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Abstract. We prove the well posedness of a class of non linear and
non local mixed hyperbolic–parabolic systems in bounded domains, with
Dirichlet boundary conditions. In view of control problems, stability
estimates on the dependence of solutions on data and parameters are
also provided. These equations appear in models devoted to population
dynamics or to epidemiology, for instance.

1. Introduction

We consider the following non linear system on a bounded domain Ω ⊂ Rn{
∂tu+∇· (u v(t, w)) = α(t, x, w)u+ a(t, x) ,

∂tw − µ∆w = β(t, x, u, w)w + b(t, x) ,
(t, x) ∈ [0, T ]× Ω. (1.1)

Systems of this form arise, for instance, in predator–prey systems [8] and can
be used in the control of parasites, see [10, 19]. A similar mixed hyperbolic–
parabolic system is considered, in one space dimension, in [15], where Euler
equations substitute the balance law in (1.1).

Motivated by these applications, terms in (1.1) may well contain non
local functions of the unknowns. Typically, whenever u is a predator and
w a prey, the velocity v governing the movement of u, when computed at
a point x, i.e., (v (t, w)) (x), depends on w through integrals of the form∫
∥x−ξ∥≤ρ f (t, x, ξ, w(t, ξ)) dξ so that ρ is the horizon at which the predator

feels the prey.
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Under standard assumptions on the functions defining (1.1), we provide
the analytical framework where the existence and the uniqueness of solu-
tions to (1.1)–(1.2). Moreover, we obtain a full set of a priori and stability
estimates on view of the interest about control problems based on these
equations, see [2]. To this aim, we equip (1.1) with homogeneous Dirichlet
boundary conditions and initial data:{

u(t, ξ) = 0

w(t, ξ) = 0
(t, ξ) ∈ [0, T ]× ∂Ω and

{
u(0, x) = uo(x)

w(0, x) = wo(x)
x ∈ Ω. (1.2)

We stress that the whole construction is settled in L1, a usual choice for
balance laws but less common in the case of the parabolic equation. This
choice is motivated by the clear physical meaning of total population attached
to this norm, whenever solutions are positive – a standard situation in the
motivating models. As is well known, in parabolic equations, L2 or Wk,2

are more standard choices, also thanks to the further properties of reflexive
spaces, see for instance the recent papers [4, 14].

The introduction of a boundary, with the corresponding boundary condi-
tions, affects the whole analytical structure, differently in the two equations.
Indeed, as is well known, the hyperbolic equation for u may well lead to
problems that are locally overdetermined, resulting in the boundary condi-
tion to be simply neglected, see [1, 9, 18, 22]. On the contrary, the solution
to the parabolic equation attains along the boundary the prescribed value,
for all positive times, see [12, 17, 20].

We stress that in the hyperbolic case, different definitions of solutions are
available, see [1, 18, 21, 22]. Here, we provide Definition 3.10 that unifies dif-
ferent approaches, also allowing to prove an intrinsic uniqueness of solutions,
i.e., independent of the way solutions are constructed.

Particularly relevant are the estimates on the dependence of (u,w) on
the terms a, b in (1.1), which typically play the role of controls. Indeed, in
the applications of (1.1) to biological problems, a and b typically measure
the deployment of parasitoids or chemicals that hinder the propagation or
reproduction of harmful parasites, see [10, 19]. It is with reference to this
context that we care to ensure the positivity of solutions, whenever the data
and the controls are positive.

The next section, after the necessary introduction of the notation, presents
the result. Proofs and further technical details are deferred to Section 3,
where different paragraphs refer to the parabolic problem, to the hyperbolic
one and to the coupling.



Non linear hyperbolic–parabolic systems 445

2. Main Results

Throughout, the following notation is used. R+ = [0,+∞), R− = (−∞, 0].
If A ⊆ Rn, the characteristic function χ

A
is defined by χ

A
(x) = 1 if and only

if x ∈ A and χ
A
(x) = 0 if and only if x ∈ Rn \ A. For xo ∈ Rn and r > 0,

B(xo, r) is the open sphere centered at xo with radius r. We fix a time T > 0
and the following condition on the spatial domain Ω:

(Ω) Ω is a non empty, bounded and connected open subset of Rn, with
C2,γ boundary, for a γ ∈ (0, 1].

This condition is mainly motivated by the treatment of the parabolic part.
Here, we mostly use the framework in [20, Appendix B, § 48]. Other possible
regularity assumptions on ∂Ω are in [17, Chapter 4, § 4, p. 294].

We pose the following assumptions on the functions appearing in prob-
lem (1.1):

(v) v : [0, T ] × L∞(Ω;R) → (C2 ∩ W1,∞)(Ω;Rn) is such that for a
constant Kv > 0 and for a map Cv ∈ L∞

loc([0, T ] × R+;R+) non
decreasing in each argument, for all t, t1, t2 ∈ [0, T ] and w,w1, w2 ∈
L∞(Ω;R),

∥v(t, w)∥L∞(Ω;Rn) ≤ Kv ∥w∥L1(Ω;R)

∥Dxv(t, w)∥L∞(Ω;Rn×n) ≤ Kv ∥w∥L1(Ω;R)

∥v(t1, w1)− v(t2, w2)∥L∞(Ω;Rn) ≤ Kv

(
|t2 − t1|+ ∥w2 − w1∥L1(Ω;R)

)∥∥D2
xv(t, w)

∥∥
L1(Ω;Rn×n×n)

≤ Cv

(
t, ∥w∥L1(Ω;R)

)
∥w∥L1(Ω;R)

∥∇· (v(t1, w1)−v(t2, w2))∥L∞(Ω;R)≤Cv

(
t,max

i=1,2
∥wi∥L1(Ω;R)

)
∥w1 − w2∥L1(Ω;R).

(α) α : [0, T ] × Ω × R → R admits a constant Kα > 0 such that, for
a.e. t ∈ [0, T ] and all w,w1, w2 ∈ R

sup
x∈Ω

|α(t, x, w1)− α(t, x, w2)| ≤ Kα |w1 − w2|

sup
(x,w)∈Ω×R

α(t, x, w) ≤ Kα (1 + w)

and for all w ∈ BV(Ω;R)

TV
(
α(t, ·, w(t, ·))

)
≤ Kα

(
1 + ∥w∥L∞(Ω;R) +TV (w)

)
.

(a) a ∈ L1 ([0, T ];L∞(Ω;R)) and for all t ∈ [0, T ], a(t) ∈ BV(Ω;R).
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(β) β : [0, T ]× Ω× R× R → R admits a constant Kβ > 0 such that, for
a.e. t ∈ [0, T ] and all u, u1, u2, w, w1, w2 ∈ R

sup
x∈Ω

|β(t, x, u1, w1)− β(t, x, u2, w2)| ≤ Kβ (|u1 − u2|+ |w1 − w2|)

sup
(x,u,w)∈Ω×R×R

β(t, x, u, w) ≤ Kβ .

(b) b ∈ L1([0, T ];L∞(Ω;R)) and for all t ∈ [0, T ], b(t) ∈ BV(Ω;R+).

Note in particular that (v) requires to bound L∞ norms by means of L1

norms, a feature typical of non local operators. In fact, referring to predator–
prey applications, it is in general reasonable to assume that the u (predator)
population moves according to averages of the w (prey) population density
or of its gradient. This justifies our requiring v in (1.1) to be a non local
function of w.

Since we deal with the bounded domain Ω, these averages need to be
computed only inside Ω. To this aim, the modified convolution introduced
in [9, § 3], which reads

(ρ ∗
Ω
η)(x) =

∫
Ω ρ(y) η(x− y) dy∫

Ω η(x− y) dy
(2.1)

is of help. The quantity (ρ ∗
Ω
η)(x) is an average of the crowd density ρ in

Ω around x as soon as the kernel η satisfies

(η) η(x) = η̃(∥x∥), where η̃ ∈ C2(R+;R), spt η̃ = [0, ℓη], ℓη > 0, η̃′ ≤ 0,
η̃′(0) = η̃′′(0) = 0 and

∫
RN η(ξ) dξ = 1.

In those models where it is reasonable to assume that u moves directed
towards the areas with higher/lower density of w, i.e., v is parallel to the
average gradient of w in Ω, we select:

v(t, w)
// ∇ (w ∗

Ω
η)√

1 + ∥∇ (w ∗
Ω
η)∥2

, (2.2)

where as kernel η we choose for instance η(x) = ℓ(ℓ4 − ∥x∥4)4. Here, ℓ has
the clear physical meaning of the distance, or horizon, at which individuals
of the u population feel the presence of the w population. The normalization
parameter ℓ is chosen so that

∫
R2 η(x) dx = 1. A choice like (2.2) is consistent

with the requirements (v), as proved in [9, Lemma 3.2].
To state what we mean by a solution to (1.1), we resort to the standard

definitions of solutions, separately, to the hyperbolic and to the parabolic
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problems constituting (1.1). In the former case, we refer to [18, 21, 22] and
in the latter to the classical [20].

Definition 2.1. A pair (u,w) ∈ C0
(
[0, T ];L1(Ω;R2)

)
is a solution to (1.1)–

(1.2) if, setting

c(t, x) = v (t, w(x)) , A(t, x) = α (t, x, w(t, x))

B(t, x) = β (t, x, u(t, x), w(t, x)) ,

the function u, according to Definition 3.10, solves
∂tu+∇· (u c(t, x)) = A(t, x)u+ a(t, x) (t, x) ∈ [0, T ]× Ω

u(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

u(0, x) = uo(x) x ∈ Ω

and the function w, according to Definition 3.1, solves
∂tw − µ∆w = B(t, x)w + b(t, x) (t, x) ∈ [0, T ]× Ω

w(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

w(0, x) = wo(x) x ∈ Ω .

In the present framework, we also verify that, under suitable conditions on
the initial data, the solution (u,w) enjoys the following regularity (u(t), w(t))
∈ (BV ∩ L∞)(Ω;R2

+) for all t ∈ [0, T ].
We are now ready to state the main result of this work.

