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Abstract The linkages between the emergence of 
zoonotic diseases and ecosystem degradation have 
been widely acknowledged by the scientific commu-
nity and policy makers. In this paper we investigate 
the relationship between human overexploitation of 
natural resources, represented by the Human Appro-
priation of Net Primary Production Index (HANPP) 
and the spread of Covid-19 cases during the first pan-
demic wave in 730 regions of 63 countries worldwide. 
Using a Bayesian estimation technique, we highlight 
the significant role of HANPP as a driver of Covid-19 
diffusion, besides confirming the well-known impact 
of population size and the effects of other socio-eco-
nomic variables. We believe that these findings could 
be relevant for policy makers in their effort towards a 
more sustainable intensive agriculture and responsi-
ble urbanisation.

Keywords Early spread of SARS-CoV-2 · Human 
appropriation of net primary production (HANPP) · 
World regions · Regression analysis · Bayesian 
estimation · Spatial random effects
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Introduction

As the world’s population grows, the conflict between 
ecosystem conservation and the demand for food 
becomes more difficult to manage every day (Crist et al., 
2017; Fischer et  al., 2017). Numerous policies have 
attempted to mitigate this well-known problem in the 
long-standing dilemma of allocation between protected 
areas and agricultural land,1 promoting the sustain-
able intensification of agriculture.2 However, Covid-19 
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1 See, among others, the discussion provided by Kremen (2015) 
on land-sparing and land-sharing for biodiversity conservation.
2 An overview for the EU is provided by Staniszewski et  al. 
(2023) who assess structural conditions over the time period 
2005–2018. Beltran-Peña et al. (2020) study the effects of agri-
culture on food self-sufficiency in the twenty-first century in 
165 countries designing different future scenarios considering 
changes in diet habits, population, agricultural intensification, 
and climate, highlighting criticalities on the side of crop produc-
tion, food imports, and arising of food supply shocks. Thomson 
et al. (2019), in turn, stress “the importance of a careful assess-
ment of environmental impacts of emerging technology and man-
agement across scales to achieve sustainable intensification of 
land” in the future, while Basso and Antle (2020) focus on digital 
agriculture in the design of sustainable agricultural systems.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-023-11403-6&domain=pdf
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outbreak has emphasized the negative side effects of 
decades of human overexploitation of land and natural 
resources (see e.g. Foley et al., 2005, Altieri & Nicholls, 
2020 and McNeely, 2021) and of energy-intensive agri-
culture (Agnoletti et al., 2020).

According to the  Kenyon (2020) review, the rate 
of emergence of zoonoses has increased over the last 
40  years.3 The author suggests approaching zoonoses 
through an eco-social conceptual framework of health 
and disease. According to this view, two different per-
spectives should be considered when discussing the 
determinants of the spread of viruses, namely the close 
interaction of humans with wildlife and related con-
sumption—individual dimension—and the anthropo-
genic environmental degradation—eco-social dimen-
sion. The author argues that, if an eco-social conceptual 
framework had been followed, decision-makers would 
have had to take steps to reduce human interaction with 
natural habitats in order to preserve ecological systems. 
This would also have prevented or slowed the spread of 
SARS-CoV-2.

McNeely (2021) discusses a similar approach, com-
paring the bubonic plague pandemic of the mid-four-
teenth century with the recent Covid-19 one. In both 
cases, awareness of the possible environmental causes 
of these events has been raised and compensatory 
measures have been considered, involving a rethink-
ing of society towards a more sustainable and resilient 
paradigm. While deepening the central role of biodi-
versity loss and the disruption of natural ecosystems in 
the emergence of the Covid-19 pandemic, the author 
describes past events, such as the Ebola case of 1976 
in West Africa, as an example of how deforestation 
brought wild species into contact with humans and 
spread infectious diseases. It is not by chance that the 
service provided by the ecosystems4 in regulating the 
emergence and spread of diseases, was recognized as 
the central core of the 2005 Millennium Assessment 

classification of ecosystem services underpinning 
human wellbeing (Everard et  al., 2020). The Eco-
Health Alliance (2019) reports that land use changes 
account for 31% of the primary drivers of infectious 
diseases that have originated in wildlife since 1940. 
On this side, the recent scientific literature agrees that 
land use changes increase the risk of zoonotic disease 
emergence (see, among others, Brearley et  al., 2013; 
Gottdenker et al., 2014; Gibb et al., 2020; Myers et al., 
2013 and Brancalion et al., 2020). Gibb et al. (2020), 
for example, carry out an analysis of 6,801 ecological 
assemblages and 376 host species worldwide based on 
the PREDICTS database5 developed by Hudson et al. 
(2017), finding that the conversion of natural environ-
ments to agricultural sites or urban areas has system-
atic effects on local zoonotic host communities. The 
review by Gottdenker et al. (2014) lists specific types 
of land use change that are associated with disease 
spread, namely deforestation, forest and habitat frag-
mentation, agricultural development, irrigation, urban-
isation and suburbanisation. The mechanisms by which 
these interventions are linked to the transmission of 
infectious diseases include changes in the spatial dis-
tribution of hosts and/or vectors, socio-economic fac-
tors and environmental contamination, although there 
is still considerable uncertainty about the magnitude.

The importance of ecosystem restoration has also 
been formalised with the establishment of the United 
Nations Decade of Ecosystem Restoration 2021–2030. 
Robinson et  al. (2022) discuss the importance of 
restoring ecosystems as part of the path out of Covid-
19 that can ensure health and socio-economic stability, 
although such integration in the responses to disease is 
poorly represented at the time of the analysis. For this 
reason, they call for improvements in policy develop-
ments towards this direction, combined with evidence-
based tools to guide policymakers.

In this paper, following the perspective of Kenyon 
(2020), we implement an empirical analysis aimed at 
identifying what he defines as “causal factors under-
pinning the emergence of zoonoses such as SARS-
CoV-2”. Specifically, we evaluate the impact of human 

4 Following Burkhard et  al. (2012): “ecosystem services are 
the contributions of ecosystem structure and function – in 
combination with other inputs – to human well-being.” See 
also Bennett et al. (2015) for a further detailed definition and 
analysis, and Baudron and Liégeois (2020) for additional evi-
dence on land use change and other drivers of zoonotic infec-
tion diseases.

