I'c) — L>(I'c) is well defined, linear and bounded, with
131l oo (rey < Nillzos(roxroyllwlipirgy  for allw € LY (Ic); (3.1)
d also enjoys the positivity property
w>0 aeinlc = Jw]>0 a.e. in I'c. (3.2)

Furthermore, for every 1 < p < oo the operator J is continuous from L*(I'c), equipped with the weak topology,
to LP(I'c) with the strong topology, namely if w, — w in LY(I'c) then Jlw,] — Jlw] in LP(I'c). Finally,
there holds

: J[wr](z) we(x) dz = : J[wa](z) wi(x) dzx for all wy, wy € L*(I'c) . (3.3)

Variational formulations of the heat equations.

In the following calculations, we shall (formally) use the variational formulation of the boundary-value
problem (2.12a)—(2.12c) for the bulk heat equation, namely

/Htvdxf/ Hdiv(ut)vd:ch/ a(@)VGVvder/ E(x)0(0 — 0s)v dx
I7; 2 2

I'c

+ IIx]x0%v dz — J[x0s]x0v dzx (3.4)
re I'e

= / e(uy)Ve(uy)vda —|—/ hvdz for all suitable test functions v, a.e. in (0,7,
2 2

and of the boundary value problem (2.12h)-(2.12i) for the surface heat equation, namely

8t95wdac—/ HSA’(X)thd:E+/ a(05)VO;Vw dx
I'c I'c T

C

= lwdx + / Ixe|*w dz —|—/ k(x)0s(60 — 65)w dz + I[xO)xbsw dx — I x02w dx (3.5)
I'c I'c I'c I'c I'c

for all suitable test functions w, a.e. in(0,7).

We have been purposefully imprecise in (3.4) and (3.5) since, in any case, the choices of the test functions
that we will make in the calculations carried out in Sections 3.2 and 3.3 will be only formal.

Derivation of the total energy balance (2.21). We test the bulk heat equation (3.4) by 1, the
displacement equation (2.12d) by u,, the surface heat equation (3.5) by 1, and the flow rule (2.12j) for

13
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X by x:. Adding up the resulting relations, observing the cancellation of some terms, and integrating on a
time interval (s,t) C (0,7T), we obtain

t t
/ 0y dxdr + / E(x)(0—05)0 dx dr
s Jo re

=1

/ //p ()@ ) (O(x) ~0u(y) dr dy dr

=1

¢ t
+/ e(u,uy)dr + / (n(u),uy)y dr / / xuu do dr
s s I'c

Z I,

/st //Fc x g J(@,y)x(@)a@)u(z)x(y) dz dy dr

;15

t
+/ 005 dx dr — / / 5)0s dz dr
s JI¢c I'c

=1 (3.6)

- / // 3 9)x(@)0:(2) X (0) (6(y)—bs(2)) dz dy dr  + / V- Vi dedr
s FC s FC

Iy

t t 1
' / PO drdr / / Xxededr -+ / / 7|U-|2Xtd$€dr
s JI'c I'c s Jre 2
= = I
i / // (@, y)xe(@ )|u| (x)x(y) dx dy dr
FCXFC
=1
t . 2
' /// i@ y)x(@)ul (y)x(y) dz dy dr
s FCXFC
£112

t t t
:/ / hdxdr+/ £dxdr+/ (Fow) g1 (ops)dr,
S 2 S I'c s I'p ’

where we have formally written the subdifferentials n(u) and S(x) as if singletons. We then observe that

Il I6 / / dIdT
Fc

LI = / //F 3w, )X (@)0(@)x () (0(x)—0s(y)) d dy dr

,/ //F . 7@, y)x()0s(y)x(2)(0(x)—0s(y)) dz dy dr (3.7)
- / //F x T (. y)x(2)x () (0(2)—0s(y))* dv dy dr
13 2 fi(u(t)) - Auls)), 18+19(:) i W (x(t))dz — : W (x(s)) da,

14
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hiho= [ SxOOP = [ @)l .

I'c

C
¢ d /1 o
15 —|—111 —|—Ilg = a §X‘u| H[X] dl‘dT’
s I'c
1

= [ x@m@rann - [ )P .

I'c

where for (1) we have used that j is symmetric, while for (2) and (3) we have applied the chain rule for the
subdifferential operators n and . All in all, we conclude (2.21).

Coercivity properties of the energy functional €.

For our first a priori estimate we will indeed start from the energy balance (2.21) and derive the energy
bound sup,¢ o 1y [€(0(2), 05(t), u(t), x())| < C that will be combined with Lemma 3.2 to derive a series of
uniform-in-time estimates for the solutions.

Lemma 3.2. There exist two constants Cy, Cy > 0 such that for all § € L*(2;R"), 6, € L' (I'c;RT),
uc H}D(Q;RSL and x € HY(I'c), there holds

€(0,0s,u,x) > C1 (H9||L1(Q) 105l 1 (rey + ||UH§11(Q) + HXH?LIl(FC)mLOO(FC)) - Ca. (3.8)

Proof. First of all, we may suppose that £(0, 65, u,x) < 400, otherwise estimate (3.8) is trivial. Hence,
from ch W(x)dz < 400 we infer that x € [0,1] a.e. in I'c. Recalling the definition of the stored energy &
(cf. (2.22)), and taking into account that 6 and 65 are positive functions, we have

1 A
€(0,05,u,x) = 10l 1 () + 105l 1 1y + 5e(w, w) +n(u)

w5 (o) de [ (5177 + W) ar.

By Korn’s inequality (2.7) we have that
1 1 )
§e(u,u) > §Oe||u||Hl(U)' (3.9)
Since x > 0 and J[x] > 0 a.e. in I'c by (3.2), we find that
[ (il ) o > o
I'c
We also have 7(u) > 0 while, according to (2.17), we have

: W(x(t)) > —CwlIcl. (3.10)

Finally, since &(6, 05, u, x) estimates ch IVx|? dz and ch B(x) dz, and taking into account that dom(3) C
[0,1], we readily conclude the bound for ||x| Lo (rg), and for [|x||g1(r) via the Poincaré inequality. Hence,
(3.8) follows. 0O

3.2. Strict positivity of 0 and 0
In the following calculations we will resort to monotonicity arguments that will be repeatedly used

throughout the paper.
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We test (3.4) and (3.5) by —07P and —0;P, respectively, with p > 2.

This choice of these test functions is only formal for a two-fold reason: the powers —0~7 and —0;7, with
p > 2 an arbitrary real exponent, are well defined only if § and 6 are strictly positive. Furthermore, —0~7
and —6; P lack sufficient spatial regularity to be admissible test functions for the heat equations. Anyhow,
these issues will be fixed when performing this estimate on a suitably regularized time-discretization scheme
for system (2.12).

Adding up, integrating over (0,t), and recalling (2.7), we obtain that

1 : . GGl
/91 Pt)de + —— ad dm—i—p/ / ()8~ 1P|y dxds—i—Cv/ / ————dxds
P—1Jrg 0 Jae 0o Jo 0P
// Y dxds—i—p// o)0; 1P| V6, da ds
I'c 0 I'c

/ IX]x0* pdxds—i—/ Ix0s]x0 pda:ds—|—/ / X0 PJ[x0] dx ds
FC FC FC
/ / x027PJ[x] dz ds
I'c
t
/ k(x)(0 — 9)( grr _ (—gl- p))dxds+//h9 deds+/ KH‘pdxds
I'c

1
<7 91 Pde+ —— [ (%) Pdx — //91 Pdiv(uy dxdsf// 01PN (x)x¢ dzds.
p_l p_1 I'c I'c

Due to (2.20a)—(2.20b), for the first two terms on the right hand side of (3.11) it holds

1\*! 1\* !
/03p+/‘w$1pg<*) n|%<*) Tl (3.12)
Q re 0 6

(recall that 0 < 6* < infp 6y and 0 < 6 < infr, 60). Moreover, the third and the fourth term on the

(3.11)

right-hand side of (3.11) can be estimated as follows: we have

t ) t 2 t
—/ / 0 Pdiv(u;) drds < ﬁ/ / o) da:ds—l—c/ /Hz_pdxds
0o Jo 2 Jo Ja 0P 0
¢ 2
2 9/ / @I 4, 1 0 7+7/ /91 Pdzds
T2 o Ja 0P

t 2 -1
v 1 -2
= g//mdxds+0 7—&-7 7(3) ds |,
2 JoJo 0P p—1 1o 16271 10
(3.13)
where for (1) we have used that
|div(uy)| < cale(uy)], (3.14)

with ¢4 > 0 a constant only depending on the space dimension d = 3. Moreover we have resorted to the

Young inequality

ab < 0, {(g)g 7 (3.15)
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for all a,b € RT,§ > 0 and ¢,q' > 1, such that % + % = 1. In particular for (2) we have used (3.15) with
the choicesb=86=1,g=(p—1)/(p—2), ¢ =p— 1 and a = #*~P. Furthermore,

! 1—py/ S |Xt ‘ 2—
—/ 07PN ()xe < / / dxds—|—c/ 0: P dxds

(2) 1

< // |Xt dz ds +c<+/ 61~ pdmds) (3.16)
FC 1 FC

1 2 N (L
//'Xtdd+(] —H’— ) ds |,

re Lr=1(rc)

1 1)y |16:"7
where (1) follows from the Lipschitz continuity of A stated by (2.16) and (2), again, from (3.15).
As for the left-hand side of (3.11), we observe that all terms from the first to the sixth are positive. We
rewrite the sum of the seventh, eighth, ninth and tenth terms as

—// 0" (3xIx0 — 3[x0s)x) dxd8+// 0.7 (3[x8)x — I[x]xbs) dads
0 JIg 0 JIc

@_/Ot //FCXFCj(x,y)x(w)x(y)el_p(x)(9(30)_9S(y)) dz dyds
+ /Ot //F N J@ XX )0 () (6(x) - 6.(y)) dw dyds

—/Ot //chpcj(%y)x(w)x(y) (91‘p(x)—0§"’(y)) (G(x)—as(y)) dz dy ds (? 0

where for (1) we have exchanged x and y in the second integral and used that the kernel j is symmetric
(cf. also (3.7)), and inequality (2) follows from the fact that the function (0,+00) 3 r +— —r!'=P is strictly
increasing (since p > 2) and from the positivity of the kernel j and of x. By the same monotonicity argument
we also find that

(3.17)

/t E(X)(0 — 05) (=07 — (=01 77)) dzds > 0. (3.18)

Finally, due to (2.18a) and (2.18b), we have that

t
//h0 Pdxrds >0, // 0P dxds > 0. (3.19)
0o Jre

Combining (3.11) with (3.12)—(3.13) and (3.16)—(3.19) we infer that

1 p—1 t -1 t 2
H(t) +p(p—1)/ / a(G)G_(1+p)|V9|2dmds+OV(p )/ / L
0" 102 or
1, P!
) p—1) / / 0o dpds + L= / / Caras (320
0 sy re re O

1

+\<s>

1\ 1 -
< () WH(*) rele (102 [ ([0 )as
0 0 Lr—1(I'c)

with the constant C' on the right-hand side of (3.20) independent of p. Thus,

Lp=1(2)

TN (L AN L
(2 P
LP—1(02) s LP—1(Ig)
1\P! 1\P! tr p—1 1 -1 (3.21)
§|Q|<*> +Fc|<*> +C 1+(p—2)/<H(s) + —() )ds :
0 03 o X190 llze-1ce) 105 “llze-1(rg)

17
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Applying the Gronwall Lemma, we therefore obtain that

1 p—1 1 p—1 1 p—1 1 p—1

HO(t) + 0*(75) < |Q|(9*> + |Fc|<9*> +C | exp(CT(p—2)).
LP=1(%2) LP=1(I'g) s
Therefore,
_ _ 1/(p—1)
1 1 1\ 1\ (p—2)
ax < |[=(¢) ,’ —(¢) < (2(*) +|Fc|<*> +C exp (C’T )

{HH -1y 119 Lr—1(I'c) 0 03 (r—1)

<9|1/<p 1)<91*> T 1)(0 )+01/“’ 1))exp(CT) <C,
(3.22)

where for the last estimate we have used that |Q|1/(p71) < |2| + 1 and analogously for |Fc|1/(p71) and
C1/(=1)_Since the positive constant C is independent of p, we are allowed to conclude that the above
estimate holds for arbitrary p. All in all, we find

1
0

Consequently, we infer the validity of the positivity properties (2.31).

1

<C. (3.23)

+!
Lo°(I'ax(0,T))

Lo (2x(0,T)) Os

3.8. A priori estimates

We are now in a position to (formally) derive all of our a priori estimates on the solutions to system
(2.12).

3.3.1. First a priori estimate
We consider the total energy balance (2.21) on a generic interval (0,t), ¢t € (0,7). Taking into account
the positivity of the second and third terms on the left-hand side, we infer

E(6(1),05(t),u(t), x(1))
t t t
§8(00,050,u0,)<0)+/ / hdxdr—i—// €dxdr+/ (Foue) g1 (oms)dr (3.24)
0 Jo 0 JIg 0 'p*’
T+ L+ I+ 1Is.

Now, by (2.20) and (2.18a)—(2.18b) we have Iy + I1 + I < C. Integrating by parts in time, we find

t t
I3 :/ <F>ut>H11‘ (Q;]R3)dr = <F(t)7u(t)>H11‘ ($5R3) <F(O)7u0>H}. (£2;R3) _/ <Ft7u>H}, (§2;R3) dr
0 D D D 0 D

C ‘
< 7Hu(t)“H1(Q) + C(|F|L°°(O T (2)7) T IFell72 0.7, HY (@) T [woll 7 (0 +/ [u(s)[ 7 (o) dS)»

(3.25)
with C7 > 0 the constant from the coercivity estimate (3.8). We combine (3.24) and (3.25); taking into
account (3.8), we may absorb the term %Hu( )HHl(Q into the left-hand side of (3.24). Applying the
Gronwall Lemma we conclude that [[ul pec (o7, 1 (0rs)) < C. Then, a fortiori, the term I3 on the right-hand
side of (3.24) is estimated by a constant. All in all, also taking into account that € is bounded from below,
we conclude that

sup [E(6(t),05(t),u(t), x(1))] < C
te(0,T)

and then, by (3.8), we find that

101l Loo (0,721 (2)) + 105l oo (0,751 (e )y + 10l oo 0,111 (2)) + X oo (0,100 (reynE (1)) < C- (3.26)
18
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Remark 3.3. In the calculations for the following a priori estimates we shall not use the L (0, T; L (I'c))-
bound for x. The reason is that these computations will be rendered rigorously once performed on a suitable
approximation of system (2.12), cf. system (3.69) ahead, in which, in particular, the maximal monotone
operator f3 is replaced by its Yosida regularization 3, with primitive Bg. Therefore, on the approximate
level the bound for supc o 1) / e B¢ (x) dz will no longer yield the information that x takes values in the
interval [0, 1] a.e. in I'c; in particular, some technical adjustments in devising system (3.69) will be necessary
to cope with the lack of positivity of x.

In any case, the following calculations can be carried out without resorting to the L°°(0,7; L>°(I'c))-
bound for x. In this way, they will be immediately translated in the context of system (3.69).

3.8.2. Second a priori estimate
We first carry out the calculations in the case pu € (1,2), then address the cases p > 2 and p = 2.
Case p € (1,2). We introduce the function

Fv) :=v"/v, F'(v) :=v""! withv=2-puc(0,1). (3.27)

Then, we test (3.4) by F'(0) = 0¥~ and (3.5) by F'(6) = 6“~1, respectively. Integrating over (0,t) and
adding the corresponding equations, with easy calculations (and again recalling (2.7)) we obtain that

t t
/ / ‘Xt|2F/(95) dldT+Cv/ / ‘E(ut)le/(G) dz dr
0 I'c 0 2

t t
/ I[xOs|XOF' () dzdr + / IO x0s F' (0) dz dr
0 Fc 0 FC

// O)VOV(F'(0))dzdr — //P VOV (F'(65)) da dr

Iy

< / / kGO0 — 0,)(0F (9) — 0, F'(0,)) dwdr  + / J[X]XO*F'(0) dz dr
0 JIc 0 JIc

(3.28)

Is I

t
+ / JIXIXO?F'(05) dw dr //Ht 0)dxdr
0o Jre
// 005 F' (0)dzdr — //Hdlv w)F'(6) dzdr
I'c
t
// O N () x: F' (0) dz dr //hF/ dedr — // LF(6,)dz dr
I'c 0 I'c

111 113

Now, by the previously proved positivity of § and 6, it is immediate to see that I; > 0 and Is > 0. Recalling
the growth properties of « (cf. (2.13)), we have that

Iy = // O)VOV(F'(6)) dzdr = (1 —v) // 0)|vo*6"~ 2dxdr>c/ / IVO)? dz dr (3.29)

since v = 2 — p < 1. Analogously, we find that

- // VGVF’(H))dxdr>c// V6,2 dz dr. (3.30)
Fc FC
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As for the terms on the right-hand side of (3.28), we have that
t
I; < / / [k(x)|(0s + 6)(0% + 6") da dr
0 Jrg

t t
- ck/ / (IxI® + D)0+ + 06Y +0,6" + 0" da dr < C/ / (xI® + 1)((9"+1 + 9;“) de dr,
0 JIg 0 JIc

where we have used the polynomial growth of k (cf. (2.15)), and the previously obtained positivity of § and
fs. We have that

t t
IG§// |3[X]|X92F’(9)dxdr§0// (x[* + 16"+ da dr,
0 I'c 0 I'c

where we have again used (2.15) and the fact that [|x|| 000,701 (rg)) < €5 so that [|I[x][|Lee(rex0.1) < C
by Lemma 3.1. Analogously, we have

t
I < c/ / (l® + 1)07+ da dr.
0o Jrg
We clearly have

Ig:/Ot/QHtF’(G)dxdrz/Q(F(G(t))—F(Ho)) dz = %/fzﬂy(t)dm—%/ﬂ%dm,
! 1

— / rdr = _ 0 = v x—l 0V dy
19_/0 e 0,0 F" (65) dx d AC (F(Gs(t)) F(QS)) d 0y (t)d /FC(QS) dz.

1% T'c v

Applying Young’s inequality and recalling (3.14), we obtain that

t ¢ t
Iy < / / |6div(ug) F'(0)| dzdr < &/ / le(u)|*F'(6) dz dr + C/ / 0V da dr
0 Jo 2 Jo Jo 0 Ja

while, due to the Lipschitz continuity of A, we have that

t 1 t t
ms [ [ awilresass [ [ uPre)darse [ otasar
0 Jrg 2Jo Jre 0 Jrg

Finally, by the positivity assumptions in (2.18a) and (2.18b), we have that

¢ ¢
112:—/ / hF'(0)dzdr <0, 113:—/ LF' (0) dz dr < 0.
0 Jo 0 Jrg

Collecting all of the above estimates, we arrive at

t t t t
1// |Xt\2F'(es)dxdr+ﬁ/ / |5(ut)|2F’(9)dxdr+c/ / \V9|2dmdr—|—c// |VO,|* dz dr
2 0 I'c 2 0 2 0 2 0 I'c
1
+ - (/ Gf)’dm—i-/ (GS)de)
v 0 I'c
1 t t
- (/ 0”(t)dx+/ eg(t)dx) +C/ / (|x|"’+1)9”+1dxdr+0/ / (Ix|® + 1)or+t dadr
v 0 I'c 0 JI¢ 0 JIc

=TIy +Iis + I+ Ii7.