Theorem 2.2. Let (Ω)–(v)–(α)–(a)–(β)–(b) hold. For any initial datum
(uo, wo) in (L∞ ∩ BV)(Ω;R2), problem (1.1) admits a unique solution on
[0, T ] in the sense of Definition 2.1. Moreover, the following properties hold:

A priori bounds: There exists a constant C depending only on Ω, Kα, Kβ,
Kv such that for all t ∈ [0, T ] and for all initial data

∥w(t)∥L1(Ω;R) ≤ eC t
(
∥wo∥L1(Ω;R) + ∥b∥L1([0,t]×Ω;R)

)
(2.3)

∥w(t)∥L∞(Ω;R) ≤ eC t
(
∥wo∥L∞(Ω;R) + ∥b∥L1([0,t];L∞(Ω;R)

)
. (2.4)

Let Cw(t) denote the maximum of the two right hand sides in (2.3) and
in (2.4); then

∥u(t)∥L1(Ω;R) ≤ (∥uo∥L1(Ω;R) + ∥a∥L1([0,t]×Ω;R)) exp(Ct(1 + Cw(t))) (2.5)

∥u(t)∥L∞(Ω;R) ≤
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,t];L∞(Ω;R))

)
exp (C t (1 + 2Cw(t))) .

(2.6)
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Lipschitz continuity in the initial data : Let (ũo, w̃o) ∈ (L∞ ∩BV)(Ω;R2)
and call (ũ, w̃) the corresponding solution to (1.1). Then, for all t ∈ [0, T ],

∥u(t)− ũ(t)∥L1(Ω;R) + ∥w(t)− w̃(t)∥L1(Ω;R)

≤ C(t)
(
∥uo − ũo∥L1(Ω;R) + ∥wo − w̃o∥L1(Ω;R)

)
,

where C ∈ L∞([0, T ];R+) depends on Ω, Kα, Kβ, Kv, on the map Cv, on
norms and total variation of the functions a and b and of the initial data.

Stability with respect to the controls : Let ã satisfy (a), b̃ satisfy (b) and
call (ũ, w̃) the corresponding solution to (1.1). Then, for all t ∈ [0, T ],

∥u(t)− ũ(t)∥L1(Ω;R) + ∥w(t)− w̃(t)∥L1(Ω;R)

≤ C(t)
(
∥a− ã∥L1([0,t]×Ω;R) + ∥b− b̃∥L1([0,t]×Ω;R)

)
,

where C ∈ L∞([0, T ];R+) depends on Ω, Kα, Kβ, Kv, on the map Cv, on

norms and total variation of the functions a, ã and b, b̃ and of the initial
data.

Positivity : If for all (t, x) ∈ [0, T ] × Ω, a(t, x) ≥ 0 and b(t, x) ≥ 0, then
for all initial datum (uo, wo) with uo(x) ≥ 0 and wo(x) ≥ 0 for all x ∈ Ω,
the solution (u,w) is such that u(t, x) ≥ 0 and w(t, x) ≥ 0 for all (t, x) ∈
[0, T ]× Ω.

The proof is deferred to Section 3.
The lower semicontinuity of the total variation with respect to the L1

distance ensures moreover that bounds on the total variation of the solution
can be obtained by means of (3.50) and (3.60).

3. Proofs

In the proofs below, we provide all details wherever necessary and pre-
cise references for those part that differ only slightly from the cases under
consideration.

3.1. Parabolic Estimates. Fix T, µ > 0 and let Ω satisfy (Ω). This para-
graph is devoted to the IBVP

∂tw = µ∆w +B(t, x)w + b(t, x) (t, x) ∈ [0, T ]× Ω

w(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

w(0, x) = wo(x) x ∈ Ω .

(3.1)

The following definition is adapted from [20], see Remark 3.2.
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Definition 3.1. A map w ∈ C0([0, T ];L1(Ω;R)) is a solution to (3.1) if
w(0) = wo and for all test functions φ ∈ C2([0, T ]×Ω;R) such that φ(T, x) =
0 for all x ∈ Ω and φ(t, ξ) = 0 for all (t, ξ) ∈ [0, T ]× ∂Ω:∫ T

0

∫
Ω
(w(t, x)∂tφ(t, x) + µw(t, x)∆φ(t, x) (3.2)

+ (B(t, x)w(t, x) + b(t, x))φ(t, x)) dx dt+

∫
Ω
wo(x)φ(0, x) dx = 0 .

Remark 3.2. Let
d(x, ∂Ω) = inf

y∈∂Ω
∥x− y∥.

Recall

∥w∥L1
δ(Ω;R) =

∫
Ω
|w(x)| d(x, ∂Ω) dx

from [20, Appendix B]. Since ∥w∥L1
δ(Ω;R) ≤ O(1)∥w∥L1(Ω;R), a solution in

the sense of Definition 3.1 is also a weak L1
δ solution in the sense of [20,

Definition 48.8, Appendix B].

Remark 3.3. In Definition 3.1, it is sufficient to consider test functions
φ ∈ C1([0, T ] × Ω;R) such that for all t ∈ [0, T ], the map x 7→ φ(t, x) is of
class C2(Ω;R) and moreover φ(T, x) = 0 for all x ∈ Ω and φ(t, ξ) = 0 for
all (t, ξ) ∈ [0, T ]× ∂Ω. This is proved through a standard regularization by
means of a convolution with a mollifier supported in R−.

For µ > 0, the heat kernel is denoted by

Hµ(t, x) = (4πµt)−n/2 exp
(
− ∥x∥2/(4µt)

)
,

where t > 0, x ∈ Rn. As it is well known, ∥Hµ(t)∥L1(Rn;R) = 1.

Proposition 3.4. Let Ω satisfy (Ω) and fix µ > 0. Then, there exists a
Green function

G ∈ C∞((0,+∞)×(0,+∞)×Ω×Ω;R+)∩C0((0,+∞)×(0,+∞)×Ω×Ω;R+)

such that:

(G1) For all t, τ ∈ R+ and x, y ∈ Ω, G(t, τ, x, y) = G(t, τ, y, x).
(G2) For all t, τ ∈ R+, ξ ∈ ∂Ω and y ∈ Ω, G(t, τ, ξ, y) = 0.
(G3) There exist positive constants C, c such that for all t, τ ∈ R+ and for

all x, y ∈ Ω,

0 ≤ G(t, τ, x, y) ≤ Hµ(t− τ, x− y)

|∂tG(t, τ, x, y)| ≤ c(t− τ)−(n+2)/2 exp
(
− C∥x− y∥2/(t− τ)

)
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∥∇xG(t, τ, x, y)∥ ≤ c(t− τ)−(n+1)/2 exp
(
− C∥x− y∥2/(t− τ)

)
.

(G4) For all b ∈ L1([0, T ]× Ω;R) and all wo ∈ L1(Ω;R), the IBVP
∂tw = µ∆w + b(t, x) (t, x) ∈ [0, T ]× Ω

w(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

w(0, x) = wo(x) x ∈ Ω

(3.3)

admits a unique solution in the sense of Definition 3.1, which is

w(t, x) =

∫
Ω
G(t, 0, x, y)wo(y) dy +

∫ t

0

∫
Ω
G(t, τ, x, y)b(τ, y) dy dτ . (3.4)

The Green function depends both on µ and on Ω but, for simplicity, we
omit this dependence.

Proof of Proposition 3.4. Condition (G1) follows from [20, Appendix B,
§ 48.2]. Property (G2) comes from [17, Chapter IV, § 16, (16.7)–(16.8)
p. 408].

The first bound in (G3) follows from [20, Formula (48.4), p.440], the
second and the third one from [17, Chapter IV, § 16, Theorem 16.3, p. 413].

To prove (G4), use Remark 3.2 and [20, Proposition 48.9, Appendix B],
[20, Corollary 48.10, Appendix B] and the Maximum Principle [20, Proposi-
tion 52.7, Appendix B], which ensure the equivalence between (3.2) and (3.4)
as soon as either wo ≥ 0, b ≥ 0 or wo ≤ 0, b ≤ 0. The linearity of (3.3)
allows to complete the proof. □

Proposition 3.5. Let Ω satisfy (Ω), fix µ > 0 and let

(P1) wo ∈ L∞(Ω;R),
(P2) B ∈ L∞([0, T ]× Ω;R),
(P3) b ∈ L1([0, T ];L∞(Ω;R)).

Then

(1) Problem (3.1) admits a unique solution in the sense of Definition
3.1.

(2) The solution to (3.1) is implicitly given by

w(t, x) =

∫
Ω
G(t, 0, x, y)wo(y) dy (3.5)

+

∫ t

0

∫
Ω
G(t, τ, x, y) (B(τ, y)w(τ, y) + b(τ, y)) dy dτ

where G, independent of b and B, is defined in Proposition 3.4.
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(3) The following a priori bounds hold for all t ∈ [0, T ]

∥w(t)∥L1(Ω;R) ≤
(
∥wo∥L1(Ω;R) + ∥b∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B(τ)∥L∞(Ω;R) dτ ,

(3.6)

∥w(t)∥L∞(Ω;R)≤
(
∥wo∥L∞(Ω;R)+ ∥b∥L1([0,t];L∞(Ω;R))

)
exp

∫ t

0
∥B(τ)∥L∞(Ω;R) dτ .

(3.7)

(4) If w1, w2 solve (3.1) with data w1
o, w

2
o satisfying (P1), functions B1,

B2 satisfying (P2) and functions b1, b2 satisfying (P3), then

∥w1(t)− w2(t)∥L1(Ω;R) (3.8)

≤
(∥∥w1

o − w2
o

∥∥
L1(Ω;R) + ∥b1 − b2∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B1(τ)∥L∞(Ω;R) dτ

+ ∥B1 −B2∥L1([0,t]×Ω;R)
(∥∥w2

o

∥∥
L∞(Ω;R) + ∥b2∥L1([0,t];L∞(Ω;R))

)
× exp

∫ t

0

(
∥B1(τ)∥L∞(Ω;R) + ∥B2(τ)∥L∞(Ω;R)

)
dτ .

(5) Positivity: if b ≥ 0 and wo ≥ 0, then w ≥ 0.
(6) If wo ∈ BV(Ω;R) and b(t) ∈ BV(Ω;R) for all t ∈ [0, T ], then for all

t ∈ [0, T ] the following estimate holds :

TV (w(t)) ≤ TV (wo) +

∫ t

0
TV (b(τ)) dτ +O(1)

√
t∥B∥L∞([0,t]×Ω;R) (3.9)

×
(
∥wo∥L1(Ω;R)+∥b∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B(τ)∥L∞(Ω;R) dτ .

We note, for completeness, that in the setting of Proposition 3.5 the fol-
lowing regularity results, not of use in the sequel, can also be obtained:

(7) If wo ∈ C1
c(Ω;R), then the solution w is such that w(t) ∈ C1(Ω;R)

for all t ∈ [0, T ].
(8) The solution w is Hölder continuous in time.

