
ar
X

iv
:m

at
h/

07
02

77
0v

3 
 [

m
at

h.
C

O
] 

 1
8 

Se
p 

20
07

Algebrai urves and maximal ars

A. Aguglia

∗
L. Giuzzi

∗
G. Korhmáros

∗

Abstrat

A lower bound on the minimum degree of the plane algebrai urves

ontaining every point in a large point�set K of the Desarguesian plane

PG(2, q) is obtained. The ase where K is a maximal (k, n)�ar is

onsidered in greater depth.

1 Introdution

In �nite geometry, plane algebrai urves of minimum degree ontaining a

given large point�set K in PG(2, q) have been a useful tool to investigate

ombinatorial properties of K.
When K is the whole point�set of PG(2, q), a trivial lower bound on the

degree of suh a plane algebrai urve is q + 1. G. Tallini pointed out that

this is attained only when the urve splits into q+1 distint lines of PG(2, q),
all passing through the same point. He also gave a omplete lassi�ation

of the absolutely irreduible urves of degree q + 2 ontaining all points of

PG(2, q); see [23, 24℄ and also [1℄. If K is the omplementary set of a line in

PG(2, q), then the bound is q; see [13℄.
When K onsists of all internal points to a oni C in PG(2, q) with q

odd, the above lower bound is q− 1. The analogous bound for the set of the

external points to C is q. These bounds were the main ingredients for reent

ombinatorial haraterisations of point�sets bloking all external lines to C;
see [4, 12℄.

When K is a lassial unital of PG(2, q), with q square, the minimum

degree d of an absolutely irreduible urve C through K is d =
√
q + 1. For

non�lassial unitals, the best known bound is d > 2
√
q − 4; see [18℄.
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Our purpose is to �nd similar bounds for slightly smaller, but still quite

large, point�sets K, say |K| = qt + α with t < c 3
√
q and 0 ≤ α < q, where c

is a suitable onstant. Sine no ombinatorial ondition on the on�guration

of K is assumed, we are relying on tehniques and results from algebrai

geometry rather than on the onstrutive methods used in the papers ited

above.

The main result is that if q > 8t3− 122+4t− 2α+2, any plane algebrai

urve Γ ontaining every point of K has degree d ≥ 2t. The hypothesis on

the magnitude of t an be relaxed to q > 16t2 − 24t− 2α + 8 whenever q is

a prime.

In some ases, the bound d ≥ 2t is sharp, as the following example shows.

Let K be the union of t disjoint ovals. If q odd, or q is even and the ovals

are lassial, then |K| = qt + t and d = 2t. The latter ase is known to

our when K is a Denniston maximal ar [10℄ (or one of the maximal ars

onstruted by Mathon and others, [25, 26, 16, 20, 14℄) minus the ommon

nuleus of the ovals.

On the other hand, some re�nement of the bound is also possible. Let K
be any maximal ar of size |K| = qt+ t+ 1, that is, a (qt+ t+ 1, t+ 1)�ar.
Theorem 4.2 shows that if q is large enough omparing to t, then no plane

algebrai urve of degree 2t passes through every point of K. Therefore, the
minimum degree is at least 2t+1 for suh t and this bound is attained when

K is one of the above maximal ars.

The ase n = 4 is onsidered in more detail. For q > 26, the minimum

degree is 7 and this is only attained when K is a Denniston ar and the urve

Γ of minimum degree splits into three distint onis with the same nuleus

N ∈ K, together with a line through N .

2 Some bakground on plane algebrai urves

over a �nite �eld

A plane projetive algebrai urve ∆ is de�ned over GF(q), but viewed as a

urve over the algebrai losure GF(q) of GF(q), if it has an a�ne equation

f(X, Y ) = 0, where f(X, Y ) ∈ GF(q)[X, Y ]. The urve ∆ is absolutely

irreduible if it is irreduible over the algebrai losure GF(q). Denote by

Nq be the number of non�singular points lying in PG(2, q) of an absolutely
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irreduible plane urve ∆ of degree d. From the Hasse-Weil bound

Nq ≤ q + 1 + (d− 1)(d− 2)
√
q. (1)

This holds true when singular points of ∆ lying in PG(2, q) are also ounted;
see [19℄.