IN

(3.31)
Now, since v < 1, we clearly have

5 < C (100500 +1) S D1 < C (100153 +1) <, (3.32)
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where the last estimates are due to the previously obtained (3.26). Furthermore, we have
I © c/?nvww D6 oy dr = c/t<||xs ey FDIBIE L e dr
0 <) @ Lse'( Lw+le(rg)
e / 65t dr
<o / V018 4+ 1015 100y

4) ¢ [t 9
< f/ / VO dedr + C
2 0 2

where for (1) we have used Holder’s inequality with some g > 1, chosen in such a way that (v + 1)p < 4 so
that, by Sobolev embeddings and trace theorems, we have that H9||L(,,+1)Q(Fc) < C|10|| g1 (2)- Then, taking
into account the previously proved estimate for y in L>(0,T; H'(I'c)) and, a fortiori, in L>°(0,T; LY(Ic))
for all 1 < g < oo, we conclude (2). Estimate (3) follows from the Poincaré 1nequahty, and (4) from Young’s
inequality (since ¥+1 < 2) and, again, (3 26). In this way, the term § fo Jo IV6]? dz: dr can be absorbed into
the left-hand side of (3.31). The term fo 1) e (Ix|I* + 1)0v T da dr can be treated in a completely analogous
way. Hence, from (3.31) we conclude

(3.33)

101l 20,711 (2)) + 105l 20,751 (1)) < C- (3.34)
Case > 2. We test (3.4) and (3.5) by —0~7 and —0; 9, respectively, with ¢ = p — 1. Adding the resulting
relations and integrating over (0,t) we obtain the analogue of (3.11), with ¢ in place of p. We observe that
the first two terms on the right-hand side of (3.11) can be estimated as in (3.12), while the last seven terms

on the left-hand side of (3.11) can be handled by monotonicity arguments as in (3.17)—(3.19). Since ¢ = p—1,
in view of the growth properties of «, cf. (2.13), we have that

t t t
q/ / a(0)0~ 0|V da ds > coq/ / or= 49|y de ds = coq/ / IV6|* dz ds, (3.35)
0 Je 0o Je 0o Je

t
// 5)0 1+ |vg,|? dxds>coq// 95—<1+q>|v05|2dxds=coq// IVO,|> dzds.  (3.36)
I'c I'c 0 JI¢

Besides, using (3.14) and the Young inequality (3.15), the third term on the right-hand side of (3.11) can
be estimated as follows:

t t 2 t
— / / 6'~div(u;) dzds < g/ / Je(u) dzds+c / / 62~ %dxzds |. (3.37)
0o Je 2 Jo Jo 07 0o Je

Since 6 > 0* > 0 a.e. in 2 x (0,T), we have that

¢ ¢
/ / 62~ 9dxds < / / (0*)>"%dxds < ¢ whenever ¢ > 2, (3.38)
0/ 0 Je

while

t t
/ / 6?9 dxds < / / Odxds+ |2|T whenever 1 < g < 2. (3.39)
0Je 0o Jo

Combining (3.37) with (3.38)—(3.39) and recalling that ||9||Loo(07T;L1(Q)) < ¢, by (3.26), we conclude that

//91 Idiv(u,) deds < — // JeCu)” ut d ds+c. (3.40)
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Arguing in a similar way and recalling the bound ||0s|| ;00 (0,7;11(re)) < ¢, We infer that

t t
- / 017N (x)xs dzds < = / / |Xt dxds + c/ 629 dx ds
0 I'c I'c 0 I'c

< - // |Xt dzds+ec,
FC S

where we have taken into account the Lipschitz continuity of A stated by (2.16). Combining the analogue of
(3.11) with (3.35)—(3.36), (3.40), (3.41), we obtain that
+

q—1
Hl(t) L //'E W 4, s +// d ds
0" Nra-1(0) Le-1(rg) re 6

t t
+//|V9|2dxds+// VO, dzds < c,
0 Jo 0 Jr¢

Os
whence estimate (3.34) follows.
Case 1 = 2. We test (3.4) and (3.5) by —0~! and —6;!, respectively. Adding the resulting relations,
integrating over (0,t) using (2.13), (3.26), recalling that the kernel j is symmetric and that A > 0 a.e.
in 2 x(0,T) and £ > 0 a.e. in I'c x (0,T), and eventually exploiting the cancellation of some terms, we
obtain

co//we\ dxds—l—co// V6, dazds+c//‘5 de ds +// bl g, g
FC FC S
/ln(ﬁo)dxf/ 1n(92)d:1:+/ ln(@(t))der/ In(6 dx—/ /dw u,) dz ds (3.42)
I'c 7] I'c
/ / X)Xt dx ds.
I'c

The first two terms on the right-hand side of (3.42) are bounded, due to (2.20a)—(2.20b). Since In(r) < 0
whenever 0 < r < 1 and In(r) < r for every r > 1, estimates (3.26) ensure that the second and the third
term on the right hand side of (3.42) can be estimated as follows:

(3.41)

q—1

/Q In(8(t)) de < /9 gy O < /9 0(t)de < c, (3.43)
/ In(0(t)) d < / In(0(t)) da < / 0.(1) dz < c. (3.44)
I'c Tan{fs>1} T'c

Finally, the last two terms on the right-hand side can be estimated using (3.14), (3.26), and the Young
inequality:

t t 2 t
—/ /div(ut)dxdsgcd/ |€(1ut2|91/2dxds< V/ / deds—i—c//@dxds

0o Je o Ja 0Y 7}

< = //'E u) dzds+c, (3.45)
t
// Xtdmds<c// |>ft2951/2dxd <= // dxds+c/ 0, dx ds
I'c re 0 s/ I'c Os 0 JI¢
< - // dxds+c (3.46)
I'c s

again using the Lipschitz continuity of A ensured by (2.16). Combining (3.42) with (3.43)—(3.46), we infer
that

co//\v9| dxds—i—co// V0,2 dz ds + — //'”‘t dzds + = // bal” deds < ¢,
FC FC S

whence, recalling (3.26), we have (3.34).
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3.3.8. Third a priori estimate
We enhance estimate (3.34) by testing (3.4) by F'(6) = 6! and (3.5) by F'(65) = 6=, where v € (0,1)

S

is now arbitrary. Hence, for the terms I5 and I from (3.29) & (3.30) contributing to (3.2 ) we now find

t t
—I3> c/ / 0‘””’2|V0|2dxdr:c/ / IV (OE+)/2) dg dr
0 J 0o J

and, in the same way,

t
—1420// \V(9§“+”)/2)|2dxdr.
0o Jre

With the very same calculations that lead to (3.31), and recalling (3.32),

//|v (glut)/2))? dxerr/ / 9ut)/2) 1 4z dr
I'c

(3.47)
§C+C/ / (|X|S+1)9”+1dxdr+C/ / (Ix|* + 1)gr  dedr.
0 I'c 0 I'c

Now, as in (3.33) we control fot frc(|X|S + 1)6**1 dzdr by means of C||9H%2(O 1oy + C- We proceed
analogously for the last term on the right-hand side of (3.47). In view of the previously proved estimate
(3.34), we thus conclude that

t t
/ / IV(H“‘+”)/2)I2dxdr+/ / IV (092 dz dr < C.
0 Jo 0 JIg

Hence, recalling that [|0]| Lo (o,r;21(0)) < C and [|0s|| oo 0,7;01 (re))y < C (cf. (3.26)), and exploiting the
Poincaré-type inequality from (2.2), we deduce that for all 4 > 1 and v € (0,1) there exists a positive
constant C' such that

HQ(N+V)/2||L2(O,T;H1(.Q)) + ||9§“+V)/2||L2(0,T;H1(Fc)) <C. (3.48)

3.3.4. Fourth a priori estimate
We test the weak formulation (2.29) of the displacement equation by ug, we multiply the flow rule for the
adhesion parameter

Xt +Ax +&+9'00 + N (x)0s =—*| * - [ Jul” —fH[XIUI] a.e. inI'c x (0,T) (3.49)

(with £ € B(x) a.e. in I'c x (0,T)), by xt, add the resulting equations and integrate in time. We thus arrive
at

| vt wdr 4 Geta, we) + ) + 5 [ oo+ g [ xOOPI )6

[/ eldrars [ (GT0R W) ar

1 N 1 1 1
= —e(ug, ug) + 1n(ug) + */ X0|110\2 dz + */ Xo\u0|23[X0] dz +/ (|VX0|2 + W(Xo)) dx
2 2 Jr, 2/, o \2

t t t
+ / (F,uyg) (Q_Rg)dr—/ / 0div(u;) dz dr —/ N (x)0sxt dx dr.
0 'p’ 0 Jn 0 JI¢

23

(3.50)



G. Bonfanti, M. Colturato and R. Rossi Nonlinear Analysis: Real World Applications 66 (2022) 103511

Now, the first five terms on the right-hand side of (3.50) are estimated by a constant in view of condi-
tions (2.20), also taking into account Lemma 3.1. Furthermore, we find

t (1) 1 t
2
/O <F’ut>H}D(9;R3)dr < C”F”LQ(O,T;H;D(Q)*) . Z/O v(ue, ug)dr
t ) ) I
/ / Odiv(ug) dx dr| < C||0||L2(O,T;L2(Q))+Z/ v(ug, ug) dr
0o Jo 0
t ¢
, (3) 9 1 )
N(O)bsxedzdr| < Cllbsll 7200702010y + 1 Ix¢|” dedr
0 I'c 0 I'c
where (1) & (2) follow from Korn’s inequality (cf. (2.7)), while (3) is due to (2.16). Combining the above
estimates with (3.50) we deduce

||u||H1(o,T;H1£D(Q)) + ||X||H1(0,T;L2(FC))0L0<>(0,T;H1(FC)) <C. (3.51)

3.8.5. Fifth a priori estimate
Taking into account the previously obtained (3.26), (3.34), and (3.51), it is immediate to see, arguing by
comparison in the flow rule for the adhesion parameter, that

1A + &l L20,7522(r0)) < C-

Hence, well-known arguments from theory of maximal monotone operators yield a separate estimate for Ay
and &, namely

IAX| 20,7522 (re)) + €l L2(0,m22(re)) < C (3.52)
so that, by elliptic regularity, we infer that

Xl 20,712 (rg)) < C - (3.53)
3.3.6. Sixth a priori estimate
It follows from (3.48) that (#+¥)/2 is estimated in L?(0,T; L%(£2)), namely that
Vu>1Vre(0,1) 3C>0: 101l Latv 0,7 L3040 (2)) < C - (3.54)

We combine this with the previously found estimate for ||€|| oo o,7;1(0)): by (2.3) we have the continuous
embedding
LHHv (0, T; LAWY (2)) N L0, T; LY(2)) € L0, T; Lb(12))

1w
with {0 A and v = LY
5 =3, T1—0 w—v+2

(observe that, with such a choice one has ¥ € (0,1) since v € (0,1)). Therefore, we obtain a = p— v+ 2 and
b= w7 so that we conclude, from (3.26) and (3.54), the bound
Vu>1Vve (0, 1) 3C >0 : ||6||LH*V+2(O,T;L3(“*V+2)/<7*6V)(Q)) <(C. (3.55)
Analogously, due to (3.48) and the continuous embedding H'(I'c) C L(I'¢) for all ¢ < oo, we have that
6{" /2 is estimated in L2(0,T; LI(Ic)) for every q € [1,00). Thus
vl,L >1Vve (07 1) Vq € [1,00) 4C >0 : HQS”L“J"V(&T;LQ(Fc)) § C. (356)
We combine this with the previously found estimate for [[0s[| oo (0,711 (1)) Indeed, again resorting to (2.3)

we observe that the continuous embedding

L0, T; L(Ic)) N L=(0,T5 LY (I'e)) € L0, T; L°(I'c))

)
with

:§+w andﬁzilH_V
:§+1—19 w—v+2

24

= Q=



G. Bonfanti, M. Colturato and R. Rossi Nonlinear Analysis: Real World Applications 66 (2022) 103511

holds. Now, since ¢ € [1,00) is arbitrary, the exponent b can be chosen arbitrarily close to & ; , while
a = p — v + 2. Therefore, from (3.26) and (3.56) we conclude that
w—v+2
V/J >1Vve (O, 1) Vie (1, 2—2]/) 4C' >0 : H93||L“_”+2(0,T;LZ(FC)) S C. (357)

3.3.7. Seventh estimate on the bulk heat equation
In the weak formulation (3.4) of the bulk heat equation we (formally) choose a test function v €
Wh3te() c C°(f2), with € > 0. By comparison, we have that

‘/ Livdz| + ‘/ Lovdz| +
I'c

L1 = 0div(uy) + e(uy)Ve(uy) + h, Lo = —k(x)0(0 — 05) — d[x]x0% + I[x0s]x0.

It follows from (2.18a), (3.34) and (3.51) that [[£1][11(0,1,01(0)) < C. In order to estimate L2, recalling
(2.15) we observe that

1k()8(0 — 0)ll 1 (e < C / (l® + 1)6(0 — 0) da

< Ol et gy + DUON 201y + 1012020y 105l 22 )
< CU0lF () + 10072,y »

(e)vevu dz| =1 + I + I, (3.58)

where

(3.59)

where the exponent ¢ is chosen such that ¢ < 2, so that [|0[| 20p) < C||0]|g1()- In order to control
the terms J[x]x6? and J[x0s]x0 we resort to an analogous Holder estimate, also taking into account that
130Xl oo (0,520 (1)) < C and [|d[x0s]l| oo (0,7:00(re)) < C thanks to (5.2()) and Lemma 3.1. All in all,
thanks again to (3.34), we conclude that || La|| 110, 7;01 (1)) < C- Therefore, denoting by Ly = [[£1(¢)|| 1)
and Lo = [[L2()| 1 (), we obtain
I < Li@®)||v] poe ) with L, € L*(0,T), (3.60)
Iy < Ly(t)|[vllpeo(ry)  with Ly € LY(0,T). (3.61)

Now, by the growth condition on o we have that
I < C/ (14 0")|V0||Vo| dz = T 1 + Ty,
Q

Clearly,
I3 < CIVO|| L2 IVl L2(0)-

In order to estimate the integral term I5 o we resort to estimate (3.55), which yields the bound

Ho(uiv+2)/2||L2(0,T;L6/(7—61’)(Q)) < C. (362)
Therefore,
Iso < Cl0W 22| Lo/r 60 _(2)||0(#+V72)/2VG”L2(9)||VU||L3+5(Q)
(n—v+2)/2 (ntv)/2 (3.63)
=Co Lo/ =601 () IV (O Nz Vol psre(a)
where we have applied Holder’s inequality, choosing v € (0, 1) such that
7—6v n 1 n I 1
6 2 3+e
Therefore, taking into account the previously obtained (3.48) and (3.62), we conclude that
I3 < L3(t)|Vvll ps+e(qy  with Ls € L'(0,T).
All in all, we conclude that
Ve>0 d4C >0: ||9tHL1(O,T;W1a3+E(Q)*) S C. (364)

25



G. Bonfanti, M. Colturato and R. Rossi Nonlinear Analysis: Real World Applications 66 (2022) 103511

3.3.8. Seventh estimate on the surface heat equation B
We (formally) test the surface heat equation (3.5) by a function w € Wh2+¢(I'c) C C°(T'¢), with € > 0.
By comparison, we have that

O0i0sw dx

g‘ Fwdz
I'c

‘ + ‘ / a(ﬂb)VHSVw dz| =11 + I, (365)
FC FC

where
F 1= 0N (X)Xt + £+ |xel® + k(x)0(0 — 65) + d[x0)x0s — d[x]x62.

Thanks to (3.34), (3.26), (3.48), (3.51), and arguing as for (3.59), we obtain that |[F|| 1o ;21 (ry)) < C-
Therefore,
I < F(t)|[wlpeo(rg),  where F(t) == ||F(t)||11(ry) and F € L'(0,T). (3.66)

In analogy with the calculations in the previous paragraph, we estimate

IQ SC (1+9§)|V€S\|Vw|dx:1'21 +IQ$2,
I'c

where, again, we trivially estimate
IERTRS C||V9s||L2(FC)||Vw||L2(FC)~
In turn, as in (3.63) we have

Lz < C68 =422 i p ) IV 08 2) | 2 1) V0l 244 1) (3.67)

where we have applied Hélder’s inequality and chosen v € (0,1) such that the exponent ! from (3.57) fulfills

1
S+

1 1
Il 2

B
24¢

+

Hence, we have that
I < B()|[Vwlp2reryy  with Fy € L0, T).

All in all, we conclude that

Ve>0 d4C >0: ||at95||L1(07T;W1,2+5(FC)*) S C. (368)

3.4. Outline of the proof of Theorem 1

As already mentioned, we will rigorously render the calculations in Section 3.3, and thus the resulting a
priori estimates, by working on a carefully devised time discretization scheme featuring

(1) additional regularizing terms for system (2.12), modulated by a parameter p > 0,
(2) the Yosida regularizations S. and 7, ¢ > 0, of the maximal monotone operators in the flow rule for x,
and in the boundary condition for u on I,

and where

(3) several occurrences of the term x have been replaced by its positive part (x)™ and the right-hand side
of the flow rule for x has been modulated by a selection in the subdifferential of the positive part of x
(see (3.70) and (3.69))).

On the one hand, the latter changes are motivated by the fact that, since the subdifferential operator
B : R = R, with domain in [0, 1], has been replaced by its Yosida regularization, we can no longer exploit
the information that x > 0 a.e. I'c x (0,7) which, in turn, would be crucial to estimate from below several
integral terms in the subsequent estimates. Clearly, upon passing to the limit as ¢ | 0 we shall recover
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positivity of y. Correspondingly, the choice to replace x by its positive part has led to the presence of the
subdifferential of (x)" in the flow rule (for a modeling justification, see, e.g., [32]).

On the other hand, the reason for this threefold approximation procedure (the time discretization of
system (3.69) combined with the double-parameter approximation), and hence for a threefold passage to
the limit, resides in the fact that we shall not be able to obtain the positivity estimates (2.31) for the
temperatures on the time-discrete level. Namely, for the discrete bulk and surface temperatures, we shall
only prove a strict positivity property (cf. (4.8) ahead), but not a lower bound by a positive constant as in
(2.31); we postpone to Remark 4.4 later on a thorough explanation for this. In turn, recall that the Second
a priori estimate involves testing the temperature equations by negative powers of § and 6g: in order to
carry it out rigorously, such powers should be in H'(§2)/H'(I'c), respectively. By the lack of the uniform
positivity estimates (2.31), we will not have such information at disposal for the discrete bulk and surface
temperatures. Hence, we will not be able to replicate the Second estimate (and, a fortiori, the Third, Fifth,
and Sixth estimates) on the time discrete scheme.

We shall be able to rigorously perform the Second estimate only on the time-continuous level, by working
with (a weak formulation of) the following regularized system

0; — 0div(u;) — div(a(0)VE) = e(uy) Ve(uy) +h  in 2 x (0,7), (3.69a)
a(0)V6-n=0 inInUTIy x (0,T), (3.69b)
a(0)V0 -0 = —k()0(0—05) — 3[()*] (002 + 80 0] (00 in To x (0,T), (3.690)
— div(Ee(u) + Ve(uy) + 0I) — pdiv(|e(uy)|[“ e(uy)) = £ in 2 x (0,7), w >4, (3.69d)
u=0 inIp x(0,7), (3.69¢)
(Ee(u) + Ve(uy) +0)n=g in I'x x (0,7), (3.69f)
(Ee(u) + Ve(uy) +0Dn + () Tu+ ¢ +I[()"](x)Tu=0 in I'c x (0,7), (3.69g)

0105 — O\ (x)x¢ — div(a(bs)VOs)

=0+ [xel® + k() (0—05)05 + 3[()T0] () T0s — I[()T] (x)T6?  in I'c x (0,7),
a(0)VOs -mg =0 in 0l x (0,T), (3.69i1)

Xt + olxel 2 xe — Ax A+ Ba(x) + ' (x) + N (x)0s

1 1 1 (3.69))
= Lo - Lal00*TePe - S0 ePle in Lo x (0.7),  w>
with 0 € dp(x) in I'c x (0,T), (3.69k)
Onx =0 indlc x (0,T), (3.691)
where ¢ : R — [0, +00) is defined by ¢(z) := (z)* for all x € R, and hence
{0} ifz<0,
Op(z) =1410,1] ifz=0, (3.70)
{1} ifz>0.

System (3.69) features two parameters p, ¢ > 0, where:

w—2

(1) the higher order terms —pdiv(|e(u;)|” 2e(u;)) and p|x¢|“ *x: have been added to the left-hand sides
of the momentum balance and of the flow rule for the adhesion parameter in order to compensate the
quadratic terms on the right-hand sides of the bulk and surface heat equations. This will pave the way
to further estimates, and enhanced regularity, for the temperature variables which, in turn, will enable
us to rigorously perform the estimates from Section 3.3 on system (3.69);

(2) in place of a selection ¢ € n(u), the boundary condition (3.69g) features the term

¢, =n(u-n)n (3.71)
where 7). is the Yosida regularization of the subdifferential n = 07 : R = R of 7 from (2.8);
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(3) in the flow rule (3.69j) we have considered the Yosida regularization . of the subdifferential operator
B:R=R.

The Yosida regularizations in the momentum balance equation and in the flow rule for x are motivated by
the presence of the nonlinear terms in £(u;) and x; in the approximate momentum balance and flow rules.
The parameter p is kept distinct from the parameter of the Yosida regularization because, for technical
reasons, it will be necessary to perform two different limit passages in system (3.69). First, we shall let p | 0
with fixed ¢ > 0, while the identification of the maximal monotone operators  and § in the momentum
balance and in the flow rule will be performed in the limit passage as ¢ | 0.

Remark 3.4. As we have pointed out in Remark 3.3, by replacing the operator 5, with domain in [0, 1],
by its Yosida regularization, in the flow rule (3.69j), we can no longer deduce a uniform-in-time bound
for [[x|loo(ry) from the First a priori estimate. This is the reason why we need to impose the growth
condition (2.15) for the function k, that has been indeed used in Sections 3.3.2, 3.3.3, 3.3.7 and 3.3.8.

A close perusal at those calculations reveal that condition (2.15) could be dispensed with at the price of
adding an additional approximation to system (3.69). Namely, it should be necessary to truncate the term
k(x), and remove the truncation in the limit as ¢ | 0. However, to avoid overburdening the analysis we have
chosen not to do so.

