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A B S T R A C T

We extend the Schumpeter meeting Keynes (K+S) agent-based model by introducing an evolving interbank
network in the money market. Banks are exposed to counterparty risk and evaluate interbank positions using
a network valuation (NEVA) clearing mechanism, which ensures systemic risk minimization with minimal
assumptions on banks’ behavior. The model can replicate several stylized facts about the topology of the
interbank network and the dynamics of banks’ balance sheets. The model encompasses financial contagion
and systemic risk, allowing us to study the interactions between micro- and macro-prudential policies. Our
results suggest that the introduction of a micro-prudential regulation also accounting for the network structure
can reduce the incidence of systemic risk events. We also find that, in presence of a two-pillar regulatory
framework – grounded on a Basel III macro-prudential regulation and a NEVA-based micro-prudential one –,
there is no trade-off between financial stability and macroeconomic performance. This points towards the
possibility of designing a regulatory framework able to achieve financial stability without overly stringent
capital requirements.
1. Introduction

In this paper we extend the Schumpeter meeting Keynes (K+S) agent-
based model (Dosi et al., 2010, 2013, 2015) to account for the endoge-
nous formation of an interbank market and to study the emergence
of systemic risk, financial crises, and the possible interactions between
micro-prudential and macro-prudential policies.

The complex interactions in financial networks among economic
agents have a fundamental role in the building up of systemic risk and
the emergence of financial crises. Indeed, network interconnectedness –
which was substantially underestimated before 2008 – has amplified
the negative effects of the sub-prime mortgage bubble, paving the
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way to the Great Recession (Haldane, 2012; Battiston et al., 2016;
Dosi and Roventini, 2019; Chen, 2022). Understanding the relationship
between interconnectedness, financial system stability, and macroeco-
nomic resilience remains a paramount area of interest in the research
agenda. However, a consensus has not yet been consolidated regarding
the mechanisms, as well as the policy measures required to address
the prevailing challenges arising from asymmetric information, moral
hazard, and neglected network externalities inherent to interbank mar-
kets (Altinoglu and Stiglitz, 2023; Sigmund and Siebenbrunner, 2024).
More precisely, the interplay between different micro-prudential and
macro-prudential policies in limiting the emergence of financial crises
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 data mining, AI training, and similar technologies. 
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and taming their negative effects is not yet fully understood. An increas-
ingly connected financial system may favor risk diversification and so
resilience to micro shocks, but it can also turn out to be more exposed to
shocks’ diffusion (Battiston et al., 2012; Glasserman and Young, 2016).

Agent-based models can be employed to study these issues, as they
allow for the modeling of direct interaction between heterogeneous
agents, the emergence of macroeconomic outcomes from simple be-
havioral rules, and the use of the simulated economic system as a
laboratory to test the aggregate and distributional consequences of
alternative policies (see Farmer and Foley, 2009; Fagiolo and Roventini,
2017; Dawid and Delli Gatti, 2018; Dosi and Roventini, 2019, among
he others).

We contribute to these debates by modeling the evolution of an
nterbank network in the medium-scale K+S agent-based model, which

can be used to jointly analyze short- and long-run macroeconomic
dynamics as it generates both endogenous growth and business cycles
unctuated by financial crises as emergent properties. In particular, to
ccount for contagion effects and systemic risk, we exploit the network
f connections between banks embedded in the K+S model, assuming
hat the payment flows among different firms must be managed by
he commercial banks. This allows us to create a multilayered network
here the shocks can originate either in the real or the financial sector,
nd they can propagate both within and between the two domains. Fur-
hermore, to evaluate new policies, we endow banks in the model with
 network-based micro-prudential tool called Network Valuation (NEVA,
ee Barucca et al., 2020). Generalizing the Eisenberg and Noe (2001)
ramework, NEVA is a model for the balance-sheet consistent valuation
f interbank claims that ensures systemic risk minimization with min-
mal assumptions on banks’ behavior and rationality. This is possible
ecause the generality of the NEVA allows for an ex-ante (before
aturity) valuation of interbank claims, requiring each bank to have

only information about their own interbank exposure, and providing
a unique clearing vector for interbank transactions. These properties
hold as long as all institutions assess their interbank exposures using
NEVA, making it a suitable micro-prudential tool for mitigating sys-
temic risk. However, a regulation like NEVA has never been adopted in
real practice, making an empirical counterfactual estimation of its effi-
cacy impossible. Primarily discussed within models of contagion (see
Bardoscia et al., 2021), NEVA has been employed in few empirical
ettings, in order to perform macro-stress testing that exploited detailed
onfidential datasets, usually provided by central banks (Roncoroni

et al., 2021; Jin et al., 2024; Carro and Stupariu, 2024). Our paper
omplements these findings, by providing a model-based counterfactual
vidence that could be valuable to policy-makers.

This paper is the first medium-scale macroeconomic agent-based
model that studies the macro-financial effects stemming from the com-
mon adoption of a micro-prudential tool (NEVA) that evaluates banks’
interbank exposures in order to minimize systemic risk. Moreover, the
extended K+S model enables one to analyze, in a unified framework,
the interactions between micro- and macro-prudential policies and their
joint impact on financial stability and economic dynamics. This is
particularly relevant because, even if these two policies are often mod-
eled as separate tools, they inevitably share objectives, transmission
channels and possible complementary features, which can be exploited
by policy-makers (Altunbas et al., 2018; Osinski et al., 2013) .

Simulation results show that the model can account for a rich
list of stylized fact concerning the network structure of the interbank
market (sizable volume of interbank linkages, dissassortativity, vertex
centrality and bank size relationship) and the co-movements of macro-
financial variables. Regarding the policy implementation, we find that
the economic system at large can benefit from the introduction of
a micro-prudential regulation that takes into account the interbank
network relationships. Indeed, the use of the NEVA framework de-
creases the incidence of systemic risk events and of bankruptcy episodes
of financial institutions, notwithstanding the tightness of mandatory
2 
capital requirements. In addition, a trade-off between financial stabil-
ty and macroeconomic performance does not emerge in a two-pillar

regulatory framework grounded on a Basel III macro-prudential reg-
lation and a NEVA micro-prudential policy. All in all, the NEVA
oosens the constraints on credit supply resulting from a too stringent
acro-prudential regulation, which could otherwise negatively impact
acroeconomic performances, without threatening financial stability.

n other words, NEVA allows the economic system to achieve financial
nd macroeconomic stability without relying on overly stringent capital
equirements.

The rest of the paper is structured as follows. Section 2 provides a
snapshot of the literature addressing financial contagion and systemic
risk through the lenses of statistical physics and agent-based modeling.
Section 3 describes the model and it focuses on the mechanisms under-
lying the formation and the evolution of interbank linkages, as well as
the functioning of the NEVA micro-prudential tool. Section 4 presents
he results of our simulations experiments. Section 5 concludes.

2. Literature review

The literature has identified three main channels through which
hocks can percolate and undermine the overall financial stability of
n economic system. The first one concerns shocks arising within the
inancial markets and that propagates therein. A typical case is the
o-called balance sheet contagion, which arises when a shock to one
ank’s balance sheet negatively affects the balance sheets of all the
ther financial institutions holding that bank’s assets. This might even
rigger an avalanche of losses among interbank counterparts (Allen
nd Gale, 2000; Kiyotaki and Moore, 2002; Luu et al., 2021). The

second channel concerns shocks that originate in the financial sector,
but that in turn affect the real economy. It is the case of shocks to
the leverage of a commercial bank, which impairs its lending ability
and increases the likelihood that non-financial corporations will face
credit rationing (Adrian and Shin, 2008; Brunnermeier and Pedersen,
2009; Laeven and Valencia, 2012; Gross et al., 2018). The third channel
concerns shocks emerging in the real economy and hitting the financial
ector. This may occur when competitive pressures, demand shocks, or
upply-chain disruptions induce the default of very large corporations
o which a bank is heavily exposed. The default can lead to non-
erforming loans, ultimately eroding the lenders’ equity, which in turn
ecomes a riskier asset for all its counterparts across the financial
ystem (Kiyotaki and Moore, 1997; Boissay, 2006; Battiston et al., 2007;

Luu and Lux, 2019; Popoyan et al., 2020).
All these three mechanisms may contribute to the build-up of sys-

temic risk. While seminal contributions on financial contagion primar-
ily focused on interbank network transactions (Angelini et al., 1996;
Iori et al., 2008; Gai et al., 2011), the recent literature explored
inancial contagion from a multi-layered perspective, illustrating how
ommon asset holdings, overlapping portfolios, collateral rehypoth-
cation and borrowing-lending relations contribute to the spread of

systemic risk (Huang et al., 2013; Aldasoro et al., 2022; Luu et al.,
2021; Cappelletti and Mistrulli, 2023). Empirically measuring financial
contagion in its multi-dimensional form remains a demanding task,
due to the limited availability of detailed financial transactions data.
Yet, recent studies have highlighted the role of indirect connections in
fueling systemic risk (see, for instance, Silva et al., 2018; Luu and Lux,
2019; del Rio-Chanona et al., 2020; Poledna et al., 2021; Tabachová
et al., 2024; Alexandre et al., 2024).

However, a full identification of each of those forces is difficult
ecause they are often connected in complex and non-linear ways. To

overcome these challenges, an increasing number of small-scale agent-
based models have studied the interaction between contagion effects
and systemic risk (Georg, 2013; Montagna and Kok, 2016; Liu et al.,
2020; Reale, 2024). From a macroeconomic point of view, most of the
agent-based models abstract from an interbank market, although there
are notable exceptions in which interbank networks are nested into
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larger agent-based models to draw and analyze the macroeconomics
consequences of systemic risk (Delli Gatti et al., 2010; Tedeschi et al.,
2012; Poledna and Thurner, 2016; Popoyan et al., 2017; Poledna et al.,
2017; Gurgone et al., 2018; Popoyan et al., 2020; Catullo et al., 2021).
At the same time, these models typically focus their interest on the
business cycles frequencies and they abstract from endogenous growth
nd technical change. The incorporation of the interbank network

into the K+S model, instead, allows us to study also the long-run
consequences of financial instability.

3. The K+S model with an interbank market

The model belongs to the Schumpeter meeting Keynes family of
odels model (Dosi et al., 2010, 2013, 2015). It features vertically

differentiated enterprises producing either a final consumption good or
 capital good. Capital-good firms (indexed by 𝑖 = 1,… , 𝐹𝐾 ), produce

vintages of machines, whose technology is defined by heterogeneous
levels of labor productivity and energy efficiency.2 These three dimen-
ions analogously define the technology behind the production process
f capital-good firms. The technology of both production processes and
achines results from a process of endogenous technical change, the

Schumpeterian growth engine of the model, primarily fueled by R&D
expenditures, financed by a share of 𝐹𝐾 firms’ sales.

Machines are eventually sold as an input for production to down-
stream consumption-good firms (indexed by 𝑗 = 1,… , 𝐹𝐶 ). The Key-
nesian source of endogenous business cycles of the model is driven by
the dynamics of investment in machines by consumption-good firms.
This investment depends on consumption-good firms’ expected final
demand. In case internal funds are not sufficient to meet their desired
levels of investments, consumption-good firms rely on an external
source of finance, applying for loans from the banking sector.

The model also incorporates a household sector that consumes the
final good out of wage income. The public sector collects taxes on
incomes, i.e., on firm profits and wages, and when unemployment
rises consumers are paid a subsidy, proportional to the current wage
evel. Finally, given the inflation and the unemployment rate target,
he central bank implements its monetary policy by setting the main
nterest rate following a Taylor-type rule. All agents are heterogeneous
n their state variables (e.g., number of clients, technology in use,

productivity, R&D intensity, market shares, profits, net-worth, etc.).
Moreover, agents are boundedly rational and use simple heuristics to
make their decisions and they do not have complete knowledge of the
network of economic relationships emerging in each market.

We extend the K+S model by introducing an interbank market
where banks can directly interact by exchanging funds. This allows us
to obtain a more realistic representation of the determination of credit
supply, and to better account for counterparty risk and systemic risk.
Indeed, the supply of credit of each bank does not depend only on its
balance sheet and the creditworthiness of its clients, but also on the
overall risk perception (possibly related to the business cycle phase), as
well as on the possibility of exchanging liquidity with other financial
institutions over the money market.

We model direct banks’ interactions by exploiting the relationships
(i) between consumption-good firms (clients) and capital-good firms
(suppliers) in the market for machines; and (ii) between the banks and
oth types of firms (see Fig. 1). This approach is grounded on the fact

2 Our model nests into an agent-based integrated assessment
odel (Lamperti et al., 2018, 2019, 2021), where the economy features

a stylized energy sector and can interact with a climate box. In this version of
the model, we keep the modeling of the energy sector as simple as possible
(see Appendix B.3) and we do not allow the climate box to interact with
he economic system. However, as we point out in the concluding remarks of
he paper, our model can be easily extended to account for climate-induced
ystemic risk (Battiston et al., 2021).
3 
that a key role of the banking sector is to handle the system of payments
among firms.3

In the model, whenever a consumption-good firm buys a new ma-
chine, it transfers the corresponding money value of the transaction to
a capital-good firm. We rule out the possibility of a direct cash transfer
etween firms, and we assume that the payment occurs through a

deposit transfer from the bank where the consumption-good firm holds
ts bank account to the one where the capital-good firm holds its own
ccount. This payment operation puts the two banks in direct connec-
ion. In Section 3.3, we shall also describe in detail how the payment

system endogenously generates an endogenous network of interbank
linkages. In this network, each bank represents a node/vertex, and a
payment represents a link/edge. All links are directed and weighted.
The direction of the link depends on the buyer-seller relationship
between the two banks’ clients. The weights of the links are instead
defined by the amount of the payment between the two parties.