The Stöhr-Voloh bound depends not only on the degree d, but also on

a positive integer, the Frobenius order ν of ∆; see [22℄. This number ν is

either 1 or ε2, where ε2 is the intersetion number I(P,∆∩ ℓ) of ∆ with the

tangent line ℓ at a general point P ∈ ∆. It turns out that ε2 is either 2, or
a power, say ph, of the harateristi p of the plane, and is the minimum of

I(Q,∆ ∩ r), where Q ranges over the non�singular points of ∆ and r is the

tangent to ∆ at Q. If q = p, then ε2 = 2, and either ν = 1, or ν = 2 and

p = 2. With this notation, the Stöhr-Voloh bound applied to ∆ is

2Nq ≤ ν(d− 3)d+ d(q + 2). (2)

The following algebrai mahinery an be used to ompute ν. Let P = (a, b)
be a non�singular point of ∆ suh that the tangent line to ∆ at P is not the

vertial line through P . The unique branh (or plae) entred at P has a

loal parametrisation, also alled a primitive branh representation,

x = a+ t, y = b+ ϕ(t)

where f(x, y) = 0 and ϕ(t) = bkt
k + . . . with k ≥ 1 is a formal power series

with oe�ients in GF(q)[[t]]; see [21℄. Then, ν is de�ned to be the smallest

integer suh that the determinant

∣

∣

∣

∣

x− xq y − yq

1 D
(ν)
t (y)

∣

∣

∣

∣

=

∣

∣

∣

∣

a− aq + t− tq b− bq + ϕ(t)− ϕ(t)q

1 D
(ν)
t (ϕ(t))

∣

∣

∣

∣

does not vanish. Here Dt denotes the ν�th Hasse derivative, that is,

D
(ν)
t (ϕ(t)) =

(

k

ν

)

bkt
k−ν + . . . .

The above idea still works if osulating onis are used in plae of tangent

lines, and, in some ases, the resulting bound improves (2). Before stating

the result, whih is the Stöhr-Voloh bound for onis, a further onept

from algebrai geometry is needed. Reall that the order sequene of ∆ with
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respet to the linear system Σ2 of the onis of the plane is the inreasing

sequene 0, ǫ1 = 1, ǫ2 = 2, ǫ3, ǫ4, ǫ5 of all intersetion numbers I(P,∆ ∩ C)
of ∆ with onis at a general point P . The Frobenius Σ2�order sequene is

the subsequene ν0 = 0, ν1, ν2, ν3, ν4 extrated inreasingly from the Σ2�order

sequene of ∆, for whih the following determinant does not vanish:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− xq x2 − x2q y − yq xy − xqyq y2 − y2q

1 2x D
(ν1)
t (y) D

(ν1)
t (xy) D

(ν1)
t (y2)

0 1 D
(ν2)
t (y) D

(ν2)
t (xy) D

(ν2)
t (y2)

0 0 D
(ν3)
t (y) D

(ν3)
t (xy) D

(ν3)
t (y2)

0 0 D
(ν4)
t (y) D

(ν4)
t (xy) D

(ν4)
t (y2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Assume that deg∆ ≥ 3. The Stöhr-Voloh bound for onis, that is for Σ2,

is

5Nq ≤ [(ν1 + . . .+ ν4)(d− 3)d+ 2d(q + 5)]. (3)

For more on the Stöhr-Voloh bound see [22℄.

3 Plane algebrai urves of minimum degree

through all the points of a given point�set

In this setion, K stands for a set of qt+α points in PG(2, q), with 0 ≤ t ≤ q
and 0 ≤ α < q. Let Γ denote a plane algebrai urve of degree d ontaining

every point K. As already mentioned, q + 1 is the minimum degree of a

plane algebrai urve ontaining every point of PG(2, q). Thus, sine we are
looking for lower bounds on d, we will only be onerned with the ase where

d ≤ q.
A straightforward ounting argument gives the following result.

Lemma 3.1. If d ≤ q, then d ≥ t.