We will supplement system (3.69) with initial data
(69), C L'*2(92), (62 ,), C LF?(I'c) fulfilling (2.20a)-(2.20b), and such that
99 in L' 3.72
L, — o 1rTL(Q), as p L0, (3.72a)
92’p — 6% 1in LY(I'c)

(the exponent p is the same as in (2.13)), and with

(ug)p C W5 (£2;R?) and such that ug — ug in H}D(Q;RS) as p |0, (3.72b)
where we have used the notation Wh*(2;R?) = W' (2;R%) N H}«D(Q;H@). We will not need to

approximate the initial datum yq.
Our strategy for proving Theorem 1 is the following:

(1) in Section 4 we will devise a careful time discretization scheme for system (3.69), and show that it
admits a solution (cf. Proposition 4.3);

(2) in Section 5 we will derive a series of a priori estimates on the discrete solutions, and prove that, as the
time step vanishes, they converge to a (weak) solution of system (3.69), cf. Theorem 5.2 ahead, such
that the temperature variables § and 65 enjoy the positivity properties (2.31). This information will
enable us to perform the a priori estimates, formally carried out in Section 3.3, in a rigorous way on
the solutions to system (3.69);

(3) in Section 6 we will then address the limit passage in system (3.69), first as p | 0 and then as ¢ | 0.
In this way, we shall obtain the existence of weak energy solutions to system (2.12), and thus conclude
the proof of Theorem 1.

4. Time discretization

Given a time step 7 > 0 and an equidistant partition of [0, 7] with nodes t* := k7, k = 0,..., K., we

approximate the data f, g, h, and ¢ by local means, namely we set for k=1,... K,
1 [t 1 [t
f£r = 7/ f(s)ds, gh .= 7/ (s)ds,
T tk—l T tllc_—l
L L (4.1)
Rk = f/ h(s)ds, = f/ £(s)ds.
T tf—l T t.’ﬁ*l

Accordingly, we will also consider the local means (F¥);~ of the function F from (2.19).
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We shall construct discrete solutions to system (3.69) by recursively solving an elliptic system, (4.4) below.
In particular, for the discrete version of the flow rule for the adhesion parameter we shall use that, thanks
to (2.16) and (2.17), the functions A\ and v decompose as

) ) )
A(r) = A(r) — 57"2 + 57"2 = Xs(r) + 51"2 with A\s concave,

) vV oo . vV 5 . (42)
y(r) =~(r) + 57’ — 51" =7,(r) — 51" with v, convex.

We will look for the temperature components 6% and 9§ . of the solutions to the discrete system (4.4) in the

spaces (recall that @ is the primitive of o null in 0),
X={0cHY(Q): a(h) e H(N)}, (43)
X, ={0, € H'(I'c): a(bs) € H(I'c)}, '

We are now in a position to introduce our time discretization scheme for system (3.69), postponing to
Remark 4.2 further comments on our choices.

Problem 4.1. Let w > 4. Starting from the initial data (62,u?, 67, x?) with 02 = 6%, u) =u), 67 =67,
(cf. (3.72)), and x2 = xo (with xo from (2.20d)), find

{(0F,uk, 65 8T, € X x W (2;R®) x X, x H*(Ic),
fulfilling

- the discrete bulk temperature equation

k_ pgk—1 k_ yk-t
/wvdx—/ 95div<uTuT)vdx+/ a(07)VOrVu dz
Q 2 “

T T

4 / EOE8E 0% — 65 Jode + [ 810 O (0) 0 da
e I'c (4.4a)

— [ OGO TG T orede
I'c

uy —uit uf —uf! .
= /QE(T) VE(T)Ud.’IJ + <hT,’U>H1(Q)

for all test functions v € H(02);
- the discrete momentum balance equation

uk — uk-1 uk — uk-1 w—2 uk — uk-1
v(”,v) +p/ 5(TT>’ 5(77) g(v)dx—i-e(u’j,V)
T 0 T T
s [ sravwars [ pdratvacs [ chvaes [ a0 T 00 ubvas = (P v o)
2 I'c I'c

with ¢¥ =5 (u® - n)n

(4.4D)

for all test functions v € W5* (£2;R3);
- the discrete surface temperature equation

gk  _ pk—-1 A(vFE) — Ak
/ uvdx—/ gr A0G) = A0 )vder/ a(6F )VOF_Vudz
I'a re I'a ' ’

T T
J.

k—1|2

X5 —xk
T

vdx+/ ROGTI(07F =05 )08 code + [ FI0GH) 107 (1)L rode (44c)
I'c I'c

AOEFIOE T (08 ) v da + (05, 0) g1
I'c

for all test functions v € H(I'¢);
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- the discrete flow rule for the adhesion parameter

w—2

k—1 k—1 k—1
X —X X —X X — X
T— +p r T— + AXE + B (X5) + 7, () — v
T T T
1 k—1\pk k ok k12k 1 oy k=12 kL k—1\+|, k—127 k :
= _)‘S(X‘r )95,7' - 5X705 T 7|u | 28[()(7) Hur | Or — 53[(XT ) |uT | ]UT a.e. 11 FC7

with o € dp(xF) a.e. in I'c.
(4.4d)

Observe that, thanks to the request that a(6%) € H'(£2) and a(0F ) € H'(I'¢c), the weak formulations
for the bulk and surface equation with test functions in H'(§2) and H'(Ic), respectively, are appropriately
posed. Furthermore, taking into account the growth properties of o (cf. also (4.40) ahead), from a(a’;) €
H'() we conclude that 0% € L5#+6(2). An even higher integrability property holds for Hs s, 8s a
consequence of the fact that a(0% ) € H* (Fc) taking into account that H*(I'c) C LI(I'c) forall 1 < g < oo.
Therefore, starting from initial data (62, u® 02 ,X2) with 09 € L#+2(2) and 02 . € L*2(I'c), we will gain
the same integrability property (an even hlgher one) also for the discrete solutions. This information shall
be used for the rigorous a priori estimates performed on the time-discrete scheme in Section 5.

Remark 4.2. The time-discretization scheme (4.4) has been carefully devised in such a way as to ensure
the validity of a form of the total energy balance (cf. (4.9) and (4.22) ahead) for the discrete solutions. This
has motivated

- the choice of the terms to be kept implicit instead of explicit;

- the usage of the convex and concave decompositions of the functions v and X in the discrete flow rule for
X, which will allow us to exploit suitable convexity/concavity inequalities (cf. (4.24) ahead), instrumental
to the discrete total energy balance and, likewise,

- the presence of the selections o € dp(x¥) in the terms of the discrete flow rule that are coupled with
the terms of the discrete momentum balance featuring the positive parts (x*)*

As it turns out, scheme (4.4) is fully implicit, with all equations tightly coupled one with another. Because
of this, it will not be possible to prove the existence of solutions to (4.4) by separately solving the discrete
bulk temperature equation, the momentum balance equation, the surface temperature equation, and the
flow rule for the adhesion parameter. Instead, to prove existence for (a suitably truncated version of) system
(4.4) we will resort to a fixed-point type existence result for equations featuring pseudo-monotone operators.

The main result of this section ensures the existence of solutions to scheme (4.4), as well as the strict
positivity of the discrete temperatures (cf. (4.8)).

We will also show that the solutions to system (4.4) comply with the total energy inequality (4.9) below,
featuring the energy functional & : L' (2) x L'(I'c) x Hp, (£2;R?) x H'(I'c) — R defined by

1
&.(0,05,u,x) ::/ 0dx + 0sdz + —e(u,u)

[ awmans g [ (oot ula ) ok [ (G0 400 de

with 7. and Eg the Yosida approximations of the functions 7 and B In fact, inequality (4.9) will be the
starting point for the derivation of the estimates, uniform w.r.t. 7 > 0, in Section 5

In the statements of all the following results, we will omit to explicitly invoke the assumptions of
Theorem 1.

(4.5)

Proposition 4.3. Let 7 > 0, sufficiently small, be fized. Start from initial data

(99—7 0@ T’X’T) (927112762,;)7)(0) € LH+2(‘Q) x W];,W(Q;]Rg) x LH+2(FC) X HQ(FC)
fulfilling (2.20a)and (2.20b).
30
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Then, for every k € {1,..., K.} and there exists a quadruple (6%, uk, 0% %) e X x WA (2;R3) x X, x
H?(I'c), with an associated ok € L>(I'c) such that o¥ € dp(x*) a.e. in I'c, solving (4.4).
Furthermore, the discrete solutions (08)17, and (QQT)kK:Tl enjoy the following estimate

_ _ 1 1
350 >0 Vpe[l,o0) 37, >0 V7€ (0,7,) Vke{l,...,K;}: ‘0’@ ‘Qk < Sp. (4.7)
T LP( S, T Lp(['c)

In particular,

08 >0 a.e in 0, 9;7 >0 a.e inlc forallk e {1,...,K;}. (4.8)

Finally, there holds
E_yk\ |¥ k k—1 ¥
Eo (08,00, uk, xE) + pr 6<uT uT) dx+m/ X | e
Q T I'c T

+T/FC k(x’i‘l)(9’i—95,7)2dx+T//chpcj(x,y)(xf H@) T OET ) T (0 () =08 () dwdy  (4.9)

pr uh — uh!

)

< E (08 1,9571,u]ﬁ_1,xf e 7'/ hFdz 4 7 % dg + T (F* .
Q I'c T H;D(Q;RS)

Remark 4.4. Although the constant Sy in (4.7) is independent of the exponent p, for any fixed p estimate
(4.7) in fact holds for only 7 < 7, for a certain threshold 7, that tends to 0 as p — oo (cf. (4.21)). This is
the reason why, unlike in the time-continuous case (cf. the arguments in Section 3.2), from the arbitrariness
of p in (4.7) we cannot deduce a uniform L>(§2)-bound for the quantities - o which would provide a lower

bound for the discrete bulk temperatures (9’“) KL by a strictly positive constant. The same considerations
apply to the discrete surface temperatures (Gk )il

In any case, the weaker positivity information (4 8) will be sufficient to replicate on the time-discrete level
all the estimates needed to prove the existence of solutions to system (3.69).

We will prove Proposition 4.3 by approximating system (4.4) via suitable truncations depending on two
parameters 0 < € < 1 and M > 1; we postpone to Remark 4.7 the motivation for such truncations, resulting
in system (4.13). Next, we will pass to the limit in (4.13) as € | 0, first, and then as M — 4o00. Namely,

(1) in the upcoming Section 4.1 we will address the existence of solutions to the (e, M)-truncated system
(4.13);

(2) we shall perform the limit passage as € | 0 in Section 4.2;

(3) and the limit passage as M — +oo in Section 4.3, thus concluding the proof of Proposition 4.3.

In what follows, we will resort to the following discrete Gronwall Lemma, whose proof can be found,
e.g., in [33, Lemma 4.5].

Lemma 4.5. Let K; € N andb, A\, A € (0,+00) fulfill1 —b> 5 > 0; let (ag)ir, C [0, 400) satisfy

k
akg/l—i—bZaj forallk e {l,...,K,}.
j=1
Then, there holds
ar, < Aexp(Abk) forallk e {1,...,K,;}. (4.10)
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4.1. Ezistence of solutions to the (e, M)-truncated discrete system

Recall the notation (r)* := max{r,0} and (r)~ := max{—r,0} for the positive and negative parts of a
real number r € R. Furthermore, for € € (0,1) and M > 1 we introduce the truncation operators

T :R—=R, J.(r):=max{re},

0 ifr <0, (4.11)
Tu R =R, Tpy(r) :=min{max{r,0}, M} =<r if0<r <M, .
M ifr> M.
Accordingly, we define
ap : R = (0,400), ap(r) == a(Tu(r)).
It follows from (2.13) that
ap(r) > co for all r € R. (4.12)
We consider the (e, M)-truncated system, consisting of
- the discrete bulk temperature equation
OF — T (0F1 k_ gkt
/ 77(7)1] dz — / (Gf)+div(uTuT>vdx —l—/ an (05)VOEVo dz
2 T 2 T 2
[ RO TER 0k - 0k ude+ [ a0 04 0T (08)0 da
To fo (4.13a)
= [ OGO OGN T(9 v de
I'c
E_ k=1 E_ k=1
:/ E(M)VE<M)de+<h¢,U>H1(Q) for all v € H'(0);
0 T T

- the discrete momentum balance equation

k _ .ik—1 ko k—1\ @2 ko ik—1
V<M7v> te(utv) ﬂ,/ 5(11“)' 5<uu> c(v) da
T 0 T T

[ @ravder [ rubvaes [ chvdos [ a6 vy,
Q I I'c I'e

k
= <F7'7 V>H111D(.Q;R3)7

with ¢¥ =n.(ufn)n,  forall v.e W (02;R%);

- the discrete surface temperature equation

ek — 7. ekfl A kY _ A k—1
/ Osr =305 4 - / (6§_T)+Mvdx+ / an(6F.)V0E Vude
I'c I'c ’ I'c

T T
/Fc

— [ AOGTHTIOGT N L T8 o de + (5, 0) papy for allv e HY(Io);
I'c

E—112

X¢7XT
T

vda + / BOE)(0F — 05 )T (0% Jude + [ 310ET) 05 (AT TLOF, v da
I'c I'c

(4.13c)

32



G. Bonfanti, M. Colturato and R. Rossi Nonlinear Analysis: Real World Applications 66 (2022) 103511

- the discrete flow rule for the adhesion parameter

=Xkt Rl IV Y k k k1
T T T /
+p T - +AXT+ﬁS(XT)+7v(XT) —VUXr
_ ) 1 )
1
~HOET T ok ae inT,

with o% € dp(x¥) a.e. inlc.

For notational simplicity, we have not highlighted the dependence of a solution (6%, u*, 6% s X*) to system
(4.13) on the parameters ¢ and M, and we shall not do so, with the exception of the statements of
Proposition 4.6 and Lemma 4.8.

Proposition 4.6. For any fixred 7 > 0, sufficiently small, for every k € {1,..., K.} and

(OF=1 uk-t 93 LX) as in (4.6), there exists a quadruple

(6T6M7 7k':EM7GST€M’XTEM) EHl(‘Q) XW];W(“QvRS) XHI(FC) XHQ(FC)

with an associated o¥ _ ;€ dp(xE /) a.e. in I'c, solving (4.13).

Furthermore, for every k € {1,...,

K.} we have that

97€M>0 a.e. in §2, 9576M>0 a.e. in Ic. (4.14)
Finally,
35, >0Vpe[l,o0) 37, >0Ve, M >0VT€(0,7,) VEe{l,...,K,} :
1 1 (4.15)
— = < Sp.
k E =
TC(GT,C,M) LP(Q) TE(QS,T,E,M) LP(I'q)
Proof.

Step 1: existence for system (4.13). We observe that a quadruple (0, u, 6, x) solves the elliptic system (4.13)
if and only if it solves

QW (0%, uk, 08 XE)+ o/ (08, 0k, 605 x%)50  in X, (4.16)
where X is a suitable ambient space, ¥ : X — [0,400] is a (proper) convex and l.s.c. potential, with
subdifferential 0¥ : X = X*, and & : X — X* an appropriate pseudomonotone operator. As we will see,
both ¥ and « depend on the discrete solutions (951, uk=1 651 y5~1) at the previous step, as well as on
the parameters ¢ and M. However, we choose not to hlghhght this in their notation.

Indeed, let us set X := H(§2) x W]_})’“’(Q;]R?’) x HY(I'c) x H(I'c) and define

4271(9 u, b5, x)
(0, u, by, x)
50,4, by, x)
Ay (60,4, 65, x)

o X = X* by Z(0,u,bsx):=

where

(1) @ : X — HY(0)* is defined via

1
(0,0,0,,x) =0 — 0 div(u—u*1) + 7AM(0) + 7B1(0,6,) — —e(u)Ve(u—2uF~1) —7F  (4.17a)
T
with
An  HY(2) — HY(2)*, (An(0),0) g1 () == / ap (0)VO - Vo da; (4.17b)
2
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By : HY(2) x H'(I'c) —» H'(2)",
<Bl(9,9s),v>H1(m =

(4.17¢)
{k 0)(6 — )+ )T () T0T(0)-a[0E) 0] (ETH)TT(0) v da,
P o= fre(e’:—l)+i (b1 Ve(uh 1) + hb: (4.17d)

(2) oo : X — Whe(2;R3)* is defined via
(0,4, 0, x) = —div(Vu+7Eu+72*“’p|5(u—u’j*1)|w725(u—u7’f*1)+70+]l) +7Ba(u, x)—71Fy (4.17¢)
with
By : WH (0 R?) x HY(I'c) — W (12, R?)*,

(B2(u, X), V) 1w (0;m3) ::/F () fuvde + : l00] (X)*uvder/F ne(u-n)n - vdz,
C C C

(4.17f)

1
b = —div(Vur™!) + FF; (4.17g)
-
(3) o3 : X — HY(I'c)* is defined via
1
(01,0, ) = 0 — (0) (A -ACE™) + 74N (8) ~ 7B5(6,6) — ~x(x-24) — 7Fy (4.17h)
with

Anrs: HY(I'c) — HY(I'c)*, (Anrs(05),9) 1 ::/ an(05)Vbs - Vo da; (4.171)
I'c
By : HY(2) x HY(I'c) — H (I'c)*,
<B3(0708)7U>H1(Q) =

{k (0)(0 = 0)+3[0x3 ) 0] O ™) Te(0) =310 T () T Te(6s) o da,
, (4.17j)
Fy = T8k ) + I+ 45 (4-17K)

(4) oy : X — HY(I'c)* is defined via

_ _ -2 _
(0,0, 05, x) =x + 72 plx—xETTT (x—xETY) + A + TB:(X)

- (4.171)
+77,(X) + TAS (G (0:)T + o (0s)T — TFy
with 1
Fy *Xi Ly k-t, (4.17m)
The potential ¥ : X — [0, +00) featuring in (4.16) is given by
2
w(0,u,6s,x) = ¥(x / {1 P00+ 1 00 1007 G0 et P de . (418)

It can be readily checked that, with 7 defined by (4.17) and ¥ by (4.18), system (4.16) yields solutions to
system (4.13) in which the discrete flow rule for the adhesion parameter holds as a subdifferential inclusion
in H'(I'c)*. However, a comparison argument in (4.13) yields a fortiori that Ax* € L2(I¢), and thus
X € H3(I'c) and (4.13) holds a.e. in I'c. Let us then show that (4.16) does admit solutions.
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Standard arguments in the theory of quasilinear elliptic equations (cf. [34, Chap. 2.4]) yield that the
operator &7 is pseudomonotone. The next step is to verify that &7 is coercive, namely that (using the variable
x as a place-holder for (0, u, 6, X))

o
‘m (o (x),%)x — 1o
Ixlx—+oo  |Ix[Ix

This can be done by the very same calculations that we will carry out in the proof of Lemma 4.9
ahead.