Given the focus of this paper, in the following sections, we provide
a detailed description of the functioning of the banking sector. Specifi-
cally, we describe how credit supply is determined, the generation and
evolution of the interbank network, and the characteristics of micro-
and macro-prudential policies. The other elements of the model, such
as technical change, investment decisions of the firms, households’
consumption, and government’s behavior, are detailed in Appendix B.

3.1. Banks’ lending and macro-prudential regulation

Modern banking institutions do not just intermediate funds between
savers and borrowers. They can create money ex-nihilo and play a
central role in the system of payments in the economy (McLeay et al.,
2014). Today, most of the money in circulation is endogenously created
by private commercial banks in the form of loans granted to the private
sector, a pillar for post-Keynesian theories of economic growth and
fluctuations (Palley, 1996; Lavoie, 2014). This happens because every
ime a bank lends out new funds, e.g., loans to firms, a deposit of
he same amount is automatically created on the liability side of the
ank’s balance sheet to match the new asset. This deposit corresponds
o the funds that the borrower has obtained from the bank and which
ave been contingently deposited at the bank itself. Most deposits are
herefore liabilities created by banks themselves rather than already
xisting funds provided by saving agents and ready to be lent out to
irms.

Our model comprises 𝐵 heterogeneous commercial banks that can
create money endogenously along the lines outlined above. Moreover,
in line with the empirical evidence, the size of each bank, as measured
by the number of clients, is drawn from a Pareto distribution – under
the constraint that the total number of clients of all banks adds up to
the total number of firms in the system (Berger et al., 1995).

As in Dosi et al. (2015), banks provide loans only to consumption-
good firms and are subject to macro-prudential regulation.4 We assume
that for a generic bank 𝑘, the total credit supply 𝑇 𝐶𝑘,𝑡 depends on
hree main factors: (i) the bank’s past equity, 𝐸𝑘,𝑡−1; (ii) the bank’s
ast ratio of non-performing loans to total assets, 𝐵 𝑑 𝑎𝑘,𝑡−1; and (iii)
 macro-prudential counter-cyclical capital buffer 𝐶 𝐶 𝐵𝑡. Formally, a
ank’s credit supply is defined as:

𝑇 𝐶𝑘,𝑡 =
𝐸𝑘,𝑡−1

𝜏𝐵(1 + 𝐶 𝐶 𝐵𝑡 + 𝛽 𝐵 𝑑 𝑎𝑘,𝑡−1)
(1)

The macro-prudential setting in the model is in line with the Basel
II regulatory framework. In particular, we assume that the authority
ixes two types of constraints, which are both present in Eq. (1): a

fixed capital requirement captured by the parameter 𝜏𝐵 ∈ (0, 1] that we

3 In line with Galbiati and Soramäki (2011), we model payments through
 decentralized mechanism.

4 Consistently with all previous versions of the K+S models, the loans to
consumption-good firms are paid back in three periods.
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Fig. 1. Multi-layered network structure in the model. The solid arrow displays a representative transaction that occurs in the interbank market from Bank 2 to Bank 1. Capital-good
firm 1 (a client of Bank 1) supplies a machine to consumption-good firm 3 (a client of Bank 2) and must receive deposits in exchange. As banks are responsible for arranging
payments between the firms, our reduced form representation of the interbank market shows a mechanism for the formation of a direct payment link from Bank 2 (which takes
deposits from the bank account of consumption-good firm 3) to Bank 1 (which use the received deposits and place them in the bank account of capital-good firm 1).
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set equal to 4.5% as within the Basel III framework; a time-varying
ounter-cyclical capital buffer captured by the variable 𝐶 𝐶 𝐵𝑡. Similarly
o Popoyan et al. (2017), the counter-cyclical buffer depends non-

linearly on the aggregate credit-to-GDP gap 𝐶 𝐺𝑡, measured as the
deviation of the credit-to-GDP ratio from its 5-year moving average
trend. More specifically, the buffer writes:

𝐶 𝐶 𝐵𝑡 =
⎧

⎪

⎨

⎪

⎩

0, if 𝐶 𝐺𝑡 < 𝐽
(𝐶 𝐺𝑡−𝐽)
(𝐻−𝐽 ) 0.025, if 𝐽 ≤ 𝐶 𝐺𝑡 ≤ 𝐻

0.025, if 𝐶 𝐺𝑡 > 𝐻
(2)

where 𝐽 = 2% and 𝐻 = 10% measure the adjustment factors based
n historical evidence about banking crises (see BIS, 2010, pag.13).
verall, a tighter macro-prudential regulation, as measured by a higher
alue of 𝜏𝐵 , decreases the credit supply for all banks. However, the
ggregate effects on the macroeconomic and financial systems are non-
rivial. On the one hand, the lower credit supply might limit growth
ossibilities for firms. On the other hand, the regulation can also
revent the formation of boom-and-bust credit cycles, thereby stabilizing
he economy (Schularick and Taylor, 2012).

Bank equity 𝐸𝑘,𝑡−1 also plays a prominent role in determining the
credit supply, as specified in Eq. (1). In banks’ balance sheets, equity is
a residual claim measuring the difference between assets and liabilities.
n our model, it will consequently depend on the value of each bank’s
nterbank claims. In Section 3.5 we shall discuss how the valuation of

the interbank claims affects the equity value of the bank and indirectly
the supply of credit in the economy.

3.2. The interest rates structure

The model features several interest rates because of the various
ctivities banks perform. Let us begin by determining the interest rate
harged by a bank to its client asking for a new loan (𝑟𝑑 𝑒𝑏𝑡 ). This rate
epends on two components: a mark-up common to all banks, (𝜇𝑑 𝑒𝑏)
pplied on the Central Bank interest rate (𝑟𝑐 𝑏𝑡 ); a client-specific risk-
remium that is associated with the fragility of the borrowing client 𝑐 𝑙.

The latter is constructed by classifying clients into four credit classes
that correspond to the four quartiles (i.e., 𝑞𝑐 𝑙 = {1, 2, 3, 4}) of the
distribution of firm financial fragility (see Dosi et al., 2015, for a similar
pproach). For each client 𝑐 𝑙 belonging to the quartile 𝑞𝑐 𝑙 at time 𝑡 the
ank 𝑘 applies a risk-premium that is defined as follows:

𝑟𝑑 𝑒𝑏𝑘,𝑐 𝑙 ,𝑡 = 𝑟𝑐 𝑏𝑡 (1 + 𝜇𝑑 𝑒𝑏) [1 + (𝑞𝑐 𝑙 − 1)𝑘𝑐 𝑜𝑛𝑠𝑡
]

, (3)

where 𝑘𝑐 𝑜𝑛𝑠𝑡 > 0 is a scaling parameter.
Furthermore, interbank assets (see Section 3.3 for a description of

heir determination) yield an interest rate 𝑟𝐼 𝐵𝑡 equal to:

𝑟𝐼 𝐵𝑡 = (1 − 𝑚𝑑𝐼 𝐵)𝑟𝑐 𝑏𝑡 (4)

where 𝑚𝑑𝐼 𝐵 is a mark-down on 𝑟𝑐 𝑏𝑡 in line with the empirical evidence
showing that in most economies, the money market rate is often highly
correlated to the main refinancing rate, but slightly lower.
4 
The deposit rate 𝑟𝐷𝑡 that banks pay on the deposits from their clients
is determined similarly, i.e., by applying a mark-down 𝑚𝑑𝑑 𝑒𝑝 on the
central bank main refinancing rate. The same approach is used to set
the interest rate on government bonds 𝑟𝑏𝑜𝑛𝑑 𝑠𝑡 and the rate 𝑟𝑟𝑒𝑠𝑡 at which
bank reserves at the central bank are rewarded (see Table A.2 for
the values of the mark-down applied to set these interest rates in the
model).

Finally, the main refinancing operation rate is set by the central
ank according to a dual-mandate Taylor rule:

𝑟𝑐 𝑏𝑡 = 𝑟𝑇 + 𝛾𝜋 (𝜋𝑡 − 𝜋𝑇 ) + 𝛾𝑈 (𝑈𝑡 − 𝑈𝑇 ) with 𝛾𝜋 > 1, 𝛾𝑈 ≥ 0 (5)

where the terms in parentheses represent inflation rate and unemploy-
ent rate gaps, while the parameters (𝛾𝜋 , 𝛾𝑈 ) measure the aggressive-
ess of the central bank with respect to each objective.

Overall, the interest rate structure in the model is such that the
following inequalities hold (see also Table A.2):

𝑟𝐷𝑡 ≤ 𝑟𝑟𝑒𝑠𝑡 ≤ 𝑟𝐼 𝐵𝑡 < 𝑟𝑐 𝑏𝑡 ≤ 𝑟𝑏𝑜𝑛𝑑 𝑠𝑡 ≤ 𝑟𝑑 𝑒𝑏𝑡 . (6)

3.3. Link creation in the interbank network

A key working assumption of our model is that banks manage
ayments between consumption-good and capital-good firms. This gen-

erates an endogenous network of interbank claims that evolves as time
goes by. In this section, we describe the creation of new links in the
foregoing interbank network. The next section describes instead how
links can be destroyed.

To explain the process of link formation in the model, let us consider
the case where a capital-good firm 𝑓𝑘 sells a new machinery to a
consumption-good firm 𝑓𝑐 . The two firms are, respectively, clients of
the banks 𝑏𝑘 and 𝑏𝑐 . Let us also consider a situation in which the 𝑓𝑐
firm does not have enough internal funds to buy the new machine and
asks for a loan from its associated bank, which endogenously creates
new money in the system (Fig. 2 Panel A). The new loan is an asset
or 𝑏𝑐 and a liability for 𝑓𝑐 . Given the assumption that all payments are

managed by banks, the payment between the firms originates a transfer
of deposits and an exchange of interbank funds between the two banks
𝑏𝑐 and 𝑏𝑘. The transaction, therefore, implies a change in the level of
deposits and the creation of an interbank relationship between the two
banks.

At this stage, two alternative possibilities can emerge in our model
ccording to the ability of the firm 𝑓𝑐 to collect enough funds to repay
he debt or, instead, to default (partially or totally) on its outstanding
ebt. Let us start from the first case (Fig. 2 Panel B). In such a situation,

the consumption-good firm 𝑓𝑐 has collected enough funds from its sales
and, at the end of the period, it has a sufficient amount of liquidity
to repay the loan. Thus, the firm 𝑓𝑐 deposits its profits at its bank
𝑏𝑐 and, consequently, this bank can immediately close the interbank
liability position towards the other bank 𝑏𝑘. Hence, the interbank link
is immediately closed and our interbank network is characterized only
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Fig. 2. Stylized examples of interbank network: link formation (Panel A), pulsing weights (Panel B) and link persistence (Panel C). Notes: The figure shows the T-account plot
for representative balance sheets of consumption- and capital-good firms (𝑓𝑐 and 𝑓𝑘, respectively) and the banks to which they are connected (𝑏𝑐 and 𝑏𝑘). The figure depicts the
evolution in the balance sheet composition and highlights how interbank linkages emerges within the system of payments embedded in the model. See text, Sections 3.3–3.4, for
a more detailed description.
by pulsing weights. If this occurs for all firms, then all payments are
settled and all the interbank claims are cleared. The interbank network
would be represented by a null adjacency matrix. When firm 𝑓𝑐 defaults
instead, the bank 𝑏𝑐 experiences a loss on the loan previously granted
to 𝑓𝑐 – i.e., a bad debt (Fig. 2 Panel C). In this case, a fraction of the
credit loss is transmitted to the payment that the bank 𝑏𝑐 would have
done to the other bank 𝑏𝑘 to close its interbank liability, if the firm 𝑓𝑐
had not defaulted. The remaining fraction of the loss is absorbed by a
reduction in the equity of 𝑏𝑐 . Hence, in this situation, the link between
the two banks survives over time since the interbank payment did not
occur yet.

This simple mechanism for the creation of connections among banks
is sufficient to characterize the interbank system by means of an
adjacency matrix of the form:

𝐿 =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝓁1,2 ⋯ 𝓁1,𝐵
𝓁2,1 0 ⋮
⋮ ⋱ ⋮

𝓁𝐵 ,1 ⋯ ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐴′ (7)

where the matrix 𝐿 is the interbank liability matrix.5 Each entry 𝓁𝑘,𝑏
measures the nominal value of the interbank debt that a generic bank
𝑘 has towards another generic bank 𝑏 and that is not regulated within a
period. The stock of interbank liabilities of a bank 𝑘 is 𝐼 𝐵𝐿𝑘 =

∑𝐵
𝑏=1 𝓁𝑘,𝑏

(i.e., the sum of the 𝑘th row of the matrix 𝐿); the total amount of
interbank assets of a bank 𝑘 is instead 𝐼 𝐵𝐴𝑘 =

∑𝐵
𝑏=1 𝓁𝑏,𝑘 (i.e., the sum of

the 𝑘th column of the matrix 𝐿).