Proof of Proposition 3.5. We split the proof in a few steps.
Claim 1: Problem (3.1) admits at most one solution in the sense of Def-

inition 3.1. Observe that if w1, w2 solve (3.1) in the sense of Definition 3.1,
then their difference satisfies∫ T

0

∫
Ω
(w2 − w1)(∂tφ+ µ∆φ+Bφ) dx dt = 0,
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for all φ as regular as specified in Remark 3.3. By [20, (ii) in Theorem 48.2,
Appendix B], we choose as φ the strong solution to

∂tφ+ µ∆φ+B(t, x)φ = f (t, x) ∈ [0, T ]× Ω

φ(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

φ(T, x) = 0 x ∈ Ω,

where f ∈ C0([0, T ]× Ω;R). We thus have∫ T

0

∫
Ω
(w2 − w1) f dx dt = 0,

so that, by the arbitrariness of f , w1 = w2.

Claim 2: If w ∈ L∞([0, T ];L1(Ω;R)) satisfies (3.5), then (3.6) and (3.7)
hold. Consider first (3.6). By (G3), recalling ∥Hµ(t)∥L1(Ω;R) ≤ 1, we have

∥w(t)∥L1(Ω;R) ≤
∫
Ω

∫
Ω
G(t, 0, x, y)|wo(y)| dy dx

+

∫
Ω

∫ t

0

∫
Ω
G(t, τ, x, y)|B(τ, y)w(τ, y) + b(τ, y)| dy dτ dx

≤
∫
Ω

∫
Ω
Hµ(t, x− y)|wo(y)|dy dx

+

∫
Ω

∫ t

0

∫
Ω
Hµ(t− τ, x− y)|B(τ, y)w(τ, y) + b(τ, y)| dy dτ dx

≤ ∥wo∥L1(Ω;R) +

∫ t

0
∥B(τ)∥L∞(Ω;R) ∥w(τ)∥L1(Ω;R) dτ + ∥b∥L1([0,t]×Ω;R) .

An application of Gronwall Lemma [3, Lemma 3.1] yields (3.6). The proof
of (3.7) is entirely similar.

Claim 3: If w1, w2 ∈ L∞([0, T ];L1(Ω;R)) satisfy (3.5), then (3.8) holds.
Note that

w1(t, x)− w2(t, x) =

∫
Ω
G(t, 0, x, y)

(
w1
o(y)− w2

o(x)
)
dy

+

∫ t

0

∫
Ω
G(t, τ, x, y) (B1(τ, y)w1(τ, y)−B2(τ, y)w2(τ, y)) dy dτ

+

∫ t

0

∫
Ω
G(t, τ, x, y) (b1(t, y)− b2(t, y)) dy dτ

=

∫
Ω
G(t, 0, x, y)

(
w1
o(y)− w2

o(x)
)
dy
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+

∫ t

0

∫
Ω
G(t, τ, x, y)B1(τ, y) (w1(τ, y)− w2(τ, y)) dy dτ

+

∫ t

0

∫
Ω
G(t, τ, x, y) b̃(t, y) dy dτ ,

where

b̃(t, x) = (B1(t, x)−B2(t, x)) w2(t, x) + b1(t, x)− b2(t, x).

Proceeding as in the proof of Claim 2 and exploiting (3.7), we obtain

∥w1(t)− w2(t)∥L1(Ω;R)

≤
(∥∥w1

o − w2
o

∥∥
L1(Ω;R) +

∥∥b̃∥∥
L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B1(τ)∥L∞(Ω;R) dτ

≤
(∥∥w1

o − w2
o

∥∥
L1(Ω;R) + ∥B1 −B2∥L1([0,t]×Ω;R)∥w2∥L∞([0,t]×Ω;R)

+ ∥b1 − b2∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B1(τ)∥L∞(Ω;R) dτ

≤
(∥∥w1

o − w2
o

∥∥
L1(Ω;R) + ∥b1 − b2∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B1(τ)∥L∞(Ω;R) dτ

+ ∥B1 −B2∥L1([0,t]×Ω;R)

(∥∥w2
o

∥∥
L∞(Ω;R) + ∥b2∥L1([0,t];L∞(Ω;R))

)
× exp

∫ t

0

(
∥B1(τ)∥L∞(Ω;R) + ∥B2(τ)∥L∞(Ω;R)

)
dτ .

Claim 4: If w ∈ L∞([0, T ];L1(Ω;R)) satisfies (3.5), then

w ∈ C0([0, T ];L1(Ω;R)).

Introduce the abbreviation b̃(t, x) = B(t, x)w(t, x) + b(t, x) so that, us-
ing (3.6),∥∥∥b̃(t)∥∥∥

L1(Ω;R)
≤ ∥B(t)∥L∞(Ω;R) ∥w(t)∥L1(Ω;R) + ∥b∥L1(Ω;R)

≤ ∥B(t)∥L∞(Ω;R)

(
∥wo∥L1(Ω;R) + ∥b∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B(τ)∥L∞(Ω;R) dτ

+ ∥b(t)∥L1(Ω;R)

and ∥b̃∥L∞([0,t];L1(Ω;R)) ≤ O(1). Compute, using (G3), for t2 > t1 > 0 and
s, σ ∈ (t1, t2),

∥w(t2)− w(t1)∥L1(Ω;R)
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≤
∫
Ω

∫
Ω
|G(t2, 0, x, y)−G(t1, 0, x, y)||wo(y)| dy dx (3.10)

+

∫ t1

0

∫
Ω

∫
Ω
|G(t2, τ, x, y)−G(t1, τ, x, y)||b̃(τ, y)|dy dx dτ (3.11)

+

∫ t2

t1

∫
Ω

∫
Ω
|G(t2, τ, x, y)||b̃(τ, y)|dy dx dτ . (3.12)

Consider the three terms above separately.

(3.10) ≤
∫
Ω

∫
Ω

∫ t2

t1

|∂tG(s, 0, x, y)||wo(y)|dsdy dx

≤
∫
Ω

∫
Ω

∫ t2

t1

c

s1+n/2
exp

(
− C ∥x− y∥2

s

)
|wo(y)| ds dy dx

≤ ∥wo∥L1(Ω;R)

∫
Rn

∫ t2

t1

c

s1+n/2
exp

(
− C ∥x∥2

s

)
ds dx

≤ ∥wo∥L1(Ω;R)
c

Cn/2

∫
Rn

e−∥x∥2 dx

∫ t2

t1

1

s
ds

= O(1) ln
( t2
t1

)
∥wo∥L1(Ω;R) ,

which vanishes as t2 → t1 since t1 > 0.

(3.11) ≤
∫ t1

0

∫
Ω

∫
Ω

∫ t2

t1

|∂tG(s, τ, x, y)|
∣∣∣b̃(τ, y)∣∣∣ ds dy dx dτ

≤
∫ t1

0

∫
Ω

∫
Ω

∫ t2

t1

c

(s− τ)1+n/2
exp

(−C∥x− y∥2

s− τ

)∣∣∣b̃(τ, y)∣∣∣ ds dy dx dτ
≤
∥∥b̃∥∥

L∞([0,t1];L1(Ω;R))

∫ t1

0

∫
Rn

∫ t2

t1

c

(s− τ)1+
n
2

exp
(−C∥x∥2

s− τ

)
dsdx dτ

≤
∥∥b̃∥∥

L∞([0,t1];L1(Ω;R))
c

Cn/2

∫ t1

0

∫ t2

t1

1

(s− τ)
ds dτ

∫
Rn

e−∥x∥2 dx

= O(1)
∥∥b̃∥∥

L∞([0,t1];L1(Ω;R))(t2 ln t2 − t1 ln t1 − (t2 − t1) ln(t2 − t1))

which vanishes as t2 → t1 since t1 > 0.

(3.12) ≤ c

∫ t2

t1

(t2 − τ)−
n
2

∫
Ω

∫
Ω
|b̃(τ, x)| exp(−C∥x− y∥2/(t2 − τ)) dy dx dτ

≤ c
∥∥b̃∥∥

L∞([0,t2];L1(Ω;R))

∫ t2

t1

(t2 − τ)−
n
2

∫
Rn

exp(−C∥x∥2/(t2 − τ)) dx dτ
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≤ c|t2 − t1|
Cn/2

∥∥b̃∥∥
L∞([0,t2];L1(Ω;R))

∫
Rn

exp(−∥x∥2) dx

≤ O(1)
∥∥b̃∥∥

L∞([0,t2];L1(Ω;R))|t2 − t1|,

which also vanishes as t2 → t1. Adding the three estimates obtained, the
L1(Ω;R) continuity of w is proved.

Claim 5: There exists a solution to (3.1) in the sense of Definition 3.1
satisfying (3.5). Assume first that wo ∈ C0(Ω;R) with wo = 0 on ∂Ω,
B ∈ C0([0, T ] × Ω;R) and b ∈ C0([0, T ] × Ω;R). From [17, Chapter IV,
§ 16], we know that (3.1) admits a classical solution, say w. Define

b̃(t, x) = B(t, x)w(t, x) + b(t, x),

so that w satisfies (3.4) by (G4) in Proposition 3.4. Hence, w also satis-
fies (3.5).

Under the weaker regularity (P1), (P2), and (P3), introduce sequences
wν
o ∈ C0(Ω;R) and Bν , bν ∈ C0([0, T ]× Ω;R) converging to wo in L1(Ω;R)

and to B, b in L1([0, T ]×Ω;R). Call wν the corresponding classical solution
to (3.1) which, by the paragraph above, exists and satisfies

wν(t, x) =

∫
Ω
G(t, 0, x, y)wν

o (y) dy (3.13)

+

∫ t

0

∫
Ω
G(t, τ, x, y)(Bν(τ, y)wν(t, y) + bν(t, y)) dy dτ .

Hence, by Claim 3, wν and wν+1 satisfy (3.8), so that∥∥wν+1(t)− wν(t)
∥∥
L1(Ω;R)

≤
(∥∥wν+1

o − wν
o

∥∥
L1(Ω;R) +

∥∥bν+1 − bν
∥∥
L1([0,t]×Ω;R)

)
× exp

(∫ t

0
∥Bν(τ)∥L∞(Ω;R) dτ

)
+
∥∥Bν+1 −Bν

∥∥
L1([0,t]×Ω;R)

(∥∥wν+1
o

∥∥
L∞(Ω;R) +

∥∥bν+1
∥∥
L1([0,t];L∞(Ω;R))

)
× exp

∫ t

0

(
∥Bν(τ)∥L∞(Ω;R) +

∥∥Bν+1(τ)
∥∥
L∞(Ω;R)

)
dτ .