5 The Projecting Responses of Ecological Diversity in Chang-
ing Terrestrial Systems (PREDICT) database is a geographi-
cally and taxonomically representative database for spatial com-
parisons of biodiversity. It has been created to support research 
in ecology and conservation biology for the understanding of 
the global status of biodiversity (Hudson et al., 2017).

3 Citing Woolhouse et  al. (2012), Dobson et  al. (2020) also 
report that “for a century, two new viruses per year have 
spilled from their natural hosts into humans”, with the risk of 
virus spread increasing as human-wildlife interactions become 
more frequent.
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overexploitation of natural resources as a potential 
driver of the 2019 pandemic outbreak using a Bayesian 
estimation technique based on a cross-section of 730 
regions in 63 countries worldwide. While controlling 
for several socio-economic, health and climate related 
covariates, we concentrate on the role of the Human 
Appropriation of Net Primary Production (HANPP), 
an index introduced by Imhoff et al. (2004) to measure 
land use and over exploitation, as a potential ley explan-
atory variable of the early Covid-19 outbreak. The 
HANPP captures “human alterations of photosynthetic 
production in ecosystems and the harvest of products of 
photosynthesis” showing “the aggregate impact of land 
use on biomass available each year in ecosystems”, as 
Haberl et al. (2007) explain.

Results obtained in this analysis confirm that land 
overexploitation has a significant role in the early spread 
of the Covid-19 pandemic. The findings, robust to a 
range of alternative model specifications and estimation 
techniques, provide useful information for the calibration 
of policies against ecosystems overexploitation and the 
zoonosis prevention as well. Despite the hypothesis that 
a reduction in ecosystem services may ease the spread of 
infectious diseases has already been proposed in the lit-
erature (see, e.g., Morand & Lajaunie, 2018), to the best 
of our knowledge, this is the first quantitative study using 
the HANPP as an explanatory variable while also dis-
cussing implications related to the Covid-19 pandemic. It 
also contributes to the literature on geographical patterns 
of connectedness and embeddedness that help explain-
ing where the pandemic hit the most (see e.g. Amdaoud 
et al., 2021, for the EU and Sun et al., 2020, for the US), 
by including in our study regions all over the world and a 
spatial econometric modelling approach.

The remainder of the paper is organised as follows. 
In the second section we describe the context and we 
provide a brief literature review. In section three we 
present the model and the data. Results are reported 
in section four and, finally, section five concludes and 
draws some policy implications.

Context and literature review

Ecosystem degradation and the link with human 
infections

There is a wide consensus about the central role 
of biodiversity loss as a key driver of emerging 

infectious diseases (see Everard et al., 2020; Kenyon, 
2020; McNeely, 2021 and Olivero et al., 2017, among 
others). The growing interaction between humans and 
wildlife, due to the continuous reduction of intact nat-
ural habitats, is causing an increase of human diseases 
of animal origin, also known as zoonoses. According 
to Woolhouse (2002), the emergence of most patho-
gens is commonly associated with ecological change 
and three-quarters of emerging human pathogens are 
zoonotic.

Intense human activities have undermined the 
natural evolution of ecosystem services such as the 
availability of fresh water provision, essential for 
hygiene, to prevent human-to-human transmission 
and for treating resultant infections (Everard et  al., 
2020), as well as natural barriers, accelerating the 
occurrence of natural disasters and floods. Moreo-
ver, human appropriation of natural resources nega-
tively affects the conversion of solar energy into 
organic carbon compounds, a process performed by 
water bodies algae (seaweed, algae diatoms) as well 
as by all the terrestrial plants during the photosyn-
thesis process (EC, 2019). As stated by Haberl et al. 
(2007), land use transforms Earth’s terrestrial sur-
face, leading to changes in biogeochemical cycles 
and in the ability of ecosystems to deliver services 
critical to human wellbeing. The output of this global 
conversion is referred to as Net Primary Production 
(NPP).6 All organisms, e.g., all species of animals 
including humans, bacteria, fungi, depend directly 
and indirectly on the primary production of plants 
as an essential foundation of their livelihood (EC, 
2019). The disproportionate usage of NPP will be the 
focus of our extended analysis. Specifically, the key 
variable of this study is represented by the Human 
Appropriation of Net Primary Production (HANPP) 
estimated by Imhoff et al. (2004), expressed as grams 
of carbon per grid cell of 0.25 decimal degrees, 
approximately 28  km on a side at the equator. For 
each of the 730 regions in the sample, the average 
HANPP is calculated (and the logs are taken).

HANPP values are given by the sum of loss of 
potential NPP due to land use change and the NPP 

6 “NPP is the net amount of carbon assimilated in a given 
period by vegetation. It determines the amount of energy avail-
able for transfer from plants to other levels in the trophic webs 
in ecosystems.” (Haberl et  al., 2007). Detailed definitions are 
also provided by Díaz (2003) and Sun et al. (2022).
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harvested by humans, both measured as annual car-
bon flows. The former, in turn, consists of the differ-
ence between the Net Primary Production “Supply” 
and “Demand”. Following the definitions in Haberl 
et al. (2007), the first can be also defined as the natu-
ral capacity of primary biomass production of “undis-
turbed” terrestrial ecosystems (i.e. under current envi-
ronmental conditions), while the latter is the quantity 
that remains after anthropogenic land conversion and 
biomass harvesting of all types (i.e. not only agricul-
tural crops). A high value of HANPP indicates a high 
level of ecosystem degradation.