Hence, the existence theorem in [34, Cor. 5.17] yields that (4.16) admits a solution (0,u,6s,x) =:
(ef,e,M7 uf’,e,]%’ 9§,T,6,M7 XE,&,M)'

Step 2: proof of the non-negativity properties (4.14). We test the discrete bulk heat equation (4.13a) by
—(0%)~ and the discrete surface heat equation (4.13¢) by —(6% )~ and sum the resulting relations. Thus,
we get

_ 95_76(05_1) _ (pk\— 95,7—_76(05;1) _(pk \—
0= [ EdE )d“/ch (~(05)7) da

k . u’f.—u’f._1 ke — k )\(Xﬁ)_)\(X’i 1) E \—
+/Q(9‘r)+dlv(7_)(97') dx+Ac(95,T>+ (es,‘r) dz

T

+ / ant (6%)9(6%)~ [ da + / ant (68 )V (85) | da
2

I'c

T ROATEE 0 (T8 ) (05,7 T (05)(65) ) da

I'c
= OO OO~ 6 ) () L0 e (4.19)
O IO O ) 0k ) -0 ) O T8 )

I'c

E_ k-1 k _ k=1
+/ €<uTuT> Vg(uTuT>(9’j)dx+/ RE(0F)~ da + o) da
0 T T 2 I'c '

2
<
I'c

(0,) dr
=h+DL+Is+ 14+ Is+Ig+ 17+ I + 1o+ Tio + I11 + T2 + I3,

e

T

First, we have that I; > % ||(0k)_HL2(Q) and I > %H(HS’T)_H%Q(FC). Moreover, since rTr~ =0 for all 7 € R,
I3 = I, = 0, whereas by (4.12) we find that I5 > C()HV(97]?)7||§‘2((2) and I > co||V(0§’T)*H%2(FC). Observing
that T (r)r— = er™ for all r € R, we have that the function r — T (r)r~ is non-increasing and hence I7 > 0,

while the very same arguments as in (3.17) show that Is+ Iy > 0. Clearly, I1p > 0 and I3 > 0. The positivity
of I1; is due to the fact that h* > 0 a.e. in 2 by (2.18a); analogously, we have that I; > 0. All in all, from
(4.19) we gather that

H(@f)_H?ﬁ(Q) + H(H;“,T)_H%z([ﬁc) <0, whence (0¥)" =0a.e. inf, (95’7)_ =0 a.e. inlq,

whereby the non-negativity properties (4.14).
Step 3: proof of estimate (4.15). Mimicking the calculations from Section 3.2, for p > 2 we test the discrete
bulk heat equation (4.13a) by —(T¢(#%)) 7 and the discrete surface heat equation (4.13¢) by —(T(65,)).
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Summing the resulting relations, we get
ek - {-Te ek—l 6.]:7' - ‘Iﬁ 9?;1 .
o= [ D gty rans [ BT (g a
9] T I'c T

ko k-1 kY k—1
o [ ot () oty rao [ on A Doty as
7] T ’ ’

I'c T

+p / on (05)(Te(6%)) =) [V0% " dz + p / g (05 )(Te(0F )~ |v0k | da
Q I'c

+ / k(x 05 ) ((TL(0F,)) P (T (05) ) da
/ TLO) P LA YO -l R ] () ) de
I'c
+/ Te 1 p{g k 1 +0k]( 1)+73[(X7k—71)+] (Xk 1 +9k }dIIJ
I'c
-1 uf —uk-! 1 . r 1 . | .
+/Q< ) ( = )(fn(ef))pd +/g’“<fre<e¢>>pd B ARICATI

’: ‘o
(Te(65))P
—Il+IQ+13+I4+I5+IG+[7+18+19+110+111+112+113,

dx

(4.20)
where we have used that (65)* = 6% and (6% )™ = 6% _ by the previously obtained (4.14). Then, we observe
that, as 6% < T.(6%) a.e. in 2, we have

ne [ TSI g s
0 T -7

where the last estimate follows from the convexity inequality —r P(r — s) > p—il( 1=p_s1=P) for every
r,s € (0,+00). Analogously,

/ (T.(68) 7T (9 1)) da,

1
I, > 7/ T (0% )P T (05 -117P) da.
2 (p—l)Tpc((’) 0-)")

Clearly, Is > 0 and I > 0. Since the function r — T.(r)!~? is non-increasing, we have that I; > 0. The
very same arguments as for (3.17) show that Is + Iy > 0, and, again by (2.18a) and (2.18b), we have that
I11 > 0 and I;5 > 0. Finally, we observe that

(1) k _ k-1
I3+ Lo > —Cd/ €<uT7_uT>‘( (09)' P dz + Cy /

ol

(;)7 _Clp— 2)/( (65))1

p—1 p—1

2
(T.(65) 7 da

=
-
2

(Te(67)) " dx

(=)

where (1) is due to (3.14) and to (2.7), while (2) and (3) are due to Young’s inequality, arguing as in (3.13).
Analogously, we find that

-2 1
Lthy>--C ¢ )/ (fre(afT))lfdef/
1 o 7 2 Jr,

*\A“

(Te(07) 7" dz

2

(Te(05 )P da.

XE—xht

T

p— p—1
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Combining all of the above calculations we arrive at

1 / kyl— 1 / k 1—
— [ T(67) " Pdr + ——— Te(0; ) "Pdx
(p—17 Jo (@) (p— 17 Jrg (Os.r)

R k=1\1=D 4 _ 1 k=1)1=p qp
< ooy [T e /Fcfre(es,r) d
c C(p—2) EVW1=P 4 E W-pdg

whence, multiplying the inequality by (p — 1)7 and summing over the index j, for j € {1,...,k} with an
arbitrary k € {1,..., K}, we arrive at the relation

k
{.Tk S {I() +CT+ZC(p—2)’T{Ij
j=1
with the place-holder Ty := [, Te(0%)1 7P dx + fF k )17Pda. The discrete Gronwall Lemma 4.5 yields,
g ToHCT _ ( Clp—2)rk
1-C(p-2)7 1-Clp—2)r
for 7 € (0,7,) with
1
Ty = ————. 4.21

Now, since T < 7,,, we have that 1 — C(p — 2)7 > 1 and thus we get the analogue of estimate (3.22), i.e

max Hlk < (20’)1/(‘”71) exp (QCT(pZ)) < Sy
T.(6F) Lr—1(rg) (r—1)

with C" = Ty 4+ CT and Sy = 2C" exp(2CT). Clearly, by the arbitrariness of p > 2 we conclude (4.15). O

_ L
Tﬁ(eg,r)

)

Lr—1(0)

Remark 4.7. A careful perusal of the calculations in Step 3 shows the role of the positive parts (0%)* and
(x*~1)*, as well as of the truncation operator T., in ensuring the positivity of various integral terms that
appear in the proof of estimate (4.15).

We conclude this section by showing that the discrete solutions (95’67 Mo uf,e’ Mo 95,7,5, Mo X?,e, o) fulfill an
energy inequality, involving the stored energy functional €. from (4.5), that will play a crucial role for
the limit passage as ¢ | 0. In the proof of (4.22) below we will use in a key way the convex and concave

decompositions from (4.2).

Lemma 4.8. The functions (Glj,e’M,u’ij?M,HQT’EyM,XfVC’M) fulfill

k k—1
u —u
e oM T dx—i—pT/
T re

+T/ k(Xf-71)(eﬁ,e,JV[_ef,T,s,]W)(76(aﬁ,e,M)_r‘Tﬁ(ef,T,s,]W))dx
I'c

k k—1
XT,E,J\I Xr

T

k k k k
EQ'(QT,G,M795,7,6,M7u7',5,M7XT,6,M) + pT/ dx

]

tr / / J ) O @) O ) (T8 o ag (1) =T (0% ) )) (B ar ()6 1y (4) iz dy
I'exI'c

k k—1

u — u
< E(TOE ), 05 b ) / Wede 47 / ¢ da 4, T "7y |
’ o re T HL (2R)

(4.22)
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Proof. We test (4.13a) by 7, (4.13b) by (uf—u*~1), (4.13¢) by 7, and (4.13d) by (x*—x%1), add the
resulting relations, and observe the cancellation of the terms

. k _ k=1 k _ qk—1 112
—7'/ (0%)*div (%) dz, T/ E<uTuT> VE(uTuT) dz, T/ % dz.
Q Q T T I'c
We now manipulate the remaining terms. Elementary convexity inequalities give that
1 1
o (ut,ub—ut ) > Lot - Loqut),
1
[ ot at e 5 [ btk o
1 1 1 1
A e B B N e R e S R
1 2 1 _ _1,2
=5 [ aretan -5 [ E e P,
I'c I'c
Cﬁ ) (uﬁ—uf_l)daj > / ;7}(“5'11) dz _/ 7 (a7 Pt n)dz,
I'c I'c I'c
E E_ . k-1 1 k|2 1 E—1)2
VXT ’ V(XT_XT )dl‘ e |VXT| dz — - ‘VXT ‘ da,
BOHOE— XN de > [ BB de— [ B da
I'c I'c I'c
(4.23)
Using that As(r) = A(r) — 272 is concave we infer that
= [T OE = A = MDA - ) do
fo , , (4.24a)
> - / (05 )% (AOE) = AGE™) + A0 = A0k + S = SIxEf) de =0
c
Analogously, exploiting that v, (r) = y(r) + 7% is convex we find that
/ BOG G v [ T GG de 2/ () = D+ ET P =5 ) de
I'c I'c I'c
2/ (YD) da.
I'c
(4.24b)

As for the nonlocal terms in the discrete displacement equation, we have

310 ) Tt - (b —uf Yy de > & [ Al O e Pl -2 [ 810 () jut P de, (4.250)
I'c 2 I'c 2 I'c

whereas the nonlocal terms in the discrete flow rule for the adhesion parameter yield

/ 13[(><’ﬁ)+]0’ﬁ(>< —XE ) uk 1|2d$
Fc

) (4.25b)
> 5 [ A0 e e =5 f 3l oy da,
1 Fc - o re
5/ 310 ) ok (k) da
Z%/ P (8 T () de (4.25¢)
=5 [, OO P g [ 0 e,
I'c
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where we have used the symmetry properties of J. Adding (4.25a), (4.25b), and (4.25¢), we obtain

L aiey o) P de - 1

— _ _1,2
I'c I'c

All in all, summing the terms on the right—hand sides of the inequalities in (4.23)—(4.25) with the temperature
terms we obtain (65,65 uk, x5) — € (T(0F71), T(6571), ub=1 xE-1).

T78,T) T

Furthermore, the integrals TfFC X’j DT (05)(0F — 0F ) dz and —7 ch E(xE=1)(0F — 0% )T (0% )dx
combine to give the fourth term on the left-hand side of (4.22). Repeating the same calculatlons as in ( ),
we see that

r [ 08 (00 a ) o
I'c
7 [T (O g e ) o
I'c

=[] @ T @) T ) )0 ()0 s ) .

w=2 k k—1 k k—1
u? —u u? —u
€ (T C ) e(uf—u N de = pT/ (T z )
T 0 T

k—1 k k—1 ¥
e (E—xEY) de = pr / X | g,
T FC

T

Finally, we find
LFC=)
p | |e| ——
0 T
/ -
p
I'c

-
Taking into account the above calculations, we conclude (4.22). O

w

dz,

4.2. Existence of solutions to the M -truncated discrete system

Now, we perform, for 7 > 0, M > 0, and k € {1,...,K,} fixed, the limit passage in system (4.13)
as € | 0. In this way, we will obtain discrete solutions to a discrete system featuring only the M-
truncation in «. To shorten notation, throughout this section we will abbreviate the solution quadruple
(9’;167M, uf‘,e,M’ 927,5,M> X§7€7M) with (6%, u¥, 0%  xF). Likewise, we will simply denote by o* the selections in
dp(x*), and use the notation ¢¥ := n (u*- n)n.

Our first result collects a series of a priori estimate on the sequence (6%, uf,0F  x¥ oF).. They hold
uniformly w.r.t. 7 in (0,7) for some 7 > 0 that shall be specified in the proof) umformly w.r.t. € and,
in fact, w.r.t. M > 0.

Lemma 4.9. Let7 € (0,7), for some T >0, and k € {1,..., K.} be fized. There exists a constant S; > 0,
also independent of M > 0, such that the following estimate holds

up (1168111 H 18 L1y H P sy HIXE Lz iy HloE ey ) < S22 (4.26)
in addition to estimate (4.15).

Proof. Observe that the fourth and the fifth terms on the left- hand side of the energy inequality (4.22) are
positive. Taking into account that the functions (5=, u*=1, 0b ~1 xk~1) are given, and recalling assumptions

(2.18) on the problem data, we thus infer from (4.22) that

k k—1 w
& (efaefev f:Xf)—FPT/ ‘8(%)‘ d$+p7’/
2 T'c

Now, the functional €. enjoys the coercivity properties (3.8) (with the exception of the control of the
|l - [l oo (rg)-norm, and of the enforcement of the positivity, of x). Taking them into account, we absorb
the second term on the right-hand side of the above estimate into the energy term € (6%, 0% _ u*, x*), and

€7 7s,€e?

Xk k
#‘ dx < C-‘—OHUGHHI(Q) .

T
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thus conclude a bound for the whole left-hand side. Again in view of (3.8), we thus conclude that
up (1168111 H10% Lot gy oy HIXE D g ) < € (4.27)

Furthermore, by the definition of d¢ (cf. (3.70)) we have that ||o¥|| oo (r) < C.
Next, we test (4.13a) by 0¥ and (4.13¢) by 6% _ and add the resulting relations; observe that all the positive
parts ()% can be removed, in view of (4.14). We thus obtain

2 2
1651132y + 1165 /QaM(af)\veﬂ d:c—l—T/ an (08 )|VOE |"da + 11 + I

Ig (4.28)

=13+ 1+ 15+ 1+ 17+ Igs + Ig + 11

with
11:7/ KO (T (04)0F T, (6% )6k ) (65 —6F ) dar > 0,
I'c
B [ SO0 @0 O BT O] () o
I'c
—T/ To(6 )8 (310108 () a0 (e, da
I'c
@ r./(/; O ) (0 (84 (0) = 65 0)) (6 )00, (05 () () dndy > 0.

where (1) follows by the very same arguments used for (3.7); both I; and I3 are positive since the function
r +— Te(r)r is increasing. As for the terms on the right-hand side, we have

:/ T 0510k di < CJJO*| 20 < ||9k||L2(Q)+c
(]

T (08 1)0F dz < C)|0% < Lyor 2
= [ v < Ok 2oy < g6k

e 2
I = 7—/ div(‘;)|€f| dz < Cr
]
(

2) 3 1
< T8 s 0811200y < 7210 gy + 5168122 0,
af k1 k —1 “4) 1
Is = T/Q5 (B ) e (M) 0 da < Orfle (S22 ) 2 o) 102 2y = 1021300 + C:

(5) & 2 e
I :T<h‘r795>H1(Q) < Ol ”Hl(Q) < *H@ I 1 )+C7

=

o* o*
) 10N Lac )10 |22

IS :T<£7-70q €>H1 T < CTH9§ e”Hl(FC) < ||9§ e||H1 T, +C7
(re) (I'c)

k—1 -1
Iy :T/ A=Az gk |2 g p OT‘ oGt ] [ k.
I'c L4(F) ’ ’
®) Cr? 5
< 7”05 5||H1 (I'e) + 3 ||es (-:HLQ([‘C)a
2
k_ k-1 k—112
Io :T/ Xeoxr ‘ 0k, dv < O ||re=2e— kol 0,
[ e N AP

where (2) follows from (4.27), and in (3) we have to choose 7 > 0 small enough so that the term
C7'2H0§||§11(Q can be absorbed by the left-hand side of (4.28), taking into account (4.12); (4) also follows
from (4.27); 85) and (6) from (2.18a) and (2.18b), respectively; (7) from the Lipschitz continuity of A and
(8) from (4.27), just like (9). Again, in (8) we choose 7 > 0 small enough in such a way as to absorb
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C72(|6F |12, (re) into the left-hand side of (4.28). All in all, combining the above calculations with (4.28) we
easily conclude that

2 2
101y + 105y +7 [ ns(@905 a7 [ ans(0E)IVOE S o <

I'c

whence the H'-bounds for % and 95’ .

k—1

-2 1
X X7- Xk k-

Xt
T

is

Since H'(I'c) embeds continuously in L?(Ic) for every ¢ € [1,00), the term

estimated in any L9(I'¢); with arguments analogous to those in the previous lines, it is not difficult to check
that the right-hand side of the discrete flow rule (4.13d) is estimated in L?(I'c). Hence, by comparison,
(Ax¥). is also estimated in L?(I'c), whence the estimate for (x*). in H?(I'c). O

We are now in a position to pass to the limit as € | 0, for fixed M > 0, 7 > 0, and k € {1,...,K,}, in
system (4 13) In what follows, for convenience we shall suppose that % e N\ {0}, so that, up to labeling
(0F,u¥, 6% x*,0F) by means of the natural number m = 1, the functions (6%, uf, 6F  x* oF). form a
sequence.

S,

k
€

(OF nrouf 08 ar XE 08 0p) € HY(2) x W (2;R®) x HY (I'c) x H*(I'c) x L™(I'¢)

Lemma 4.10. There ezist a (not relabeled) subsequence of (6F,uF, 0%  x% oF)c and a quintuple

such that the following convergences hold as € | 0:
oF — 0%\, in H'(2), ok —0F_\ in H'(I'c),

4.29
uf — ki W (R, xEF =k in HA(Ic), of—*ok,, in L>(Ic), (4.29)
and the functions (Gf,M, u’;M, 9§7T’M,X£’M,O’§7M) fulfill
Olj’M >0 a.e in {2, 057771\/[ >0 a.e inlc, (4.30)
as well as
- the discrete bulk temperature equation
ok M~ gr—1 uk  _uk-l
/ L= T ydr — / 6% div (TMTT> vdz Jr/ an (0%, )VOF Vo da
Q T 2 Q ' ’
[ kOGO — 00 avda + [ A[0GTDTIOE D (07 ) v da
e Ie (4.31a)
- OO v (GO v da
Ic ’
uk _ukfl uk) —uk71
:/ s(TMTT> Vs(f’MTT>vdx+(hf,v>H1(Q) for allv € H'(2);
Q
- the discrete momentum balance equation (4.4b), with CT = nc(uf u? - m)n;
- the discrete surface tempemture equation
9k Y k—1
/ STM s‘r / HSTM XTJV[) (X‘r )de+/ aM(ger)vakT MV’UdZE
I'a T I'c
k—12
= / M vdz +/ k(x5 )(97 M~ 9§,T,M)9§,T,M’U da
I'c T I'c (4.31b)

+ 3[(Xﬁfl)+95,M] (X’:fl)Jr@sr,MU dx
I'c

— [ AOETTIOE T OL  a) 0de + (6 0) g gy for allv € HY(Ic):;
I'c

- the discrete flow rule for the adhesion parameter (4.4d) a.e. in I'c.
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Finally,
15y >0Vpel,00) 37, >0VM >0V7€(0,7,) Yke{l,...,K;} :
1 1 4.31
T + % < So- (431c)
T,M LP(.Q) s, 7, M LP(FC)

Proof. Convergences (4.29) are an immediate consequence of estimates (4.26). Besides, from (4.14) it
immediately follows that
Glﬁ’MZO a.e. in {2, GSTM>0 a.e. in Ic.

Furthermore, there exists £ € L/~ (0; R3*3) such that

e (@)‘“25 (M) o B D (@ R). (4.32)

T T

Taking into account that W1« (§2;R?) continuously embeds (in the sense of traces) in L°°(Ic), we also
observe that (x¥)™uf — (x% ,,)Tuf ), and that, by Lemma 3.1, J[(x})* ]()(’6“)4—u’€C — 3[(X§,M)+]X¢7Mu§,M
in L (I'c). Smce e is Lipschitz continuous, we ultimately 1nfer that

C’: =77<(U )n—>77§( ur v n)n—Cf—,M in L>(Ic).

Hence, we readily pass to the limit in the discrete momentum balance (4.13b) and conclude that the quintuple
(97]?,]\/17 uqk—:Ma 0577-,]\/[, C.,k.:M, E) fulfills

uF gkt
v(m%v‘/)wLﬂ/Eié‘( )da+e (ug v )Jr/elrc.,zwdi"(")d”“r Orar) v e
ol 2 Fe

+ Chavdz+ [ 30T O ) Tk v de = <F¢7V>H}D(9:R3) for all v € Wy (2;R?).
re re

uk71

k
Furthermore, testing (4.13b) by ué%
limsup( / ‘ )’ )dx
el0

— k k—1 k k—1 k k—1
UMY k Yr MY k : Yr MY
< —v ( - , - —e|uj, = o) = 07 pdiv - dz
Q

and passing to the limit in the equation we readily show that

— ko ytuk ]‘ﬁMiud _ ENF (ko VT “E,M*“ﬁ_l d
r (XT,M) uT,M €z r 3[(XT,M) } XT,M) u‘r,M T Z
C C
E k-1 ko k-1
— (F}, uT’MTUT >H1 o (R / CTM uTM T dw

Thus, by standard results on the theory of maximal monotone operators (cf., e.g., [35, Lemma 1.3, p. 42]),
we infer that

ab k1 |92 R
E = e (TMTT) c <TMTT> .
A fortiori, we conclude that
uk_yk-1 “kauf—_l 3x3
€ (%) —e| =F—"—) in L¥(2;R*°). (4.33)

This completes the limit passage in (4.13b), leading to the discrete momentum balance (4.4b).
We now address the limit passage in the discrete truncated bulk heat equation (4.13a). First of all, we
observe that, as € | 0,

T (0%) — (QE’M)'*' = QE’M in L9(2) for every q € [1,6), (4.34)
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and that the traces of T.(6%) strongly converge to the trace of 6F sy in Li(Ic) for every qg € [1,4).
Furthermore taking into account that ||(x* )+HLOO(['C) < C|lxk= 1||H2(pc) < O, k(XE Y peo(rey < C
that [[J[(xE~)"0F Jlrere) < ClOE )08 Mgy < C by Lemma 3.1, and recalling (4.33), by a

comparison in (4. 13(1) we see that

3C >0Ve>0 sup
veEHL(2)

/ an (0F)VOE . Vodz| < C. (4.35)

The above estimate can be rephrased, in terms of the operator A s from (4.17b), as sup, .~ || A (6F) H;ﬂ(ﬂ) <

C. We combine this with the facts that V6* — V6%, in L?(2;R?) and that ap(0F) = an (05 ) in LY(£2)
for every 1 < g < oo (since 6% — Hlj’M a.e. in §2 and the function as : R — (0, +00) is bounded). Therefore,
An(0F) — AM(QIT“’M) in W1#(02)* for every s > 2. Thanks to (4.35), we conclude that

w(6F) = An(05,) i HY(2)". (4:36)

We also use the strong convergences

k—1

0k div (@) 5 0k div (“kMT“> in L) for all g € [1, ),

O T80 —05) — KO0k 005 ) in L9(T'o) for all ¢ € [1,2),

3[(X§ DTG TOET(08) = A[OEH T OG0 m)? in LI(I'c) for all g € [1,2), (4.37)
FOA™HTOET OET)TT08) — A0 )08 M G080 in LI(I'c) for all g € [1,4

k k—1 k k—1 uk _uk 1 uk _uk 1
s(i) Ve(“)%s( e )Vs( e ) in L“/2(0),

due to convergences (4.29), to the properties of J (cf. Lemma 3.1), and to the previously proved (4.33).
Combining (4.36) and (4.37) we pass to the limit in (4.13a), thus obtaining the discrete bulk heat equation
(4.31a).