Proof. Sine d ≤ q, the linear omponents of Γ do not ontain all the points of

PG(2, q). Choose a point P ∈ PG(2, q) not in any of these linear omponents.

Eah of the q + 1 lines through P meets Γ at most d distint points. Thus,

(q + 1)d ≥ |K|, that is

d ≥ qt+ α

q + 1
≥ t− t

q + 1
.

Sine t < q + 1, the assertion follows.
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Our aim is to improve Lemma 3.1. Write F for the set of all lines of

PG(2, q) meeting K in at least 1 point. Set m0 = min{|ℓ ∩ K| : ℓ ∈ F} and

M0 = max{|ℓ ∩ K| : ℓ ∈ F}.
Theorem 3.2. Let Γ be an algebrai plane urve over GF(q) of minimal

degree d whih passes through all the points of K. If
q > 8t3 − 16t2 + 2t+ 4− 2m0(2t

2 − 5t+ 2) + 2M0(2t− 1), (4)

then deg Γ ≥ 2t. For prime q, Condition (4) may be relaxed to

q > 8t2 − 16t+ 8− 2α + 2M0(2t− 1). (5)

Proof. We prove that if d ≤ 2t− 1, then (4) does not hold. For q prime we

show that also (5) is not satis�ed. Sine Γ is not neessarily irreduible, the

following setup is required.

The urves ∆1, . . . ,∆l are the absolutely irreduible non�linear ompo-

nents of Γ de�ned over GF(q), respetively of degree di; r1, . . . , rk are the

linear omponents of Γ over GF (q); Ξ1, . . . ,Ξs are the omponents of Γ
whih are irreduible over GF(q) but not over GF(q).

The idea is to estimate the number of points in PG(2, q) that eah of the

above omponents an have.

Let Ni be the number of non�singular points of ∆i lying in PG(2, q).
Then, (2) holds for any ∆i. Let ν(i)

denote the Frobenius order of ∆i. If

ν = max{ν(i) | 1 ≤ i ≤ l} and δ =
∑l

i=1 di, then

2

l
∑

i=1

Ni ≤
l
∑

i=1

ν(i)di(di − 3) + (q + 2)di ≤ νδ(δ − 3) + (q + 2)δ. (6)

For q prime, ν = 1; see [22℄. Sine ν(i) = 1 an fail for q > p, an upper

bound on ν(i)
depending on di is needed. As ν(i) ≤ ε

(i)
2 , a bound on ε

(i)
2

su�es. Sine Ni > 0 may be assumed, ∆i has a non�singular point P lying

in PG(2, q). If ℓ is the tangent to ∆i at P , then

di =
∑

Q∈ℓ∩∆i

I(Q, ℓ ∩∆i) = I(P, ℓ ∩∆i) +
∑

Q∈ℓ∩∆i

Q 6=P

I(Q, ℓ ∩∆i) ≥ ε
(i)
2 +m0 − 1,

whene ν(i) ≤ di −m0 + 1. From (6),

2

l
∑

i=1

Ni ≤
{

δ(δ − 3) + (q + 2)δ q ≥ 3 prime.

(δ −m0 + 1)δ(δ − 3) + (q + 2)δ otherwise.

(7)
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If∆i hasMi singular points, from Plüker's theoremMi ≤ 1
2
(di−1)(di−2).

Hene,

2

l
∑

i=1

Mi ≤
l
∑

i=1

(di − 1)(di − 2) ≤ (δ − 1)(δ − 2). (8)

The number of points of K lying on linear omponents ri is at most

kM0 ≤ dM0.

For every Ξ = Ξi, there exists an absolutely irreduible urve Θ, de�ned
over the algebrai extension GF(qξ) of degree ξ > 1 of GF(q) in GF(q), suh
that the absolutely irreduible omponents of Ξ are Θ and its onjugates

Θ1, . . . ,Θξ−1. Here, if Θ has equation

∑

akjX
kY j = 0 and 1 ≤ w ≤ ξ − 1,

then Θw is the urve of equation

∑

aq
w

kjX
kY j = 0. Sine Ξ, Θ and the

onjugates of Θ pass through the same points in PG(2, q), from Bézout's

theorem, see [17, Lemma 2.24℄, Ξ has at most θ2 points in PG(2, q) where
θ = degΘ. Note that deg Ξ ≥ 2θ.