By the hypotheses on the sequences wν
o , B

ν and bν , wν is a Cauchy sequence
in L1([0, T ]×Ω;R) converging to a function w in L1([0, T ]×Ω;R). Moreover,
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since, by (3.6),

∥wν(t)∥L1(Ω;R) ≤
(
∥wν

o∥L1(Ω;R)+∥bν∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥Bν(τ)∥L∞(Ω;R) dτ

letting ν → +∞, we also have

∥w(t)∥L1(Ω;R) ≤
(
∥wo∥L1(Ω;R) + ∥b∥L1([0,t]×Ω;R)

)
exp

∫ t

0
∥B(τ)∥L∞(Ω;R) dτ

(3.14)
and hence w ∈ L∞([0, T ];L1(Ω;R)).

Passing to the limit in (3.13), by the Dominated Convergence Theorem,
we get that w satisfies (3.5) for a.e. x ∈ Ω. Moreover, for any φ ∈ C2([0, T ]×
Ω;R), a further application of the Dominated Convergence Theorem allows
to pass to the limit ν → +∞ in (3.2), proving that w satisfies also (3.2).
The C0 in time – L1 in space continuity required by Definition 3.1 is proved
in Claim 4.

This completes the proof of (1) and proves (2). Then (3) follows from
(3.14) and (4) is proved similarly, as in Claim 2.

Claim 6: Positivity. As above, consider a more regular and non negative
datum wo ∈ C0(Ω;R+) with wo = 0 on ∂Ω, B ∈ C0([0, T ] × Ω;R) and a
non negative b ∈ C0([0, T ]× Ω;R+). From [17, Chapter IV, § 16], we know
that (3.1) admits a classical solution, say w. By [17, Chapter I, § 2, Theo-
rem 2.1], we also know that w ≥ 0. Continue as in the proof of Claim 5 to
obtain that in the general case the solution is point-wise almost everywhere
limit of non negative classical solutions, completing the proof of (5).

Claim 7: BV-bound. We follow the idea of [10, Proposition 2]. First,
regularize the initial datum wo and the function b appearing in the source
term as follows: there exist sequences wh

o ∈ C∞(Ω;R) and bh(t) ∈ C∞(Ω;R),
for all t ∈ [0, T ], such that

lim
h→+∞

∥∥wh
o − wo

∥∥
L1(Ω;R) = 0,

∥∥wh
o

∥∥
L∞(Ω;R) ≤ ∥wo∥L∞(Ω;R),

TV (wh
o ) ≤ TV (wo),

and for all t ∈ [0, T ]

lim
h→+∞

∥bh(t)− b(t)∥L1(Ω;R) = 0, ∥bh(t)∥L∞(Ω;R) ≤ ∥b(t)∥L∞(Ω;R),

TV (bh(t)) ≤ TV (b(t)).

According to (3.5), define the sequence wh corresponding to the sequences
wh
o and bh. By construction and due to the regularity of the Green function
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G, wh(t) ∈ C∞(Ω;R) for all t ∈ [0, T ]. Moreover, exploiting (3.8), it follows
immediately that wh(t) → w(t) in L1(Ω;R) as h → +∞ for a.e. t ∈ [0, T ].
Compute ∇wh, using (3.5), the symmetry property of the Green function
G, see (G1) in Proposition 3.4, integration by parts and (G2) in Proposi-
tion 3.4:

∇wh(t, x) =

∫
Ω
∇xG(t, 0, x, y)wh

o (y) dy

+

∫ t

0

∫
Ω
∇xG(t, τ, x, y)B(τ, y)wh(τ, y) dy dτ

+

∫ t

0

∫
Ω
∇xG(t, τ, x, y)bh(τ, y) dy dτ

=

∫
Ω
∇yG(t, 0, y, x)wh

o (y) dy +

∫ t

0

∫
Ω
∇xG(t, τ, x, y)B(τ, y)wh(τ, y) dy dτ

+

∫ t

0

∫
Ω
∇yG(t, τ, y, x)bh(τ, y) dy dτ

= −
∫
Ω
G(t, 0, y, x)∇wh

o (y) dy +

∫ t

0

∫
Ω
∇xG(t, τ, x, y)B(τ, y)wh(τ, y) dy dτ

−
∫ t

0

∫
Ω
G(t, τ, y, x)∇bh(τ, y) dy dτ .

Pass now to the L1-norm, exploiting (G3) in Proposition 3.4 and (3.6):

∥∇wh(t)∥L1(Ω;R) ≤
∥∥∇wh

o

∥∥
L1(Ω;R) +

∫ t

0
∥∇bh(τ)∥L1(Ω;R) dτ

+

∫ t

0

c

(t− τ)−(n+1)/2
∥wh(τ)∥L1(Ω;R)∥B(τ)∥L∞(Ω;R)

×
∫
Ω
exp

(
−C∥x− y∥2/(t− τ)

)
dy dτ

≤
∥∥∇wh

o

∥∥
L1(Ω;R) +

∫ t

0
∥∇bh(τ)∥L1(Ω;R) dτ

+O(1)
√
t
(∥∥wh

o

∥∥
L1(Ω;R) + ∥bh∥L1([0,t]×Ω;R)

)
∥B∥L∞([0,t]×Ω;R)

× exp

∫ t

0
∥B(τ)∥L∞(Ω;R) dτ .

By the lower semicontinuity of the total variation and the hypotheses on the
regularizing sequences wh

o and bh, passing to the limit h → +∞ yields (3.9),
proving (6).
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3.2. Hyperbolic Estimates. Fix T > 0. This paragraph is devoted to the
IBVP

∂tu+∇· (c(t, x)u) = A(t, x)u+ a(t, x) (t, x) ∈ [0, T ]× Ω

u(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

u(0, x) = uo(x) x ∈ Ω.

(3.15)

We assume throughout the following conditions:

(H1) uo ∈ (L∞ ∩BV) (Ω;R)
(H2) c ∈

(
C0 ∩ L∞)

([0, T ] × Ω;Rn), c(t) ∈ C1(Ω;Rn) for all t ∈ [0, T ],
Dxc ∈ L∞([0, T ]× Ω;Rn×n).

(H3) A ∈ L∞([0, T ]× Ω;R) and for all t ∈ [0, T ], A(t) ∈ BV(Ω;R).
(H4) a ∈ L1 ([0, T ];L∞(Ω;R)) and for all t ∈ [0, T ], a(t) ∈ BV(Ω;R).

Note that (H2) ensures that c(t) ∈ C0,1(Ω;Rn) for any t ∈ [0, T ].
For (to, xo) ∈ [0, T ]×Ω introduce the characteristic curve [11, § 3.2] exiting

(to, xo), i.e., the curve x = X(t; to, xo) where

X( · ; to, xo) : I(to, xo) → Ω

t 7→ X(t; to, xo)
solves

{
ẋ = c(t, x),

x(to) = xo,
(3.16)

I(to, xo) being the maximal interval where a solution to the Cauchy problem
in (3.16) is defined (with values in Ω). For t ∈ [0, T ] and for x ∈ Ω define

E(τ, t, x) = exp
(∫ t

τ
(A (s,X(s; t, x))−∇· c (s,X(s; t, x))) ds

)
(3.17)

and for all (t, x) ∈ (0, T ]× Ω, if x ∈ X(t; [0, t), ∂Ω) ∩ Ω, set

T (t, x) = inf{s ∈ [0, t] : X(s; t, x) ∈ Ω}, (3.18)

which is well defined by (H2) and Cauchy Theorem. Note that the well
posedness of the Cauchy problem (3.16), ensured by (H2), implies that for
all t ∈ (0, T ]

Ω ⊆ X(t; 0,Ω) ∪X(t; [0, t), ∂Ω) ⊆ Ω and (3.19)

X(t; 0,Ω) ∩X(t; [0, t), ∂Ω) = ∅ .
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As is well known, integrating (3.15) along characteristics leads, for (t, x) ∈
[0, T ]× Ω, to

u(t, x) =


uo (X(0; t, x)) E(0, t, x)

+

∫ t

0
a (τ,X(τ ; t, x)) E(τ, t, x) dτ x ∈ X(t; 0,Ω)∫ t

T (t,x)
a (τ,X(τ ; t, x)) E(τ, t, x) dτ x ∈ X(t; [0, t), ∂Ω).

(3.20)

The following relation will be of use below, see for instance [3, Chapter 3]
for a proof:

DxoX(t; to, xo) = M(t), the matrix M solves (3.21){
Ṁ = Dxc (t,X(t; t,xo))M

M(to) = Id .

We first particularize classical estimates to the present case.

Lemma 3.6 ([5, Lemma 4.2]). Let (Ω) and (H2) hold.

1) Assume uo ∈ L1(Ω;R), A ∈ L∞([0, T ] × Ω;R) and a ∈ L1([0, T ] ×
Ω;R). Then, the map u defined in (3.20) satisfies for all t ∈ [0, T ]

∥u(t)∥L1(Ω;R) ≤
(
∥uo∥L1(Ω;R) + ∥a∥L1([0,t]×Ω;R)

)
exp

(
∥A∥L∞([0,t]×Ω;R)t

)
.

2) Assume

uo ∈ L∞(Ω;R), A ∈ L1([0, T ];L∞(Ω;R)), a ∈ L1 ([0, T ];L∞(Ω;R)) .
Then, the map u defined in (3.20) satisfies for all t ∈ [0, T ]

∥u(t)∥L∞(Ω;R) ≤
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,t];L∞(Ω;R))

)
× exp

(
∥A∥L1([0,t];L∞(Ω;R)) + ∥∇· c∥L1([0,t];L∞(Ω;R))

)
.

Lemma 3.7. Let (Ω) and (H2) hold. Assume uo ∈ L∞(Ω;R) and a ∈
L1 ([0, T ];L∞(Ω;R)). Fix A1, A2 ∈ L∞([0, T ]×Ω;R). Then, the maps u1, u2
defined in (3.20) satisfy for all t ∈ [0, T ]

∥u2(t)− u1(t)∥L1(Ω;R) ≤ exp
(
tmax

{
∥A1∥L∞([0,t]×Ω;R), ∥A2∥L∞([0,t]×Ω;R)

})
×
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,t];L∞(Ω;R))

)
∥A2 −A1∥L1([0,t]×Ω;R) .

The proof is a straightforward adaptation from [5, Lemma 4.3].
The TV bound obtained in the next lemma will be crucial in the sequel.
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Lemma 3.8. Let (Ω)–(H1)–(H4) hold. Assume, moreover, that A ∈
L1([0, T ];L∞(Ω;R)) and for all t ∈ [0, T ], A(t) ∈ BV(Ω;R). Let c sat-
isfy (H2) and, moreover, c(t) ∈ C2(Ω;Rn) for all t ∈ [0, T ] and ∇∇· c ∈
L1([0, T ] × Ω;Rn). Then, the map u defined in (3.20) satisfies for all t ∈
[0, T ].