5 𝐿 = 𝐴′ implies that 𝐴 is the corresponding interbank asset matrix.
5 
3.4. Link destruction in the interbank network

After an interbank link between two banks is created, one bank
becomes a creditor of another bank – in our previous example, the
bank 𝑏𝑘 is the creditor of bank 𝑏𝑐 . A creditor bank is the holder of an
interbank asset and it can demand the reimbursement of the deposit
from the debtor bank at any time. We assume that the creditor bank
decides to close (or not to close) the interbank position according to a
relatively simple heuristic that involves the opportunity cost of holding
the asset for another period. More in detail, we assume that a bank
holding the interbank asset has two options. The first one consists in
the rollover of the interbank credit for another period, which is a risky
asset and pays the interbank rate 𝑟𝐼 𝐵𝑡 , with a probability (1 −𝑝𝑏,𝑡) – that
is, the probability that the debtor bank will not default. The second
one is a risk-free alternative according to which the bank immediately
closes the interbank position, obtains the liquidity, and deposits it at the
central bank. This alternative pays the risk-free rate 𝑟𝑟𝑒𝑠𝑡 . In a nutshell,
the choice corresponds to an investment decision between a risky asset
and a risk-free one. Formally, the decision by the creditor bank 𝑘 to
destroy the interbank with bank 𝑏 at time 𝑡 reads:

𝑃 𝑟(𝐶 𝐿𝑂 𝑆 𝐸𝑘,𝑏,𝑡 = 1) = 𝑃 𝑟 (𝑟𝑟𝑒𝑠𝑡 − 𝑟𝐼 𝐵𝑡 (1 − 𝑝𝑏𝑡 ) > 𝜉𝑘,𝑏,𝑡
)

(8)

𝜉𝑘,𝑏,𝑡 =

{

1 if 𝐼 𝐵𝐴𝑘 ∕(
∑

𝑘 𝐼 𝐵𝐴𝑘 ) ≤ 𝛶
0 otherwise

(9)

with 𝛶 being a random variable with a uniform distribution  [𝑚𝑡, 𝑛𝑡].
The support of this distribution is denoted by 𝑚𝑡 and 𝑛𝑡. These are, re-
spectively, the minimum and maximum interbank exposures as a share
of total interbank exposure at time 𝑡. Comparative statics of Eq. (8)
suggests that, if the default probability of the borrower (𝑝 ) is too
𝑏,𝑡
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large to compensate the spread between the returns on the interbank
market (𝑟𝐼 𝐵𝑡 ) and on the central bank deposits (𝑟𝑟𝑒𝑠𝑡 ), then it is preferable
or bank 𝑘 to close the risky position towards bank 𝑏. However, if
𝑏,𝑡 = 1, bank 𝑘 can still decide to keep the interbank position open. This
vent occurs whenever the variable 𝜉𝑘,𝑏,𝑡 = 1, namely when the share
f interbank assets that bank 𝑘 holds, is not higher than the random
ealization of 𝛶 .6

Following Gai et al. (2011), in our baseline specification the prob-
ability of default 𝑝𝑏,𝑡 of bank 𝑏 is fully exogenous and drawn from
a uniformly distributed random variable  (0, 2ℎ0) whose expected
value ℎ0 ∈ (0, 0.5] can be interpreted as the haircut rate, which is
usually defined as the percentage deduction from the value of the
collateral required to obtain financing.7 In this setting, realizations
f  (0, 2ℎ0) reflect idiosyncratic shocks to the perceived underlying
isk of the interbank debtor. In our equation, therefore, a smaller
aircut maps into a reduction in the perceived risk associated to the

bankruptcy of the counterpart and to a lower probability of closing the
interbank position. Therefore the counterparty’s probability of default
s an important trigger for the banks’ actions and can have relevant
onsequences on the profitability and the credit supply of each single
ank. At the aggregate level, instead, it can affect the overall interbank
etwork topology and systemic risk.

3.5. Banks’ equity

The credit supply of a bank does not only depend upon the macro-
rudential regulation, but also on banks’ equity (see Section 3.1). We
ow introduce the law of motion of a bank’s equity and we carefully
escribe how micro-prudential regulation can impact on equity and, in
urn, on credit supply and macroeconomic fundamentals.

At the end of each period, the profit of a generic bank 𝑘 is deter-
ined as:

𝛱𝑘,𝑡 =

(𝐶 𝑙𝑘
∑

𝑐 𝑙=1
𝑟𝑑 𝑒𝑏𝑘,𝑐 𝑙 ,𝑡𝐿𝑜𝑎𝑛𝑠𝑘,𝑐 𝑙 ,𝑡

)

+ 𝑟𝑟𝑒𝑠𝑡 𝑅𝑒𝑠𝑘,𝑡 + 𝑟𝑏𝑜𝑛𝑑 𝑠𝑡 𝐵 𝑜𝑛𝑑 𝑠𝑘,𝑡

− 𝑟𝐷𝑡 𝐷 𝑒𝑝𝑜𝑘,𝑡 − 𝐵 𝑎𝑑 𝐷 𝑒𝑏𝑡𝑘,𝑡 + 𝑟𝐼 𝐵𝑡 𝑁 𝑒𝑡𝐼 𝐵𝑘,𝑡 (10)

where 𝐶 𝑙𝑘 indicates the number of clients of the bank 𝑘, and the
𝐵 𝑎𝑑 𝐷 𝑒𝑏𝑡𝑘,𝑡 is strictly positive only in those periods in which the bank
xperiences some losses on its outstanding loans due to the bankruptcy
f some of its clients. Banks earn profits on the outstanding loans to
onsumption-good firms (𝐿𝑜𝑎𝑛𝑠𝑘,𝑡), on the stock of reserves at the cen-
ral bank (𝑅𝑒𝑠𝑘,𝑡), on the yields provided by sovereign bonds (𝐵 𝑜𝑛𝑑 𝑠𝑘,𝑡),
nd on the interbank assets (𝐼 𝐵𝐴𝑘,𝑡). At the same time, banks pay an
nterest rate on firms’ deposits (𝐷 𝑒𝑝𝑜𝑘,𝑡) and on the interbank liabilities
𝐼 𝐵𝐿𝑘,𝑡).8

At the end of the period, the after-tax profits of banks – i.e., 𝑁 𝑒𝑡𝛱𝑘,𝑡
 (1 −𝑡𝑟)𝛱𝑘,𝑡 – are stockpiled to the bank’s net worth. Thus, the equity of

he generic bank 𝑘 evolves accordingly to the following law of motion:

𝐸𝑘,𝑡 = 𝐿𝑜𝑎𝑛𝑠𝑘,𝑡 + 𝑅𝑒𝑠𝑘,𝑡 + 𝐵 𝑜𝑛𝑑 𝑠𝑘,𝑡 + 𝐼 𝐵𝐴𝑘,𝑡 − 𝐼 𝐵𝐿𝑘,𝑡 −𝐷 𝑒𝑝𝑜𝑘,𝑡 +𝑁 𝑒𝑡𝛱𝑘,𝑡 (11)

If the equity of the bank is negative, the bank goes bankrupt and the
nterconnected banks in the interbank network 𝐿 may only partially
ecover their interbank claims (i.e., 𝓁𝑏,𝑘) up to a fraction 𝜌𝐼 𝐵 of their

6 In the simplest case in which 𝛶 ∼  [𝑚̄, ̄𝑛], and the share of bank’s
interbank asset 𝐼 𝐵𝐴𝑘 ∕(

∑

𝑘 𝐼 𝐵𝐴𝑘 ) = (𝑛̄ + 𝑚̄)∕2, then 𝜉𝑘,𝑏,𝑡 = 1 with 50%
probability. However, since the support of 𝛶 changes over time according to
the minimum and maximum share of interbank exposure of the system (𝑚𝑡 and
𝑛𝑡, respectively), the probability of keeping the position open anyway regardless
the estimated counterparty’s probability of default 𝑝𝑏,𝑡 changes accordingly.
Hence, a bank with a relatively lower interbank exposure will tend to keep
he position open towards the debtor bank 𝑏.

7 See Section 3.6 for scenarios in which 𝑝𝑏,𝑡 is endogenously determined.
8 For sake of brevity, in Eq. (10) we have directly reported the net interbank

position 𝑁 𝑒𝑡𝐼 𝐵 .
𝑘,𝑡

6 
original claims. In our baseline scenario, we set 𝜌𝐼 𝐵 = 0. Moreover,
to keep the number of banks constant within a simulation, we assume
that when a bank goes bankrupt the government steps in by providing
fresh capital to the defaulted bank. The equity of the bank after the gov-
ernment bailout is a fraction 𝜗 ∼  (0.1, 0.9) of the smallest incumbent
banks equity, provided it meets the regulatory capital requirements.

In our baseline scenario equity is evaluated at its book value, as
calculated in Eq. (11). However, such a formulation does not take
into account the fact that all the other banks with whom the generic
bank 𝑘 has direct or indirect interconnections in interbank network
can default. Therefore, the book value provides only an imperfect
representation of the market value of the bank.

A well-designed micro-prudential regulation provides banks with
he tools to better evaluate their interbank claims. If appropriately
valuated, the equity value of banks can systematically vary from the
ook value. This difference might give rise to sizable impact on the
redit supply of each bank, limiting their exposure to counterparty and
ystemic risks. In particular, in this model we investigate the properties
f the NEVA mechanism (Barucca et al., 2020), which can be employed

as a behavioral and micro-prudential device aimed at protecting the
banks from the counterparty default risk, as well as from credit risk.
The next section describes the implementation of such a mechanism in
our model.

3.6. The NEVA clearing mechanism and micro-prudential regulation

Persistent interbank links between two banks endogenously emerge
n the model when a consumption-good firm defaults on its debt. As

time goes by, the owner of an interbank claim that decides not to close
the position remains the holder of an interbank asset which is valued at
ts historical nominal value. However, this value could be misleading as
t does not take into account two relevant risk factors: the counterparty
isk and the credit risk.

If one accounts for these two sources of risk, the market value of
an interbank asset may change over time also impacting on the final
value of a bank’s equity, as in Eq. (11). By introducing in the model
a clearing mechanism that allows all banks to constantly update the

arket evaluation of their interbank claims, we thus allow firms to
constantly update also the value of their equity.

An example of the above interbank clearing mechanism is the pro-
osed by Eisenberg and Noe (2001). Under some regularity conditions,

this mechanism provides a unique evaluation vector of the outstanding
interbank claims based upon the probability of default of all banks.
However, the Eisenberg and Noe (2001) evaluation model relies on
two strong assumptions. First, it assumes that the evaluation of the
nterbank claims by each bank is carried out only at the maturity
i.e., ex-post) rather than at each period (i.e., ex-ante). Second, it
ssumes that all banks have a complete knowledge of the underly-
ng network structure and the financial conditions of all the other
anks. These two issues are solved by Barucca et al. (2020) with

the development of the NEVA (Network Valuation), which generalizes
the Eisenberg and Noe (2001) framework. More specifically, the NEVA
model allows banks to evaluate their claims at any time (not only
at maturity) with a local knowledge of the network. In particular,
all banks are assumed to have information about their own financial
situation and about those of their first neighbors, i.e., the banks with
whom they have a direct interbank link.

Following Barucca et al. (2020), we thus aggregate all assets and
liabilities outside the interbank market (i.e., loans, bonds, reserves and
deposits) into a unique balance sheet item which we label the ‘‘Net
xternal Asset’’ and we denote it by 𝛩𝑘,𝑡. The book value of the generic
ank’s equity presented in Eq. (11) can be reformulated as:

𝐸𝑘,𝑡 = 𝛩𝑘,𝑡 +
𝐵
∑

𝓁𝑘,𝑏,𝑡 −
𝐵
∑

𝓁𝑏,𝑘,𝑡 = 𝛩𝑘,𝑡 + 𝐼 𝐵𝐴 − 𝐼 𝐵𝐿 (12)

𝑏=1 𝑏=1

𝑘,𝑡 𝑘,𝑡
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When the NEVA framework is implemented at each time step, a bank’s
interbank claims are evaluated in a way that potential losses associated
with the bankruptcy of other banks are taken into account.