Let N ′
i denote the total number of points (simple or singular) of Ξi lying

in PG(2, q). From the above argument,

s
∑

i=1

N ′
i ≤

s
∑

i=1

θ2i < (
s
∑

i=1

θi)
2 ≤ 1

4
(

s
∑

i=1

deg Ξi)
2 <

1

2
(q + 2)

s
∑

i=1

deg Ξi. (9)

As,

qt+ α ≤
l
∑

i=1

(Ni +Mi) + kM0 +

s
∑

i=1

N ′
i , (10)

from (7), (8), (9) and (10) it follows that

2(qt+α) ≤
{

2d2 − 6d+ 2 + 2dM0 + (q + 2)d q ≥ 3 prime

d3 − d2 − 6d+ 2−m0d(d− 3) + 2dM0 + (q + 2)d otherwise.

Sine d ≤ 2t−1, the main assertion follows by straightforward omputation.

Remark 3.3. As 1 ≤ m0 ≤ M0 ≤ d, the proof of Theorem 3.2 shows

that Condition (4), and, for q prime, Condition (5), may be replaed by the

somewhat weaker, but more manageable, ondition q > 8t3−122+4t−2α+2
(and q > 16t2 − 24t− 2α + 8 for q prime).

Remark 3.4. As pointed out in the Introdution, Theorem 3.2 is sharp as

the bound is attained by some maximal (k, n)-ars.
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Corollary 3.5. If Γ has a omponent not de�ned over GF(q), then

deg Γ ≥ 2t+ 1.

Proof. We use the same arguments as in the proof of Theorem 3.2, onsid-

ering that δ < d. In partiular, we have

2(qt+ α) < d3 − (4 +m0)d
2 + (q + 5m0 + 1)d+ (4− 4m0 − q) + 2dM0,

whih for d ≤ 2t proves the assertion.

Remark 3.6. Corollary 3.5 implies that a plane algebrai urve of of degree

2t ontaining K is always de�ned over GF(q).

Theorem 3.7. If the urve Γ in Theorem 3.2 has no quadrati omponent,

and

q >
750t3 − 1725t2 + 10(10M0 + 113)t− 184− 40(α+M0)

40
, (11)

then

d ≥ 5

2
t.

If q > 5 is prime, then Condition (11) may be relaxed to

q >
125t2 + 2(10M0 − 105)t− 8(α+M0 − 9)

8
(12)

Proof. We prove that if d ≤ 5
2
(t− 1), then (11) (and, for q prime, (12)) does

not hold. It is su�ient just a hange in the proof of Theorem 3.2. Let

ν
(i)
0 = 0, . . . , ν

(i)
4 be the Frobenius orders of ∆i with respet to onis. If

q is a prime greater than 5, then ν
(i)
j = j for 0 ≤ j ≤ 4. Otherwise, set

ν(i) =
∑4

j=1 ν
(i)
j . Sine ν(i) ≤ 2 + ε3 + ε4 + ε5 and ε5 ≤ 2di, we have that

ν(i) ≤ 6di − 1. From (3),

5

l
∑

i=1

Ni ≤
{

10δ(δ − 3) + (q + 5)2δ q > 5 prime.

(6δ − 1)δ(δ − 3) + (q + 5)2δ, otherwise.

(13)

Using the same argument as in (10),

s
∑

i=1

N ′
i ≤

1

4

(

s
∑

i=1

deg Ξi

)2

<
2

5
(q + 5)

s
∑

i=1

deg Ξi. (14)

7



Using now (8), (9), (13) and (14) we obtain

(qt+ α) ≤
{

5
2
d2 − 11

2
d+ dM0 +

2
5
qd+ 1 q > 5 prime

6
5
d3 − 33

10
d2 + 11

10
d+ dM0 +

2
5
qd+ 1 otherwise.

(15)

Then, (15) does not hold for any q. If q is prime, also (12) is not satis�ed.