The complexity of this index emerges from the dif-
ficulty to update it with more recent data (land use 
data, for example, at national level are not consist-
ently mapped, see Seeber et  al., 2022 for a discus-
sion), and from the fact that its values include the 
impact, on the amount of global carbon flows assimi-
lated by vegetation, of human-induced land conver-
sions, such as land cover change, land use change, 
and soil degradation (Haberl et al., 2007).7 However, 
in spite of these limitations Krausmann et al. (2012) 
managed to calculate the HANPP up to year 2000, 
but for only six countries based on a very long time 
series of available observations. Kastner et al. (2021) 
made another attempt, managing to compute a ver-
sion of the HANPP index at a resolution of five arc-
minutes between 1910 and 2010 for 9 points in time. 
However, their index used a methodology that differs 
from Imhoff et al. (2004), focusing essentially on land 
use, rather than on a set of variables proxying human 
exploitation of the environment. The difference 
between the two ways in which the HANPP indexes 
are calculated is demonstrated by the correlation 
equal to 0.003. In our work we consider that HANPP 
based only on land use does not provide useful infor-
mation for the scope of our study and  therefore we 
rely on the original version by Imhoff et al. (2004).8

Figure  1 represents a global plot of grid-based 
HANPP values for the reference year 2000. In terms 
of natural resources overexploitation, the most criti-
cal areas (green colour) belong to intense agricultural 
and industrialized regions, also characterized by high 

population density (e.g. Eastern and Southern Asia, 
India, Europe and North America). On the other 
hand, areas of scarce human activity, such as the Afri-
can Saharan region, Mongolia and Siberia (Russia) 
register low levels of human appropriation of biomass 
production (pink colour).

Although the relationship between the degrada-
tion of ecosystems and zoonoses has been widely 
discussed and empirical evidence is abundant (see 
Keesing et al., 2006, 2010; Ostfeld & Keesing, 2017; 
Suzán et  al., 2009 among others), even related to 
the Covid-19 (e.g. Mishra et  al., 2021; Wu, 2021), 
research close to our goal is still lacking. Indeed, 
rather than identifying if pathogen emergence is 
related to degradation of ecosystems, we want to 
check if the latter can facilitate the spread of the 
Covid-19 pandemic in its initial stage, using regional 
data worldwide. To the best of our knowledge, a 
similar approach has been adopted only by Fernán-
dez et al. (2021), who have studied the same topic at 
country level (on a sample of 160 countries), finding 
a significant relationship between the loss of biodiver-
sity and Covid-19 infection spread and mortality. On 
the other hand, Solimini et al. (2021), from which we 
take part of our data (see next section), demonstrates 
a correlation between airborne particulate concentra-
tion and Covid-19 spread using worldwide regional 
data. According to this literature, if air pollution con-
tinues over time, degradation will grow, damaging 
ecosystems until a breaking point from which it may 
be difficult to recover (the so-called “tipping point” of 
De Zeeuw & Li, 2016).

Other environmental and human drivers 
of pathogens diffusion

In addition to environmental degradation, the spread 
of infectious diseases among humans may also 
be linked to the demographic and socioeconomic 
characteristics of local communities (Ying et  al., 
2022). With regard to the former, many studies have 

7 Specifically, the HANPP accounts for the grams of carbon 
per grid cell produced by vegetal food, fibre and grain fed to 
livestock. For wood, fuel wood and paper products, organic 
matter was added to account for processing and harvest losses. 
For paper, recycling was also considered.

8 For example, Lombardy region, which lies in the Po Val-
ley in Italy and concentrates the highest share of population, 
industries and intensive livestock farms in the country, scores 
among the regions with the highest value of HANPP by Imhoff 
et al. (2004) and with the lowest value of HANPP by Kastner 
et al. (2021).
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considered the role of population size (Stier et  al., 
2020, 2021) and density (Hu et  al., 2013; Kraemer 
et al., 2015; Liu, 2020, among others). According to 
the urban scaling theory (Bettencourt, 2013), popu-
lation size can act as a multiplier for many socio-
economic outcomes such as crime rates, the number 
of patent applications, as well as the rapid spread 
of infections among individuals. Similar to popula-
tion size, another important urban characteristic that 
favours frequent human contact, which may imply 
a faster transmission of diseases, is population den-
sity. However, studies considering its specific role on 
the spread of human pathogens seem to find differ-
ent results. For example, Hamidi et al. (2020) justify 
a non-significant relationship between population 
density and Covid-19 infection rates arguing that 
adherence to social distancing policies is greater in 
denser areas, where there is also better quality health 
care. Non-significant results are also found in Boter-
man (2020) when controlling for socio-economic 
factors. In line with this view, which sees popula-
tion density as a proxy for higher civic engagement 
and better-quality infrastructure, Liu (2020) finds a 
negative correlation with the spread of Covid-19 in 
the early stages of the epidemic in China. Another 
relevant demographic characteristic that should be 
considered as a potential driver of pathogens diffu-
sion is age. In particular, higher rates of mobility are 
expected among younger age groups than among the 
elderly ones due to schooling, work and social life, 

which imply more frequent human contact. This, in 
turn, would make the young population an effective 
vehicle for the spread and transmission of Covid-19 
(Monod et  al., 2021), albeit with less severe conse-
quences in terms of illness and death risk compared 
to older age groups (Coker, et al., 2020; Iacus et al., 
2020; Zheng et  al., 2021). Moreover, as infections 
can be related to each other and/or to other clinical 
conditions, for the choice of our covariates we fol-
low the specific Covid-19 literature, which highlights 
diabetes as a significant predictor of the virus mor-
tality (Corona et al., 2021).

In terms of socio-economic aspects, the standard 
of living, the quality of health-related infrastructure 
and the economic development of a given area are 
factors related to the broader concept of human devel-
opment, which has been identified in the literature 
as a significant driver of population health outcomes 
(see Solimini et  al., 2021 and Chen et  al., 2021, 
among others). According to Solimini et  al. (2021), 
economic output per capita can be seen as a proxy 
for both health infrastructure and population health 
status (e.g. in terms of life expectancy and infant 
mortality), as well as economic development (Chen 
et al., 2021). Regarding the specific Covid-19 litera-
ture, Sigler et al. (2021) find the Human Development 
Index (HDI) to be a strong predictor of its diffusion, 
especially in the early phase of the pandemic. Further 
support for this finding is provided by Khazaei et al. 
(2020) and Zhou and Puthenkalam (2022).