This above evaluation mechanism replaces the historical book value
of equity in our model. To account for this new element, the equity
Eq. (12) becomes:

𝐸𝑁 𝐸 𝑉 𝐴
𝑘,𝑡 = 𝛩𝑘,𝑡 +

𝐵
∑

𝑏=1
𝓁𝑘,𝑏,𝑡𝑉

𝑁 𝐸 𝑉 𝐴
𝑘,𝑏,𝑡 −

𝐵
∑

𝑏=1
𝓁𝑏,𝑘,𝑡 = 𝛩𝑘,𝑡 + 𝐼 𝐵𝐴,𝑁 𝐸 𝑉 𝐴𝑘,𝑡 − 𝐼 𝐵𝐿𝑘,𝑡 (13)

where 𝑉 𝑁 𝐸 𝑉 𝐴
𝑘,𝑏,𝑡 is the evaluation vector that bank 𝑘 associates to all the

direct links with other 𝑏 banks in the interbank market at time 𝑡, and it
is computed using the clearing mechanism described in Barucca et al.
(2020). In short, this corresponds to the expected value of a valuation
function that depends, on the one side, upon the expected value of the
ounterparty 𝑏’s equity, and, on the other side, upon the expected value
f 𝑏’s assets under the circumstance that 𝑏 defaults. Following Barucca
t al. (2020), the vector 𝑉 𝑁 𝐸 𝑉 𝐴

𝑘,𝑏,𝑡 can be expressed as:

𝑉 𝑁 𝐸 𝑉 𝐴
𝑘,𝑏,𝑡 = 1 − 𝑝𝑁 𝐸 𝑉 𝐴

𝑏,𝑡 − 𝜌𝑁 𝐸 𝑉 𝐴
𝑏,𝑡 , ∀ 𝑘. (14)

The term 𝑝𝑁 𝐸 𝑉 𝐴
𝑏,𝑡 measures the default probability of a bank 𝑏 and mea-

sures the counterparty risk. The term 𝜌𝑁 𝐸 𝑉 𝐴
𝑏,𝑡 , instead, is an

endogenously-determined recovery rate on the assets of 𝑏, in the case
𝑏 shall default. The two variables are determined as follows:

𝑝𝑏,𝑡 ≃ E
[

1𝛥𝛩𝑏,𝑡<𝐸𝑏𝑡|𝛩𝑏,𝑡
]

(15)

𝑏,𝑡 ≃ E

[(

𝐸𝑏,𝑡 + 𝛥𝛩𝑏,𝑘 + 𝐼 𝐵𝐿𝑏,𝑡
𝐼 𝐵𝐿𝑏,𝑡

)

1−𝐼 𝐵𝐿𝑏,𝑡−𝐸𝑏,𝑡≤𝛥𝛩𝑏,𝑡<−𝐸𝑏,𝑡 |𝛩𝑏,𝑡
]

(16)

where 𝛥𝛩𝑏,𝑡 is an unexpected change in net external assets that in our
model refers to the increase in the bad debt, which might unexpectedly
occur at time 𝑡.9

In our model, the NEVA can be used for two different purposes,
which will characterize two different scenarios. First, it can be used by
each bank as a device to evaluate counterparty risk. Using the NEVA to
evaluate the probability of default of its counterparts, a bank might be
more careful in its decision to close or not to close a persistent interbank
link, see Eq. (8). Second, the NEVA can be used as a micro-prudential
tool by a regulatory authority that tries to limit the credit exposure
f the banking industry. We assume that the regulatory authority asks
o all the banks that have an interbank claim to another bank 𝑏 to
educe their leverage whenever the evaluation of the bank 𝑏 is below
nity – i.e., if 𝑉 𝑁 𝐸 𝑉 𝐴

.,𝑏 < 1. In particular, we assume that under this
icro-prudential regulatory settings, the banks should always take into

ccount a fall in the evaluation of 𝑉 𝑁 𝐸 𝑉 𝐴
.,𝑏 in their measure of financial

fragility, which is captured by the variable 𝐵 𝑑 𝑎𝑘,𝑡. More specifically,
for all banks holding a credit with 𝑏 the prudential buffer writes:

𝐵 𝑑 𝑎𝑘,𝑡 =
𝛾𝐵 𝐷𝐵 𝑎𝑑 𝐷 𝑒𝑏𝑡𝑘,𝑡

𝛩𝑘,𝑡 +
∑𝐵
𝑏=1 𝓁𝑘,𝑏,𝑡𝑉

𝑁 𝐸 𝑉 𝐴
𝑘,𝑏,𝑡

(17)

If equity were evaluated at its book value, then the supply of credit (see
Eq. (1)) would be completely inelastic to the evolution of risk in the
nterbank market. The introduction of the NEVA relaxes this feature.

3.7. Risk evaluation scenarios

The decision of a creditor bank to close an interbank position in the
model depends upon the probability of default of the borrower bank,
measured by 𝑝𝑏,𝑡, as well as on the relative interbank exposure of the
lender, captured by 𝜉𝑘,𝑏,𝑡, (see Eq. (8) and Section 3.4). We can use

9 Notice that the book value evaluation, can also be seen as a very particular
case of the NEVA, in which 𝑉𝑘,𝑏,𝑡 = 1 for all the interbank positions and
or all periods. This will simply lead to Eq. (12). In addition under some
egularity conditions (see Barucca et al., 2020, pag. 1189-1195) the solution

for the vector of the default probabilities of the NEVA algorithm is unique and
equivalent to the one by Eisenberg and Noe (2001).
7 
Table 1
Interbank market scenarios.

Scenario Probability of default 𝑝𝑏,𝑡 Valuation of Interbank claims

BASE  (0, 2ℎ0) ✗

SEMI  (0, 2ℎ0), for Bank 𝑏: ar g max
𝑏∈𝐵

𝐵 𝑑 𝑎𝑏,𝑡 ✗

NEVA 𝑝𝑁 𝐸 𝑉 𝐴𝑏,𝑡 ✗

NEVA2 𝑝𝑁 𝐸 𝑉 𝐴𝑏,𝑡
∑𝐵
𝑏=1 𝓁𝑘,𝑏,𝑡𝑉

𝑁 𝐸 𝑉 𝐴
𝑘,𝑏,𝑡

these two variables to define four alternative interbank risk evaluation
scenarios. The details of these scenarios are summarized in Table 1

Baseline scenario (BASE). In our baseline specification, the NEVA
s switched off. In this scenario, 𝑝𝑏,𝑡 is exogenous and drawn from a

Uniform distribution  (0, 2ℎ0), where the expected value ℎ0 can be
interpreted as the average of idiosyncratic shocks to the haircut on the
ollateral that the creditor can obtain in case of default of a debtor
ank.
Semi-endogenous (SEMI). This scenario is similar to the baseline,

xcept that now the creditor banks can close the riskiest positions in the
nterbank market. More specifically, banks apply the previous decision
ule based on the haircut and a draw from a uniform distribution,
nly if they have an open interbank claim towards the riskiest bank
n the system, as measured by the firm with the largest share of
on-performing loans.
NEVA. In this scenario, a creditor bank in the interbank market

ecides to close a position according to Eq. (13) and hence it employs
the NEVA clearing vector for better evaluating the counterpart risk.

NEVA𝟐. This last scenario is characterized by the presence of NEVA,
employed both to guide the banks’ decision about closing or not in-
erbank claims according to Eq. (13), as well as to fix the supply of

credit for the next period, by evaluating interbank exposures according
to Eq. (17).

3.8. Timeline of events

At each time step 𝑡 of our simulations, agents take the following
decisions:

1. Policy variables (e.g., capital requirement, tax rate, central bank
interest rate, etc.) are fixed.

2. Machines ordered by consumption-good firms in the previous
period are delivered and will become part of the capital stock.

3. Capital and consumption-good firms calculate costs and set their
prices.

4. The maximal amount of credit supplied by each bank to
consumption-good firms is determined according to Eq. (1).

5. Capital-good firms signal the discovery of new machines, if any,
to consumption-good firms.

6. Consumption-good firms fix their desired level of production and
investment and eventually their demand for bank credit.

7. Banks rank firms’ request and provide credit. Credit rationing
may possibly arise.

8. Consumption-good firms receive the ‘‘brochures’’ of the brand
new machines produced by capital-good firms and buy the most
convenient.

9. Banks settle the payments between consumption-good and
capital-good firms.

10. Both firms calculate the labor input necessary for production.
11. Production plans are undertaken.
12. Consumption-good firms’ market shares are allocated based on

their competitiveness.
13. Firms in both sectors compute profits. If profits are positive,

consumption-good firms pay back their loans to their bank and
deposit their net savings, if any. If some consumption-good
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Table 2
Summary statistics of the main aggregate macroeconomic and financial variables growth rates (unless otherwise stated). The average 𝜇̄, median
𝜇0.5 and standard deviation 𝜎 are computed across 1000 Monte Carlo experiments in the baseline configuration.

𝜇̄ 𝜇0.5 𝜎 𝜇̄ 𝜇0.5 𝜎

GDP 0.029 0.030 0.003 Deposits 0.059 0.062 0.010
Consumption 0.029 0.030 0.003 Bad Debt 0.059 0.060 0.050
Investment 0.028 0.029 0.005 Cash Reserves 0.057 0.061 0.013
Unempl. rate 0.069 0.037 0.111 Interbank Exposure 0.060 0.062 0.018
Inflation 0.031 0.032 0.005 Total Credit 0.059 0.061 0.009
Debt/GDP 0.847 0.116 3.226 Losses due to contagionc 0.031 0.000 0.104
Bank defaultsa 28.000 3.000 71.000 Bank Fragilityd 0.083 0.070 0.066
Fin. constraintsb 0.250 0.223 0.095 Bank Equity 0.057 0.061 0.013

a Number of bank defaults.
b Share of credit rationed firms.
c Interbank losses over interbank claims.

d Average financial fragility index 𝐵 𝑑 𝑎 as in Eq. (1).
a
i

k
b

c
t

firms are unable to pay back their loans, banks involved in the
payment system open an interbank position.

14. Banks evaluate their interbank exposures and decide whether
to close their interbank claim according to Eq. (8). Firms’ and
banks’ profits are taxed.

15. Entry and exit of consumption-good and capital-good firms takes
place. In both sectors firms with market shares smaller than a
minimum threshold and firms with negative net liquid assets exit
from the market and are replaced by new entrants.

16. Bank profits are calculated. Banks pay taxes and dividends.
17. Government bails out banks with realized negative equity.
18. Government calculate its budget and, if negative, deficits are

financed by banks.
19. Aggregate macroeconomic and financial variables are calculated.

20. Capital-good firms perform R&D, trying to discover new prod-
ucts and more efficient production techniques and to imitate the
technologies and the products of their competitors.

4. Simulation results

In this section, we present the main results obtained from our
xtensive Monte Carlo simulations of our model in the baseline sce-

nario. For this baseline simulation setting, we run 1000 Monte Carlo
simulations in which only the pseudo-Random Number Generator has
been modified. This allows us to obtain a sufficient set of observations
to test the statistical significance of our claims. In addition, we discard
the first 300 time observations for each batch run to ensure that the
statistics are washed away by the noise due to initial conditions.

To broadly validate the model, we follow the indirect calibration
approach, also employed by all the previous versions of the Schumpeter
meeting Keynes family of models (see Windrum et al., 2007; Fagiolo
nd Roventini, 2017). In particular, we evaluate the ability of our
odel to replicate a wide range of stylized facts at the micro-, meso-

nd macroeconomic levels. Specifically focusing on this model, the
ndirect calibration process aims to qualitatively replicate observed
ata concerning macro-financial factors and several statistical char-
cteristics of the interbank network involving borrowing and lending
onnections (see Fagiolo et al., 2019). Finally, we also verify the

continued validity of the micro- and macro-properties reproduced by
arlier versions of the K+S models within our extended framework.

Table 2 presents a collection of key Monte Carlo statistics produced
y our model in the baseline scenario. The results of the table show
hat our model can generate the following outcomes: (i) realistic growth
ates for GDP, consumption, and investment, arranged in an accurate
ierarchy of volatility; (ii) low unemployment rates; and (iii) consistent
nflation stability. This indicates that in the baseline scenario, the
odel effectively emulates a healthy economic system characterized
 o

8 
by endogenous growth and business cycles. Moreover, financial vari-
bles, which are significantly impacted by the extensions described
n Section 3 exhibit, on average, higher rates of growth compared to

real variables, but they are also much more volatile. This finding is
compatible with the empirical evidence brought about by Jakab and
Kumhof (2015).

In the next Section we will discuss in detail the ability of the model
to account for a set of stylized facts related to the co-movements of
financial aggregates and fundamental features inherent to interbank
networks. Notoriously, K+S models can account, jointly, for a wide
ensemble of empirical regularities, making it suitable to deliver credible
insights into policy scenarios (Dawid and Delli Gatti, 2018; Dosi and
Roventini, 2019). For the full list of stylized facts replicated by the
model, we refer to Table A.1 in Appendix A.

4.1. Empirical results of the model

Our model incorporates a process of firm financing that involves
money creation by banks, wherein the lending decision depends on
leverage and capital requirements (Godley and Lavoie, 2006; Caverzasi
and Godin, 2015). In line with the working of modern financial mar-
ets, this framework implies a nearly one-to-one adjustment of the
anks’ debt to a variation in assets. On the other hand, equity remains

relatively unresponsive to changes in assets. Indeed, equity will in-
rease only if banks generate profits, which is not immediately related
o assets’ variation (Jakab and Kumhof, 2018; Ihrig et al., 2021).

This distinction in the sensitivity of debt and equity to fluctuations
in assets has also been empirically recorded by both Adrian et al. (2013)
and Jakab and Kumhof (2015). Our agent-based model replicates this
empirical finding as an emergent property of the system. Panel A of
Fig. 3 presents the relationship between the log-changes in banks’
equity (red) and debt (blue) as a function of the log-changes in total
assets. It is immediate to observe that the elasticity of debt to assets is
high and slightly larger than one. Conversely, the response of equity to
changes in assets is rather flat.