4 Algebrai urves passing through the points

of a maximal ar

Remark 3.4 motivates the study of plane algebrai urves passing through

all the points of maximal (k, n)�ar in PG(2, q).
In this setion K always denotes a maximal (k, n)�ar. Reall that a

(k, n)�ar K of a projetive plane π is a set of k points, no n + 1 ollinear.

Barlotti [9℄ proved that k ≤ (n−1)q+n, for any (k, n)�ar in PG(2, q); when
equality holds, a (k, n)�ar is maximal. A purely ombinatorial property

haraterising a (k, n)�maximal ar K is that every line of PG(2, q) either
meets K in n points or is disjoint from it. Trivial examples of maximal

ars in PG(2, q) are the (q2 + q + 1, q + 1)�ar given by all the points of

PG(2, q) and the (q2, q)�ars onsisting of the points of an a�ne subplane

AG(2, q) of PG(2, q). Ball, Blokhuis and Mazzoa [5℄, [6℄ have shown that

no non�trivial maximal ar exists in PG(2, q) for q odd. On the other hand,

for q even, several maximal ars exists in the Desarguesian plane and many

onstrutions are known; see [10℄, [25℄, [26℄, [16℄ [20℄, [14℄. The ars arising

from these onstrutions, with the exeption of those of [25℄, see also [16℄,

all onsist of the union of n − 1 disjoint onis together with their ommon

nuleus N . In other words, these ars are overed by a ompletely reduible

urve of degree 2n−1, whose omponents are n−1 onis and a line through

the point N .

Remark 4.1. From Corollary 3.5, if Γ has a omponent de�ned over GF(q)
but not over GF(q), and it passes through all the points of K, then its degree

d is at least 2n− 1.

The following theorem shows that the above hypothesis on the ompo-

nents of Γ an be dropped as far as q is su�iently large.
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Theorem 4.2. For any n, there exists q0 ≤ (2n − 2)2 suh that if a plane

algebrai urve Γ de�ned over GF(q) with q > q0 passes through all the points
of a maximal (k, n)�ar K of PG(2, q) then its degree d is at least 2n− 1. If
equality holds then Γ has either one linear and n − 1 absolutely irreduible

quadrati omponents or n − 2 absolutely irreduible quadrati omponents

and one ubi omponent.

The proof depends on the the following lemma.

Lemma 4.3. Assume that Γ is reduible and that the number of its ompo-

nents is less than n− 1. Then, the degree d of Γ satis�es

d ≥ 4
√
q.

Proof. We use the same setup as in the proof of Theorem 3.2. This time the

Hasse�Weil bound is used in plae of the Stöhr-Voloh bound. The number

of points of ∆i in PG(2, q) is Ni +Mi; from (1),

Mi +Ni ≤ q + 1 + (di − 1)(di − 2)
√
q. (16)

From (9),

s
∑

i=1

N ′
i < (q + 1) +

s
∑

i=1

(deg Ξi − 1)(deg Ξi − 2)
√
q. (17)

If Γ has w omponents, then

w(q+1)+
s
∑

i=1

(deg Ξi−1)(deg Ξi−2)
√
q+

l
∑

j=1

(di−1)(di−2)
√
q ≥ (n−1)q+n.

(18)

Sine w ≤ n− 2, (18) yields

(d− 1)(d− 2)
√
q ≥ q + 2;

hene, d ≥ 4
√
q.

Proof of Theorem 4.2. Suppose Γ to have degree d < 2n−1. By Remark 4.1,

all omponents of Γ are de�ned over GF(q). If Γ is absolutely irreduible, then

(1) implies that Γ ontains at most q+(2n−3)(2n−4)
√
q+1 points. However,

for q large enough, this number is less than (n− 1)q + n; a ontradition.

9



When Γ has more then one omponent, denote by tj the number of its

omponents of degree j. Let u be the maximum degree of suh omponents.

Then, u ≤ 2n− 3 and

d =
u
∑

j=1

jtj ≤ 2n− 2.

From (1),

|Γ ∩ K| ≤ nt1 +

u
∑

j=2

tj(q + (j − 1)(j − 2)
√
q + 1) =

(

u
∑

j=2

tj

)

q + c
√
q + d,

where

c =

u
∑

j=2

tj(j − 1)(j − 2), d = nt1 +

u
∑

j=2

tj.