The limit passage in the discrete flow rule (4.13d) as € | 0 is an easy consequence of convergences (4.29),
which in particular imply that Xs — X‘r u strongly in L°(I'c). Hence, by the Lipschitz continuity of S
and v/,, we conclude that 8.(x*) — ﬂc(XT a) and v, (xF) — %(XT u) in L (I'c). Furthermore, U’“—\*U’T“M

in L>°(I'¢) and, by the strong weak closedness (in the sense of graphs) of the maximal monotone operator
(induced by) &p, we readily conclude that

o v € 00Xk up) a.e. in .

Hence, the triple (05 M XT M1 07 o® ) fulfills the discrete flow rule (4.4d).
Finally, we address the passage to the limit in the discrete truncated surface temperature equation (4.13c¢):
it is based on the fact that

‘J'E(Gf, ) — (6% )= f,T,M in LY(I'c) for every q € [1,00), (4.38)
on the convergence
An(050) = An (08, 5) i H'(I), (4.39)

(which can be inferred by the same arguments as (4.36)), on the analogues of convergences (4.37) for the
terms on the right-hand side of (4.13¢), and on the fact that

k—1
X‘I‘M Xt

T

w=2 g k-1

Xe — X1 —
T

w=2 i k—1
Xrm_Xr in L®(I'c)

T

as x& — Xﬁ, u Strongly in L°(I'c). We thus obtain the discrete surface heat equation (4.4c).
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Finally, to prove the strict positivity (4.30) and estimate (4.31c), we combine estimate (4.15) with
convergences (4.34) & (4.38). Let us just detail the argument for Glj’ u (the positivity property for 95’7’ M
follows analogously). On the one hand, from (4.15) we infer that

1 1
liminf ——— dz < —  _dx <
[ mint s e < sup [ ot dr < 5,

€

so that liminf, o dz < 400 a.e. in 2. On the other hand, from (4.34) we have that

1
Te(0F ()

—— if 9’; (z) > 0,
e — 0% v (@) M for a.a.z € 0.
Te(0F(x)) +00 otherwise

Therefore, we conclude that 0’; v > 0 ae in 2, and estimate (4.31c) follows by lower semicontinuity. This
finishes the proof. 0O

4.8. Proof of Proposition 4.3

We shall carry out the proof of Proposition 4.3 by passing to the limit as M — +o0, for fixed 7 > 0, and
ke{l,..., K.}, insystem (4.31). In what follows, we shall suppose that M € N\ {0}. For simplicity, we shall
drop the parameter 7 and just denote by (6%, uﬂ,GSM, X5 ) s, with associated selections 0%, € dp(x%,)
a.e. in I'c, the sequence of solutions to system (4.31). We split the proof of the limit passage in some steps.
Preliminarily, we will need the following result (whose proof is left to the reader) collecting properties of the
primitives of «; observe that (4.40) is a consequence of (2.13).

Lemma 4.11. Define
a:Rt 5 RF Ex’:(r) = / a(s)ds,
0

(with & from (2.14)). The function Q is (strictly) increasing and thus a is (strictly) convex. Furthermore,

ritl potl
col|r+ <a(r)<c (r+ ,
0( u+1)_ ()_1< u+1>

r2 pHt2 ~ r2 pht2 (4.40)
—+ ————— ] <alr) < —t .
“ ( 2 (M+2)(u+1)> =a=a ( 2 (M+2)(u+1)>
The functions
RY 37— a(Tu(r)) and RY 5 r — ra(Tar(r)) are non-decreasing. (4.41)
Finally, the function
Au iR SRT An(r) = / (Ti(s)) ds (4.42)
0
is convex, and R
3C, CL>0 YM >0 VreRY : a(Tu(r) < Cran(r) + C5. (4.43)

An analogous estimate holds with & in place of & o Ty and a in place of 5M.

Proof of Proposition 4.3.
Step 1: a priori estimates. Since the constant in estimate (4.26) was independent of the parameter M, by
virtue of convergences (4.29) and lower semicontinuity arguments we immediately conclude that
k k k k k
E;PO <H9MHHl((Z)JrHes,MHHl(Fc)JrHuMHWLW((Z;R3)+||XM||H2(FC)+||UM||L°°(FC)) <51. (4.44)
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Next, we test (4.31a) by 7a@(Ta(0%;)), (4.31b) by 7a(Tar (65 ,,)) and add the resulting equations (it is a
standard matter to check that &(Tas(0%,)) € H(£2) and a(er(egﬁM)) € HY(I'c)). By convexity of ay, we
have that

/ Bnr (6%) dz — / A (04 dx < / (05,65 1)a(Tar (65,)) da,
2 2

2
[ B de— [ B s [ @0 a0k
Using that
V(@ (Ta (950))) = cas (95 ¥ (Tas (85) (1.45)

(cf., e.g., [36]), it is immediate to check that
[ @) VOV T @5 dr = [ (V@I 0} o
o

and we deal with the term 7 [ anr (65 M)VG’c uV(a(Ty (Gf u))) dz analogously. By the second monotonic-
ity property in (4.41), we have that

r [ OO — 60 OR@(Tar (651)) 0% G Tar(BF0))) o >
I'c
while with calculations completely analogous to those for (3.17) we can check that
*T/F a(Tar (05)) (310G OG ) (05)2=310G ) 0] (F 1) 105} de
c
7 [ T 0 00) (A0 OB =2l IO 0} e 0.
c
Taking into account the above calculations, we end up with the following estimate
| @@ dz+ [ Gukag) d+ VGO ) + IV GETa 0 s B
c
~ ~ ub gkl
g/ aM(e’;*l)dx+/ aM(ef;l)derT/ 0% (T ar(0%)))div <MT> dz
Q I'c Q

- w1\ i
2

+ (R AT (080)) () + T ATar (0500)) g1

AR ) — A(vE-L k—1
+T/ 68 v @(Tas (6% 1)) () = A0 )dx+7-/
I'c I'c

XT M X‘r
T

2

- B(Tar (05 ))
=Lh+L+L+1L+Is+1g+ 17+ 1g.

Now, taking into account (4.40), it is not difficult to check that

— 2 2
Ity < O (1 105 1t ) + 105 12 ) ) < C

since, by assumption (cf. (4.6)), 651 € Lr*2(2) and 657! € LF2(I¢). In order to estimate the ensuing
terms, we will use that

G20 G5 1y < € (IV@Ta0 05 2200y + [8Tas 0511 )

2 (19 @Tar 5 20y H1Ens 051 1041
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15| < CT)103 L) 1@(Tar (05)) L2 2

L4(2)

where (1) follows from the Poincaré inequality, and (2) from (4.43). Clearly, an analogous estimate holds for
e 4.48
< C'rll@(Ta (050 200y (449

1G(Tar (0F s)) |l 111 (1) - Hence
ok k-1
i ()
(4) T

*||V( ((‘TM(HM)))H%?(Q) +Crirlam (@) i) + C:

where for (3) we have exploited the previously observed estimate (4.44), while (4) follows from (4.47) and
Young’s inequality. With analogous calculations, again taking into account (4.44) and combining it with
(2.16) and (2.18a)—(2.18b), we easily conclude that

Is+1Is + Is + I + Iy *HV( ATu O30y + 7 ||V( (Tar (05272
+ CQTHaM(eM)HLl(Q) + C2T||aM(9s,M)||L1(FC) +C.

(4.49)

Hence, we choose 7 > 0 sufficiently small such that 7(C1+Cs) < 1, so that the terms with ||5M(9}“VI)||L1(Q)

and ||5M(9§,M)||L1(FC) can be absorbed into the right-hand side of (4.46). Them, combining (4.46) with
(4.48) and (4.49), and again taking into account (4.47), we infer that

sup (”aM(aﬁ/I)||L1(Q)+HaM(9§,M)HLl(FC)+||a({IM(aﬁ/f))”Hl(())"'”a(TM(QiM))”Hl(FC)) <Sy.  (4.50)
In particular, in view of (4.40) we conclude that

30>0 \V,M>O : ||9§C\/[HL“+2(Q)+||657M||L/"‘+2(FC) SC

Step 2: limit passage as M 1 co. In view of estimates (4.44), there exist a (not relabeled) subsequence and
functions (0%, uf, 0% x%, oF) that

0%, — 05 in H'(2)NLF2(2), 08, — ek in H'(I'c),
uk, —~uf in WHe (2R3, Xk =k in HY(I¢), ok, —*oF in L>=(I¢).

T

(4.51)

With the very same arguments as in the proof of Lemma 4.10, from estimate (4.31c) we conclude that 8% > 0
a.e. in 2 and 07 > 0 a.e. in I'c and the validity of estimate (4.7).

The limit passage in the momentum balance and in the flow rule for the adhesion parameter in system
(4.31) follows by the very same arguments as in the proof of Lemma 4.10. In this way, we conclude that the
quintuple (0%, u% 0% % o%) solve (4.4b) and (4.4d).

Therefore, repeating the arguments in the proof of Lemma 4.10, we pass to the limit in the discrete bulk
heat equation (4.31a) and in the surface heat equations (4.31b). We only detail the passage to the limit in the
term featuring the operator A(6%,) : HY(£2) — H(0)* defined by <A(9§4)7U>H1(Q) = [, an(05,)VO5, -
Vuvdz. On the one hand, the sequence of operators (A(0%,))y C H(£2)* is bounded, by comparison in
(4.31a). On the other hand, we observe that Tas(6%,) — 6F a.e. in 2 and hence a(Ta(6%,)) — a(0F) a.e
in (2, whereas estimates (4.50), combined with the growth properties of @, guarantee that (Tpr(0%,))ar is
bounded in LS+1)(2), so that ans (0%,) = a(Tar(0%,)) — () in L5%(2) for every 1 < s < "TH Therefore,
the sequence (s (0%,)V0%,) s weakly converges to a(0X)V6F in L3/2(02;R?). This is sufficient to conclude
that

AO%,) — Ay (%) in HY(2)*. (4.52)
With the same argument we perform the passage to the limit in the analogous term for 0577. All in all, we
deduce that (0%, u¥, 6% x¥) fulfill the discrete bulk and surface heat Eqs. (4.4a) and (4.4c).

Step 3: proof of (4. Q) The total energy inequality (4.9) follows by repeating the very same calculations
as for (4.22).

This finishes the proof of Proposition 4.3. [
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5. Existence for the regularized system

In this section we address the limit passage in the discrete system (4.4) (formulated in terms of suitable
interpolants of the discrete solutions, cf. (5.4)) as the time step 7 | 0, and in this way we shall conclude the
existence of (weak) solutions to the Cauchy problem for the regularized system (3.69). Prior to that, let us
set up some notation.

Notation and preliminaries.

For a given K, -uple of discrete elements (b )i(:fo C B, with B a given Banach space, we introduce the

(left-continuous and right-continuous) piecewise constant, and the piecewise linear interpolants b, QT, 67- :

[0,7] — X defined by b,(0) = b_(0) = b,(0) := h? and by

k

T

b () =0 fort € (5~ 2k], b () =) for t € [th71,40),
~ t— k-1 th ¢ (5.1)
br(t) ;== ————bF + T—pF"  for t € (¢571¢1].

T

For later use, we also recall that

b, *ET||L2(0,T;B) <o, =b_llr207m) < T||3tETHL2(0,T;B)7 (5.2a)
15, = brllzoeo.rim) < 16, = b_llze@.rm) < V70Dl 2078), (5.2b)
as well as the well-known discrete by-part integration formula
J . i i—1 . . J k_(k—1 .
> ) = (b — (0,005 — DT i)y (5.3)
i=1 =1

for all K -uples (h¥)fr C B, ()57 < B*.
Approximate solutions.

With h € {6,u,0s,x,0,F,h, £}, we thus obtain the piecewise constant and linear interpolants of the
discrete solution quadruples (6%, u¥ 6%  x¥ o%) and of the discrete data (F¥ A%, (%), Finally, we also
introduce the piecewise constant interpolants ¢, : [0,7] — [0,7] and ¢, : [0,T] — [0,T] associated with
the partition &, = (t*)N7 and defined by %, (0) = t,(0) := 0, £, (T) = t.(T) := T, and

L(t)=tF forte (" 1tF),  T.(t) =t fort e [thTT ek,

T

In terms of the above interpolants, the discrete system (4.4) rephrases as

/Q i (v dz — /Q 7.(1)div(@.(#) v da + /9 (@, (£)) V8, (£) Vo da
+ [ kO 0))0-()(0-(t) = Os - ())vdz + [ I[(x ()T (x_(#)*F (97(75))2 vdz

I'c I'c

— Al (1) 0 (0] (x, (1) 0 (v da

I'c d

:/ S (@L(1) Ve (@) vde + (s (), gy forall v e HY(2),

(5.4a)

2
v (W (8),v) +p ) e (WD) & (@(1)) e(v) da + e (@ (1), V)

) iv(v)dz X. T4, (t)vde X (% Ta, (t)vde
o[ Bwavmars [ @) ovdss I ()] (%, () T t)vdr (5 40
= <FT(t)7V>H;D(Q;R3) for all v € W (2;R®),

with ¢, (t) = 1T, () - n)n,

ET(t)-vder/

I'c I'c
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[ i [ 3,0 2O 0 [ 080 F v
I'c I'c T I'c

~ [ Rl vt [k 0)@0) -0
I'c

I'c

(£))0s.- (t)v dz + /F A0, D) 0-()] (x, () bsr (vdz (5.4c)

-/ A0 ()1 ()T (Bsr (0) v dz + (Er,0)gapy  for all v e H ().
w—2 ~y

Xr () + o X0 "X (1) + AX (1) + B(X- (1) + 7, (XA (1) —vx (1)
= 7/\:5 (XT (t))gsn—(t) - 5%7— (t)gs,‘r (t)

L (OF 7 (0) — A ()T (07 (1) — 530 () I, P70 ae T
with 7, (t) € 9p(x, (1)) a.e. in g

(5.4d)

for almost all ¢ € (0,T’), supplemented with the Cauchy data (6),u), 67 ), x0) as in (3.72) and (2.20d). It is
in system (5.4) that we shall pass to the limit as 7 | 0, thus proving the existence of solutions to (the weak
formulation of) the Cauchy problem for system (3.69). In the following results we shall omit to specify the
standing assumptions on the problem and on the Cauchy data.

5.1. A priori estimates

The following result collects a series of a priori estimates on the approximate solutions that will be at
the basis of the limit passage procedure as 7 | 0 performed in Section 5.2 and leading to the proof of the
existence of solutions to system (3.69). In view of the further limit passages as p | 0 and ¢ | 0 carried out
in Section 6, we shall distinguish the estimates that hold uniformly w.r.t. 7 and p, ¢, from those that are
not uniform w.r.t. p, <. In the statement of Lemma 5.1 we will use the notation

Varg(h; [0,T]) := sup {Z I6(ci)—b(oi—1)|lB : (07)i%; partition of [QT]}
i=1

for the total variation of a function b : [0,7] — B.

Lemma 5.1 (A Priori Estimates). There exists a constant S > 0 such that the following estimates hold for
every T > 0 and p, ¢ > 0:

1070l Loe 07521 (2)) + ||§T||L°°(O,T;L1(Q)) <5, (5.5a)
7| Loo (0,17 (2:m3)) + 1Ur || Loo 0,751 (2:m3)) <5, (5.5b)
Bs.r oo 0,731 (1) + WBsr s 0,750 (1) < 5, (5.50)
X+l oo 0,511 (1)) T IXr oo 0,711 (1)) <5 (5.5d)
151 oo (0,700 (1)) < S (5.5¢)

Furthermore, for every p > 0 there exists a constant S, > 0 such that for every 7 >0 and ¢ > 0:

101l 220,721 (2))npoe (0,722 (02)) + 1O | 220,711 (2)) + 107 220,781 (2t (0,111 (2)%) < Sps (5-62)

Var 1)« (0730, T]) < S, (5.6b)
[0l oo (0, 7w 1 (@m3)) + 0z llwiw 0, rwiw @msy) < S, (5.6¢)
Hgsﬂ' |L2(07T§H1(Fc))ﬂLoo(O,T;LQ(FC)) + Ha(@sﬂ—)HL2(O,T;H1(FC)) (5 6d)

s rllz20,mm (ropnm (0,130 (1)) < S
VarHl(FC)* (58,7'; [0) T]) S Sp7 (566)
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X7 lw e 0,750 (re)) < Sp- (5.61)
Moreover, for every p,s > 0 there exists a constant S, > 0 such that for every T > 0:
||AYT||Lw/<w71>(FCX(O’T)) < Sp,c- (5-7)
Finally,

1
gs,r

1
ISy >0Vpe[l,o0) 37, >0 V7€ (0,7) Vp,¢>0: ‘

y

< Sp. (5.8)
Lo (0,T5L7 (')

T

Le=(0,T;LP(£2))

Proof. Step 1: energy estimates. We sum the discrete total energy inequality (4.9) over the index k €
{1,...,J}, for every J e {l,...,K,}. Applying the discrete by-part integration formula (5.3) to the term

k=
Zk 1 T(Fk i)H; (m3) Ve obtain forall 0 < s <t <T
D

T

T (t) t (t)
0.0, 0% )+ [ [ @ s [ [ gl dear
t. (s) t.(s) JIc
e (1) (1)
/ / X )@ —Be )P drdr + / / / J@ 0 (@) (0 Br (2)—Fo 2 (9)? davdly dr
t (S) I'c t I'exIT'c

() () ~
< E(0,(5), 0, (s),u (s / / hy dxdr—i—/ / 4y dzdr
L (s) t(s) Jre

ON
B 0,50y Gy~ Bt 60) Dy ey = [ T -

(5.9)

We now take s = 0 in (5.9), and observe that €.(6.(0),0; .(0),u,(0),x_(0)) = &(6),67 ,,u),x0) < C

thanks to (2.20d) and (3.72). For the second and third integrals on the right-hand side, we use that

[hrll1o,r 010y < C by (2.18a) and that [|Z, 210,701 (re)) < C by (2.18b), respectively, while we deal

with the last three terms by mimicking the calculations from (3.25). Namely, they can be controlled by the

left-hand side of (5.9) thanks to the coercivity estimate (3.8). All in all, as in Section 3.3.1 we conclude that

sup |Ec(0-(t),05-(t),u-(t), X, (t)| < C. (5.10)
te(0,T)

An analogue of the coercivity estimate (3.8) holds for the functional &: the only difference is that, since &
features ¢ in place of 3, it does no longer control the L (I'c)-norm of x. However, it is not difficult to see
that fr B (x)dz > c||x||ig(Fc) — C. Therefore, from (5.10) we deduce estimates (5.5a), (5.5b), (5.5¢), and
(5.54).

Furthermore, also taking into account the positivity of the fourth and fifth terms on the left-hand side of
(5.9), we deduce a bound for the second and third summands, which gives (5.6¢) and (5.6f).

Finally, estimate (5.5¢) follows from the fact that 7, € dp(X,) a.e. in I'c x (0,T), cf. (3.70).

Step 2: Estimates for the temperature variables. We test (4.4a) by 76%, (4.4c) by 76, add the resulting
relations and sum over the index k € {1,...,J} for an arbitrary J € {1,...,K,}. Let t € (0,T] satisty
(J — 1) <t < Jr: we obtain

oF — pk-1 1 -
Sor [ (B2 ) otao = 51000 ) — 51000y

k=1

J k k 1
05, — 05 1 - 1
k 2 0 2
E T/c ( T ) 98,7’ dx 2 §|‘os,7'(t)||L2(pc) - §| 95,p||L2(rC)-

k=1
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Mimicking the calculations in Lemma 4.9 (cf. (4.28)) we obtain

1 Tr(t) tr (t)
§|| ()HLQ(Q)—F ||GST( )HL2(FC)+CU/ / \A dxdr—i—co/ /F |V95T\ dedr+ 11 + Iy
c

<+ Iy+Is+Ig+ 17+ Iz + 1o+ 1o

(5.11)
with

0 7.2_(3 5 @)
I :/ / k(x )((0,)2—(05.)2) (8, —0,..) dzdr > 0,
0 I'c =T

I, = /Otf(t) /FC (6,)? (3[(XT)+] (XT)+§T_3[(XT)+§S7T] (XT)JF) A dr

Tr(t) _ B _ (2)
[ @ (01008 ) 1) () B ) dadr = 0
0 I'c

where for (1) we have used the estimate (a? — b%)(a — b) = (a + b)(a — b)? > 0 for all a, b € [0,00) and
for (2) the very same monotonicity arguments used for (3.7), based on the fact that [0, +00) > 7 + 72
non-decreasing. As for the terms on the right-hand side of (5 11), we have

1 012 0 2
=5l =€ La= ” sollzarg) =G
tr(t) _ 9
g:/’ /&NﬂWAdMT
0 2
tr (1) . .