Panel B of Fig. 3 shows instead the distribution of the two elasticity
parameters, estimated with simulated bank-level data. It is easy to
observe that the estimate for the Debt-to-Assets elasticity is centered
around 1, while the Equity-to-Assets elasticity is centered around 0.
Models utilizing the loanable funds approach, in which banks solely
serve as intermediaries for private sector savings, often fail to replicate
such empirical patterns (examples are, but not limited to Bernanke
et al., 1999; Gertler and Kiyotaki, 2010; Adrian and Boyarchenko,
2012). Our results suggest that a financing mechanism driven by en-
dogenous money creation offers a more credible description of banking
industry behavior.

Next, we focus on the composition of the asset and liability sides of
individual banks’ balance sheets over time in a typical Monte Carlo sim-
ulation (cf., Fig. 4). First, coherently with Jakab and Kumhof (2018),
ur model predicts that banks’ balance sheets experience frequent
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Fig. 3. Panel A. A 2-dimensional density plot of (log)changes in bank Debt/Equity (y-axis) vs Bank Assets (x-axis), along with a 45 degrees line (dotted). Panel B. Univariate
distribution of the bank-level elasticities of Debt to Assets (top) are centered around one (dotted vertical line). Univariate distribution of the bank-level elasticities of Equity to
Assets (bottom) are centered around zero (dashed vertical line). All observations are at bank-level, pooled across all time periods for all Monte Carlo iterations. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
oscillations in the level of their interbank assets and liabilities. Second,
the asset side (Panel A of the figure) shows that the loans granted to
the consumption-good firms and reserves constitute the most relevant
components of the asset side of the balance sheet. Pooling all bank-
level observations, these two components, on average, represent 58%
and 33% of the whole amount of assets. Loans to consumption-good
firms and interbank positions are the components determining banks’
heterogeneity in the assets’ and liabilities composition.10

To analyze how the creation and destruction of interbank claims
affect balance sheet adjustments, let us consider the example of a
representative bank (bank 5 in the simulation) in the last interval of
a Monte Carlo iteration (few time steps before period 450). Looking at
its liabilities (cf., Panel B of Fig. 4), we observe that the bank records a
sudden increase in the share of its interbank debt, which emerges due
to the default of at least one of its consumption-good firm clients. Part
of this loan corresponds to the payment made in advance to buy the
machinery of capital-good firms, which are in turn connected to banks
that would experience sudden increases in the share of interbank assets
(in the example, the increase is visible in the asset side of bank 1 and
2).

Up to now our discussion focused on the model’s ability to mimic
the empirical properties of the macro-financial sector and of individual
banks’ balance sheet. Let us now examine the observed statistical
properties of the interbank network that the model can replicate. More
specifically, we examine network assortativity and network density.11

In addition, we study node-specific features of the network, like the
centrality and exposure of the single banks, split by their size class.

Empirical studies show that the network of interbank credit-debit
relationship is disassortative and has a low density, recorded to be
about 0.3% on average (Soramäki et al., 2007; Cocco et al., 2009,
among others). Moreover, the network typically features a high-density
core – a group of few densely connected banks – and a low-density
periphery, i.e., banks with few connections (Alves et al., 2013; Aldasoro
and Alves, 2018).

In particular, for the banking sector, disassortativity implies that
small banks, whose size is measured by their number of clients, will

10 Similarly to Dosi et al. (2015), the government bonds are bought in
proportion to the bank’s size and play a marginal role in our model.

11 A network is said to be assortative (disassortative) if there is a higher
likelihood that a network’s node is connected to other nodes with similar
(different) characteristics. Newman (For the definition of assortativity indexes
see Section 3.E of 2003).
9 
tend to be connected to banks with large sizes. This feature can hardly
be reproduced by scale-free networks generated via preferential attach-
ment (Fricke et al., 2013). For instance, by specifying a simple rule
for interbank borrower/lender choice, as in Lux (2015) or Liu et al.
(2020), does not ensure that disassortativity is achieved. In contrast,
we theoretically motivate a mechanism that explains the formation and
persistence of interbank links without relying on rules of preferential
attachment, also ensuring that the emerging interbank network is
disassortative (cf., Sections 3.3 and 3.4).

Our mechanism of interbank link formation, despite its simplicity,
reproduces all above-mentioned stylized facts about the structure of
an interbank network. Indeed, our model generates a network with
a density that remains quite stable over time and averages 15% for
the overall network (see Panel A of Fig. 5).In addition, consistent with
empirical evidence, we can identify a core of the network with high
density (around 35%) and a periphery with lower density (slightly
below 10%). Panel B of Fig. 5 presents instead the Monte Carlo average
of the assortativity index over time. This is always negative, thus
confirming that the interbank network generated by our model is
disassortative.

Let us now consider node-specific network statistics. In this respect,
a major role is played by measures of centrality which capture the
relative importance of each node in the network.12 The results are
also disaggregated by bank size classes (see Fig. 6). In particular, for
each size class, we report the average centrality of the banks belonging
to that specific class.13 A standard result in the empirical interbank
network literature is that big banks are significantly more central,
especially when the outgoing links are considered (Craig and von Peter,
2014; Fricke and Lux, 2015). Furthermore, empirical evidence suggests
that larger banks tend to borrow cash reserves in the interbank mar-
ket (see Müller, 2006, for the Swiss interbank market). The results from
our simulations are consistent with this evidence (see Fig. 6). The result

12 There is a plethora of centrality measures that can be employed. In what
follows we focus on of the most popular measures: the overall centrality ac-
counting for incoming and outgoing links; the in-degree centrality accounting
only for the incoming ones; and the out-degree centrality taking into account
only the outgoing links. See Newman (2018).

13 Taking into account that the distribution of banks’ clients is Pareto, the
size-class categories are constructed as follows: big banks are those in top
20% of the distribution, medium-sized banks are between the 30-th and 80-th
percentiles, small banks are below the 30-th percentile.
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Fig. 4. Composition of the assets (Panel A) and liability (Panel B) sides of individual banks’ balance sheets in a representative Monte Carlo simulation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Density (A) and assortativity (B) indexes of the emergent interbank network. The indexes are computed as averages of the 1000 Monte Carlo simulations at each time step
along with the 5-th and 95-th percentiles confidence bands (light color). We also report a 90% confidence interval for the sample mean (dark color).
Fig. 6. Panel A shows the Monte Carlo average number of links by type and bank size. Panel B plots the evolution of the Monte Carlo average value of net interbank assets as a
percentage of total interbank exposures (breakdown by size). Confidence bands denote the 5% and 95% percentiles and the 90% confidence interval for the sample mean (lighter
and darker colors, respectively).
is explained by the fact that big banks have many more consumption-
good firm clients who can default on their debts. And when such clients
default, these banks become borrowers in the interbank market.

Finally, the simulation results indicate that our model generates a
banking structure wherein small banks are liquidity providers; medium-
sized banks are liquidity neutral; and large banks are liquidity borrow-
ers (see the right panel of Fig. 6).14 This is also a prominent feature
observed in real interbank networks (see Liu et al., 2020).15

14 The net interbank positions are measured for each bank 𝑘 as the difference
between the bank’s total interbank assets 𝐼 𝐵𝐴𝑘 and its total interbank liabilities
𝐼 𝐵𝐿𝑘 . At each period 𝑡, we then average the net interbank position of each bank
in the specific size class and we compute the share, as a percentage of the total
interbank exposure of the system.

15 At this stage, the model cannot yet replicate empirical regularities as-
sociated by considering additional layer analysis of financial networks: for
instance, those implied by a varying maturity structure or by the different
types of financial instrument exposure (Aldasoro and Alves, 2018).
11 
4.2. The effects of a network-based micro-prudential regulation

Given the good empirical performance of the model, in this section
we present the results of policy evaluation exercises, where we compare
the performance of the economy and the banking sector in the four
different scenarios described in Section 3.7 and summarized in Table 1.
These exercises aim to test whether the NEVA clearing mechanism
can dampen systemic risk, as measured by the total number of banks’
defaults and by the losses experienced by non-defaulting banks because
of the contagion from defaulted ones.

Table 3 compares the simulation results about the variables cap-
turing systemic risk (first horizontal block), the banking sector (sec-
ond block), and overall macroeconomic performance (third block) in
the semi-endogenous, NEVA and NEVA2 scenario with respect to the
baseline one.

First, none of the above alternative scenarios involves a signif-
icant variation in credit supply, as well as on variables measuring
macroeconomic performance (like GDP growth, the unemployment
rate, investment growth, etc.). In addition, also average bank perfor-
mance (captured by bank profits, bank equity, bad debt and bank
fragility) is not significantly affected.
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Table 3
Comparison of systemic risk mitigation scenarios to the baseline. Main indicators for systemic risk, financial and macroeco-
nomic performances.

Scenario Bank Loss due to Interbank Bailout Credit

defaults contagion exposure costs Supply

SEMI 0.866 0.832* 1 0.849 1.011

NEVA 0.508*** 0.269*** 0.992 0.572*** 1

NEVA2 0.483*** 0.263*** 0.992 0.542*** 1.006

Total Bank Bank Bad Bank

Loans Profits Equity Debt Fragility (𝐵 𝑑 𝑎)
SEMI 1.005 1.042 1.01 0.952 0.976

NEVA 0.996 0.992 0.999 0.986 0.999

NEVA2 0.996 1.012 1.005 0.972 1.018

GDP Unempl. Deb/GDP Investment Financial

growth rate ratio growth constraints

SEMI 1.002 0.937 0.806 1.009 0.988

NEVA 1.004 0.893 0.806 1.002 0.99

NEVA2 1.003 0.897 0.815 1.002 0.99

Notes. The table reports the ratio of the average values of economic indicators of a particular scenario relative to the baseline
scenario. Values higher than one implies that the average value of the economic variable is higher than in the baseline
scenario. The null hypothesis is that there is no statistical difference in the means calculated in the two scenarios.
*p<0.1; **p<0.05; ***p<0.01.
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The significant effects mostly concern the systemic risk in the inter-
bank market. In particular, the semi-endogenous scenario (SEMI) does
ot yield significant improvements in performance in terms of systemic
isk mitigation. In contrast, when the NEVA framework is applied solely
o compute the probability of default of banks’ counterparties (NEVA
cenario), we find that the number of bank defaults decreases by 48.2%.
n addition, losses due to contagion effects contract by 73.1%, and
ailout costs are lowered by 42.8%, without significantly affecting
xposure in interbank markets.

Moreover, if NEVA’s micro-prudential potential is fully exploited
and it is used also for an internal assessment for bank credit provision
(NEVA2 scenario), we observe a further reduction in the number of
bank defaults, losses due to contagion and bailout costs by 51.7%,
73.7% and 45.8%, respectively. Hence, the NEVA is extremely effective
in taming the perilous effects of systemic risk.

The results discussed indicate that the use of the NEVA has sig-
nificant effects in terms of systemic risk mitigation while not having
any negative impact either on banks or macroeconomic performance.
Accordingly, they suggest that the use of such a micro-prudential tool is
not characterized by a trade-off between financial stability and macroe-
conomic performance. Encouraged by this finding, in the following
ection we explore whether this trade-off shows up instead for banks
f different sizes, thus offering insights on the possible distributional
mpacts of NEVA. Furthermore, we investigate the possible interac-
ions between a micro-prudential tool, like the NEVA framework, and
acro-prudential regulatory conditions, represented by the Basel III
acro-prudential regulation.

4.3. Heterogeneity analysis

To detect the possible heterogeneous impact of the NEVA, we study
the effects brought about by the introduction of the NEVA on different
categories of banks. In particular, for each category of bank size (big,
medium, small), we compute the instances of bank defaults, the losses
due to contagion, the growth rate of the total loans to consumption-
good firms and the growth rate of firms’ investments. This exercise
allows us to understand whether the NEVA affects some banks and their
credit transmission more than others. As usual, we run t-tests to assess
whether there are, on average, statistically significant differences across
the scenarios.
 t

12 
Fig. 7 illustrates the findings of our study, which reveal the het-
erogeneity underlying the aggregate patterns discussed in the previous
section. We first focus on systemic risk indicators (first and second
row of Fig. 7). Our results suggest that the use of both NEVA and
NEVA2 yields advantages to all banks regardless of their size. However,
arger banks get a more pronounced benefit. This is because large banks

are also more connected in the interbank network (see Section 4.1).
ccordingly, a better evaluation of their counterparties’ assets yields

larger reductions in contagion-related losses for these banks and as a
consequence, in their default rate.

The last two rows of Fig. 7 illustrate the distributional impact of
the NEVA on the real sector by showing, respectively, the variation in
the loans to firms of banks on different size classes (third row) and
he variation in the investment of firms connected to banks of different
izes (fourth row). The two panels indicate that the more prudential
ehavior implied by the NEVA does not bring significant reductions
ither in the amount of loans that banks of different sizes grant to
onsumption-good firms or in the investment of the firms connected
o them (cf., the NEVA and NEVA2 scenarios with the BASE one).
ccordingly, the absence of a significant impact of the NEVA on the
eal sector that we highlighted in the previous section is not generated
y a composition effect.