Both c and d are independent from q; therefore,

n− 1 = lim
q→∞

|Γ ∩ K|
q

=

u
∑

j=2

tj . (19)

Hene,

2(n− 1) = 2
u
∑

j=2

tj ≤ t1 +
u
∑

j=2

jtj = d.

Sine d ≤ 2n− 2, by Lemma 4.3, for q > (2n− 2)4 the urve Γ should have

at least n − 1 omponents. This would imply that either u = 2, t1 = 1,
t2 = (n − 1) or u = 3, t1 = 0, t2 = (n − 2), t3 = 1. In partiular, in both

ases d = 2n− 1.

Remark 4.4. As mentioned in the Introdution, ase d = 2n−1 in Theorem
4.2 ours when K is a Denniston maximal ar [10℄ (or one of the maximal

ars onstruted by Mathon and others, [25, 26, 16, 20, 14℄). This result

may not extend to any of the other known maximal ars; they are the Thas

maximal (q3− q2+ q, q)�ars in PG(2, q2) arising from the Suzuki�Tits ovoid

of PG(3, q); see [25℄. In fat, 22 is the minimum degree of a plane urve whih

passes through all points of a Thas' maximal (456, 8)�ar in PG(2, 64); see
[3℄.
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5 Maximal ars of degree 4

From Theorem 4.2, for q > 64, a lower bound on the degree of an algebrai

urve Γ passing through all the points of a maximal ar K of degree 4 is 7.
Our aim is to prove in this ase the following result.

Theorem 5.1. Let K be a maximal ar of degree 4 and suppose there exists

an algebrai plane urve Γ ontaining all the points of K. If deg Γ = 7, then
Γ onsists of three disjoint onis, all with the same nuleus N , and a line

through N .

Proof. From Theorem 4.2, the urve Γ splits either into one irreduible ubi

and two irreduible onis or into three irreduible onis and one line r.
These two ases are investigated separately.

Let C denote any of the above onis of nuleus N . We show that every

point of C ′ = C ∪ {N} lying in PG(2, q) is ontained in K: in fat, if there

were a point P ∈ C ′ \ K, then there would be at least

q
4
lines through P

external to K. All these lines would meet C ′
in

q
4
distint points, whih, in

turn, would not be on K. Hene, Γ would have less than 3q+4 points on the

ar K, a ontradition.

Now assume that Γ splits into a ubi D and two onis Ci, with i = 1, 2.
Denote by Ni the nuleus of Ci and set X = C1 ∪ C2 ∪ {N1, N2}. Sine

|X | ≤ 2q + 4, there exists a point P ∈ K \ X . Obviously, P ∈ D. Every line

through P meets K in four points; thus, there is no line ℓ through P meeting

both C1 and C2 in 2 points; otherwise, |ℓ ∩ X ∩ K| = 4 and |ℓ ∩ K| ≥ 5,
a ontradition. Hene, there are at least q − 1 lines through P meeting D
in another point P ′

. There are at most 5 biseants to the irreduible ubi

urve D through any given point P ∈ D, namely the tangent in P to D
and, possibly, four other tangents in di�erent points to D passing through P .
Hene, there are q−6 lines through P meeting D in three points. If this were

the ase, D would onsist of at least 2(q− 6)+ 6 points, whih is impossible.

Therefore, we may assume that Γ splits into three onis, say C1, C2, C3,

with nulei N1, N2, N3, and a line r.
Reall that, as seen above, the nulei of all the onis belong to K. Now

we show that at least one nuleus, say N1, lies on the line r. Sine Γ is a

urve ontaining K of minimum degree with respet to this property, there

is at least a point P on r ∩ K not on C1. Eah line through P is a 4�seant
to K hene, it meets X in an odd number of points. If P 6= N1, then the

number of lines through P meeting X in an odd number of points is at most

11



PSfrag replaements

AN1 N2 N3

C1

C2

C3

Figure 1: Case 1 in Theorem 5.1
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15, whih is less than q+1 for q ≥ 24, a ontradition. Atually, all the nulei
Ni lie on r. In fat, suppose that Nj /∈ r for j ∈ {2, 3}. Then, Nj ∈ Cs,

with s 6= 1, j and the line N1Nj joining N1 and Nj is tangent to C1 and Cj .