TV (u(t); Ω) ≤ exp
(
∥A∥L1([0,t];L∞(Ω;R)) + ∥Dxc∥L1([0,t];L∞(Ω;Rn×n))

)
×
(
TV (uo) +O(1)∥uo∥L∞(Ω;R) +

∫ t

0
TV (a(τ)) dτ

+
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,t];L∞(Ω;R))

)
×
∫ t

0

(
TV (A(τ)) + ∥∇∇· c(τ)∥L1(Ω;Rn)

)
dτ

)
.

Proof. The proof extends that of [9, Lemma 4.4], where a linear conserva-
tion law, i.e., with no source term, on a bounded domain is considered.

We first regularize the initial datum uo and the functions A and a appear-
ing in the source term. In particular, we use the approximation of the initial
datum constructed in [9, Lemma 4.3], yielding a sequence uho ∈ C3(Ω;R)
such that

lim
h→+∞

∥∥uho − uo
∥∥
L1(Ω;R) = 0, uho (ξ) = 0 for all ξ ∈ ∂Ω, (3.22)∥∥uho∥∥L∞(Ω;R) ≤

∥∥uo∥∥L∞(Ω;R), TV (uho ) ≤ O(1)∥uo∥L∞(Ω;R) +TV (uo) .

Then, using [13, Formula (1.8) and Theorem 1.17], we regularize the func-
tions A and a as follows. For all t ∈ [0, T ] and h ∈ N \ {0}, there exist
sequences Ah(t), ah(t) ∈ C∞(Ω;R) such that, for all t ∈ [0, T ],

lim
h→+∞

∥Ah(t)−A(t)∥L1(Ω;R) = 0, lim
h→+∞

∥ah(t)− a(t)∥L1(Ω;R) = 0, (3.23)

∥Ah(t)∥L∞(Ω;R) ≤ ∥A(t)∥L∞(Ω;R), ∥ah(t)∥L∞(Ω;R) ≤ ∥a(t)∥L∞(Ω;R),

lim
h→+∞

TV (Ah(t)) = TV (A(t)) , lim
h→+∞

TV (ah(t)) = TV (a(t)) .

According to (3.20), define the sequence uh corresponding to the sequences
uho , Ah, ah, where the map E in (3.17) is substituted by Eh, defined accord-
ingly exploiting Ah. By construction, uh(t) ∈ C1(Ω;R) for all t ∈ [0, T ],
thus we can differentiate it. In particular, we are interested in the L1–norm
of ∇uh(t). By (3.19), the following decomposition holds:

∥∇uh(t)∥L1(Ω;R) = ∥∇uh(t)∥L1(X(t;0,Ω);R)+∥∇uh(t)∥L1(X(t;[0,t),∂Ω);R). (3.24)
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The two terms on the right hand side of (3.24) are treated separately. Focus
on the first term: if x ∈ X(t; 0,Ω), by (3.20)

∇uh(t, x) = Eh(0, t, x)
(
∇uho (X(0; t, x))DxX(0; t, x)

+ uho (X(0; t, x))

∫ t

0

(
∇Ah(s,X(s; t, x))−∇∇· c(s,X(s; t, x))

)
×DxX(s; t, x) ds

)
+

∫ t

0
Eh(τ, t, x)

(
∇ ah(τ,X(τ ; t, x))DxX(τ ; t, x)

+ ah(τ,X(τ ; t, x))

∫ t

τ

(
∇Ah(s,X(s; t, x))−∇∇· c(s,X(s; t, x))

)
×DxX(s; t, x) ds

)
dτ .

Use the change of variables y = X(0; t, x) in the first two lines above involv-
ing uho , the change of variables y = X(τ ; t, x) in the latter two lines and the
bound

∥DxX(τ ; t, x)∥ ≤ exp
(∫ t

τ
∥Dxc(s)∥L∞(Ω;Rn×n) ds

)
, (3.25)

that holds for every t ∈ [0, T ] by (3.21). We thus obtain

∥∇uh(t)∥L1(X(t;0,Ω);Rn) =

∫
X(t;0,Ω)

∥∇uh(t, x)∥ dx (3.26)

≤ exp
(∫ t

0

(
∥Ah(τ)∥L∞(Ω;R) + ∥Dxc(τ)∥L∞(Ω;Rn×n)

)
dτ

)(∥∥∇uho
∥∥
L1(Ω;Rn)

+
∥∥uho∥∥L∞(Ω;R)

∫ t

0

(
∥∇Ah(τ)∥L1(Ω;Rn) + ∥∇∇· c(τ)∥L1(Ω;Rn)

)
dτ

+

∫ t

0
∥∇ ah(τ)∥L1(X(τ ;0,Ω);Rn) dτ +

∫ t

0
∥ah(τ)∥L∞(X(τ ;0,Ω);R)

×
(∫ t

τ

(
∥∇Ah(s)∥L1(X(s;0,Ω);Rn) + ∥∇∇· c(s)∥L1(X(s;0,Ω);Rn)

)
ds

)
dτ

)
.

Pass to the second term on the right in (3.24): if x ∈ X(t; [0, t), ∂Ω), by (3.20)
and (3.25)

∇uh(t, x) =

∫ t

T (t,x)
Eh(τ, t, x)

(
∇ ah (τ,X(τ ; t, x))DxX(τ ; t, x)

+ ah (τ,X(τ ; t, x))

∫ t

τ
(∇Ah (s,X(s; t, x))−∇∇· c (s,X(s; t, x)))

×DxX(s; t, x) ds
)
dτ .
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For every t ∈ [0, T ], proceed similarly as above using the change of variables
y = X(τ ; t, x):

∥∇uh(t)∥L1(X(t;[0,t),∂Ω);R) =

∫
Ω\X(t;0,Ω)

∥∇uh(t, x)∥ dx

≤ exp
(∫ t

0

(
∥Ah(τ)∥L∞(Ω;Rn) + ∥Dxc(τ)∥L∞(Ω;Rn×n)

)
dτ

)
(3.27)

×
(∫ t

0

∫
Ω\X(τ ;0,Ω)

∥∇ ah(τ, y)∥ dy dτ +

∫ t

0
∥ah(τ)∥L∞(Ω\X(τ ;0,Ω);R) dτ

×
(
∥∇Ah∥L1(Ω\X([0,t];0,Ω);Rn) + ∥∇∇· c∥L1(Ω\X([0,t];0,Ω);Rn)

))
.

Inserting the estimates (3.26) and (3.27) into (3.24), we thus obtain

∥∇uh(t)∥L1(Ω;Rn) ≤ exp
(
∥Ah∥L1([0,t];L∞(Ω;Rn)) + ∥Dxc∥L1([0,t];L∞(Ω;Rn×n))

)
×
(∥∥∇uho

∥∥
L1(Ω;R) +

∫ t

0
∥∇ ah(τ)∥L1(Ω;Rn) dτ

+
(∥∥uho∥∥L∞(Ω;R) +

∫ t

0

∥∥ah(τ)∥∥L∞(Ω;R) dτ
)

×
(
∥∇Ah∥L1([0,t]×Ω;Rn) + ∥∇∇· c∥L1([0,t]×Ω;Rn)

))
.

Since uh(t) → u(t) in L1(Ω;R), by the lower semicontinuity of the total
variation and the hypotheses (3.22)–(3.23) on the regularizing sequences uho ,
Ah and ah, passing to the limit h → +∞, we complete the proof. □

It is on the basis of next Proposition that we give a definition of solution
to (3.15).

Proposition 3.9. Let (Ω) and (H2) hold. Assume uo ∈ L∞(Ω;R), A ∈
L∞([0, T ] × Ω;R) and a ∈ L1 ([0, T ];L∞(Ω;R)). Then, the following state-
ments are equivalent:

(1) u is defined by (3.20), i.e., through integration along characteristics.
(2) u ∈ L∞([0, T ]× Ω;R) is such that for any test function

φ ∈ C1
c((−∞, T )× Ω;R),∫ T

0

∫
Ω

(
u(t, x) (∂tφ(t, x) + c(t, x) · ∇φ(t, x)) (3.28)

+ (A(t, x)u(t, x) + a(t, x))φ(t, x)
)
dx dt+

∫
Ω
uo(x)φ(0, x) dx = 0.
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(3) u ∈ L∞([0, T ]× Ω;R) is such that for any test function
φ ∈ W1,∞((−∞, T )× Ω;R), equality (3.28) holds.

Proof. (1) =⇒ (2) The proof exploits arguments similar to [7, Lemma 5.1],
see also [8, Lemma 2.7]. Indeed, u defined as in (3.20) is bounded by Item 2)
in Lemma 3.6.

Let φ ∈ C1
c((−∞, T )×Ω;R). We prove that the equality (3.28) holds with

u defined as in (3.20). Notice that, for a fixed time t ∈ [0, T ], by (3.19) the
domain Ω is contained in the disjoint union of X(t; 0,Ω) and X(t; [0, t), ∂Ω).
The first set accounts for the characteristics emanating from the initial da-
tum, the second one for those coming from the boundary. Therefore, to
prove that the integral equality (3.28) holds it is sufficient to verify that the
following integral equalities hold:∫ T

0

∫
X(t;0,Ω)

(u (∂tφ+ c · ∇φ+Aφ) + aφ) dx dt+

∫
Ω
uo(x)φ(0, x) dx = 0,

(3.29)∫ T

0

∫
X(t;[0,t),∂Ω)

(u (∂tφ+ c · ∇φ+Aφ) + aφ) dx dt = 0. (3.30)

In order to prove (3.29), exploiting the change of variables y = X(0; t, x),
the first line in (3.20) can be rewritten for x ∈ X(t, 0,Ω) as

u(t, x) = (uo(y) +A(t, y))
A (t, y)

J(t, y)
where y = X(0; t, x)

with

A (t, y) = exp
(∫ t

0
A(τ,X(τ ; 0, y)) dτ

)
,

J(t, y) = exp
(∫ t

0
∇· c(τ,X(τ ; 0, y)) dτ

)
,

A(t, y) =

∫ t

0
a (τ,X(τ ; 0, y))

J(τ, y)

A (τ, y)
dτ .