Fig. 1  Global Map of the log of HANPP in 2000 (log of grams of carbon per grid cell). Note: regions in the map represent the sam-
ple used in the study.  Source: own elaboration based on Imhoff et al. (2004)
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Finally, environmental conditions seem to play a 
relevant role in the transmission of respiratory dis-
eases, especially when considering meteorological fac-
tors and air pollution. With regard to the former, tem-
perature appears to be a much-cited factor in reducing 
the spread of Covid-19 (for a review, see the work of 
Han et  al., 2022), although this negative effect needs 
to be interpreted with caution in view of the significant 
spatial heterogeneity shown in several studies.9

Another important meteorological factor that can 
facilitate the transmission of the virus is humidity, 
which contributes to its viability and persistence on 
inanimate objects (Sarkodie & Owusu, 2020; Zarei 
et al., 2021). In particular, evidence shows that Covid-
19 can spread more rapidly with humidity (Park et al., 
2020; Wu et al., 2021) due to an increase of droplets 
lifetime (Chen et al., 2021).

Air pollution is another critical element that can 
affect both the spread and deadliness of respiratory 
viral infections, as highlighted in the SARS-CoV-2 
literature (Han et  al., 2022; Solimini et  al., 2021). 
In particular, specific attention has been paid to the 
potential effects of particulate matter (PM 10 and 
PM 2.5) on the initial spread of the epidemic, as this 
pollutant can (i) facilitate the entry of viruses into 
the human body and (ii) hinder the immune system 
response to these viruses (Solimini et  al., 2021).10 
Furthermore, in a study conducted by Zhu et  al. 
(2020) for China, short-term exposure to NO2 or O3 
had a greater effect than PM 2.5 or PM 10 in increas-
ing the number of Covid-19 confirmed cases, thus 
highlighting a certain degree of heterogeneity even 
within the same group of air pollutants (as well found 
in the global study of Solimini et al., 2021).

It is easy to see that these studies on the trans-
mission and deadliness of human pathogens result-
ing from the effects of air pollution, as well as those 
coming from the loss of biodiversity and ecosystem 
richness discussed in the previous section, share a 

common denominator: the overexploitation of natural 
resources by human activities.

Methodology and data

In order to investigate the potential effect of the 
HANPP Index on the spread of Covid-19, as cus-
tomary in the literature, we rely on a negative bino-
mial mixed model. More specifically, as a dependent 
variable we use the number of Covid-19 cumulative 
cases registered in the following 14  days from the 
date when > 10 cumulative cases are reported for 730 
regions in 63 countries (Solimini et  al., 2021). This 
leads to include information up to May 30, 2020. 
Figure 2 shows the reported cases. The highest inci-
dence of the early spread of Covid-19 is observed 
in Europe, in the Eastern part of the U.S., in China 
and the coastal regions of Brazil (areas of darker blue 
colour), while Mongolia, Siberia (Russia), Central 
American countries and Latin American countries 
bordering the Pacific Sea (light blue colour) showed 
the lowest incidence.

The estimates are performed using a Bayesian 
hierarchical approach via Integrated Nested Laplace 
Approximation (INLA), see Rue et al. (2009). This is 
a computationally efficient alternative to Markov chain 
Monte Carlo (MCMC) methods (Rue & Held, 2005).

We employ a set of different Bayesian mod-
els starting from the benchmark, including only the 
covariates, adding step-by-step national, continental 
or spatial random effects.11 As a further robustness 
check we combine spatial random effects to country 
or continent fixed effects. Our model has the follow-
ing form:
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where θ is the overdispersion parameter12 of a Nega-
tive Binomial distribution and μ is the region-specific 
expectation conditional on the value of the covariates. 
HANPP is the Human Appropriation of Net Primary 
Production in region i and β is the associated param-
eter; X is a vector of control variables that adjusts for 
the potential confounding effects and includes the 
(log of) total population as the offset with δ the asso-
ciated vector of parameters. Parameter u

i
 represents 

the random effect corresponding to region i (see foot-
note 4) and �

i
 is a normally-distributed error term.

The covariates, coherently with what reported in 
Sect.  2, include socio-economic, demographic and 
environmental factors. Table 1 presents the source, the 
scale (regional or national) and the definition of each 
variable, in addition to the descriptive statistics. In 
Table 3 (Appendix A) we report the covariance matrix 
among the regressors.

As far as the demographic variables are concerned, 
in addition to the total population in the region, as 
the offset, we include the proportion of male popula-
tion, as well as the proportion of the elderly popula-
tion (i.e. those aged 65 and over) in order to take into 
account such highly vulnerable age group exposed 
to infections, especially when affected by multiple 
pathologies (Dadras et  al., 2022). In the vector of 
socio-economic variables, we account for income per 
capita and educational attainment, measured as aver-
age years of schooling in the population aged 25 and 
older that come from Smits and Permanyer (2019). 
Their inclusion is justified by their importance in 
explaining Covid-19 cases and deaths. Examples are 
Hawkins et  al. (2020) for the U.S., Cifuentes et  al. 
(2021) for Colombia, Mateo-Urdiales et al. (2020) for 
Italy and Meurisse et al. (2022) for Belgium. Popula-
tion Weighted Density (PWD), based on gridded pop-
ulation at 1 square km in 2015, is not only recognized 
as a better measure of density at which the population 
lives (Craig, 1984), but it is currently a good predic-
tor of the spread of Covid-19 pandemic (Baser, 2021; 
Wong & Li, 2020). Additionally, in the same vector, 
we have a set of health variables compiled by Soli-
mini et al. (2021) from various sources, consisting in 
the national prevalence of diabetes,13 the cumulative 
number of tests at outcome date and stringency index 

Number of 
cases

(11,50.2]

(50.2,95]

(95,182]

(182,413]

(413,2.96e+04]

NA

Fig. 2  Covid-19 cumulative cases registered in the following 14 days from the date when cases are > 10. Note: regions in the map 
represent the sample used in the study.  Source: own elaboration based on Solimini et al. (2021)

12 In our model the degree of overdispersion of our count data 
is assumed to be constant across regions. This limitation is due 
to the cross-sectional characteristic of the data. Other authors 
like Rui et al. (2021) take advantage of the time dimension of 
the data by analysing the spread of Covid-19 in the US via a 
spatio-temporal multivariate time series model accounting for 
heterogeneous overdispersed count data. In our framework, we 
account for unobserved heterogeneity by taking into account 
extra spatial variability in the data and testing different ways of 
modelling spatial random effects.