4.4. Micro-prudential and macro-prudential interactions

In the previous sections we highlighted that the introduction of
the NEVA allows a significant mitigation of systemic risk in interbank

arkets while not generating credit-crunch effects and/or a worse
acroeconomic performance.

However, how does the NEVA micro-prudential tool interact with
the Basel III macro-prudential regulation? In particular, we want to
study whether a trade-off between financial stability and macroeco-
nomic performance emerges when these two different sets of regu-
latory instruments interact. Indeed, as micro- and macro-prudential
policies inherently share objectives and transmission mechanisms, their
simultaneous adoption could trigger non-trivial effects on systemic-
risk-related variables and the macro-financial outlook (Altunbas et al.,
2018; Osinski et al., 2013).

For this purpose, we exploit the versatility of our agent-based model
o perform Monte Carlo simulation experiments where we interact the
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Fig. 7. The effects of the NEVA implementation on different categories of banks. Notes: The figure shows, for each category of bank size, the distribution of the 1000 Monte
Carlo percentage difference between the value of statistic 𝑋 under the scenario of interest 𝑠 and a baseline scenario 𝑏𝑎𝑠𝑒, (𝑋𝑠 − 𝑋𝑏𝑎𝑠𝑒)∕𝑋𝑏𝑎𝑠𝑒, with a 90% confidence level. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
NEVA and NEVA2 micro-prudential tools with more or less stringent
macro-prudential policy regimes identified by mandatory capital re-
quirements, captured in our model by the parameter 𝜏𝐵 in Eq. (1). More
specifically, we let the macro-prudential parameter 𝜏𝐵 to vary from
2% to 7% (higher values implies a more stringent macro-prudential
regulation) and for each value of 𝜏𝐵 , we simulate the micro-prudential
policy scenarios described in Section 3.7. We take as benchmark for this
experiment the baseline scenario (BASE) with 𝜏𝐵 = 4.5% (cf., Tables 2
and 3) to ease the comparability of the results.

The results of the above experiment are presented in Figs. 8 and 9
for all the analyzed combinations of the macro-prudential parameter
(𝜏𝐵) and of the micro-prudential settings. Each bar of the plots in the
two figures shows the difference between the value of a variable of
interest in a given scenario and the value of the same variable in the
benchmark scenario, along with a 90%-level confidence interval. The
value of the variable in the benchmark scenario (BASE with 𝜏𝐵 = 4.5%)
is centered on zero by construction.

The analysis of the bar plots in Figs. 8 and 9 confirms that the
implementation of the NEVA brings a significant reduction in the values
of the systemic risk-related variables (i.e., number of bank defaults,
losses due to contagion and bailout costs approximately fall by 30%,
75% and 50%, respectively) notwithstanding the strength of macro-
prudential policy (Fig. 8, top 3 panels). Such results are robust even
in the NEVA2 scenario, i.e., when the tool is implemented also for
determining lending decisions. The NEVA thus appears to be invariant
and orthogonal to the macro-prudential regime in terms of systemic risk
mitigation.

However, two outcomes emerge when we examine the impact on
credit and macroeconomic variables. First, we observe stronger credit
13 
crunch effects as the macro-prudential policy gets tighter (Fig. 8,
bottom 3 panels). The mechanism is straightforward: an increase in
capital requirements (higher 𝜏𝐵) leads to a contraction in the supply
of credit – see Eq. (1) – given the loans demand. This increases the
share of credit-constrained firms (see Fig. 9, first panel from the top)
that need to revise downward their investment and production plans,
thus hampering economic growth.

Second, we observe non-linear interaction effects between micro-
and macro-prudential policy tools. For instance, Figs. 8 and 9 show
that for values of 𝜏𝐵 lower than 4.5%, none of the macroeconomic and
financial variables are significantly affected by the introduction of the
NEVA. This is because, in presence of looser capital requirements, the
NEVA regulatory tool contributes to keep the credit supply steady, thus
taming the risk associated to the formation of credit booms. In such
a stable macro-financial environment, firms are generally not credit
rationed (see also Fig. 9, top panel). They can therefore pursue their
desired investment plans, which in turns sustain the pace of economic
growth (cf., Fig. 9).

On the contrary, the credit crunch triggered by tighter macro-
prudential requirements (𝜏𝐵 > 4.5%) is reinforced by the presence of
the NEVA micro-prudential tool. In this case, the total loans granted
to firms decrease from −2.3% to −6.3% when 𝜏𝐵 is equal to 5% and
7%, respectively (see Fig. 8); in the more stringent macro-prudential
scenario, as Fig. 9 highlights, financial constraints increase by 12.4%,
while investment growth and GDP growth decrease by −4.8% and
−2.4%, respectively.16 Nonetheless, even in presence of tighter capital

16 For detailed magnitudes of this effects see Table A.3 in Appendix A.
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Fig. 8. Systemic-risk related and macrofinancial effects of NEVA implementation under different capital requirement regimes. Notes: The figure shows, for a set of financial indicators,
the distribution of the 1000 Monte Carlo percentage difference between the value of statistic 𝑋 under the scenario of interest 𝑠 and a baseline scenario 𝑏𝑎𝑠𝑒, (𝑋𝑠−𝑋𝑏𝑎𝑠𝑒)∕𝑋𝑏𝑎𝑠𝑒, with
a 90% confidence level. In order to have statistics comparable across different capital requirement regimes, a reference-baseline scenario is fixed at 𝜏𝐵 = 0.045, i.e., the baseline
parametrization in Section 4, centered around 0 by construction (darker purple bars). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
requirements, the introduction of the NEVA brings significant improve-
ments in the mitigation of systemic risk (see Fig. 8 top 2 panels).

Overall, our results suggest that there are strong complementari-
ties between the NEVA micro-prudential tool and the BASEL III-like
macro-prudential tools. More precisely, the introduction of the NEVA
could allow policy makers to relax (or at least not to exacerbate)
mandatory capital requirements. In particular, a mix represented by
the adoption of the NEVA micro-prudential tool and a less stringent
macro-prudential regulation successfully tames systemic risk without
constraining the flow of bank credit to firms in the real economy.
14 
4.5. Schumpeterian growth regimes and systemic risk mitigation

At last, we explore the interplay between the NEVA framework
and the Schumpeterian growth engine of the model. In particular, we
evaluate the NEVA performance, conditional upon different regimes
of technological opportunities and firms’ search capabilities, which
prominently characterize the process of economic growth in the family
of K+S models (Dosi et al., 2010). For a more detailed discussion we
refer to Appendix B.1.

To model the presence of low (high) technological opportunities, we
shift to the left (right) the density of the 𝐵 𝑒𝑡𝑎(𝛼 , 𝛽) distribution, from
which the technological productivity coefficients are drawn. As mod-
eled in Eqs. (B.2)–(B.3), a more left (right)-skewed Beta distribution
implies that technological opportunities are more rarefied (frequent).
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Fig. 9. Real effects of NEVA implementation under different capital requirement regimes. Notes: The figure shows, for a set of macroeconomic indicators, the distribution of the
1000 Monte Carlo percentage difference between the value of statistic 𝑋 under the scenario of interest 𝑠 and a baseline scenario 𝑏𝑎𝑠𝑒, (𝑋𝑠 −𝑋𝑏𝑎𝑠𝑒)∕𝑋𝑏𝑎𝑠𝑒, with a 90% confidence
level. In order to have statistics comparable across different capital requirement regimes, a reference-baseline scenario is fixed at 𝜏𝐵 = 0.045, i.e., the baseline parametrization in
Section 4, centered around 0 by construction (darker purple bars). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
We also increase (decrease) firms’ search capabilities (cf., Eq. (B.1)) by
varying the parameter 𝜁 , in order to increase (decrease) the chances of
accessing innovations (Dosi et al., 2010, 2020).17

Table 4 shows the results of NEVA implementation in scenarios
characterized by combinations of higher and lower technological op-
portunities, as well as higher and lower search capabilities.18 We find
that also within different technological scenarios, the adoption of NEVA
robustly achieves systemic risk mitigation. NEVA becomes particu-
larly effective in more turbulent times, where more technological op-
portunities are available and access to innovation is more widely
spread.

Only under a particular setting – i.e., when technological oppor-
tunities are high – we record a negative effect of NEVA on GDP
growth. In this scenario, capital-good firms that exploit higher tech-
nological opportunities acquire a competitive advantage in terms of
cost effectiveness of their products, leading to a tendency towards high
market concentration in the capital-good sector. As a consequence,

17 Notice that, as reported in Table A.3 in Appendix A, our baseline scenario
is characterized a technological opportunity regime with 𝐵 𝑒𝑡𝑎(3, 3) and by a
regime of the search capabilities with 𝜁 = 0.3.

18 For sake of clarity, we have omitted scenarios combining high technolog-
ical opportunities with low search capabilities (and vice versa), as these may
represent less likely or interesting regimes. However, these scenarios do not
significantly alter the overall findings of our experiments. Results are available
from the authors upon request.
15 
consumption-good firms are more likely to buy capital goods from the
same market leaders, whose associated banks are more likely to become
interbank lenders (i.e., they hold interbank assets). Introducing NEVA
in such a scenario induces these banks to become more cautious about
their interbank exposures. They will close interbank positions more
often (in the NEVA scenario), and they also more prudently evaluate
their exposures (in the NEVA2 scenario). Accordingly, the other banks
holding interbank liabilities must find financial resources to close their
interbank positions, lowering their equity and, in turn, their supply
of credit. This more prudent behavior is more likely to tighten the
borrowing constraints, also hindering investments and, in turn, GDP
growth. Though suggestive, this mechanism seems to be in tune with
recent empirical evidence brought about by Tabachová et al. (2024)
where the costs of reducing systemic risk are amplified by the higher
likelihood of large supply chain cascades. We think that our result
provides interesting evidence on the role of industry concentration for
systemic risk mitigation.

5. Conclusion

This work extends the Schumpeter meeting Keynes model (Dosi et al.,
2010, 2013, 2015), introducing an explicit payment system between
the economic agents that leads to the endogenous formation of an
interbank network. In the model, payments among firms for capital
goods are mediated by deposits exchanges between their banks which
are closed within a period. Indeed, under normal conditions, a bank
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Table 4
Comparison of NEVA scenarios with different technological opportunities and search capabilities, relative to the baseline. Main indicators for systemic
risk, financial and macroeconomic performances.

Technological Opportunities: Low Base High

Search Capabilities: Low Base Low Base High Base High

NEVA Loss contagion 0.288*** 0.404*** 0.314*** 0.269*** 0.296*** 0.266*** 0.286***

NEVA2 0.273*** 0.344*** 0.304*** 0.263*** 0.303*** 0.284*** 0.273***

NEVA Bank defaults 0.503* 0.827 0.62*** 0.508*** 0.507*** 0.56*** 0.565***

NEVA2 0.503* 0.678 0.606*** 0.483*** 0.543*** 0.581*** 0.545***

NEVA Bank Equity 0.998 0.991 0.996 0.999 0.996 0.921*** 0.886***

NEVA2 0.997 0.994 1.001 1.005 0.977* 0.92*** 0.902***

NEVA Credit Supply 0.998 0.991 0.996 1 0.997 0.921*** 0.887***

NEVA2 0.997 0.994 1.001 1.006 0.978* 0.919*** 0.901***

NEVA Fin. constraints 1.003 1.016 1.023 0.99 0.994 1.091*** 1.111***

NEVA2 1.003 1.016 1.015 0.99 1.022 1.076*** 1.096***

NEVA Investment 1 0.993 0.988 1.002 0.997 0.941*** 0.956**

NEVA2 1.002 0.998 0.99 1.002 0.996 0.954*** 0.954**

NEVA Unemp. rate 1.003 1.093 0.999 0.893 0.891 1.091 1.116**

NEVA2 1.013 1.085 0.957 0.897 0.987 1.062 1.091

NEVA GDP 1.003 0.998 0.995 1.004 1.004 0.978*** 0.975***

NEVA2 1.004 0.998 0.996 1.003 0.998 0.984** 0.983*

Notes. The table reports the ratio of the average values of economic indicators of a particular scenario relative to the baseline scenario for
each combination of parameters governing the innovation regimes. For high, base and low technological opportunities we use a 𝐵 𝑒𝑡𝑎(𝛼 , 𝛽) where
(𝛼 , 𝛽) = {(3.1, 2.9), (3.3), (2.9, 3.1)}, respectively. Related to the high, base and low search capabilities regime we let 𝜁 = (0.25, 0.3, 0.35). Values higher than
one implies that the average value of the economic variable is higher than in the baseline scenario. The null hypothesis is that there is no statistical
difference in the means calculated in the two scenarios.
*p<0.1; **p<0.05; ***p<0.01.
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advances resources for a consumption-good firm at the moment of the
purchase of machines from a capital-good firm and recovers them at
he end of the same period if the consumption-good firm is solvent,
hereby closing the position in the interbank market. However, if the

consumption-good firm is insolvent, the advances made by the buyer’s
bank to the seller’s one result in an interbank position that cannot be
immediately closed and thus persists over time. This simple mechanism
endogenously generates a sizable volume of interbank assets and liabil-
ities without imposing any restrictive assumptions on banks’ behavior,
and results in an endogenous interbank network whose features are
consistent with recent empirical evidence.