Consequently, N1Nj meets Cs in another point di�erent from Nj that is, it

is a 5�seant to K, again a ontradition.

We are left with three ases, namely:

(1) N1 6= N2 6= N3, Ci ∩ Cj = {A} for any i 6= j and A ∈ N1N2.

(2) Ni = Nj, Nj 6= Ns, Ni ∈ Cs, Ci ∩ Cj = ∅, with i, j, s ∈ {1, 2, 3}.

(3) N1 = N2 = N3 and Ci ∩ Cj = ∅ for i 6= j.

We are going to show that ases (1) and (2) do not atually our.
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Lemma 5.2. Let C1, C2 be two onis with a ommon point A but di�erent

nulei N1, N2. If A ∈ N1N2 then there is a line s with A ∈ s and s 6= N1N2

suh that for any point on s \ (C1 ∪ C2) there passes a line ℓ with

|ℓ ∩ (C1 ∪ C2 ∪ {N1, N2})| ≥ 3.

Proof. Let (X, Y, Z) denote homogeneous oordinates of points of the plane

PG(2, q). Choose a referene system suh that A = O = (0, 0, 1) and the line

joining N1 and N2 is the X�axis. We may suppose Ci to have equation

αiX
2 +XY + βiY

2 + λiY Z = 0,

where αi, βi, λi ∈ GF(q) and i = 1, 2.
Sine both Ci are non�degenerate onis, we have αi 6= 0 and λi 6= 0.

Furthermore, λ1 6= λ2 as the nulei N1 and N2 are distint.

Denote by T(x) the trae of GF(q2) over GF(q); namely T(x) = x + xq
.

If T((α1λ2 + α2λ1)(β1λ2 + β2λ1)) = 0, then the two onis C1 and C2 have

more than one point in ommon, whih is impossible. Hene, T(α1λ2 +
α2λ1)(β1λ2 + β2λ1)) = 1; in partiular, β1λ2 6= β2λ1.

A generi point P i
m of Ci \ {A} has homogeneous oordinates

P i
m =

( λim

αim2 +m+ βi
,

λi

αim2 +m+ βi
, 1
)

,

with m ∈ GF(q) \ {0}. Consider now a point Pε = (0, ǫ, 1) on the Y �axis,
with ε ∈ GF(q) \ {0, λ1

β1

, λ2

β2

}. The points P 1
m, P

2
t and Pε are ollinear if and

only if

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ1m

α1m2 +m+ β1

λ1

α1m2 +m+ β1
1

λ2t

α2t2 + t+ β2

λ2

α2t2 + t + β2

1

0 ε 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

that is

α1λ2εm
2t+α2λ1ǫmt2+ε(λ2+λ1)mt+(ελ1β2+λ1λ2)m+(ǫλ2β1+λ1λ2)t = 0.

(20)

Equation (20) may be regarded as the a�ne equation of a ubi urve D
in the indeterminate m and t. Observe that (0, 0, 1) ∈ D. The only points

at in�nity of D are Y∞ = (0, 1, 0), X∞ = (0, 1, 0) and B = (λ1α2

λ2α1
, 1, 0).

13



Therefore, D does not split into three onjugate omplex lines. Thus, by [17,

Theorem 11.34℄ and [17, Theorem 11.46℄, there is at least one a�ne point

T = (m, t, 1) on D di�erent from (0, 0, 1).
Sine T((α1λ2 + α2λ1)(β1λ2 + β2λ1)) = 1, the line m = t is a 1�seant to

D in (0, 0, 1); hene, the point T is not on this line.

This implies that, for any given ε ∈ GF(q) \ {0}, there exist at least two
distint values m, t ∈ GF(q) \ {0} satisfying (20). Hene, P 1

m, P
2
t
and Pε

are ollinear and the line P 1
mP

2
t
meets C1 ∪ C2 ∪ {N1, N2} in at least three

points.