Therefore, the left hand side of (3.29) now reads∫ T

0

∫
Ω

[
(uo(y) +A(t, y))

A (t, y)

J(t, y)
(∂tφ (t,X(t; 0, y))

+c (t,X(t; 0, y)) · ∇φ (t,X(t; 0, y)) +A (t,X(t; 0, y))φ (t,X(t; 0, y))) J(t, y)

+ a (t,X(t; 0, y))φ (t,X(t; 0, y)) J(t, y)
]
dy dt+

∫
Ω
uo(x)φ(0, x) dx
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=

∫ T

0

∫
Ω

d

dt
[(uo(y)+A(t, y)A (t, y))φ(t,X(t; 0, y))] dy dt+

∫
Ω
uo(x)φ(0, x) dx

= −
∫
Ω
uo(y)φ(0, y) dy +

∫
Ω
uo(x)φ(0, x) dx−

∫
Ω
A(0, y)A (0, y)φ(0, y) dy

= 0,

since, for all y ∈ Ω, φ(T, y) = 0 and, by definition, A(0, y) = 0.
Pass now to (3.30). Here, for all t ∈ [0, T ], we pass from the variables

(τ, x) ∈ Ωt
τ,x to the variables (σ, y) ∈ Ωt

σ,y, where

Ωt
τ,x = {(τ, x) : τ ∈ [T (t, x), t] and x = X(t, [0, t), ∂Ω)} ,

Ωt
σ,y = {(σ, y) : σ ∈ [0, t] and y = X(σ, [0, σ), ∂Ω)} , σ = τ, y = X(τ ; t, x).

The corresponding Jacobian, which also depends on t, is H(t, σ, y)/H(σ, σ, y)
where we set

H(t, σ, y) = exp

∫ t

0
∇· c (s,X(s;σ, y)) ds

Â(t, σ, y) = exp

∫ t

0
A (s,X(s;σ, y)) dσ .

Using (3.20), we compute now the right hand side in (3.30) as follows:∫ T

0

∫
X(t;[0,t),∂Ω)

u(∂tφ+ c · ∇φ+Aφ)(t, x) dx dt+

∫ T

0

∫
X(t;[0,t),∂Ω)

aφdx dt

=

∫ T

0

∫
X(t;[0,t),∂Ω)

∫ t

T (t,x)
a(τ,X(τ ; t, x))E(τ, t, x) dτ (∂tφ+ c · ∇φ+Aφ) dx dt

+

∫ T

0

∫
X(t;[0,t),∂Ω)

a(t, x)φ(t, x) dx dt

=

∫ T

0

∫ t

0

∫
X(σ,[0,σ),∂Ω)

a(σ, y)
Â(t, σ, y)

Â(σ, σ, y)

×
(dφ(t,X(t;σ, y))

dt
+A(t,X(t;σ, y))φ(t,X(t;σ, y))

)
dy dσ dt

+

∫ T

0

∫
X(t;[0,t),∂Ω)

a(t, x)φ(t, x) dx dt

=

∫ T

0

d

dt

(∫ t

0

∫
X(σ,[0,σ),∂Ω)

a(σ, y)
Â(t, σ, y)

Â(σ, σ, y)
φ (t,X(t;σ, y)) dy dσ

)
dt

= 0,
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since φ(T, ·) ≡ 0.
(2) =⇒ (3). Fix φ ∈ W1,∞((−∞, T ) × Ω;R). A standard construc-

tion, see [13, § 1.14], ensures the existence of a sequence of functions φh ∈
C∞

c (Rn+1;R+) such that

φh −→
h→+∞

φ, ∂tφh −→
h→+∞

∂tφ, ∇xφh −→
h→+∞

∇xφ

in L1
loc((−∞, T ) × Ω;R) and L1

loc((−∞, T ) × Ω;Rn). Call χh a function in
C∞

c (Rn;R) such that χh(x) = 1 for all x ∈ Ω such that B(x, 1/h) ⊆ Ω and
∥∇xχh∥ ≤ 2

√
nh for all x ∈ Rn.

Then, we have φh χh ∈ C1
c((−∞, T )× Ω;R). Moreover,

φh χh −→
h→+∞

φ and ∂t(φh χh) −→
h→+∞

∂tφ in L1
loc((−∞, T )× Ω;R).

Concerning the space gradient, we have

∇x(φh χh) = ∇xφh χh + φh ∇xχh

and

∇xφh χh −→
h→+∞

∇xφ in L1
loc((−∞, T )× Ω;R) ;

φh ∇xχh −→
h→+∞

φ a.e. in (−∞, T )× Ω .

Therefore, for all h by (2), we have

0 =

∫ T

0

∫
Ω
(u(∂t(φhχh) + c · ∇(φhωh)) + (Au(t, x) + a(t, x))(φhχh)) dx dt

+

∫
Ω
uo(x) (φh χh)(0, x) dx

and, by the Dominated Convergence Theorem, (3) follows.
(3) =⇒ (1). Inspired by [7, Lemma 5.1], we first consider the case

A ∈ (C1 ∩W1,∞)([0, T ]×Ω;R). Assume u satisfies (3) and call u∗ the func-
tion defined in (3.20). Then, by the above implications (1)⇒(2)⇒(3), the dif-
ference U = u−u∗ satisfies for all test functions φ̃ ∈ W1,∞((−∞, T )×Ω;R)
the integral equality∫ T

0

∫
Ω
U (∂tφ̃+ c · ∇φ̃+A φ̃) dx dt = 0 . (3.31)

Proceed now exactly as in [7, Lemma 5.1], choosing τ ∈ (0, T ], a sequence
χh ∈ C1

c(R;R+) with χh(t) = 1 for all t ∈ [1/h, τ − 1/h] and |χ′
h| ≤ 2h. If

φ ∈ W1,∞((−∞, T )×Ω;R), then (φχh) ∈ W1,∞((−∞, T )×Ω;R). Choosing
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φχh as φ̃ in (3.31), and passing to the limit h → +∞ via the Dominated
Convergence Theorem, we get∫ τ

0

∫
Ω
U (∂tφ+ c · ∇φ+Aφ) dx dt−

∫
Ω
U(τ, x)φ(τ, x) dx = 0 . (3.32)

Fix an arbitrary η ∈ C1
c(Ω;R) and let φ solve

∂tφ+ c · ∇φ+Aφ = 0 (t, x)∈Ω

φ(t, ξ) = 0 (t, ξ)∈ ∂Ω

φ(τ, x) = η(x) (τ, x)∈Ω .

Note that φ can be computed through integration along (backward) charac-
teristics and hence

φ ∈ W1,∞((−∞, T )× Ω;R).
With this choice, (3.32) yields∫

Ω
U(τ, x) η(x) dx = 0 for all η ∈ C1

c(Ω;R),

so that U(τ, x) = 0 for all x ∈ Ω. By the arbitrariness of τ , we have U ≡ 0,
hence u = u∗.

Let now A ∈ L∞([0, T ]×Ω;R), call u∗ the function constructed in (3.20)
and assume there is a function u satisfying (3). Construct a sequence Ah ∈
(C1 ∩W1,∞)([0, T ]× Ω;R) such that Ah −→

h→+∞
A in L1([0, T ]× Ω;R). Call

uh the function constructed as in (3.20) with Ah in place of A. For any
t ∈ [0, T ], we have uh(t) −→

h→+∞
u∗(t) in L1(Ω;R), by Lemma 3.7. Moreover,

for all φ ∈ W1,∞((−∞, T )× Ω;R),

0 =

∫ T

0

∫
Ω
(u (∂tφ+ c · ∇φ) + (Au+ a)φ) dx dt+

∫
Ω
uo(x)φ(0, x) dx

−
∫ T

0

∫
Ω
(uh (∂tφ+ c · ∇φ) + (Ahuh + a)φ) dx dt−

∫
Ω
uo(x)φ(0, x) dx

=

∫ T

0

∫
Ω
(u− uh) (∂tφ+ c · ∇φ+Ahφ) dx dt+

∫ T

0

∫
Ω
(A−Ah)uφdx dt .

The latter summand vanishes since Ah → A in L1. The former summand,
thanks to the regularity of Ah, can be treated by the procedure above, ob-
taining, for all η ∈ C1

c(Ω;R) and for a sequence of real numbers εh converging
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to 0,

0 =

∫
Ω
(u(τ, x)− uh(τ, x)) η(x) dx+ εh .

The above relation ensures that uh(τ, x) → u(τ, x) for a.e. x ∈ Ω as h → +∞.
Therefore, for all t ∈ (0, T ],

∥u∗(t)− u(t)∥L1(Ω;R)

≤ ∥u∗(t)− uh(t)∥L1(Ω;R) + ∥uh(t)− u(t)∥L1(Ω;R) −→
h→+∞

0,

completing the proof. □

Definition 3.10. A map u ∈ L∞([0, T ]× Ω;R) is a solution to (3.15) if it
satisfies any of the requirements (1), (2), or (3) in Proposition 3.9.

By techniques similar to those in [8], one can verify that a solution to (3.15)
in the sense of Definition 3.10 is a weak entropy solution also in any of the
senses [18, 22], or [1] in the BV case, see [21] for a comparison. Here, as is
well known, the linearity of the convective part in (3.15) allows to avoid the
introduction of any entropy condition, as also remarked in [16].

Lemma 3.11. Let (Ω)–(H1)–(H3)–(H4) hold. Fix c1, c2 satisfying (H2)
and moreover, for i = 1, 2, ci(t) ∈ C2(Ω;Rn) for all t ∈ [0, T ] and ∇∇· ci ∈
L1([0, T ]× Ω;Rn). Then, the maps u1, u2 defined in (3.20) satisfy

∥u2(t)− u1(t)∥L1(Ω;R)

≤ O(1)
(
∥c1 − c2∥L1([0,t];L∞(Ω;Rn)) + ∥∇· (c1 − c2)∥L1([0,t];L∞(Ω;R))

)
and a precise expression for the constant O(1) is provided in the proof.