< C/o HU/THWIA(Q) ||97'||L4((Z)||0THL2(Q) dr
(3) tr(t) . _ _ Z'r(t) . _ _
<C ”uTHWlA(Q) ||V97||L2(9)||9r||L2(9) dT+/O ||uf||wlv4(g) HQTHLl(Q)HHTHLQ(Q) dr

@ ¢ {T(t) o @) —
< = VO 1720 d7“+c/ 107 () 10711220y dr + C
4 /o 0

where (3), with ¢y the constant from (2.13), follows from the continuous embedding H'(£2) C L*(£2) and
from the Poincaré inequality, and (4) from the previously proved (5.5a),

()
Iﬁ—/ / u,)0, dxdr<C/ le (@ A/)||L4(_Q)||9 lL2(o) dr

1 tT(t
] sg/ A dr+c/ AT
tr(t) 2J0
/0 (hr,07) 10y dr

(5) o tr(t) _ tr(t) tr(t) _
A P ol A L P el A [ PP A e
4 0 0 0

tr(t)

Co —
S Z . ||V07Hig(9) dT+C,

where (5) again follows from the Poincaré inequality, and analogously

17

RO
Iy :/ <£T7957T>H1(FC) dr
0

o [0 O i) _ _
S — ||V9, o dT+CA HeTHHl([’C)* dr+CA ||€T||H1(FC)*H9* (I'e) dr
Tr(t)
Co —
<3| Ve, dr+C,
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tr(t) — B
Iy =/ / 7/\(%)7/\(&7)(95;)2 dzdr
0 re

(6) tr(t)

<C XNl 24 ey 10s.e | 22 rey 10s,7 L p2 gy A7

0
M ¢ (O O 72
<Ny A € [ IR e g

where (6) follows from the Lipschitz continuity of A, and (7) from the same arguments as for inequality (3),
and, finally,

tT(t) 1 zT(t) — 2 ZT(t) -~ 114
Il() —/ /F 7— s‘rdxdr < 2/0 ||95,T||L2(FC) d7’+0/0 ||XT||L4(FC) d'l".
C

All in all, we arrive at

1, 1, Co ir(t) — 2 Co ir(t) — 2
5||9T(t)||2L2(m+§||evw(t)||§2(rc)+5/0 /Q|v97\ dxdr+5/0 /Fc 8, . dwdr
tr(t) 2 — tr(t) 2 _ )
<C+0 [T U ey +DIT Bay i +C [ (IR a0y 1) W gy -

Applying the discrete Gronwall Lemma 4.5 and taking into account the previously proved (5.6¢) and (5.6f),
we conclude that

||§T||L2(0,T;H1(Q))nLOO(o,T;L2(Q)) + ||§s,7'HL2(O,T;H1(FC))ﬂLOO(O,T;Lz(FC)) < va (5~12)

with the constant C,, depending on the parameter p.

Step 3: Further estimates for the temperature variables. We test (4.4a) by Ta(6%), (4.4c) by ra(0f ), add
the resulting relations and sum over the index k € {1,..., J} for an arbitrary J € {1,..., K;}. Let t € (0,7
satisfy (J — 1)7 < t < Jr. By the convexity and positivity of @ (cf. (4.40)), we have

J J

> [ @ -k do = - (IR ~ 1365 o)

k=174 k=1

= [[a@-()llz1(o) — @)1 (2): (5.13)
and, analogously,

J o~ —~
Z/P (05, — 057 1a(0s ) da > [[@(0s - ()l 11 (1) — 10005 ) L1 (rg,)-
k=1 C

Since the function R* > 7 — ra(r) is increasing, we have that

tr(t) o _
/ / k(KT)(QT—95,7)(9@(97)—957@(05,)) dxdr >0, (5.14)
0 e

while, using that & is (strictly) increasing and mimicking the calculations in (3.17), we observe that

tr(t) _ _ _ _
[ [ a0 (3,18, - dlx,) 0. ) dodr
0 I'c

tr(t) B B
‘/ / 8(0.r)(x,) Ber (310, ) 18] = 31(x,) 180 ) dwdr > 0,
0 I'c
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Combining (5.13)—(5.15) and observing that Va(6%) = a(6%)V0¥ and Va(0F ) = a(6F)VOE , we arrive
at

T (t tr(t
@ OV uxcor + 182+ | Y V8@ 20 dr + / R RI
() B
@wa|m@+m(wm%)./ /emv a(8,) dedr
()
0.)) 1 )dr—|—/0 (€r,@(0s,0)) gy dr (5.16)

_ tr (1) _
u)a(l, )dxerr/ / (X2)?a(0s.,) de dr
0 I'c

A )\ — = .
A2 G  &(0,) dodr = I+ Iy + Iy + L + Is + s + Ir.

o)
o /
A

Thanks to (3.72) and (4.40), we have

1< O (14 165182 gy + 1160

P LV«+2(FC)> < C. (517)

With calculations analogous to those of (4.47) we infer that

180 12y < € (IV@E)) 2202y + 1802 22

_ o (5.18)
< " (ING@)) 22 + 18022y +1)

By virtue of estimate (5.12), we have that (6,), is bounded in L>(0,T; L*(£2)) N L?(0,T; L%(£2)) and, a
fortiori, in L*(0,T; L'?/7(£2)) by interpolation. Therefore,

tr (1) . .
@g/ (/mmwmwwgmw
0 2

1 [tr®
< / 1871l 127 g iy (B2 | 1 3B ) b
0 (5.19)

I (t)
e / 192l 1277 1tV (87 I gy (IG@ 21y + 1) dr

7. (1)

N 1 ~ /T
e / 81 s 8 (B0 [y 4 [ VG0 B

with (1) due to the Holder inequality and (2) to (5.18) and the Young inequality. Analogously, we have

(t)
I5<C'/ /|€ |a -)dzdr

SCA le (@) 1240y (IV@EN 22y + 18012 + 1) ar (5.20)
1

tr(t) _ tr(t) ~_
<1 IVAO)Bagdr+C [ e @) By (18011 ey +1) dr
4 0 ) 0 (

tr(t)
-~/ 4
e / e (@) |44 dr
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()
Is = / / r)dadr
I'c

1 (@ s tr(t) R o~
< i/o ||VO‘(6‘S’T)||2L? I'c d'r‘—|— C/O ”X;H%ﬁl(rc) (”O‘(es,‘r)HLl(FC) + 1) dr (5.21)

T (1)
+C/ HXT||L4 Fc)

Furthermore, again observing that (05 ,), is bounded in L*(0,T; L'?/7(I'c)) (a higher integrability estimate
actually holds) by interpolation and arguing as for (5.19), we find that

E7'(15) Y. — _ _
bgc/ ‘/|%&wma%gmm
0 I'c T
tr(t) _ _
<C [ IR uatre e sy V@i iy d
tr(t)
<c[" .
0
i

® _ L e
4 [T B sy IR By + [ I98@ Iy

Finally, we observe that
ZT(t) _ ~— — 9 1 ZT(t) = 9
s [T el (B +1) @+ [ Wielay art [ IVGE) s ),
(5.23)

and we estimate in the very same way the term 4. All in all, from (5.17) and (5.19)—(5.23), also taking into
account the previously obtained estimates, we conclude

(5.22)

Rz ey (18 @)zt ey +1) dr
tr (1)

- - O e
la@-E)lLre) + 1a@s ey + 5 IVaO)7 20 dr + 5 IVa(0s,)117 2y dr
4Jo 4o O (5.24)

tr(t) o o
<C+0 [T me (18@ Ny + IR0y )

with (m,), a sequence bounded in L'(0,7). Therefore, applying the discrete Gronwall Lemma 4.5, we
conclude that

||a(af)||L2(0,T;H1(9))+||a(5s,r)HL2(0,T;H1(FC))+|\&(§T)HLOO(o,T;Ll(Q))+||a(5s,r)HLOO(O,T;LI(FC)) < Cp. (5.25)
Step 4: Comparison estimates. Taking into account estimates (5.25) and the previously found bounds, by
comparison in the heat Egs. (5.4a) and (5.4c), respectively, we infer that
1071 zr1 0, 7311 (2)%) + ||9s larorai o)) < Cps (5.26)
so that (5.6a) and (5.6d) immediately follow.
The total variation estimate (5.6b) then immediately ensues, taking into account that
VarHl(Q)*@T? [0,7]) < ||'9'/1—||L1(0,T;H1(_Q)*)§

the very same arguments also yield (5.6e).

Moreover, taking into account the previous estimates, the Lipschitz continuity of S., 7' and A, by
comparison in the flow rule (5.4d) we find estimate (5.7), with a constant also depending on ¢. Finally,
estimate (5.8) follows from (4.7). O
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5.2. Limit passage as 7 | 0

Lemma 5.2 ahead fixes the compactness properties of the sequences of approximate solutions for which
the estimates of Lemma 5.1 hold.
The most delicate point is the proof of the relative compactness, a.e. in £2 x (0,T) and a.e. in I'c x (0,7,

of the families of functions (6,), and (s ,),; from this information we can indeed infer the compactness,
a.e. 2x(0,T) and a.e. in I'c x (0,T), of the sequences (%) and (51 ) , which, combined with estimates

T s, 7/

(5.8), ultimately yields (5.32). In fact, for proving the pointwise (in space and time) convergence of (6.),

and (6s,-), we shall resort to the following Helly-type compactness result, which we quote from [26] in a
slightly simplified version. In the statement we will use the following space

B([0,7];Y*) :={h:[0,7] — Y™ : measurable and such that h(t) is defined at every ¢ € [0,T]}.

Theorem 5.1 (Theorem A.5, [26]). Let V and Y be two (separable) reflexive Banach spaces such that
V C Y* continuously. Let (b,), C LP(0,T;V)NB([0,T);Y*) be bounded in LP(0,T;V) and suppose in
addition that

(5,(0))n, C Y* is bounded, (5.27)
3C >0 YneN: Vary«(h,:[0,T]) < C. (5.28)

Then, there exist a subsequence (hn, )k of (bn)n and a function b € LP(0,T;V) N L*(0,T;Y*) such that
as k — oo

b, —*h  in LP(0, T; V) N L0, T; Y*), (5.29)
bn, () = b(t) in'V  fora.a.te (0,T). (5.30)

Lemma 5.2 (Compactness Results). Let p, ¢ > 0 be fized. For any sequence (1i)r C (0, 400) with 7, | 0 as
k — 400 there exist a (not relabeled) subsequence and a quintuple (0,u, 8, x, o) with

0 € L*(0,T; H'(2)) N CQeuic ([0, T L2(2)) N HY (0, T5 H' (2)*),

u e Whe(0,T; Whe (02; R?)),

0s € L*(0,T5 H' (I'c)) N Coeai ([0, T]; L*(I'c)) N H' (0,75 HY (I'c)*),
X € Cearc((0, T HY (I'c)) N WH(0,T; L (I0)), Ax € L*/“=D(I'x(0,T)),

o € L®(I'ex(0,T)),

such that the following weak and strong converges hold as k — oo

0., —*0 in L*(0,T; H'(2)) N L>®(0, T; L*(2)) N H'(0,T; H'(2)*), (5.31a)
0., —"0 in L*(0,T; H'(2)) N L>®(0,T; L*(2)), (5.31b)
0., — 0 in L*(0,T; L5~<(£2)) for all € € (0,5], (5.31¢)
0., (t) —6(t) in H(2) for a.a.t € (0,T), (5.31d)
0, —0 a.e. in 2 x (0,T), (5.31e)
Oz —" 0 in L*(0,T; HY(I'c)) N L>=(0,T; L*(I'c)) N HY(0,T; H (I'c)*), (5.31f)
O, r, —*0s in L?(0,T; H'(I'c)) N L>=(0,T; L*(I'c)), (5.31g)
GAW — O in L*(0,T; LY(I'c)) for all1 < q < oo, (5.31h)
O, (1) — 65(t) in H'(I'c) for a.a.t € (0,T), (5.31i)
O, — O a.e. in I'c x (0,T), (5.31j)
i, —u in Whe (0, T; Wh (12, R?)), (5.31k)
i, —u in CO([0,T]; C°(12; R?)), (5.311)
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Uy, u, —"u in L>(0,T; W (12, R?)), (5.31m)
. u, —u in L>(0,T; C°(;R?)), (5.31n)
Xre "X in L0, T; H (I'c)) N W (0,T; L (I'c)), (5.310)
Xr, = X in C°([0,T]; LY(I'c)) for all1 < q < oo. (5.31p)
X =X in L=(0,T; H'(I'c)), (5.31q)
Xrp X, 7 X in L*°(0,T; LY(I'c)) for all1 < q < oo, (5.31r)
T, =" in L (I'ex(0,7)). (5.31s)
Furthermore,
H1 n ‘ 1 < S, (5.32)
OllLeoaxory 195 llLoe(rex 0.1y

with the constant Sy from (4.7). Therefore, the functions 0 and 0s enjoy the positivity properties (2.31) with
constants 0 and 05 independent of p and <.

Proof. Convergences (5.31a), (5.31f), (5.31k), (5.310), and (5.31s) follow from estimates (5.5) and (5.6) by
weak and weak® compactness arguments. In view of (5.7), we also have

Ax,, — Ax  in L¥/CTD(Tox(0,T)). (5.33)

As for (5.31b), combining estimates (5.2) and the fact that the sequence (0. & is bounded in L*(0,T; H*(£2)*),

we conclude that ||97k— Tk”[/oo(o)T;Hl(_Q)*) — 0 as 7% J 0. This 1dent1ﬁes 0 as the weak® limit of (6., ) in
L2(0,T; HY(£2)) N L*(0,T; L?(£2)). With the same argument we also infer convergence (5.31g). Clearly, we
have that § > 0 a.e. in 2 x (0,7T) and 65 > 0 a.e. in I'c x (0,7T). Analogously, (5.31m) and (5.31n) ((5.31q)
& (5.31r), respectively) shall follow from (5.311) ((5.31p), resp.).

For (5.31c) we apply, e.g., the compactness result [37, Cor. 4], which ensures that (9 . )k is relatively
compact in L?(0,T;X) N C([0,T];Y) for any Banach spaces X and Y such that Hl(Q) € X C L*(N)
and L?(2) € Y C HY(N2)*. In the same way, (5.31h) follows, recalling that H'(I'c) € Li(I¢c) for every
1 < ¢ < o0. The strong convergence (5.311) can be deduced by the same result, taking into account that
Whe (2;R?) € CO(£2) since w > 4, by the Rellich-Kondrachov Theorem. Analogously, we have (5.31p).

Finally, applying to the sequences (6, ) and (0 )& the compactness Theorem 5.1 (also recalling estimate
(5.6b)), we infer the pointwise-in-time convergences whence, in particular, (5. 51@) (since H(2) € LP(2)
for all 1 < p < 6). We recover (5.31j) in the very same way.

Therefore,

1

0., (z,1)

1 .
S L(x,t) = 4 @D if O(z,t) > 0,
+o00  otherwise for a.a. (z,t) € 2 x (0,T).

In turn, combining the Fatou Lemma with estimate (5.8) for, e.g., p = 2 we infer that

/ L?(z,t)dzdt < hm 1nf/ / dadt < ST,
2x(0,T) 7] 6‘ (z,t)

;1) < oo for a.a. (z,t) € 22 x (0,T). Hence, § > 0 a.e. in 2 x (0,7) and L = %. A fortiori, again
5.8) and the Fatou Lemma we conclude that

to+r to+r
/ ds < lim inf/
to—r t

L? () k= Jig—r
for every to € (0,T) and r € (tg,T — to). In particular, picking a Lebesgue point for ||ﬁ”[lp(9) we gather
that

in view of

so that L(z
(

L
0(s)

1
éTk(s)

ds < 2S5gr
LP(02)

< Sy for a.a.tg € (0,7) and for all p € [1, c0),

1
H 0(to) | 1r(2)

55



G. Bonfanti, M. Colturato and R. Rossi Nonlinear Analysis: Real World Applications 66 (2022) 103511

1
0s

in the very same way. This

whence estimate (5.32) for %. We conclude the estimate for
Lo (I (0,7))

finishes the proof. O

We are now in a position to prove our existence result for the Cauchy problem for (a weak formulation
of) the regularized system (3.69).

Theorem 5.2.  Assume (2.4)—(2.10) and (2.13)—(2.18). Let p,¢ > 0 be fized. Then, for any quadruple
(92, ug, Hg,p, Xo) as in (3.72) and (2.20d), there exists a quintuple (0,u,0s, x,0), with

0 c L*(0,T; H(2)) N CY. ([0, T]; L*(2)) N HY(0,T; H'(2))*  and a(f) € L*(0,T; H'(12)),
uc Whe(,T; W (12;R?)),
s € L*(0,T; H (I'c)) N C° ., ([0, T]; L*(I'c)) N HY(0,T; HY(I'c))*  and a(bs) € L*(0,T; H (I'c)),

X € L*(0,T; H*(2)) N L>®(0,T; H'(I'c)) N WH(0,T; L (12)),
o€ L®(I'cx(0,T)),

fulfilling the initial conditions

6(0) = 02 a.e. in ‘Qv 95(0) = eg,p a.e. in Fc, u(O) = uO

o a-e.in 2, x(0) =xo a.e. in Ic, (5.34)

and the weak formulation of system (3.69), consisting of

(1) the weak formulation of the bulk heat equation for almost allt € (0,T)

(01, 0) 1) —/ Qdiv(ut)vdm+/ a(@)V@Vde—i—/ k(x)0(0 — 0s)vdx
7} 7

fo (5.35a)
+ 00T (x)T0*vda — ()] () TOvdx = / e(uy)Ve(up)vda + / hv dz
re r'e 0 0
for allv e HY(2);
(2) the weak formulation of the displacement equation for almost allt € (0,T)
v+ [ ) eu)e(w) o+ e(uv) + [ odiv)de s [ (0t uvds
@ «“ Te (5.35b)
+ [ Cvans [0t 00 T uvde = (B9 o
forallv e Wé’“(Q;R?’), with ¢(t) = n.(u(t) -n)n for a.a.t € (0,T);
(8) the weak formulation of the surface heat equation for almost allt € (0,T)
(0ubs, W) g1 (1 7/ O\ (x)xrw dx+/ a(0s)VO;Vw dzx
I'c I'c
= [ fwdzr+ / Ixe|wda + / E(x)0s(0 — Os)wdx + [ J[(x)T0) (x) Tbsw da (5.35¢)
I'c I'c I'c I'c
— [ 0TI wda
I'c
with test functions w € H'(I'c), a.e. in (0,T);
(4) the flow rule for the adhesion parameter
Xt + x| xe + Ax + B0 + 7 () + N ()65
1 1 1
= —glul’e = 33100  ul’e = Z3I00 uflo ae. in Lo x (0,7) (5.35d)

with o € Op(x) a.e. in Ic.
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Furthermore, estimate (5.32) holds and the quadruple (6,u,0s,X) satisfies the total energy balance (with
the stored energy . from (4.5))

£.(0(1), 0.(), u(t), (1)) + p / /Q le(u)| dzdr + p / / el dadr
+ / [ 0w arar / / ) ) O ~00)) e dy (5.35¢)

t t t
:Sg(e(s),HS(s),u(s),X(s))+/ / hdxdr—i—/ fdxdr—i—/ (F,ut)H} (2r3y dr
s J0 s JIg s D

forall0<s<t<T.