13 Corona et al. (2021) in a systematic review and meta-anal-
ysis of 3714 articles show that diabetes is the most important 
cause of mortality in COVID-19 hospitalised patients in both 
the US and Europe.

 where,  τu  is the conditional precision of spatial random 
effects and δi  is the neighbourhood of the ith region, nδi  is the 
number of neighbours, ωij  is an element of the spatial weight 
matrix W where region j is considered a neighbour of region i 
if it is among the 5 nearest neighbours.

Footnote 11 (continued)
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at outcome date, i.e. a composite measure based on 
nine response indicators including school and work-
place closures and travel bans, rescaled to a value 
from 0 to 100 (100 = stricter response), as in Hale 
et  al. (2021).14 Finally, following Chen (2020) and 
Ma et  al. (2021) in the vector of environmental fac-
tors there are the maximum relative humidity and the 
mean temperature in the 30 days before the outcome 
date, and the mean PM 2.5 concentrations for the 
period 2014–2018 as in Coker et al. (2020).

To confirm the reliability of the results, we have 
executed two robustness checks, based on the obser-
vation of the cumulative number of Covid-19 cases 
starting from the 30th or 45th day after the tenth case 
is observed. These further results are provided in 
Appendix B.

Results

Six different specifications of model (1) have been 
estimated in the empirical part of this study: (i) base-
line fixed effects model, (ii) country random effects, 
(iii) continent with nested country random effects, 
(iv) spatial random effects, (v): model (iv) plus coun-
try fixed effects, and (vi): model (v) plus continent 
fixed effects. Bayesian estimates of the coefficients 
are shown in Table  2. All variables, including the 
intercept, have predictive power on Covid-19 early 
diffusion, at least in one model specification. In addi-
tion, the analysis of the Deviance Information Crite-
rion (DIC) reveals the preference for the model with 
random effects accounting for the geographical loca-
tions, the best of which is model specification (ii).

Consistently with the previous literature (Stier 
et  al., 2020, 2021), population size has a significant 

positive estimated impact on the early diffusion of 
Covid-19 in all specifications, while the share of 
male population has a significant negative effect, as 
in Coker et al. (2020). Unlike other studies (see, e.g., 
Yanez et al., 2020), the share of population aged 65 
and over is never significant either in the main results, 
with the only exception of model (v) and (vi), or in 
the robustness checks.

This result can be reasonably explained by the 
tendency of the elderly to have lower mobility, not 
influencing Covid-19 spread, at least in the very early 
stage of diffusion (with fewer exceptions, e.g. the 
North of Italy, where the elderly suffered immediately 
from the diffusion and mortality risk of the virus, as 
documented in Grasselli et  al., 2020). However, as 
the elderly tend to congregate often for recreational 
activities, in the second phase of the pandemic this 
population group was fatally affected almost every-
where (Coker, et al., 2020; Iacus et al., 2020; Zheng 
et al., 2021).

Results appear heterogeneous in terms of socio-
economic variables. Income per capita, proxying the 
economic development of a region, has always sig-
nificant and positive effects on new cases of Covid-
19, confirming previous results (see, e.g., Chen et al., 
2021). This result highlights a potential link between 
the circulation of Covid-19 and human development, 
conceived as an indicator of frequent human con-
tacts and close social ties among people. The effect 
of schooling, positive and significant in our best 
models (ii) and (iii), i.e. those with lowest DIC, can 
be read following the same reasoning. These results 
are in line with Sigler et  al. (2021) who show that, 
in the early stage of the pandemic, human develop-
ment index (HDI) is the strongest predictor of new 
cases, pointing to a hierarchical diffusion from more 
developed countries to less developed ones. The 
positive correlation between HDI and the spread of 
Covid-19 is well documented in literature, both at the 
global level (Khazaei et al., 2020) and with a focus on 
high-income countries (Zhou & Puthenkalam, 2022). 
Finally, a possible concern regarding the interdepend-
ence between variables representing socio-economic 
regional factors and HANPP is generally excluded 
due to i) the low correlation reported in Table  3 in 
Appendix A, ii) the evidence that results hold even 
when HANPP is removed from the specification, and 
iii) the fact that HANPP is computed for year 2000, 
while other covariates at year 2020. This last point 

14 Although people or workers’ mobility across municipalities 
or regions has been verified to be an important determinant of 
the risk of disease diffusion, at least at national or local level 
(see one for all, Ascani et  al., 2021), it is not observable for 
much of our sample, and we exclude this variable from the 
set of exogenous factors. However, population density and the 
stringency index allow to pick up at least part of the phenom-
enon, given that the latter is measuring a restriction in mobility 
during the first wave.
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Table 2  Estimation results

Model Specification Baseline Country R.E Continent + 

Nested Country R.E

(i) (ii) (iii)

Variable Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q
  Intercept ‑5.3550 ‑7.1416 ‑3.5076 -2.7208 -5.3868 0.0237 ‑2.7700 ‑5.4307 ‑0.0273

Demographic Variables
  log Total Population 0.2421 0.1739 0.3097 0.3049 0.2285 0.3809 0.3040 0.2274 0.3799
  Population Age 65 + 0.0187 -0.0016 0.0390 -0.0211 -0.0504 0.0079 -0.0208 -0.0501 0.0082
  Proportion Males ‑0.0502 ‑0.0748 ‑0.0269 ‑0.0862 ‑0.1140 ‑0.0609 ‑0.0857 ‑0.1134 ‑0.0605

Socio-Economic Variables
  Prevalence Diabetes 0.0378 0.0092 0.0670 -0.0306 -0.1128 0.0488 -0.0294 -0.1116 0.0503
  log Number of Test -0.0097 -0.0285 0.0087 0.0084 -0.0174 0.034 0.0076 -0.0182 0.0332
  Stringency Index 0.0110 0.0063 0.0154 0.0034 -0.0037 0.0103 0.0033 -0.0038 0.0102
  log Income Index 0.8249 0.6701 0.9781 0.5114 0.2841 0.7361 0.5140 0.2865 0.7391
  log Schooling Level ‑0.0812 ‑0.1340 ‑0.0282 0.0952 0.0109 0.1799 0.0934 0.0091 0.1781
  log Population Weighted Density 0.0232 -0.0734 0.1211 0.0604 -0.0521 0.1734 0.0605 -0.0520 0.1736