Proof. Following the proof of Lemma 3.8, we first regularize the initial
datum uo as in (3.22) and the functions A and a appearing in the source
term as in (3.23), obtaining uh1 and uh2 by (3.20). By Proposition 3.9, the
difference uh2 − uh1 solves ∂t(u

h
2 − uh1) +∇·

(
c2(u

h
2 − uh1)

)
= Ah(u

h
2 − uh1) + αh

(uh2 − uh1)(0) = 0,

where

αh = −∇·
(
(c2 − c1)u

h
1

)
in the sense of Definition 3.10. Apply Item 1) in Lemma 3.6 to get∥∥uh2(t)− uh1(t)

∥∥
L1(Ω;R) (3.33)
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≤
∥∥∇· ((c2 − c1)u

h
1)
∥∥
L1([0,t]×Ω;R) exp

(
∥A∥L∞([0,t]×Ω;R)t

)
,

where we use the estimate

∥Ah(τ)∥L∞(Ω;R) ≤ ∥A(τ)∥L∞(Ω;R)

for all τ ∈ [0, T ]. Observe that∥∥∇· ((c2(τ)− c1(τ))u
h
1(τ))

∥∥
L1(Ω;R)

≤
∥∥uh1(τ)∥∥L1(Ω;R)

∥∥∇· (c2(τ)− c1(τ))
∥∥
L∞(Ω;R)

+
∥∥c2(τ)− c1(τ)

∥∥
L∞(Ω;Rn)

∥∥∇uh1(τ)
∥∥
L1(Ω;R)

≤
(∥∥uho∥∥L1(Ω;R) +

∥∥ah∥∥L1([0,τ ]×Ω;R)
)
exp

(
∥A∥L∞([0,τ ]×Ω;R)t

)
×
∥∥∇· (c2(τ)− c1(τ))

∥∥
L∞(Ω;R) + ∥c2(τ)− c1(τ)∥L∞(Ω;Rn)

× exp
(
∥A∥L1([0,τ ];L∞(Ω;Rn)) + ∥Dxc1∥L1([0,τ ];L∞(Ω;Rn×n))

)
×
(
TV (uo) +O(1)∥uo∥L∞(Ω;R) +

∫ τ

0
∥∇ ah(s)∥L1(Ω;Rn) ds

+
(
∥uo∥L∞(Ω;R) +

∫ τ

0
∥a(s)∥L∞(Ω;R) ds

)
×
(
∥∇Ah∥L1([0,τ ]×Ω;Rn) + ∥∇∇· c1∥L1([0,τ ]×Ω;Rn)

))
,

where we used Item 1) in Lemma 3.6, Lemma 3.8 and the hypotheses (3.22)–
(3.23) on the regularizing sequences uho , Ah and ah. By the triangular in-
equality and the above computations,

∥u2(t)− u1(t)∥L1(Ω;R)

≤
∥∥u2(t)− uh2(t)

∥∥
L1(Ω;R) +

∥∥uh2(t)− uh1(t)
∥∥
L1(Ω;R) +

∥∥u1(t)− uh1(t)
∥∥
L1(Ω;R)

≤
∥∥u2(t)− uh2(t)

∥∥
L1(Ω;R) (3.34)

+
(∥∥uho∥∥L1(Ω;R) +

∥∥ah∥∥L1([0,t]×Ω;R)

)
× exp

(
∥A∥L∞([0,t]×Ω;R)t

)∫ t

0
∥∇· (c2(τ)− c1(τ))∥L∞(Ω;R) dτ

(3.35)

+

∫ t

0
∥c2(τ)− c1(τ)∥L∞(Ω;Rn) dτ

× exp
(
∥A∥L1([0,t];L∞(Ω;Rn)) + ∥Dxc1∥L1([0,t];L∞(Ω;Rn×n))

)
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×
(
TV (uo) +O(1)∥uo∥L∞(Ω;R) +

∫ t

0
∥∇ ah(s)∥L1(Ω;Rn) ds (3.36)

+
(
∥uo∥L∞(Ω;R) +

∫ t

0
∥a(s)∥L∞(Ω;R) ds

)
×
(
∥∇Ah∥L1([0,t]×Ω;Rn) + ∥∇∇· c1∥L1([0,t]×Ω;Rn)

))
(3.37)

+
∥∥∥u1(t)− uh1(t)

∥∥∥
L1(Ω;R)

, (3.38)

and in the limit h → +∞, we treat each term separately. By construction,
(3.34) and (3.38) converge to zero as h → +∞. By the hypotheses (3.22) on
uho and (3.23) on Ah and ah, in the limit we thus obtain

∥u2(t)− u1(t)∥L1(Ω;R) ≤
(
∥uo∥L1(Ω;R) + ∥a∥L1([0,t]×Ω;R)

)
× exp

(
∥A∥L∞([0,t]×Ω;R)t

)∫ t

0
∥∇· (c2(τ)− c1(τ))∥L∞(Ω;R) dτ

+

∫ t

0
∥c2(τ)− c1(τ)∥L∞(Ω;Rn) dτ

× exp
(
∥A∥L1([0,t];L∞(Ω;Rn)) + ∥Dxc1∥L1([0,t];L∞(Ω;Rn×n))

)
×
(
TV (uo) +O(1)∥uo∥L∞(Ω;R) +

∫ t

0
TV (a(s)) ds+

(
∥uo∥L∞(Ω;R)

+

∫ t

0
∥a(s)∥L∞(Ω;R) ds

)(∫ t

0
TV (A(s)) ds+ ∥∇∇· c1∥L1([0,t]×Ω;Rn)

))
,

concluding the proof. □

Lemma 3.12. Let (Ω)–(H2) hold. Assume moreover that uo ∈ L∞(Ω;R),
with uo ≥ 0, A ∈ L∞([0, T ]×Ω;R) and a ∈ L1 ([0, T ];L∞(Ω;R)), with a ≥ 0.
Then, the solution u is positive.

The proof is an immediate consequence of the representation (3.20).

Lemma 3.13. Let (H1)–(H2)–(H3)–(H4) hold. Assume, moreover, that
c(t) ∈ C2(Ω;Rn) for all t ∈ [0, T ] and ∇∇· c ∈ L1([0, T ] × Ω;Rn). If
u ∈ L∞([0, T ] × Ω;R) is as in (3.20), then u is L1–Lipschitz continuous
in time: for all t1, t2 ∈ [0, T ], with t1 < t2

∥u(t2)− u(t1)∥L1(Ω;R) ≤ O(1)(t2 − t1) (3.39)

where O(1) depends on norms of c, A, a on the interval [0, t2] and of uo.
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Proof. By (3.19), the following decomposition holds

∥u(t2)− u(t1)∥L1(Ω;R) = ∥u(t2)− u(t1)∥L1(X(t2;t1,Ω);R) (3.40)

+ ∥u(t2)− u(t1)∥L1(X(t2;[t1,t2),∂Ω);R) .

Estimate the two latter summands in (3.40) separately. By (3.20)

∥u(t2)− u(t1)∥L1(X(t2;t1,Ω);R)

≤
∫
X(t2;t1,Ω)

|u (t1, X(t1; t2, x)) E(t1, t2, x)− u(t1, x)|dx

+

∫
X(t2;t1,Ω)

∫ t2

t1

|a (τ,X(τ ; t2, x)) E(τ, t2, x)|dτ dx

≤
∫
X(t2;t1,Ω)

|u (t1, X(t1; t2, x))− u(t1, x)| E(t1, t2, x) dx (3.41)

+

∫
X(t2;t1,Ω)

|u(t1, x)| |E(t1, t2, x)− 1|dx (3.42)

+

∫
X(t2;t1,Ω)

∫ t2

t1

|a (τ,X(τ ; t2, x)) E(τ, t2, x)|dτ dx . (3.43)

To estimate (3.41), we use [6, Lemma 5.1] so that we obtain∫
X(t2;t1,Ω)

|u (t1, X(t1; t2, x))− u(t1, x)| E(t1, t2, x) dx

≤
∥c∥L∞([t1,t2]×Ω;Rn)

∥Dxc∥L∞([t1,t2]×Ω;Rn×n)

(
e
∥Dxc∥L∞([t1,t2]×Ω;Rn×n)(t2−t1) − 1

)
TV (u(t1))

≤ ∥c∥L∞([t1,t2]×Ω;Rn)e
∥Dxc∥L∞([t1,t2]×Ω;Rn×n)(t2−t1)TV (u(t1)) (t2 − t1),

and the total variation of u might be estimated thanks to Lemma 3.8. The
bounds for (3.42) and (3.43) follow from the definition (3.17) of E :∫

X(t2;t1,Ω)
|u(t1, x)||E(t1, t2, x)− 1|dx

≤ ∥u(t1)∥L1(Ω;R)(t2 − t1)
(
∥A∥L∞([t1,t2]×Ω;R) + ∥∇· c∥L∞([t1,t2]×Ω;R)

)
× exp

((
∥A∥L∞([t1,t2]×Ω;R) + ∥∇· c∥L∞([t1,t2]×Ω;R)

)
(t2 − t1)

)
;∫

X(t2;t1,Ω)

∫ t2

t1

|a (τ,X(τ ; t2, x)) E(τ, t2, x)| dτ dx
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≤(t2 − t1)∥a∥L∞([t1,t2];L1(Ω;R)) exp
(∫ t2

t1

∥A(τ)∥L∞(Ω;R)+ ∥∇· c∥L∞(Ω;R) dτ
)
.

Consider now the second summand in (3.40). Introduce

Tt1(t2, x) = inf
{
s ∈ [t1, t2] : X(s; t2, x) ∈ Ω

}
and compute

∥u(t2)− u(t1)∥L1(X(t2;[t1,t2),∂Ω);R)

≤
∫
X(t2;[t1,t2),∂Ω)

∣∣∣ ∫ t2

Tt1 (t2,x)
a (τ,X(τ ; t2, x)) E(τ, t2, x) dτ

∣∣∣ dx .
The same procedure used to bound (3.43) applies, completing the proof. □

3.3. Coupling.
Proof of Theorem 2.2. Fix T > 0. Define u0(t, x) = uo(x) and w0(t, x) =
wo(x) for all (t, x) ∈ [0, T ]× Ω. For i ∈ N, define recursively ui+1 and wi+1

as solutions to
∂tui+1 +∇· (ui+1 ci(t, x)) = Ai(t, x)ui+1 + a(t, x) (t, x) ∈ [0, T ]× Ω

u(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

u(0, x) = uo(x) x ∈ Ω,

(3.44)
∂twi+1 − µ∆wi+1 = Bi(t, x)wi+1 + b(t, x) (t, x) ∈ [0, T ]× Ω

w(t, ξ) = 0 (t, ξ) ∈ [0, T ]× ∂Ω

w(0, x) = wo(x) x ∈ Ω,

(3.45)

where

ci(t, x) = v (t, wi(x)) , Ai(t, x) = α (t, x, wi(t, x))

Bi(t, x) = β (t, x, ui(t, x), wi(t, x)) . (3.46)

We aim to prove that (ui, wi) is a Cauchy sequence with respect to the
L∞([0, T ];L1(Ω;R2)) distance as soon as T is sufficiently small.

Observe first that problem (3.45) fits into the framework of Section 3.1,
while problem (3.44) fits into the framework of Section 3.2.