Proof. We shall pass to the limit in system (5.4) relying on convergences (5.31) for the approximate
solutions.
Step 1: limit passage in the momentum balance:

First of all, we focus on the limit passage in Eq. (5.4b), which we integrate in time. Thanks to convergences
(5.31b), (5.31k), and (5.31m) we pass to the limit in the first, third and fourth integral terms on the left-hand
side of (5.4b). As for the second term, we observe that there exists E € L*/(“=1 (2 x (0, T); R>*3) such that

w—2
‘5 (@) "= (') =B i1/ x 0,1) ) (5.36)
as 7 J 0. We also use that
Tk o in L*°(0,T;LY(I¢)) foralll<g< oo (5.37a)
{3[(ka)+] (Xr,) 07, = 30070 1

as 7, | 0 thanks to convergences (5.31n), (5.31r), and Lemma 3.1. By the Lipschitz continuity of 7. we
readily have that

¢, = C=n(u-mn  inC0,T);C°(Tc)). (5.37b)

Finally, we use that

—F  in L*(0,T; H'(2,R3)*). (5.38)

k

All in all, we conclude that

2

/ (v(ut,v) +p / E:e(v)dz+e(u,v)+ [ Odiv(v)dx +/ (x) uv dx) dr
° ? fe (5.39)

t t
—|—/ < ¢-vdr + 00T (x)Tuv da:) dr = / (F,v) (2r3)y dr
S FC FC S FD ’
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for every test function v € W (2;R?) and every 0 < s < t < T. Then, testing (5.4b) by u; we infer that
for every (s,t) C (0,T) there holds

hmsupp/ / ‘5( u;, dxdr

Tk\(o

< lim sup ( Tk, ) +e(t,,,u / 0, div(d, )dz +/ (ka)-FﬁTkﬁ’Tk dx) dr
I'c

Tk\o

a, de+ [ (%) (X)) T8, do — (F (t)’ﬁlTQH}D(n;R?’)) dr)

I'c

M)
< —/ ( (ug,uy) + e(u,uy) / Odiv(uy) dx—i—/ (x) Tuuy dx) dr
s I'c

t
- / < ¢C-wdr+ [ 001 () T, de - <F7ut>H}, (Q;RS)> dr
S FC FC D

¢
(:Q)p/ E:e(u)dr,
) (5.40)

where (1) ensues from convergences (5.31) (which, in particular, yield that 6,, — 6 in L*(0,T; L?(£2)), for
instance) and (5.37), while (2) follows from the previously obtained (5.39). Hence, [35, Lemma 1.3, p. 42]
yields that

=|e (u’)|w_25 (u) ae. in 2x(0,7) and e(0},) — e(uy) strongly in L¥(02x(0,T); R¥*3) | (5.41)

and, since the interval (s,t) in (5.39) is chosen arbitrarily, we thus conclude the momentum balance equation
(5.35b). We remark for later use that (5.41) yields that

(W, (1)Ve(W, (1)) — e(u,(t))Ve(u,(t))  strongly in L*(2) for ae. t € (0,T). (5.42)

Step 2: limit passage in the flow rule (5.4d) : We now address the limit passage in the approximate flow
rule (5.4d), integrated on a generic interval (s,t) C (0, 7). We use that there exists A € L«/(“~1(I'cx(0,T))
such that

w—2 ~

XXy = A i LY (Tox(0, 1),

and that B¢(X,,) — Bs(x) and v, (X,,) = 7, (x) in L>(0,T; LY(I'c)) for every 1 < g < oo by the Lipschitz
continuity of S. and +,. Also taking into account convergence (5.31r) for the right-continuous piecewise
constant interpolants (YTk)k’ we carry out the limit passage for the terms on the left-hand side of (5.4d).

As for the right-hand side, we use that Aj is Lipschitz continuous and that, for instance, gs,m — b5 in
L2(0,T; L*(Ic)), so that

=50, s = 0% Bsm, —> =N (00 in L2(0,T; L/ V(1))
We combine (5.31q), (5.31r), and (5.31s) yielding that

~Hu,, o, Hulo,
30 T, P, = 3100 o, in L%(Tex(0.7)
33l ) g 17— 33100 a0

also in view of Lemma 3.1. All in all, also recalling (5.33) we take the limit of (5.4d) and obtain that

t
/ (/ xtvdx+p/ Avdz + Axvdx+/ (ﬁg(x)ﬂ’(x)+A’(X)93)vdx> dr
S FC [‘c FC Fc

=i ( . (1o 43100 +100 o) vdx) dr
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for every v € L¥(I'¢) and every sub-interval [s,t] C (0,T). By the strong-weak closedness in the sense of
graphs of (the maximal monotone operator induced by) dp, we have that o € dp(x) a.e. in I'c x (0,T). In
order to identify the weak limit A, we proceed as for the weak limit E from (5.36) and conclude that

A= ‘Xt|w_2Xt and )?/Tk — x¢ strongly in L*(I'cx(0,7T)). (5.43)

In particular,
X, (O = () strongly in L2(I'c) for a.a.t € (0,T). (5.44)

From (5.43) we deduce the validity of the flow rule for the adhesion parameter integrated along an arbitrary
time interval, and with arbitrary test functions v € L¥(I'c). Then, (5.35d) ensues.
Step 3: limit passage in the bulk heat equation:

We are now in a position to perform the limit passage in (5.4a), integrated in time. For this, we need to
refine the convergences available for the sequences (6,,) and (65 ;, ).

(1) In order to pass to the limit in the elliptic operator, we will use that Va(f,,) = «(0,,)V0,, a.c. in
2 x (0,T). First of all, we notice that, by (5.6a) there exists ¢ € L2(0,T; H*(£2)) such that, along a
not relabeled subsequence,

a(0,,) —¢ in L*(0,T; H'(R2)).

On the other hand, &(f,,) — a(f) a.c. in 2 x (0,T) thanks to (5.31¢). We combine this with the
fact that (6, ) is bounded in L°°(0,T; L**2(12)), thanks to (5.25) and the growth properties of a, to
deduce that a(6,, )—~*a(0) in L>=(0, T; L++2/(+1)(2)) (by the growth properties of &@). Therefore, we
ultimately conclude that ¢ = a(0), so that

a(0,,) —a(®) in L*0,T;H'(2)). (5.45)

(2) In order to identify the elliptic operator featuring in the bulk heat equation, we argue in a similar
way as we did in the proof of Proposition 4.3. Indeed, from the fact that (a(f,,))r is bounded

in L?(0,T;H*(2)) and from the growth properties of @ we deduce that (6 )r is bounded in
L2w+D) (0, T; LS+ (), with > 1. Taking into account (5.31¢) we deduce, a fortiori, that

0., — 0 in L*(2x(0,7)), (5.46)

as well as a(0,,) — «(0) in L?*(0,T; L5 (12)) for every 1<s<1+ % This is enough to pass to the
limit in the relation [, Va(0.,) - Vodz = [, a(0,,)V0,, - Vvda for every v € H'(£2) by suitably
adapting the arguments developed at the end of the proof of Proposition 4.3.

(3) It follows from (5.31d), combined with the fact that H'(£2) € LP(I'c) (in the sense of traces) for every
1 < p <4, that

0., —0 a.e. inl'c x (0,7).
In turn, from the fact that (@(6,,))y is bounded in L?(0,T; L*(I'c)) we gather that (6, ) is bounded
in LQ(’*H)(O T; L*+D(Ig)). Comblmng this with the above pointwise convergence we immediately
infer that
0., —0  in LY(I'cx(0,T))  forallee (0,2u—2) (5.47)

(so that 4 4+ ¢ < 2 + 2).

(4) Analogously, combining (5.31i) with the estimate for ((6s -, ))x is bounded in L?(0,T; H'(I'c)), which
continuously embeds into L?(0,T; LY(I'c)) for all 1 < ¢ < oo, we deduce, for instance, that

Osr, —0s  in L*"(I'cx(0,T))  forall e € (0,2u — 2). (5.48)

In view of the enhanced convergences (5.46)—(5.48), we infer that

0., div(u), ) — 6div(u;) in L2(2x(0,T)),
F( ) (O, —Be) = KOO0 — 0 in LA(Tex(0.7)),
Ay, ), )T = 300T COF0E i L3(Tex(0,T), (>4
10x,, ) Tem) (0, ) T = 3100¥0] (010 in LA(Tex(0.7)),
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where we have also used that k(x ) — k(x) in LY(I'cx(0,T)) for all 1 < ¢ < oo thanks to (5.31r)
and the polynomial growth of k, that dlx k] — Jlx] in L>®(I'cx(0,T)) by Lemma 3.1, as well as that

3[X7k9577k] — J[x0] in L*(I'cx(0,T)).
Also recalling (5.42) and the fact that

hy, —h  in L*(0,T; H'(22)*) (5.50)

we conclude the limit passage in (5.4a). This yields the weak formulation (5.35a) of the bulk heat equation,
with test functions v € H(£2), a.e. in (0, 7).
Step 4: limit passage in the surface heat equation: For the limit passage in (5.4c) we use that

6(8r,) = a(6) in L2(0,T; H' ()

(which can be shown by the very same arguments as for (5.45)). Arguing as we did for the bulk heat equation,
we identify the elliptic operator featuring in the limiting surface heat equation. Furthermore, we observe that

AXn) —AMx.) 1 g

= — [ fr)dr with f(r) = A(x,, +7(Xr,—x,,))
Tk Tk Jo k
1
/ N( X + (X, 7%)) (Xr, _er)dr (5.51)
— / X)xedr = N (xX)xt strongly in L*(I'cx(0,T)),

thanks to the Lipschitz continuity of A’ combined with convergences (5.44) and (5.31r). The latter conver-
gence also allows us to pass to the limit in the first term on the right-hand side of (5.4¢); the limit passage
in the second, third, and fourth terms follows by the same arguments leading to (5.49). Finally, we observe
that

by, — € in L*(0,T; H' (I'c)").

Allin all, we deduce that the triple (0, 05, x) fulfills the weak formulation (5.35¢) of the surface heat equation,
with test functions w € H(I'¢), a.e. in (0,7T).

Finally, (5.35¢) follows from testing the weak formulation (5.35a) of the bulk heat equation by 1, the weak
momentum balance (5.35b) by u;, the weak surface heat equation (5.35¢) by 1, the flow rule (5.35d) by x¢,
adding the resulting relations, and integrating them over the generic interval [s,t] C [0, T]. This concludes
the proof. 0O

6. Proof of Theorem 1

In order to prove Theorem 1, we will perform a double limit passage in system (3.69) (more precisely, in
its weak formulation that was specified in Theorem 5.2). We shall first pass to the limit as p | 0, with the
parameter ¢ > 0 fixed, and then as ¢ | 0. Let us thus consider a family (6, ¢, u, ., Cpicrbs.p.55 Xpiss Tp,s Epc)pics
with

Cp,g = nc(up,c'n)ny fp,c = 5<(Xp,<)7

of weak solutions to the Cauchy problem for the approximate system (3.69); the first result of this Section
collects all the a priori estimates, uniform w.r.t. p and ¢, on which our compactness arguments shall rely. As
we will see, these estimates can be obtained by replicating the formal estimates carried out in Section 3.3
on the level of system (3.69).

Proposition 6.1. There holds for every p, ¢ >0

1 1
0, > 5 >0 a.e inf2x(0,7), Os,.pc > 5 >0 a.e inlcx(0,7T), (6.1)
0 0
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with Sy from (5.32). Furthermore, exists a constant S > 0 such that the following estimates hold for all
p, s> 0:

100,61l 220,71 (2))nLo0 (0,15 L1 (@)W L1 (0, 75w L3+ (2)+) < S, (6.2a)
”(GPS)(/H_V)/QHLQ(O,T;Hl(Q)) <S8, (6.2b)
10s,0,5 1| L2 (0,752 (F)) Lo (0,75 L (P ) WL (0,75 WL 24+e (g y*) < S (6.2c)
”(057P7<)(u+u)/2HL2(0,T;H1(FC)) <, (6.2d)
||up,<||H1(o7T;H1LD(Q;RS)) + Pl/w||5(5t11p,<)HLw(Qx(o,T);RSXS) <8, (6.2¢)
1€ 0,6l Lor =1 (0 w0 (m3ye) < S (6.2f)
Xp.sll oo (0.7, m1 (reyyn it .z (re)) F P N0Xpcll Lo (rox 0.1y < S, (6.2g)
14X, + &pycll s -1 (rgx 0.1y < S (6.2h)
llop.cllLoo(rex0,1)) < S. (6.21)

Proof. The positivity property (6.1) clearly follows from estimate (5.32). The bounds for (6,.),c
in L>(0,T; LY(2)), for (6s,¢)pc in L®(0,T; LY (1)), for (p*/“e(0pu,))pe in L9(02x(0,T); R3*3), for
(Xp.c)pe in L=(0,T; HY(I'c)), and for (p*/“0yxp.c)pe in L¥(Iex(0,T)) follow from the total energy balance
(5.35¢), arguing in the very same way as in Section 3.3.1. Estimate (6.2i) simply follows from the fact that
Opc € 00(Xp,c) ae. in I'ex(0,T).

We then proceed to the Second a priori estimate (cf. Section 3.3.2) and test the weak formulations (3.4)
and (3.5) of the heat equations

(1) by 647t and 6771 with v = 2 — p, in the case p € (1,2);

Pys 5,0,
(2) by —9;72 and —9;,}7§ in the case u = 2;
(3) by =0, 2 and —0_ 4 , with ¢ = p — 1, in the case p > 2.

Observe that in all of the above cases the test functions are admissible (namely, they belong to H'(2)
and H'(I'c), respectively), thanks to (6.1), combined with the fact that 6,. € L?*(0,T;H*(£2)) and
Os,p.c € L2(0,T; H'(I'c)), respectively. We then add the resulting relations, integrate in time, and perform,
in the three cases p € (1,2), u = 2, and p > 2, the very same calculations as in Section 3.3.2. In this way,
we conclude that |0, 120,711 (2)) < C and [|0spcll 20,711 (1)) < C- These estimates are enhanced to
(6.2b) and (6.2d) by repeating the calculations from Section 3.3.3.

In order to replicate the Fourth a priori estimate from Section 3.3.4, we subtract from the total energy
balance (5.35¢) the bulk and surface heat equations tested by 1 and integrated in time. This leads to the ana-
logue of the mechanical energy inequality (3.50), additionally featuring the integrals pfot Jo 1e(@pu, )| dadr
and p fot / re |0ixp,c| dzdr on the left-hand side. Repeating the very same calculations as in Section 3.3.4,
we conclude the estimates for ||up7<||H1(0,T;HIL 23y and [[Xp.clla10,1:02(rg))-

Relying on the Sixth a priori estimate (cf. Section 3.3.6), which yields the bounds (3.55) and (3.57) for
the sequences (0,¢)p,c and (6s,¢)pc, We are in a position to rigorously render the calculations for Seventh
a priori estimate, cf. Section 3.3.7. Thus, we deduce the bounds for (9;0,.), C L*(0,T; W13+¢(02)*) and
(0105, p.c)p.c C L1(0,T; WH2T€(I'o)*) for every € > 0.

Finally, estimates (6.2f) and (6.2h) follow from a comparison in the momentum balance equation and in
the flow rule for the adhesion parameter. [

We shall now prove Theorem 1 in two main steps, carried out in the ensuing Sections 6.1 and 6.2. More
precisely,

(1) in Sec. 6.1 we will pass to the limit in system (3.69) as p | 0 and ¢ > 0 is kept fixed; in this way, we
shall prove the existence of weak energy solutions (in the sense of Definition 2.2) of system (3.69), in
which p is set equal to 0;

(2) in Sec. 6.2 we will finally perform the limit passage as ¢ | 0, thus concluding the proof of Theorem 1.
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6.1. Limit passage as p | 0, for fired ¢ > 0

Since the parameter ¢ > 0 is kept fixed, we shall not highlight the dependence on ¢ of the solutions to
system (3.69) and just denote them by (6,,1,,6s 5, X, 0p)-

Let (p;); C (0,+00) be a null sequence and, correspondingly, let (Hpj,upj,ﬂsypj,xpj,crpj ); be a sequence
of solutions to system (3.69), formulated as in the statement of Theorem 5.2 and supplemented by the
initial conditions (5.34), with sequences (92]_ )i (Hg’p],)j and (ugj)j of initial data fulfilling (3.72); set
ij = ng(up]. -n)n, Ep; 1= 6§(ij), 0p; = 0p, . In what follows we will show that, up to a subsequence,
the quintuples (Hpj,upj,ﬂsypj,xpj,crpj ); converge to a ‘weak energy solution’ (6,u,6s,x,0) to the Cauchy
problem for system (3.69), in which p = 0. Namely, we will prove that (6, u, 6, x)

- enjoy the integrability and regularity properties (2.20), and the positivity property (2.31);

- fulfill the weak formulations (5.35a) and (5.35¢)

of the bulk and surface heat equations, with test functions v € W3+t¢(2) and w € Wh2T¢(I¢),

respectively, for every € > 0;
- fulfill the weak formulation of the displacement equation (2.29a), with ¢ € C°([0, T]; L*(I'c; R?)) given

by ¢ =ne(u-n)n;
- fulfill the pointwise formulation (5.35d) of the flow rule in which p is set equal to 0.

We shall split the argument into some steps .
Step 1.0: compactness. There exist a (not relabeled) subsequence and a quintuple (6, u, 65, x, o), with

0 € L*(0,T; H'(2)) N L>®(0,T; L' (2)),  ue H(0,T; Hr (1;R?)),
s € L*(0,T; H'(I'c)) N L>=(0,T; L*(I'c)), x € L>(0,T; H'(I'c))NH'(0,T; L*(I'c)), (6.3)
o€ L>®(I'cx(0,T)),

such that the following weak and strong convergences hold as j — oo:

0,,—"0 in L2(0,T; HY(2)) N L0, T; Wh3T€(02)*)  for all € > 0, (6.4a)
0,,(t) = 0(t)  in H'(2) for a.a.t € (0,7), (6.4b)
Op; — 0 in L?(0,T; LP(2)) N L9(0,T; L' (2)) for all p € [1,6) and g € [1,00), (6.4c)
Os.p,—" 05 in L2(0,T; HY(I'c)) N L>(0, T; Wh2T¢(I')*)  for all € > 0, (6.4d)
Os.p, (1) = 05(t) in H'(I'c) for a.a.t € (0,7), (6.4e)
Os.0; — 05 in L?(0,T; LY(I'c)) N LY(0,T; L*(12)) for all ¢ € [1,00), (6.4f)
u, —u in H'(0,T; Hp, (2;R?)) (6.4g)
u, —u in C°([0,T]; H'~¢(12;R3)) for all e € (0,1) (6.4h)
pjup; — 0 in Whe (0, T; Whe (2, R3)) for all v > é, (6.4i)
Xp; "X in L%(0,7; H'(I'c)) N H'(0,T; L*(I'c)), (6.4j)
Xp; = X in C°(0,T; LY(Ic)) for all ¢ € [1,00), (6.4k)
PiXp; — 0 in WhH(0,T; L*(I'c)) for all v > é, (6.41)
0p, "0 in L°(Iex(0,T)). (6.4m)

Indeed, convergences (6.4a), (6.4d), (6.4¢g), (6.4j), and (6.4m) immediately follow from estimates (6.2) via
weak compactness arguments. Convergence (6.41) is a straightforward consequence of the second of (6.2¢)
also in view of Korn’s inequality. Analogously, (6.41) follows from estimate (6.2g). Arguing as in the proof
of Lemma 5.2 and resorting to the aforementioned results from [37] we deduce the strong convergences
(6.4c), (6.4f), (6.4h), and (6.4k). Likewise, the pointwise convergences (6.4b) and (6.4¢) ensue from combining
estimates (6.2) with Theorem 5.1.
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Combining the estimates for (6,,); and (6s,,); in L>(0,T;L'(£2)) and L>(0,T; LI(I’C)) with the
pointwise convergences (6.4b) and (6.4e) we immediately deduce that 6 € L°°(0,7;L'(£2)) and 65 €
L>(0,T; LY (I'c)).

Clearly, from the strong convergences (6.4c) and (6.4f) and the strict positivity properties (6.1) we
conclude that the limiting temperatures 6 and 6 also fulfill

1 1
9>S—>O a.e. in 2 x (0,7), OSZS—>O a.e. in ¢ x (0,7). (6.5)
0 0
Furthermore, from convergences (6.4h) (which in particular yields, for the traces (u,.);, the convergence
u; — uin C([0, T]; LY(I'c; R?)) for every 1 < g < 4 since Hp, (2;R?) € LY(I'c;R?) in the sense of traces),
and (6.4k) we derive, taking into account that the functions 7. : R — R and f. : R — R are Lipschitz
continuous, that
Cpy 2 €= Ne(u-n)n in C°([0,T]; LY(I'c; R?)) for all g € [1,4), (6.6a)
&y = €= BoX) in CO([0,7; LY(I') for all g € [1,00). (6.6b)
Step 1.1: limit passage in the momentum balance.
We integrate the weak formulation (5.35b) of the momentum balance over an arbitrary time interval (s, t)

and pass to the limit as j — oo in (5.35b). We handle the first, second, third, fourth and sixth integrals on
the left-hand side by resorting to convergences (6.4a), (6.4g), (6.41), and (6.6a). For the remaining terms, we

use that
{uwﬁwfﬁuwm
(Xp;)Tp,3[(xp,) ] = ()T ud[(x) ]
which follow from the strong convergences (6.4h) and (6.4k), also by Lemma 3.1. All in all, we conclude that
the quadruple (6, u,x, ), with ¢ = nc(u - n)n fulfill

/: (v(ut,v) +e(u,v) + /Qﬁdiv(v) dx + /Fc (x)Tuv d:z:) dr
+/:< FCC.vdx+/rc(x)+u3[(x)+]vdfv> dTZ/: (F:v)m (oms) dr

for all v.e W (2;R3) N H}D(Q;R:g), which translates into a relation holding at almost all ¢t € (0,T) by
the arbitrariness of the interval (s,t). Furthermore, taking into account the integrability properties of u, 6
and x, it is immediate to see that (6.8) extends to all test functions v € H}D(Q;RS). Therefore, we have
proved (2.29a) (where x is replaced by (x)*).