Environmental Variables
  Temperature ‑0.0421 ‑0.0559 ‑0.0283 -0.0003 -0.0172 0.0164 0.0001 -0.0168 0.0168
  Humidity 0.0118 0.0048 0.0187 0.0141 0.0061 0.0220 0.0142 0.0063 0.0221
  PM 2.5 Concentration 0.0045 0.0017 0.0074 0.0062 0.0030 0.0095 0.0062 0.0030 0.0095
  log HANPP 0.0356 0.0077 0.0604 0.0346 0.0077 0.0589 0.0348 0.0079 0.0591
  Country random effects 1.7389 1.0454 2.7089 1.7282 1.0373 2.6904
  DIC 9420.3 9098.7 9099.2

Model Specification Spatial R.E Spatial R.E. + 
Country F.E

Spatial R.E. + Continent F.E. + 
Country F.E

(iv) (v) (vi)

Variable Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q
  Intercept ‑5.3578 ‑7.1206 ‑3.5368 -0.9642 -22.4811 20.5364 -1.1392 -31.6915 29.3886

Demographic Variables
  log Total Population 0.2421 0.1749 0.3088 0.3093 0.2265 0.3919 0.3101 0.2273 0.3926
  Population Age 65 + 0.0187 -0.0014 0.0388 ‑0.0413 ‑0.0753 ‑0.0075 ‑0.0406 ‑0.0746 ‑0.0068
  Proportion Males ‑0.0502 ‑0.0745 ‑0.0272 ‑0.0915 ‑0.1217 ‑0.0646 ‑0.0919 ‑0.1221 ‑0.0650

Socio-Economic Variables
  Prevalence Diabetes 0.0378 0.0096 0.0666 -0.1041 -2.4747 2.2647 -0.1256 -2.5265 2.2734
  log Number of Test -0.0097 -0.0283 0.0084 0.0063 -0.022 0.0344 0.0062 -0.0221 0.0343
  Stringency Index 0.011 0.0064 0.0154 0.0051 -0.0038 0.0136 0.0051 -0.0038 0.0136
  log Income Index 0.8249 0.6722 0.976 0.4029 0.1431 0.6599 0.3865 0.1254 0.6449
  log Schooling Level ‑0.0812 ‑0.1333 ‑0.029 0.0771 -0.0247 0.1796 0.0792 -0.0227 0.1817
  log Population Weighted 

Density
0.0232 -0.0721 0.1198 0.1100 -0.0134 0.2337 0.1105 -0.0128 0.2341

Environmental Variables
  Temperature ‑0.0421 ‑0.0557 ‑0.0285 0.0151 -0.003 0.033 0.0151 -0.0030 0.0329
  Humidity 0.0118 0.0049 0.0186 0.0137 0.0052 0.0221 0.0138 0.0053 0.0222
  PM 2.5 Concentration 0.0045 0.0018 0.0074 0.0063 0.0028 0.0100 0.0063 0.0028 0.0100
  log HANPP 0.0356 0.0081 0.0601 0.0387 0.0100 0.0645 0.0387 0.0100 0.0644
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allows us also to limit the concerns regarding reverse 
causality.

The results for the socio-economic variables avail-
able at national level, namely the prevalence of dia-
betes, the stringency index and the number of cumu-
lative tests, are either weakly or not significant in all 
our specifications. This highlights the need for more 
appropriate measures to test the specific role of both 
regulatory and preventive health security measures 
taken by policymakers over time. Specifically, a weak 
positive relationship is observed for the prevalence of 
diabetes and the stringency index, whose coefficients 
are significant only in two cases (i and iv). However, 
the number of tests is never significant (testing and 
contact tracing methods were not so developed yet at 
the observed time).

Interestingly, the coefficient of PWD is also found 
to be insignificant although this lack of effect may 
be an important result that can corroborate other 
studies (as discussed below), rather than highlight-
ing a misspecification measurement. Indeed, several 
scholars such as Hamidi et  al. (2020) and Boterman 
(2020) account for both population density and con-
centration, as the PWD does, and find non-significant 
results. The first authors argue that adherence to 
social distancing policies and practices is greater in 
denser areas, where better quality of health care can 
be also found, and this is why they find no relation 
with infection rates and a negative relationship with 
the mortality rate. Boterman (2020), on the other 
hand, finds that, when controlling for socio-economic 
factors, density loses statistical significance. None-
theless, the debate on the effect of population density 
on the Covid-19 spread should be still considered an 
open issue, which seems to depend on several fac-
tors, such as the way in which density is measured, 
the specific case-study and the phase of the pandemic 
(see Ying et al., 2022, among others).

As far as environmental factors, humidity, coher-
ently with the literature reported in Sect.  2, has 
always a significant positive effect on our depend-
ent variable, while temperature appears to produce a 
weak negative effect (observed in two model specifi-
cations, i and iv). These results are in line with the 
model proposed by Chen (2020), according to which 
droplets’ lifetime is strongly influenced by humidity, 
while temperature appears to be less relevant.

Finally, our results confirm the evidence by 
Solimini et  al. (2021) about the positive and sig-
nificant effect of particulate matter (PM 2.5) on 
the diffusion of Covid-19, even when additional 
variables are included in the specification. For 
example, in the most effective model specification 
(ii), we find that a unit increase of PM 2.5 (μg/m3) 
is correlated with a 0.7% increase in the depend-
ent variable. Such a result further confirms what 
was found in the literature by Coker et  al. (2020) 
at local level and Fernández et al. (2021) at global 
scale, among others.

We then come to the focus of our paper, i.e. the 
hypothesis that human overexploitation of natural 
resources being an accelerating factor of Covid-19 
diffusion, by estimating the coefficient of HANPP. 
The coefficient estimate is positive and significant in 
all the specifications, supporting our research ques-
tion about the potential role of human impact on the 
ecosystem in Covid-19 early diffusion. This result 
provides evidence of a possible nexus between eco-
system degradation due to human activities and the 
propagation of the pandemic at the (global) regional 
level, which further confirms the results obtained by 
Fernández et al. (2021) at (global) country level. For 
example, in correspondence of model (ii) character-
ized by the lowest DIC, we find that a 1% increase 
of HANPP (expressed in Gtc/yr) is associated with 
a 0.035% increase in Covid-19 early diffusion. 