From Lemma 5.2, in ase (1) the set C1 ∪ C2 ∪ {N1, N2} annot be om-

pleted to a maximal ar just by adding a third oni C3, together with

its nuleus N3, sine, in this ase, there would be at least a 5�seant to

C1 ∪ C2 ∪ C3 ∪ {N1, N2, N3}. Hene, ase (1) is ruled out.

Lemma 5.3. Given any two disjoint onis C1, C2 with the same nuleus

N , there is a unique degree�4 maximal ar ontaining X = C1 ∪ C2.

Proof. There is a line r in PG(2, q) external to X , sine, otherwise, X would

be a 2�bloking set with less than 2q+
√
2q+1 points, whih is a ontradition;

see [8℄.

Choose a referene system suh that N = O = (0, 0, 1) and r is the line

at in�nity Z = 0. The onis Ci, for i = 1, 2, have equation:

αiX
2 +XY + βiY

2 + λiZ
2 = 0, (21)

where αi, βi, λi ∈ GF(q) and T(αiβi) = 1.
Sine both Ci are non�degenerate, λi 6= 0. We �rst show that, λ1 6= λ2,

as C1 and C2 are disjoint. We argue by ontradition. If it were λ1 = λ2,

then we ould assume α1 6= α2; in fat, if α1 = α2 and λ1 = λ2, the linear

system generated by C1 and C2 would ontain the line Y = 0; thus their

intersetion would not be empty. Let now

γ =

√

β1 − β2

α1 − α2
;

hene,

α1γ
2 + γ + β1 = α2γ

2 + γ + β2,

and the line X = γY would meet the two onis in the same point

P =
(

γ
(

λ1

α1γ2+γ+β1

) 1

2 ,
(

λ1

α1γ2+γ+β1

) 1

2 , 1
)

,
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ontraditing C1 ∩ C2 = ∅.
We also see that α1λ2 6= α2λ1 and β1λ2 6= β2λ1, sine, otherwise, the

points

P = (
√

λ1

α1

, 0, 1) = (
√

λ2

α2

, 0, 1), Q = (0,
√

λ1

β1

, 1) = (0,
√

λ2

β2

, 1)

would lie on both onis.

Let now C3 be the oni with equation

α1λ2 + α2λ1

λ1 + λ2

X2 +XY +
β1λ2 + β2λ1

λ1 + λ2

Y 2 + (λ1 + λ2)Z
2 = 0.

Set

ν =
(α1λ2 + α2λ1)(β1λ2 + β2λ1)

λ2
1 + λ2

2

.

The ollineation H of PG(2, q) given by the matrix





a−1 0 0
0 a 0
b c 1



 ,

where a =
√

α1λ2+α2λ1

λ1+λ2

, b =
√

1+α1/a2

λ1

and c = a
√

β1+β2

λ1+λ2

, maps the onis Ci,

i = 1, 2, to

C
i

2 : X
2 +XY + νY 2 + λiZ

2 = 0,

and C3 to

C
3

2 : X
2 +XY + νY 2 + (λ1 + λ2)Z

2 = 0.

If it were T(ν) = 0, then C
1

2 and C
2

2 would share some point in ommon on

the line at in�nity. Hene, T(ν) = 1. In partiular, C
1

2, C
2

2 and C
3

2 together

with their ommon nuleus O, form a degree�4 maximal ar K of Denniston

type; see [10℄, [2℄ and [20, Theorem 2.5℄.

It remains to show the uniqueness of K. We �rst observe that X is a

(0, 2, 4)�set with respet to lines of the plane. No point lying on a 4�seant
to X an be added to X to get a degree�4 maximal ar.

Take P /∈ X and denote by ui with i = 0, 2, 4, the number of i�seants to
X through P , that is the number of lines meeting X in i points. The lines

through P whih are external to X are also external K and the onverse also

holds. Therefore, when P 6∈ K, we have u0 =
1
4
q. From

u0 + u2 + u4 = q + 1,

15



2u2 + 4u4 = 2q + 2,

also u4 = 1
4
q. Hene, no point P 6∈ K may be added to X to obtain a

maximal ar of degree 4.

Finally, Lemma 5.3 shows that ase (2) does not our.
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