Lastly, in view of the limit passage in the bulk heat equation, let us improve the weak convergence
(Orup;) — e(u) in L*(0,T; L*(2;R?*?)) to a strong one. To this end, we revert to (5.35b), test it by
atupj and integrate it in time. Passing to the limit as j — oo we find that

¢ ¢
lim sup (/ v(Oru,;, Opu,; ) dr + pj / / le(Dpu,, )| dz d?“)
Jj—o0 s s

t
< —liminf/ e(up,, 0y, )dr—hmlnf/ / 0,,div(du,;) dadr

J—00 J—00

—hmlnf/ / ij upJ dpuy,; dxdr—hmlnf/ / C - Opuy, dzdr
j—o0 I'c

—limmf// Xp] ij) Juy,; - Ouy, dedr + lim (F,@tupj)H} (Q;RS)dr
D

J—0o0 Jj—oo

1) ¢
< —/ (e(u,ut)—i—/ Hdiv(ut)dx—i—/ (x)+uutdx> dr
S 2 FC
(6.8)

_/ ( C-utdx/ (X)+u3[(X)+]utdx—|—<F,ut>H111 (Q;R3> dr = /V(ut,ut)dxdr.
s \JTI¢ I'c D

in C°([0,T); LY(I'¢)) foralll<q<4 (6.7)

(6.8)

S
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For (1), we have used that

lim inf / e(u, Oy, ) dr = liminf (;e(upj (1), (1)) — 5ol (5),m,, (s)))

j—o0 j—o0

> Lou@), () - %e(u(s),u(s)) - / o(u, u;) dr

thanks to (6.4h), as well as the strong convergences (6.4c) and (6.6a). All in all, we conclude that

t t
/ v(@tupj,atupj)dr —>/ v(ug, uy) dr,

which, combined with (6.4h), immediately gives the desired strong convergence

u,, —u in H'(0,T; H}«D(Q;R?’)) as j — oo.

Step 1.2: limit passage in the flow rule.

We take the limit as j — oo of (5.35d) integrated on an arbitrary time interval (s,t) C (0,7). For the
left-hand side we use convergences (6.4j), (6.41), (6.4k) (which also yields strong convergences for the terms
v'(Xp;) and A'(x,;) by the Lipschitz continuity of 9" and A), (6.4f), and (6.6b). We also use that, in view of

estimate (6.2h) and the previously observed (6.6b), there holds

Ax,p, = Ax in L/ (Tox(0,T)) s j — oo

As for the right-hand side, we use that

—3u,, o, = — Luf’o in L°°(0,T; LI(I'c)) for all 1 < ¢ < 2,

—33[(xp,) 1 10, | P0,, = = 33[00 T [ul*e in L0, T; L9(I)) for all 1 < g < 2,
2 « 2 . I

—531(xp;) Ty, o, = = 53[0 alTo in L>®(Iox(0,T))

(6.10)

also in view of Lemma 3.1. All in all, we conclude the validity of (5.35d) with p = 0. Again by the strong
weak closedness of the graph of the (operator induced by) d¢, we have o € dp(x) a.e. in I'c x (0,T). A
comparison argument in (5.35d) immediately yields that Ax € L?(I'cx(0,T)), so that we ultimately infer

that x € L2(0,T; H*(I'c)).

Lastly, in view of the limit passage in the surface heat equation, let us enhance the weak convergence of
dXp; to a strong one. With this aim, we test (5.35b) by Ozu,,;, (5.35d) by drx,;, add the resulting relations,
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and integrate in time (cf. (3.50)). Passing to the limit as j — oo we have

lim sup (// |8tXp| dxerrpj/ / |8txp| dxdr)
Jj—oo I'c

< — lim (/0 ( v(du,,, 0u,,) / 0,,div(0pu,,; )dx) dr—i— 5 e(uy, (1), up, (t>)+/r N (uy, (t)n) dz

—
J—o0 fe

+ ;/pc (ij (t))ﬂupj (t)‘ dz + 2 /Fc (ij (t))ﬂupj (t)‘ 3[<Xﬂj ()] dx)

. - 1 >
+ lim (F, atupj>H;D(Q;R3) dr — hjrggolf (/F (2|Vij (t)|2 + Be(Xp; () + 7(xp, (t))) dac)
c

J—00 0

1 . - 1 ) 1 2
+ Jim (Getw'ou) + [ Ao [ o) g e 5 [ o) e a0 do
2 ro 2 Jr, 2 Jr.

j—o0

J—00

1 .
+/ (*|VX0|2+B<(X0)+’Y(X0)) fhmmf/ / (Xp;)05,p; 0t Xp; d dr
FC 2 FC

(%) _/Ot (v(ut,ut)—f—/gediv(ut)d ) dr + 5e( u(t),u(t)) +/Fc N (u(t)n)dz

3 J OR3P0 N+ 8w
B /FC (;vx(mz I Bg(X(t)) + W(X(t))> dx + %e(uo, u) + /Fc Ne(up-n) dz
+ % AC(XO)+|UO|2 de + % /FC(XO)-&-|UOQH[(XO)+] dx +/ (%|VXO‘2 + B;(XO) + V(XO)) dx

I'c
i (2) ¢ 2
—/ /\’(x)Hsﬁtxdxdrz// Ix¢|” dz dr
0 Jrg 0 JI'c
(6.11)

where for (1) we have used the previously found convergences properties, while (2) follows from testing
the weak momentum balance (6.8) by u, the flow rule (5.35d) by x:, adding the resulting relations and
integrating in time.

All in all, from the above chain of inequalities we infer

Xp; =X i HY0,T;L*(Ic))  as j — oc. (6.12)
Step 1.3: limit passage in the bulk heat equation.
We shall pass to the limit in (5.35a) with test functions v € W3+¢(2), for an arbitrary € > 0. In analogy
with (3.58), we rewrite the bulk heat equation by grouping its terms in the following way:
010, (t) = L1 j(t) = A(0,; (1)) + Lo (t) in WHHE(2)*  for a.a.t € (0,T), (6.13)
with (omitting the t-dependence of the operators below to simplify notation)
L1, = 0,,div(deu,,) + £(0ru,,)Ve(Oru,, ) + h € L' (12)
€ Wh3t¢(2)* defined by
<L2 J>U>W1 3+e( )
= fF ( Xp] es,p]‘} (ij)+9pj - k(XPj)eﬂj (ij - 954’]‘) - 3[(ij)+] (XP]‘ )+9;2>j) vd:m
A(6,,) e Wh 3*6((2) defined by
(A0p;); )y 31e () = [, p; - Vudz = [, V(a(f,,)) - Vudz
with @ from (2.14).
Now, it follows from (6.9) and (6.4c) that
Ly;— Lyin L0, T; LY(0))  with £,(t) == 0(t)div(us(t)) + e(ug(t))Ve(ug(t)) + h(t) (6.14)
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for a.a. t € (0,7).

Let us now address the limit of the operators A(f,,): for this, we rely on the interpolation estimate (3.55)

implying, for all 4 > 1 and 0 < v < 1, that the sequence

(6,.); is bounded in LF"F2(0, T; L3r—v+2/(T=6Y) (), (6.15)

J
Choosing 2 < v < 1, we have that 4 —v+2> p+1 and W > p+ 1 and hence, from (6.15), we infer

the estimate
sup ||95;r1||L1+5((2x(0,T)) <C for some ¢ > 0. (6.16)
j

Now, we use (6.16) to settle the compactness properties of the sequence (a(f,,));. First of all, it follows
from (6.4b) that 6, — 0 a.e. in 2 x (0,T) and hence a(f,,) — @(f) a.e. in £ x (0,7). Combining this
information with the fact that |a(6,,)| < C(G;jj*l + 1) (cf. (4.40)) and with estimate (6.16),

we ultimately infer that

a(6,,) — a(o) in LY(2x(0,7)).

Therefore, V(a(6,,)) — V(a(f)) in the sense of distributions on £ x (0, 7).
Now, we need to improve the convergence properties of the sequence (V(a(6,;)));. We again interpolate
estimates (6.2a) and (6.2b) and (cf. (3.55)) deduce that

3(p— 2
sup |60y, |- 0,7;05(2)) < € for some 7> p—v+2and s < %71/6;:) . (6.17)
p _

Therefore, the sequence
0+—1+2)/2) - is bounded in L?"/(#—v+2) 0,T; L¥/(n=v+2)(9)).
Pj J

In turn, mimicking the calculations from Section 3.3.7 we find that

<‘A(0Pj ) (t), U) Wl3+e(2)

(6.18)
< ClIVOy, (1)l 2(2) IV 0l L2 () + OIS 22O sy () [V OS2 (@) L2 () V0l L)
where we have applied Holder’s inequality, choosing v € (%, 1) such that
p—v+2 1 I
25 2 3+e
Hence, from (6.17) and (6.18) we deduce that the sequence
(A(0,;)); is bounded in L0, T; Wh3He(2)*) for some § > 0. (6.19)
Therefore,
Al,;) = A0) in L'0, T; WHH<(2)*),  with
(6.20)

(A1), V)84 = /Q V(a(d(t))) - Vodzr for a.a.t € (0,T).

Finally, in order to take the limit of the operators (L5 ;); we need to refine the convergences available for
the traces of (,,);. Indeed, taking into account that the sequence (9,()’;+V)/2)j is bounded in L?(0,T; H(02))
for every v € (0,1) and that, a fortiori, its traces are bounded in L?(0,T; L*(Ic)), we infer that (6p,); s
bounded in L#t¥(0,T; L>#+V)(I'¢)) for every v € (0,1). Since > 1, we may choose v € (2,1) such that
p+ v > 2. Thus, from this estimate we improve the weak convergence of (6,;); in L2(0,T; L*(I'c)) to a
strong convergence, i.e.

0,, =0 in L*(0,T; L*(I'c)). (6.21)
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Therefore, in view of (6.4k) we find that (x,,)"6,, — (x)70 in L*(0,T; LY(I'c)) for every q € [1,4). We now
use that (x,,)"0s,, — (x)16s in L*(0,T; L*(I'c)) for every s € [1,00) thanks to (6.4f) so that, by Lemma
3.1, H[ijes,pj] — J[x0s) in L?(0,T; L>°(I'c)). Hence we have that, as j — oo,

810¢;) 0] (X)) 05 = D100 (0T in LNO. T LAT))  for all g € [1,4).

In order to pass to the limit in the second contribution to Lg;, we recall that k(x,;) — k(x) in
L>(0,T; LY(I¢)) for every g € [1,00) by (6.4k) and the polynomial growth of k. Hence, in view of (6.21)
and (6.4f) we have that

k(ij)epj (opj - es,pj) — k(x)0(0 — 0s) in Ll(oa T Ll(FC))-
Analogously, we find that

o)1 0xp;) 05, = 300 1006 i LN0,T; L (I'c)).
All in all, we have that
Lo — Lo in L0, T; WH3te(2)*)  with
(L2(t), v)w1s4en)

(6.22)
= /P (@[T (x () F0(t) — k(x(2)0(1)(0(2) — 05(1)) — I[(x ()T (x (1)) TO(t)?) v dar

for a.a. t € (0,7).
Combining (6.13) with (6.14), (6.20), and (6.22) we ultimately conclude, by comparison in the bulk heat
equation, that, a fortiori, § € W1 (0, T; W3+€(02)*) for every € > 0 and

b, — 0, in L'(0,T; WH3e(2)"). (6.23)
This concludes the limit passage in the bulk heat equation (5.35a).

Remark 6.2. We have not succeeded in showing that the elliptic operator A(6) from (6.20) satisfies
(A0), V)p1s+e0) = Joa(0)VO - Vudz for every v € WH3t¢(2). Indeed, from (6.16) we are just in a
position to infer that a(f,,) — «(f) in L'*¢(2x(0,T)) for some ¢ > 0, which is not sufficient to identify
the weak limit of the sequence (oz(9pj)V0pj ); in any L space. Thus, we are not in a position to pass to the

limit in the relation (A(6,,), ”>W1,3+e(9) = [ a(0,,)V0,, - Vudz.

Step 1.4: limit passage in the surface heat equation.
We pass to the limit in (5.35¢), written for test functions w € WH2+¢(I'¢) for all € > 0 as

Ot0s.,p; (1) = T (1) — As(6s,p, (1)) in Wh2te(Ig)*  for a.a. t € (0,7), (6.24)
with
Sjj = 05717]‘ /\/(X,Oj)atxﬂj +4+ |atXPj ‘2 + k(XPj)gsypj (997‘ - 057!’]‘) + g[(xpj)+0pj] (ij)+057pj
- 3[(Xﬂj)+] (ij)+052,pj7
Ag(0s,p,) € WH2T(I'c)* defined by (6.25)

<As(9s,pj)aw>w1,z+e(pc) = /Fc a(ls,p;) Vs p; - Vwdz = - V(a(bs,;)) - Vwdz.
C

Taking into account convergences (6.4), (6.12), and (6.21), the Lipschitz continuity of A and the polynomial
growth of k, it is easy to show that

F;—F in LY0,T; LY (1))

with F := 0N (X)xe + £+ [xe|” + k()0s(0 — 05) + ()7 0] (x) s — 3[(x) 7] ()T 62
67
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In order to pass to the limit in the elliptic operators (AS(HS,,,J.)) j we adapt the very same arguments for the
operators (A(6),));, cf. (6.15)—(6.16). Namely, on the one hand, arguing by interpolation we deduce from
the bound for (s ,,); C L*(0,T;LY(Ic)) N L>(0,T; LY (I'c)) that a(bs,p;) — a(f) in LY0,T; LY(I'c)),
and thus Va(fs,;) — Va(bs) in the sense of distributions on (0,7") x I'c. On the other hand, relying on
the estimates in Section 3.3.8 in the same way as we have done in Step 1.3, we show that the sequence
(As(6s,p,)); is bounded in L'0(0, T; Wh2+¢(I'c)*) for some § > 0, so that

Ay (os,pj) - -As(os) in Ll(oa T; W1’2+E(FC)*)7 with

(As(0s(1), Wy 24e(rgy = | V(@(0s(t))) - Vwdz for a.a.t € (0,T). (6.27)

I'c

By comparison in (6.24) and convergences (6.26), (6.27) we deduce that, a fortiori, 65 € WH1(0, T; Wh2+e
(I'c)*) for every € > 0, and

Obs.p, = 010, in L'(0, T; WHH<(I'c)*).

Hence, we pass to the limit in the surface heat equation (5.35¢).
We have thus shown that the quintuple (6, u, 65, x, o) is a ‘weak energy’ solution to the Cauchy problem
for system (3.69) with p = 0.

6.2. Limit passage as ¢ | 0 and conclusion of the proof of Theorem 1

We shall only sketch the argument for the limit passage, as it is completely analogous to that carried out
in Section 6.1 up to the identification of this maximal monotone operators in the momentum balance and
in the flow rule for the adhesion parameter.

Let (Oc,, e, 0505 Xen» G, s Eans O Jn e a sequence of weak energy solutions to the Cauchy problem for
system (3.69), in which p = 0 and ¢ = g, with ¢, | 0 as n — oo; we have set {_ = 7, (u, - n)n and
§en = Ben(Xen)- We suppose that for every n € N the seventuple (6, , U, , 0s.c,» Xans Co,y > §en s Ocr ) has been
obtained by the limiting procedure described in Section 6.1, so that, by lower semicontinuity arguments,
estimates (6.2) hold for the sequence (0, ,uc,,0s ¢, XensCe,, > Eans Tan )n, uniformly w.r.t. n. Therefore, there
exists a quintuple (0, u, b, x, o) as in (6.3) such that convergences (6.4) hold, as n — oo, along a not relabeled
subsequence. Then, the limiting temperatures € and 65 enjoy the positivity properties (6.5).

In turn, we are in a position to improve estimates (6.2f) and (6.2h) for the sequences (¢ )n and (&, )n-
Indeed, a comparison argument in the momentum balance (2.29a) shows that the sequence (¢, )» is bounded
in L2(0,7;Y*). Analogously, by comparison in the pointwise flow rule (5.35d) (cf. Section 3.3.5) we infer
that the sequence (Axc, +&, )n is bounded in L?(0, T'; L?(I'c)) and then, a fortiori, we easily deduce that the
sequence (&, ), is bounded in L?(0, T; L?(I'c)). Hence, there exist ¢ € L*(0,T;Y*) and € € L*(0,T; L*(Ic))
such that, up to a subsequence, there holds

¢, — ¢ inL*0,T;Y%),

6.28
€ =& in L*0,T; L*(I'c)). (62

Finally, since (X, )n is bounded in L?(0,T; H?(Ic)), we ultimately have that
X = X in L*(0,T; H*(Ic)). (6.29)

Let us now outline the argument for the limit passage in the weak formulation of system (3.69).
Step 2.1: limit passage in the momentum balance.

Thanks to convergences (6.28) and (6.4a), with the very same arguments as in Section 6.1 we conclude
that the quadruple (6,u,x, ¢) fulfills (6.8) for every v € Hf._(£2;R3), namely the weak formulation (2.29a)
of the momentum balance. It remains to show that {(¢) € n?u ) in Y* for almost all ¢ € (0,7). With this
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aim, we test (2.29a) by u., and integrate it in time. Passing to the limit as n — oo we find that

n—roo

t
lim sup / ¢, " Ug, drdr
I'c

t
< fliminf/ (3tu<n,u<n)drfhm1nf/ e(ug,,uc,) dT’*hHllIlf/ /9 div(ug, ) dz dr

n— oo n—oo n—oo
fliminf/ / (X)) T lue, | dxdrfhmmf/ / (xe)tal(xe )t Jue, |2 dedr
+ lim. (F, u§n>H}D (o:r3) A7

— t v(ug, u e(u,u iv(u)dz tlul? dz r
< /(( )+ () + [ ddivia)d +/FC(X)|d>d

-/ ( / <x>+u3[<x>+1udx+<F,u>H;Dm;Rs>> 2 [pvar

where we have used that

it [ v(Orug ) dr = i it (Gv(ue, (0,00, (0) = (0, ()0, (6))
> Sv(u(t). u(t) - gv(u(s). u(s) = [ om0 dr

by the chain rule and convergence (6.4h), and that

t t
tim [ [ ) o P drar = [ / (0l de dr,
nm// (o) A1) g, dxdr—// W *al00Hul de dr

by well-known lower semicontinuity results. Therefore, we conclude that for every v € H }D (£2;R3) such that
n(v-n) € LY(I'c) there holds

/: (M(v)-n(u)) dr = /t /FC (fi(vn)—7(un)) dz dr

>hmsup// Ny (V') =13, (ug, 1)) da dr
I'c

n—oo

> lim sup/ / Ne, (U, 00 - (V—ug, ) dadr
I'c

n—oo

3

> / (¢, v—u)ydr,

which yields the desired (2.29b). We have thus shown that the quadruple (0, u, x, ¢) fulfills (2.29) (where x
is, momentarily, replaced by (x)*).
Step 2.2: limit passage in the flow rule.

With convergences (6.28) and (6.4a) and the arguments developed for the limit passage in system (3.69)
as p; | 0 we show that the quintuple (u, 0, x, &, o) fulfills (2.30). Combining the weak convergence and the
strong convergence of (&, ), and (xc, )n in L2(0,T; L*(I'c)) we infer that

t t
lim EenXep, dxdr = / Exdzdr for all (s,t) C (0,7),

n—oo [ I'o I'c
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whence we deduce that £ € 5(x) a.e. in £2 x (0,T) so that, in particular,

x>0 a.e. inl'c x (0,T).

All in all, the quintuple (u, 65, x, &, o) fulfills (2.30).
Steps 2.3 & 2.4: limit passage in the bulk and surface equations These limit procedures can be
performed by the very same arguments as in Steps 1.3 and 1.4. We thus obtain the weak formulations of the
bulk and surface Egs. (2.27) and (2.28).
Conclusion of the proof.

We have shown that the seventuple (6, u,60s, x, ¢, &, 0)

(1) enjoy the regularity, integrability, and positivity properties (2.20), (2.25), and (2.26);
(2) fulfill the Cauchy conditions (2.24) as a trivial consequences of convergences (6.4);
(3) fulfill the weak formulation of system (2.12) consisting of (2.27)—(2.30) and (2.29a).

The total energy balance (2.21) follows by testing (2.27) by 1, (2.28) by 1, (2.29a) by u, (2.30) by x:, and
carrying out the same calculations as in Section 3.1.
This finishes the proof of Theorem 1. W
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