Table 2  (continued)

Model Specification Spatial R.E Spatial R.E. + 
Country F.E

Spatial R.E. + Continent F.E. + 
Country F.E

(iv) (v) (vi)

  Country random effects
  DIC 9418.4 9104.2 9104.4

bold indicates coefficients statistically different from zero at 5% level
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However, looking at Fig.  3, in which we report the 
estimated coefficient of the log of HANPP for the 
cumulative cases after 10, 30 and 45  days from the 
detection of the first ten cases, we observe an increase 
in its impact.15 Indeed, after 30 days, a 1% increase 
of HANPP is associated with a 0.066% increase in 
Covid-19 early diffusion, thus almost doubling the 
previous result, and further increasing to threefold 
0.097% after 45 days.

Finally, the reliability of this result is reinforced by 
the design of our analysis, which is based on a world-
wide regional sample that accounts for 730 regions in 
63 countries, and offers a large sample size to com-
pute accurate estimates once controlling for heteroge-
neity by the inclusion of random effects.

Conclusion

In this paper we study the effect of ecosystem degra-
dation on the spread of Covid-19 virus. We provide 
evidence of this link assessing the effect of human 
overexploitation of natural resources, measured by 
the Human Appropriation of Net Primary Production 
(HANPP) index, on the number of Covid-19 cumu-
lative cases registered in the following 14 days from 
the date when > 10 cumulative cases were reported 
for 730 regions in 63 countries till May 30, 2020. Our 
result, robust against a wide range of control variables 
and several alternative estimation techniques, is part 
of a larger body of scientific literature supporting the 
connection between over-exploitation of land and the 
spread of zoonoses.

From a policy perspective, our contribution 
emphasises that the debate should move towards 
a more robust understanding of human impacts on 
ecosystems and health consequences, adopting an 
interdisciplinary approach to land-use planning, 
agriculture and environmental protection, while 

Cumulated number of cases 45 days after the 10th

Cumulated number of cases 30 days after the 10th

Cumulated number of cases 14 days after the 10th

0.00 0.05 0.10 0.15
Estimated log of HANPP
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Fig. 3  Estimated coefficients of the log of HANPP (mean and 95% confidence intervals). Note: Results are based on estimates that 
include country random effects

15 Results are based on estimates that include country random 
effects. The whole set of results is in Table 4 and Table 5 in 
Appendix B.
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ensuring food security and public health. The need 
to feed a growing world population and ensure 
sustainable global economic development must 
be reframed within a framework that respects the 
natural evolution of ecosystems and protects bio-
diversity. It is therefore necessary to rethink our 
production and consumption patterns, both glob-
ally and individually, to make them more prudent 
in their use of water and other natural resources, 
but also to encourage the reduction of food and 
waste in general. Responsible land management 
must be placed at the heart of future policy agen-
das now, otherwise the fundamental role of eco-
system services in providing resilient solutions 
and natural barriers to current, and likely future, 
zoonotic emergence will be seriously threatened 
(Everard et al., 2020). In this regard, governments 
around the world, through the scale and pace of 
actions they have taken in response to the Covid-
19 pandemic, have demonstrated that they have the 
institutional capacity to provide substantive and 
coordinated responses to external global threats, 
whenever they are perceived as such. This shows 
that it is crucial to improve the perception of the 
importance of environmental issues. Demonstrat-
ing the close link between environmental degrada-
tion and Covid-19, a traumatic health event with 
profound social and economic consequences, goes 
precisely in this direction.

Finally, given the cross-sectional nature of 
our study, although the time lag of the HANPP 
helps in the direction of interpreting our results 
as causal, we cannot explicitly claim for it. To 
achieve this aim we would require data with a 
time dimension to identify the dynamics asso-
ciated with the phenomena, as well as different 
econometric methodologies capable of isolating 
the impact of a specific covariate once the full 
set of relevant exogenous determinants is taken 
into account. Our study, therefore, could be con-
ceived as a first step in demonstrating the rela-
tionship between environmental degradation 
and the Covid-19 pandemic, which will need to 
be further explored. The next steps could be to 
move beyond a causal approach and consider the 

complex circular relationship between ecosystem 
resilience and air pollution, including a taxonomy 
of the latter. Another possibility, probably very 
promising, would be to consider ecosystems as 
mediators of the effect of pollution on the spread 
of Covid-19.
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Appendix B: Robustness check

In this section we present the outcome of the robust-
ness checks executed to reinforce the reliability of our 
results. More in detail, we have re-estimated twice 

the six model specifications detailed in Sect. 3, using 
as the dependent variable the cumulative number of 
cases 30 and 45 days after the 10th case is observed. 
Results of these robustness checks are shown in 
Tables 4 and 5 respectively. Table 4 Table 5

Table 4  Estimation results considering the cumulated number of cases 30 days after the 10th

Model Specification Baseline Country R.E Continent + 
Nested Country R.E

(i) (ii) (iii)