By employing extensive Monte Carlo simulations, we show that
ur model is able to jointly replicate a wide ensemble of stylized
acts concerning growth and business cycles, the properties of firm
ize distributions, and key features of empirically-observed interbank
arkets. It is therefore suitable to be used as a policy laboratory to

est the financial and real impact of alternative regulatory mechanisms
mpacting on banks’ behavior. In this respect, we study whether the
EVA clearing mechanism can be employed as a micro-prudential instru-
ent to mitigate financial instability. NEVA equips banks with a tool

or the endogenous evaluation of interbank claims. Such an evaluation
onsiders the interconnectedness within the interbank network, effec-
ively protecting banks from increasing systemic risk (Barucca et al.,

2020). We study the effectiveness of this tool in different scenarios:
n the NEVA scenario, banks evaluate the counterparty probability of
efault in order to decide whether to keep open (or not) the interbank
laims; in NEVA2 scenario, banks adopt the tool also to adjust their
redit supply in a more prudent fashion when dealing with relatively
isky interbank clients.

Simulation results show that NEVA helps mitigating the harmful
effects of systemic risk, measured by the number of bank defaults and
osses due to contagion effects. In addition, the foregoing mitigation
ffects are stronger whenever the NEVA is used both for evaluating
he interbank counterparty’s probability of default and for making
16 
lending decisions based on a prudent evaluation of interbank exposures.
Moreover, we do not detect any distributional effects of the adoption of
the NEVA across bank size. In other words, the benefits from systemic
risk reduction are shared among all banks regardless of their size.
Furthermore, we do not observe the emergence of a trade-off between
financial stability and macroeconomic performance in our simulation,
which suggests that the more cautious approach towards interbank
interconnectedness implied by the NEVA does not result in a lower
levels of credit provision to the real economy and therefore in worse
short- and long-run macroeconomic performances.

We then further explore the interplay between micro- and macro-
prudential policies. We find non-linear interactions between the NEVA
and the Basel III tools. More specifically, in presence of looser capital
requirement, the NEVA micro-prudential tool mitigates systemic risk,
while not constraining the flow of credit to firms. On the contrary,
when macro-prudential regulation becomes tighter, the NEVA still
prevents the build-up of systemic risk but it exacerbates the fall of
credit to the real side of the economy. The non-linear interaction
between the NEVA and Basel III framework has two relevant policy
implications. First, the NEVA is always able to mitigate systemic risk in
more or less stringent Basel III framework. Second, the implementation
of NEVA micro-prudential regulation allows to pursue financial stability
with less stringent mandatory capital requirements, thus supporting a
more abundant flow of bank credit to finance firms’ investment and
production plans.

The model could be extended in different ways. First, similarly
to Guerini et al. (2022), one could enrich the dynamics of the interbank

arket by letting banks trade other financial instruments, e.g., gov-
rnment bonds, thus determining the creation of secured/unsecured
ransactions. Second, since our model is nested into an agent-based

integrated assessment model, it could be employed to evaluate the
inancial risks related to the green energy transition (Lamperti et al.,

2018, 2019, 2021). This would allow one to study the rising contagion
and systemic risks related to the formation of stranded assets and the
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policies to be implemented in order to tame their destabilizing effects,
thus contributing to a blossoming literature on climate-related financial
risks (Battiston et al., 2021). Third, similarly to Popoyan et al. (2017,
2020), one could introduce in the model an explicit market for liquidity
which is now automatically deposited at central bank facilities in the
form of cash reserves. This would also introduce another source of
financial instability in the model and allow the study of the impact of
unconventional monetary policies.

CRediT authorship contribution statement

Gianluca Pallante: Writing – review & editing, Writing – origi-
al draft, Methodology, Investigation, Visualization, Formal analysis,
onceptualization. Mattia Guerini: Writing – review & editing, Writ-

ing – original draft, Methodology, Investigation, Funding acquisition,
Conceptualization. Mauro Napoletano: Writing – review & editing,

riting – original draft, Supervision, Methodology, Investigation, Fund-
ing acquisition, Conceptualization. Andrea Roventini: Writing – re-
iew & editing, Writing – original draft, Supervision, Methodology,
nvestigation, Funding acquisition, Conceptualization.

Appendix A. Tables and figures

See Tables A.1–A.3.

Appendix B. The model

This appendix contains the full formal structure of the model as
riginally developed by Dosi et al. (2010, 2013, 2015), Lamperti et al.

(2018). The description of the original model and those parts that have
not been modified, heavily draws on the latter references.

We begin with the description of the technological search processes
nd the determination of production and prices in the capital-good
sector and the equations related to the determination of production,
investment, prices and profits in the consumption-good sector, as well as
those related to the public sector.
17 
B.1. The capital-good sector

The economy is characterized by two vertically-integrated sectors, a
pstream capital-intensive sector that sells machines to a downstream
ector which produces an homogeneous bundle of goods.

In this version of the model, upstream firms use labor and energy
s an input of production. Innovation and imitation activities are un-
ertaken to boost productivity, and to cut production costs; moreover,
hey are carried on by firms’ investments in R&D, which are ultimately
 share of past revenues.

The technology of the machines of vintage 𝜏 is captured by their
labor productivity (LP) and energy efficiency (EE) it is represented by
a set of coefficients (𝐴𝑙𝑖,𝜏 , 𝐵𝑙𝑖,𝜏 ), where 𝑙 = {𝐿𝑃 , 𝐸 𝐸}.

The coefficient 𝐴𝐿𝑃𝑖,𝜏 represents the productivity of the machinery
n the consumption-good industry; 𝐵𝐿𝑃𝑖,𝜏 is the productivity of the pro-
ess leading to the manufacturing of the capital good. Similarly, 𝐴𝐸 𝐸𝑖,𝜏

and 𝐵𝐸 𝐸𝑖,𝜏 characterize the level of energy efficiency in the production
processes of both type of goods.

Upstream firms, subject to market selection forces, need to improve
their technology in order to increase their productivity and to gain
market power. They can do it by means of innovation and imitation,
which are both costly. Following Dosi et al. (2010), both innovation
and imitation are modeled in two steps. In the first, the dynamics of
technical change randomly determines the success of both innovation
and imitation processes: this is modeled by realization of Bernoulli-
distributed random variables in which the level of R&D investments
positively determine the probability that the innovation is successful.
n particular:

𝜃  𝑖𝑖 = 1 − 𝑒𝜁  𝑖 (B.1)

where   𝑖 is the share of R&D expenses devoted to innovate or imitate
  𝑖 = {𝐼 𝑛𝑛, 𝐼 𝑚𝑚}) and 𝜁 is a parameter that governs firms’ search
apabilities. In a second step, the size of the technological improvement
s stochastically determined:

𝐴𝑙𝑖,𝜏+1 = 𝐴𝑖,𝜏 (1 + 𝜒 𝑙𝐴,𝑖) 𝑙 = {𝐿𝑃 , 𝐸 𝐸} (B.2)

𝐵𝑙𝑖,𝜏+1 = 𝐵𝑖,𝜏 (1 + 𝜒 𝑙𝐵 ,𝑖) 𝑙 = {𝐿𝑃 , 𝐸 𝐸} (B.3)

where 𝜒𝐴,𝑖 and 𝜒𝐵 ,𝑖 are i.i.d. realization of 𝐵 𝑒𝑡𝑎(𝛼 , 𝛽) random vari-
able with support given by the interval [𝑥𝑙 , 𝑥𝑙], which characterize
Table A.1
Main empirical stylized facts replicated by the model.

Stylized facts Empirical studies (among others)

Macroeconomic stylized facts
SF1 Endogenous self-sustained growth Burns and Mitchell (1946), Kuznets and Murphy (1966)
with persistent fluctuations Zarnowitz (1985), Stock and Watson (1999)
SF2 Fat-tailed GDP growth-rate distribution Fagiolo et al. (2008), Castaldi and Dosi (2009)
SF3 Recession duration exponentially distributed Ausloos et al. (2004), Wright (2005)
SF4 Relative volatility of GDP, consumption, investments and debt Stock and Watson (1999), Napoletano et al. (2006)
SF5 Cross-correlations of macro variables Stock and Watson (1999), Napoletano et al. (2006)
SF6 Pro-cyclical aggregate R&D investment Wälde and Woitek (2004)
SF7 Cross-correlations of credit-related variables Lown and Morgan (2006), Leary (2009)
SF8 Cross-correlation between firm debt and loan losses Foos et al. (2010)
SF9 Cross-correlation financial aggregates Adrian et al. (2013), Jakab and Kumhof (2015)

Interbank network stylized facts
SF10 Disassortativity Soramäki et al. (2007), Cocco et al. (2009)
SF11 Centrality-bank size relation Craig and von Peter (2014), Fricke and Lux (2015)
SF12 Heterogeneous interbank network density Alves et al. (2013), Aldasoro and Alves (2018)
SF13 Large (small) banks are net borrowers (lenders) Müller (2006), Liu et al. (2020)

Microeconomic stylized facts
SF14 Firm (log) size distribution is right-skewed Dosi (2005)
SF15 Fat-tailed firm growth-rate distribution Bottazzi and Secchi (2003, 2006)
SF16 Productivity heterogeneity across firms Bartelsman and Doms (2000), Dosi (2005)
SF17 Persistent productivity differential across firms Bartelsman and Doms (2000), Dosi (2005)
SF18 Lumpy investment rates at firm-level Doms et al. (1998)

Notes: The table reports the full list of stylized facts that our model is able to replicate. In italics, we highlight those that are
relative to our version.
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Table A.2
Main parameters and initial conditions in the economic system. For previous parametrization of some sub-
portions of the model and for model sensitivity to key parameters see Dosi et al. (2010), Dosi et al. (2015),
Lamperti et al. (2018) and Martinoli et al. (2024).
Description Symbol Value

Monte Carlo replications 𝑀 𝐶 1000
Time sample in economic system 𝑇 500
Transient period (time sample) 𝑇 300
Number of firms in capital-good industry 𝐹1 60
Number of firms in consumption-good industry 𝐹2 300
Number of bank B 20
Capital-good firms’ mark-up 𝜇1 0.04
Consumption-good firm initial mark-up 𝜇̄0 0.17
Initial bank mark-up 𝜇𝑑 𝑒𝑏0 0.05
Uniform distribution supports [𝜑1 , 𝜑2] [0.10, 0.90]
Wage setting 𝛥𝐴𝐵 weight 𝜓1 1
Wage setting 𝛥𝑐 𝑝𝑖 weight 𝜓2 0.05
Wage setting 𝛥𝑈 weight 𝜓3 0.05
R&D investment propensity (industrial) 𝜈 0.04
R&D allocation to innovative search 𝜉 0.5
Firms’ search capabilities parameter 𝜁 0.3
R&D investment propensity (energy) 𝜉𝑒 0.01
Beta distribution parameters (innovation) (𝛼 , 𝛽) (3, 3)
Beta distribution support (innovation) [𝜒1 , 𝜒̄1] [−0.2, 0.2]
Desired inventories 𝑙 0.1
Physical scrapping age (industrial) 𝜂 20
Payback period (industrial) 𝑏 3
Proxy of bank’s capital adequacy (fixed by regulator) 𝜏𝐵 0.045
Markdown on bank deposits interest rate 𝑚𝑑𝑑 𝑒𝑝 0.78
Markdown on central bank deposits interest rate 𝑚𝑑𝑟𝑒𝑠 0.41
Markdown on interbank interest rate 𝑚𝑑𝐼 𝐵 0.31
Markdown on government bonds 𝑚𝑑𝑏𝑜𝑛𝑑 𝑠 0
Recovery rate on interbank claims 𝜌𝐼 𝐵 0
Average idiosyncratic shock to haircut ℎ0 0.2
Sensitivity to inflation gap (Taylor rule) 𝛾𝜋 1.1
Sensitivity to unemployment gap (Taylor rule) 𝛾𝑈 1.1
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the technological opportunity space (Dosi, 1988). If an upstream firm
uccessfully innovate, close competitors can increase the chances of
eing imitators.

B.2. The consumption-good sector

Downstream firms manufacture a homogeneous bundle of goods
by using machineries bought from upstream firms, with constant re-
urns to scale. Workers consumption determines the level of demand
o be satisfied and accordingly, firms adaptively update their pro-
uction plans 𝑄𝑑𝑗 (also considering desired inventories (𝑁𝑑

𝑗 ) and the
actual stock (𝑁𝑗 )) according to the expected level of demand 𝐷𝑒

𝑗 =
𝑓 [𝐷𝑗 ,𝑡−1, 𝐷𝑗 ,𝑡−2,… , 𝐷𝑗 ,𝑡−ℎ]:
𝑄𝑑𝑗 ,𝑡 = 𝐷𝑒

𝑗 ,𝑡 +𝑁𝑑
𝑗 ,𝑡 −𝑁𝑗 ,𝑡, (B.4)

where 𝑁𝑗 (𝑡) = 𝜄𝐷𝑒
𝑗 (𝑡), 𝜄 ∈ [0, 1].

The production levels of downstream firms are constrained by the
level of their capital stock (𝐾𝑑 ). Accordingly, if production plans re-
quire more capital, firms undertake expansionary investments, namely
that increase their production capacity.

𝐸 𝐼𝑑𝑗 ,𝑡 = 𝐾𝑑
𝑗 ,𝑡 −𝐾𝑗 ,𝑡. (B.5)

Firms also undertake investments aimed at replacing machineries
that are become technologically obsolete in terms of productivity per-
formances that is, for a given set of capital goods 𝛯𝑖(𝑡), the vintage 𝜏 is
substituted with a more productive one if

𝑝𝑛𝑒𝑤

𝑐𝑐 𝑜𝑛𝑗 ,𝑡 − 𝑐𝑛𝑒𝑤
=

𝑝𝑛𝑒𝑤

𝑤𝑡
𝐴𝐿𝑃𝑖,𝜏

+ 𝑐𝑒𝑛𝑡
𝐴𝐸 𝐸𝑖,𝜏 − 𝑐𝑛𝑒𝑤𝑗

≤ 𝑏 (B.6)

with 𝑝𝑛𝑒𝑤 and 𝑐𝑛𝑒𝑤 being the price of the machinery and its unitary cost
of production, respectively. The parameter 𝑏 discounts firms’ ‘‘patience’’
n the rate of return on investments.
18 
The choice of the upstream supplier is determined by a price/
productivity ratio of those vintages that the downstream firm can
observe. Being characterized by the presence of systematic information
asymmetries, the choice of the consumption-good firm canis restricted
to a subset of upstream producers. Since the production of machineries
requires some time, consumption-good firms first order the capital good
that delivered at the end of the period. The price of each machine-tool
has a mark-up on its cost.

When comes at how to finance their investments, consumption-
good firms operate in imperfect credit markets (in the spirit of Stiglitz
and Weiss (1981)). Internal finance has priority: if are not able to
fully cover production and investment costs, they will rely on external
inance, by borrowing funds from a bank in the form of a credit
ine. Given the total credit (exposure) of a bank, the latter lends out
oney to firms on a pecking-order, determined by the ratio between

quity and sales (see Dosi et al., 2013). If the credit demanded by
onsumption-good firms exceeds its supply, firms are credit-rationed.
lso in the downstream sector, firms charge a markup over the unit

cost of production according to the following rule:

𝑝𝑐 𝑜𝑛𝑗 ,𝑡 = 𝑐𝑐 𝑜𝑛𝑗 ,𝑡 [1 + 𝜇𝑗 ,𝑡]. (B.7)

The choice of the markup is determined by selection processes of
he markets in which firms operate. In particular, it depends on the
volution firms’ market share, 𝑓𝑗 :

𝜇𝑗 ,𝑡 = 𝜇𝑗 ,𝑡−1
[

1 + 𝜐𝑓𝑗 ,𝑡−1 − 𝑓𝑗 ,𝑡−2
𝑓𝑗 ,𝑡−2

]

(B.8)

with 0 ≤ 𝜐 ≤ 1.
Moreover, market shares evolution is governed by a ‘‘quasi replica-

or’’ mechanism: less competitive firms are driven out from the market
s the level of their competitiveness decreases.

At the end of every period, all firms’ profits (net of taxes) are
computed and the level of cash reserves is updated. If the latter is
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Table A.3
Macroeconomic effects of NEVA implementation under different capital requirement regimes.

Macro-prudential policy parameter 𝜏𝐵

2% 2.5% 3% 3.5% 4% 4.5% 5% 5.5% 6% 6.5% 7%

Loss contagion BASE −0.17 −0.162 −0.206** −0.091 −0.134 0 −0.137 −0.165* −0.146 −0.133 −0.023

SEMI −0.18* −0.015 0.076 −0.091 −0.142 −0.168* −0.132 −0.143 −0.139 −0.138 −0.094

NEVA −0.724*** −0.718*** −0.743*** −0.674*** −0.707*** −0.733*** −0.687*** −0.72*** −0.747*** −0.726*** −0.739***

NEVA2 −0.688*** −0.694*** −0.744*** −0.659*** −0.732*** −0.738*** −0.7*** −0.69*** −0.758*** −0.733*** −0.706***

Bank defaults BASE −0.222* −0.216* −0.254** −0.12 −0.138 0 −0.142 −0.16 −0.141 −0.114 0.041

SEMI −0.154 0.023 0.144 −0.076 −0.112 −0.133 −0.064 −0.141 −0.096 −0.096 −0.008

NEVA −0.441*** −0.455*** −0.485*** −0.405*** −0.434*** −0.495*** −0.422*** −0.448*** −0.501*** −0.446*** −0.477***

NEVA2 −0.421*** −0.423*** −0.517*** −0.358*** −0.488*** −0.52*** −0.426*** −0.387*** −0.522*** −0.473*** −0.403***

Bailout costs BASE −0.24* −0.211* −0.237** −0.114 −0.147 0 −0.153 −0.182 −0.158 −0.137 −0.001

SEMI −0.165 0.016 0.113 −0.082 −0.124 −0.151 −0.105 −0.171 −0.13 −0.134 −0.043

NEVA −0.407*** −0.394*** −0.446*** −0.34*** −0.396*** −0.431*** −0.356*** −0.41*** −0.455*** −0.389*** −0.43***

NEVA2 −0.367*** −0.357*** −0.464*** −0.298*** −0.431*** −0.461*** −0.376*** −0.346*** −0.469*** −0.424*** −0.374***

Credit Supply BASE 0.029*** 0.026*** 0.036*** 0.028*** 0.016 0 0.014 0.009 −0.001 0.013 −0.014

SEMI 0.016 0.015 0.003 0.01 0.02** 0.011 0.006 0.008 −0.004 0.008 −0.006

NEVA 0.002 0.004 −0.001 −0.003 −0.013 0 −0.005 −0.015 −0.006 −0.023** −0.027**

NEVA2 −0.001 −0.002 0.005 −0.005 −0.003 0.006 −0.012 −0.025** −0.008 −0.024** −0.05***

Total Loans BASE 0.02*** 0.022*** 0.02*** 0.016** 0.012* 0 0.008 0.002 −0.002 0.006 −0.019**

SEMI 0.016** 0.01 −0.001 0.006 0.011 0.005 0 0.005 −0.011 −0.003 −0.013

NEVA −0.002 −0.003 −0.01 −0.014 −0.022** −0.004 −0.016* −0.023** −0.023** −0.035*** −0.043***

NEVA2 −0.007 −0.005 −0.003 −0.011 −0.014 −0.004 −0.023** −0.03*** −0.02** −0.035*** −0.063***

Credit Demand BASE 0.011** 0.012** 0.012** 0.01** 0.007 0 0.008 0.004 0.001 0.006 −0.008

SEMI 0.009 0.005 −0.003 0.003 0.008 0.004 0.003 0.005 −0.004 0.003 −0.002

NEVA 0.002 0.005 0.001 0 −0.001 0.007 0.002 −0.001 0.001 −0.007 −0.009

NEVA2 0 0.002 0.006 0.001 0.002 0.007 −0.001 −0.004 0.001 −0.007 −0.017***

Fin. constraints BASE −0.055*** −0.06*** −0.046*** −0.038** −0.025 0 −0.007 −0.002 0.007 0.001 0.055***

SEMI −0.044*** −0.027 −0.004 −0.021 −0.021 −0.012 0.008 −0.013 0.025 0.022 0.051**

NEVA −0.018 −0.007 0.003 0.003 0.029 −0.01 0.015 0.038* 0.043** 0.053** 0.073***

NEVA2 −0.003 −0.01 −0.014 −0.003 0.011 −0.011 0.026 0.055*** 0.034* 0.052** 0.124***

GDP growth BASE 0.01** 0.016*** 0.011*** 0.007* 0.008* 0 0.003 0 0.002 0 −0.01*

SEMI 0.009** 0.007 0 0.005 0.005 0.002 −0.003 0.001 −0.006 −0.003 −0.008

NEVA 0.003 0.001 0.001 −0.001 −0.005 0.004 −0.001 −0.009* −0.009* −0.013*** −0.015***

NEVA2 0.002 0.004 0.005 −0.001 −0.001 0.004 −0.004 −0.012** −0.005 −0.014*** −0.024***

Investment growth BASE 0.02** 0.034*** 0.026*** 0.016** 0.017** 0 0.006 0.004 0.005 0.001 −0.01

SEMI 0.019** 0.016** 0.01 0.013* 0.012 0.009 −0.006 0.003 −0.009 −0.002 −0.013

NEVA 0.006 0 0.003 −0.003 −0.013 0.003 −0.012 −0.015* −0.015 −0.022** −0.023**

NEVA2 0.008 0.003 0.003 −0.006 −0.014 0.003 −0.01 −0.027*** −0.012 −0.033*** −0.048***

Unemp. rate BASE −0.218*** −0.232*** −0.195*** −0.158** −0.092 0 −0.042 −0.026 0.008 −0.023 0.195**

SEMI −0.171** −0.08 0.005 −0.057 −0.088 −0.063 0.034 −0.046 0.098 0.05 0.158*

NEVA −0.125* −0.078 −0.044 −0.042 0.048 −0.108 −0.014 0.06 0.067 0.092 0.188**

NEVA2 −0.054 −0.077 −0.109 −0.079 −0.023 −0.104 0.022 0.111 0.032 0.108 0.375***

Notes: The table shows, for a set of macroeconomic real and financial indicators, the Monte Carlo average percentage difference between the value of statistic 𝑋 under the scenario
of interest 𝑠 and a baseline scenario 𝑏𝑎𝑠𝑒, (𝑋𝑠 − 𝑋𝑏𝑎𝑠𝑒)∕𝑋𝑏𝑎𝑠𝑒. In order to have statistics comparable across different capital requirement regimes, a reference-baseline scenario is
fixed at 𝜏𝐵 = 0.045, i.e., the baseline parametrization in Section 4, centered around 0 by construction.
We also test whether the difference in means is statistically significant or not between the two scenarios. The null hypothesis is that there is no statistical difference in the means
alculated in the two scenarios: *p<0.1; **p<0.05; ***p<0.01.
c
p
w

negative or market share goes to zero, a firm exits the market and it is
replaced by a new entrant.

B.3. The energy industry

The model relies on an energy sector (Lamperti et al., 2018). Up-
stream and downstream sectors produce their goods also using energy
as input, which is produced by a vertically-integrated monopolist own-
ing power plants. Interactions and feedbacks stemming from the energy
sector that performs R&D for green and dirty technologies are not rel-
vant for the macro-financial dynamics. The only feedback mechanism
19 
that we embed is on the dynamics of unit cost of production of the two
ompetitive sectors, as the latter use energy for manufacturing their
roducts. For a more detailed discussion of the functioning of this sector
e refer to section 2.2.1 of Lamperti et al. (2018).

B.4. The public sector

The public sector collects taxes on incomes (firm profits and wages)
and when unemployment rises consumers are paid a subsidy, propor-
tional to the current level of market wage. As in other versions of
the model, wages are determined by institutional, market-related and
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macroeconomic factors. Accordingly, they ultimately depend on the
inflation gap, average productivity, and unemployment rate, as follows:
𝛥𝑤𝑡
𝑤𝑡−1

= 𝜋𝑇 + 𝜓1(𝜋𝑡−1 − 𝜋𝑇 ) + 𝜓2
𝛥𝐴𝐵𝑡
𝐴𝐵𝑡−1

− 𝜓3
𝛥𝑈𝑡
𝑈𝑡−1

, (B.9)

where 𝐴𝐵 stands for the economy-wide average productivity and
1, 𝜓2, 𝜓3 > 0. The sum of all unemployment subsidies adds up to the

level of Government expenditures 𝐺𝑡 = 𝑤𝑢𝑡 (𝐿
𝑆 − 𝐿𝐷𝑡 ). Since workers

consume all their income, aggregate consumption is determined by
the sum of all incomes, both from employed and unemployed: 𝐶𝑡 =
𝑤𝑡𝐿𝐷𝑡 + 𝐺𝑡.

The tax rate is fixed at 𝑡𝑟. Public expenditures also comprises the
bank bailout costs. Public deficit is calculated accordingly and it set to
be equal to 𝐷 𝑒𝑓𝑡 = 𝐷 𝑒𝑏𝑡𝑐 𝑜𝑠𝑡𝑡 + 𝐺𝑏𝑎𝑖𝑙 𝑜𝑢𝑡𝑡 + 𝐺𝑡 − 𝑇 𝑎𝑥𝑡. Whenever the deficit
is positive, the Government issues bonds that are acquired by banks
according to their size.

All the aggregate variables are then the result of microeconomic
behavior and interaction. Since there are not intermediate goods, aggre-
gate production is the sum of firms’ value added. National accounting
entities are also met: the value of total production corresponds to the
um of aggregate consumption, investment and change in inventories
𝛥𝑁𝑡):
𝐹1
∑

𝑖=1
𝑄𝑖,𝑡 +

𝐹2
∑

𝑗=1
𝑄𝑗 ,𝑡 = 𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝛥𝑁𝑡
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