Variable Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q
Intercept ‑20.2047 ‑28.7000 ‑11.6625 ‑10.5377 ‑18.8072 ‑2.2079 ‑20.1990 ‑28.9000 ‑11.4874
Demographic Variables
log Total Population 0.6865 0.5810 0.7913 0.5556 0.4372 0.6726 0.6864 0.5790 0.7933
Population Age 65 + 0.0328 0.0002 0.0659 -0.0158 -0.0677 0.0359 0.0328 -0.0005 0.0666
Proportion Males 0.0376 -0.1000 0.1760 0.0441 -0.0759 0.1633 0.0376 -0.1030 0.1787
Socio-Economic Variables
Prevalence Diabetes 0.0304 -0.0246 0.0855 -0.0991 -0.2416 0.0390 0.0304 -0.0257 0.0866
log Number of Test 0.0050 -0.0242 0.0334 -0.0087 -0.0458 0.0281 0.0050 -0.0248 0.0339
Stringency Index 0.0181 0.0097 0.0263 -0.0075 -0.0207 0.0052 0.0181 0.0095 0.0264
log Income Index 1.3519 1.0200 1.6753 0.2860 -0.1335 0.7039 1.3519 1.0200 1.6817
log Schooling Level 0.0074 -0.0696 0.0852 0.2235 0.1025 0.3445 0.0075 -0.0710 0.0868
log Population Weighted Density 0.1508 0.0147 0.2902 -0.0273 -0.1681 0.1144 0.1509 0.0121 0.2930
Environmental Variables
Temperature 0.0088 -0.0127 0.0300 0.0165 -0.0058 0.0386 0.0089 -0.0131 0.0304
Humidity 0.0139 0.0020 0.0255 0.0127 0.0012 0.0241 0.0139 0.0018 0.0257
PM 2.5 Concentration -0.0028 -0.0072 0.0018 0.0074 0.0028 0.0121 -0.0028 -0.0073 0.0019
log HANPP -0.0794 -0.1680 0.0037 0.0660 0.0083 0.1146 -0.0794 -0.1700 0.0053
Country random effects 0.9795 0.5288 1.6255 0.9796 0.5287 1.6254
DIC 8100.1 7720.8 7720.8

Model Specification Spatial R.E Spatial R.E
Country F.E

Spatial R.E. + Continent F.E. + 
Country F.E

(iv) (v) (vi)

Variable Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q

Intercept ‑20.1990 ‑28.9000 ‑11.4874 -6.6490 -27.1347 13.8203 -6.8314 -42.9200 29.2277
Demographic Variables
log Total Population 0.6864 0.5790 0.7933 0.5304 0.4028 0.6566 0.5304 0.4028 0.6566
Population Age 65 + 0.0328 -0.0005 0.0666 -0.0294 -0.0932 0.0342 -0.0295 -0.0933 0.0341
Proportion Males 0.0376 -0.1030 0.1787 0.0219 -0.1057 0.1487 0.0219 -0.1057 0.1486
Socio-Economic Variables
Prevalence Diabetes 0.0304 -0.0257 0.0866 -0.0685 -3.2034 3.0638 -0.0284 -3.5672 3.5074
log Number of Test 0.0050 -0.0248 0.0339 -0.0040 -0.0440 0.0360 -0.0040 -0.0440 0.0360
Stringency Index 0.0181 0.0095 0.0264 ‑0.0172 ‑0.0339 ‑0.0012 ‑0.0172 ‑0.0339 ‑0.0012
log Income Index 1.3519 1.0200 1.6817 0.0058 -0.4525 0.4662 0.0054 -0.4527 0.4657
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bold indicates coefficients statistically different from zero at 5% level.

Table 4  (continued)

Model Specification Spatial R.E Spatial R.E
Country F.E

Spatial R.E. + Continent F.E. + 
Country F.E

(iv) (v) (vi)

log Schooling Level 0.0075 -0.0710 0.0868 0.2468 0.1114 0.3820 0.2468 0.1114 0.3819
log Population Weighted Density 0.1509 0.0121 0.2930 -0.0028 -0.1534 0.1482 -0.0027 -0.1533 0.1483
Environmental Variables
Temperature 0.0089 -0.0131 0.0304 0.0259 0.0019 0.0496 0.0259 0.0019 0.0496
Humidity 0.0139 0.0018 0.0257 0.0098 -0.0024 0.0218 0.0098 -0.0024 0.0218
PM 2.5 Concentration -0.0028 -0.0073 0.0019 0.0087 0.0036 0.0138 0.0087 0.0036 0.0138
log HANPP -0.0794 -0.1700 0.0053 0.0757 0.0169 0.1250 0.0757 0.0169 0.1250
Country random effects
DIC 8098.9 7721.2 7721.1

Table 5  Estimation results considering the cumulated number of cases 45 days after the 10th

Model Specification Baseline Country R.E Continent + 
Nested Country R.E

(i) (ii) (iii)

Variable Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q Mean 0.025 q 0.975 q
Intercept ‑25.4333 ‑36.2584 ‑14.6016 ‑14.5877 ‑24.0861 ‑5.0457 ‑14.5923 ‑24.0882 ‑5.0528
Demographic Variables
log Total Population 0.8532 0.7129 0.9900 0.5975 0.4654 0.7278 0.5975 0.4655 0.7279
Population Age 65 + 0.0271 -0.0202 0.0747 -0.0166 -0.0749 0.0415 -0.0166 -0.0749 0.0414
Proportion Males 0.1718 -0.0035 0.3472 0.1029 -0.0334 0.2382 0.1029 -0.0333 0.2382
Socio-Economic Variables
Prevalence Diabetes 0.0187 -0.0458 0.0839 -0.0705 -0.2453 0.1036 -0.0705 -0.2448 0.1032
log Number of Test 0.0188 -0.0198 0.0560 -0.0106 -0.0523 0.0311 -0.0106 -0.0523 0.0311
Stringency Index 0.0176 0.0064 0.0287 -0.0134 -0.0278 0.0005 -0.0134 -0.0277 0.0005
log Income Index 1.0155 0.6121 1.4142 0.3701 -0.1158 0.8580 0.3705 -0.1151 0.8581
log Schooling Level 0.0383 -0.0647 0.1413 0.2450 0.1022 0.3882 0.2449 0.1021 0.3880
log Population Weighted Density 0.1949 0.0326 0.3618 -0.0207 -0.1726 0.1327 -0.0207 -0.1726 0.1327
Environmental Variables
Temperature 0.0046 -0.0220 0.0309 0.0368 0.0111 0.0622 0.0368 0.0111 0.0622
Humidity -0.0013 -0.0172 0.0143 0.0020 -0.0124 0.0160 0.0020 -0.0124 0.0160
PM 2.5 Concentration ‑0.0092 ‑0.0158 ‑0.0023 0.0018 -0.0045 0.0084 0.0018 -0.0045 0.0084
log HANPP -0.0338 -0.1480 0.0718 0.0969 0.0269 0.1547 0.0968 0.0269 0.1547
Country random effects 0.7066 0.3822 1.1729 0.7063 0.3821 1.1717
DIC 6606.8 6248.6 6248.5
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