Consider the w component. Proposition 3.5 applies, ensuring the existence
of a solution to (3.45) for all i ∈ N. Moreover, if b ≥ 0 and the initial datum
wo is positive, the solution wi is positive. By (β) and (3.46), for all i ∈ N,
Bi satisfies (P2) and for all τ ∈ [0, T ]

∥Bi(τ)∥L∞(Ω;R) ≤ Kβ , (3.47)
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while by (b) the function b satisfies (P3). The following uniform bounds
on wi hold for every i ∈ N: by (3) and (6) in Proposition 3.5, exploiting
also (3.47), for all τ ∈ [0, T ],

∥wi(τ)∥L1(Ω;R) ≤ eKβ τ
(
∥wo∥L1(Ω;R) + ∥b∥L1([0,τ ]×Ω;R)

)
(3.48)

=: Cw,1(τ),

∥wi(τ)∥L∞(Ω;R) ≤ eKβ τ
(
∥wo∥L∞(Ω;R) + ∥b∥L1([0,τ ];L∞(Ω;R))

)
(3.49)

=: Cw,∞(τ),

TV (wi(τ, ·)) ≤ TV (wo) +

∫ τ

0
TV (b(s)) ds+O(1)

√
τ Kβ∥wi(τ)∥L1(Ω;R)

=: CTV
w (τ). (3.50)

By (4) in Proposition 3.5, we get

∥wi+1(t)− wi(t)∥L1(Ω;R) (3.51)

≤ ∥Bi −Bi−1∥L1([0,t]×Ω;R)

(
∥wo∥L∞(Ω;R) + ∥b∥L1([0,t];L∞(Ω;R))

)
× exp

∫ t

0

(
∥Bi(τ)∥L∞(Ω;R) + ∥Bi−1(τ)∥L∞(Ω;R)

)
dτ .

By (3.46), exploiting the hypothesis (β), we obtain

∥Bi −Bi−1∥L1([0,t]×Ω;R)

=

∫ t

0

∫
Ω
|β (τ, x, ui(τ, x), wi(τ, x))− β (τ, x, ui−1(τ, x), wi−1(τ, x))|dx dτ

≤ Kβ

(
∥ui − ui−1∥L1([0,t]×Ω;R) + ∥wi − wi−1∥L1([0,t]×Ω;R)

)
.

Therefore, using also (3.47) and the notation introduced in (3.49), (3.51)
becomes

∥wi+1(t)− wi(t)∥L1(Ω;R) (3.52)

≤ Kβ e
tKβCw,∞(t)

(
∥ui − ui−1∥L1([0,t]×Ω;R) + ∥wi − wi−1∥L1([0,t]×Ω;R)

)
.

Pass now to the u component. The results of Section 3.2 applies, ensuring
the existence of a solution to (3.44) for all i ∈ N. Moreover, if a ≥ 0 and
the initial datum uo is positive, the solution ui is positive, see Lemma 3.12.
By (α) and (3.46), for every i ∈ N, we have that Ai satisfies (H3) and for
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all τ ∈ [0, T ], exploiting (3.49) and (3.50),

∥Ai(τ)∥L∞(Ω;R) ≤ Kα (1 + Cw,∞(τ)) , (3.53)

TV (Ai(τ, ·)) = TVα (τ, ·, wi(τ, ·))
≤ Kα (1 + Cw,∞(τ) + TV (wi(τ, ·)))
≤ Kα

(
1 + Cw,∞(τ) + CTV

w (τ)
)
, (3.54)

while by (a) the function a satisfies (H4). By (v), for every i ∈ N the
function ci satisfies (H2) and, moreover, ci(t) ∈ C2(Ω;Rn) for all t ∈ [0, T ]
and ∇∇· ci ∈ L1([0, T ]×Ω;Rn). In particular, thanks to (v) and (3.48), the
following bounds hold for every i ∈ N and t ∈ [0, T ]:

∥∇· ci∥L1([0,t];L∞(Ω;R)) ≤ Kv∥wi∥L1([0,t]×Ω;R) ≤ Kv t Cw,1(t), (3.55)

∥Dxci∥L1([0,t];L∞(Ω;Rn×n)) ≤ Kv∥wi∥L1([0,t]×Ω;R) ≤ Kv t Cw,1(t), (3.56)

∥∇∇· ci(t)∥L1(Ω;Rn) ≤ Cv (t, Cw,1(t))Cw,1(t). (3.57)

The following uniform bounds on ui hold for every i ∈ N: by Lemma 3.6
and Lemma 3.8, exploiting also (3.48)–(3.50) and (3.53)–(3.57), for all τ ∈
[0, T ],

∥ui(τ)∥L1(Ω;R) ≤
(
∥uo∥L1(Ω;R) + ∥a∥L1([0,τ ]×Ω;R)

)
exp (Kα τ (1 + Cw,∞(τ)))

=: Cu,1(τ), (3.58)

∥ui(τ)∥L∞(Ω;R) ≤
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,τ ];L∞(Ω;R))

)
× exp (Kα τ (1 + Cw,∞(τ)) +Kv τ Cw,1(τ))

=: Cu,∞(τ), (3.59)

TV (ui(τ, ·)) ≤ exp (Kα τ (1 + Cw,∞(τ)) +Kv τ Cw,1(τ))

×
(
TV (uo) +O(1)∥uo∥L∞(Ω;R) +

∫ τ

0
TV (a(s)) ds

)
+Cu,∞(τ)

(
Kατ

(
1 + Cw,∞(τ) + CTV

w (τ)
)
+ τ Cv (τ, Cw,1(τ))Cw,1(τ)

)
=: CTV

u (τ). (3.60)

By Lemma 3.7 and Lemma 3.11, exploiting (3.53), (3.58) and (3.60), we get

∥ui+1(t)− ui(t)∥L1(Ω;R) ≤ Cu,1(t)

∫ t

0
∥∇· (ci(τ)− ci−1(τ))∥L∞(Ω;R) dτ
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+ CTV
u (t)

∫ t

0
∥ci(τ)− ci−1(τ)∥L∞(Ω;Rn) dτ + exp (tKα (1 + Cw,∞(t)))

×
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,t];L∞(Ω;R))

)
∥Ai −Ai−1∥L1([0,t]×Ω;R). (3.61)

By (3.46), exploiting the hypothesis (α), we obtain

∥Ai −Ai−1∥L1([0,t]×Ω;R) (3.62)

=

∫ t

0

∫
Ω
|α (τ, x, wi(τ, x))− α (τ, x, wi−1(τ, x))| dx dτ

≤ Kα ∥wi − wi−1∥L1([0,t]×Ω;R).

By (3.46), exploiting the hypothesis (v) and (3.48), we obtain

∥∇· (ci(τ)− ci−1(τ))∥L∞(Ω;R) (3.63)

≤ Cv (t, Cw,1(t)) ∥wi(τ)− wi−1(τ)∥L1(Ω;R),

∥ci(τ)− ci−1(τ)∥L∞(Ω;Rn) ≤ Kv∥wi(τ)− wi−1(τ)∥L1(Ω;R). (3.64)

Hence, inserting (3.62), (3.63), and (3.64) into (3.61) yields

∥ui+1(t)− ui(t)∥L1(Ω;R) ≤
(
Cu,1(t)Cv(t, Cw,1(t)) +KvC

TV
u (t) (3.65)

+Kα exp (tKα (1 + Cw,∞(t)))
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,t];L∞(Ω;R))

))
× ∥wi − wi−1∥L1([0,t]×Ω;R).

Collecting together (3.52) and (3.65), we obtain

∥wi+1 − wi∥L∞([0,t];L1(Ω;R)) + ∥ui+1 − ui∥L∞([0,t];L1(Ω;R))

≤ Cu,w(t) t
(
∥wi − wi−i∥L∞([0,t];L1(Ω;R)) + ∥ui − ui−1∥L∞([0,t];L1(Ω;R))

)
,

where

Cu,w(t) = Kβe
tKβCw,∞(t) +

(
Cu,1(t)Cv(t, Cw,1(t)) +KvC

TV
u (t)

+Kα exp (tKα (1 + Cw,∞(t)))
(
∥uo∥L∞(Ω;R) + ∥a∥L1([0,t];L∞(Ω;R))

))
.

Choosing a sufficiently small t∗ > 0, we ensure that (ui, wi) is a Cauchy
sequence in the complete metric space L∞ (

[0, t∗];L
1(Ω;R2)

)
. Call (u∗, w∗)

its limit.
Then, the bounds (2.3) and (2.4) directly follow from (3.48) and (3.49) by

the lower semicontinuity of the L∞ norm with respect to the L1 distance.
The same procedure applies to get (2.5) and (2.6) from (3.58) and (3.59). If
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a ≥ 0, b ≥ 0 and both components of the initial datum (uo, wo) are positive,
then also the components of (u∗, w∗) are positive.

We now prove that (u∗, w∗) solves (1.1) in the sense of Definition 2.1. Note
that by (v), the sequence v(·, wi) converges to v(·, w∗) in L∞([0, t∗];L

1(Ω;R)).
Similarly, by (α) and (β), α(·, ·, wi) and β(·, ·, ui, wi) converge to α(·, ·, w∗)
and β(·, ·, u∗, w∗). Two applications of the Dominated Convergence Theorem
ensure that the integral equality (3.28) for the hyperbolic problems and (3.2)
for the parabolic problem do hold.

By (3.59), we also have u∗ ∈ L∞([0, t∗] × Ω;R). Moreover, Lemma 3.13
ensures that

u∗ ∈ C0
(
[0, t∗];L

1(Ω;R)
)
,

using also (3.53)–(3.57).
By construction, we have w∗ ∈ C0

(
[0, t∗];L

1(Ω;R)
)
. Indeed, the uniform

bound (3.49) shows that

w∗ ∈ L∞([0, t∗]× Ω;R) ⊆ L∞ (
[0, t∗];L

1(Ω;R)
)
.

Moreover, a further application of the Dominated Convergence Theorem
shows that w∗ satisfies (3.5). Hence, proceeding as in Claim 4 in the proof
of Proposition 3.5, we have that w∗ ∈ C0

(
[0, t∗];L

1(Ω;R)
)
.

Thus, (u∗, w∗) satisfies the requirements in Definition 2.1. Moreover, this
solution (u∗, w∗) can be uniquely extended to all [0, T ]. The proof is identical
to [10, Theorem 2.2, Step 6].

Following the same techniques used in [10, Theorem 2.2, Step 7], we can
prove also the Lipschitz continuous dependence of the solution to (1.1) on
the initial data. Let (uo, wo) and (ũo, w̃o) be two sets of initial data. Call
(u,w) and (ũ, w̃) the corresponding solutions to (1.1) in the sense of Defini-
tion 2.1. The proof is based on (3.6), (3.47), (3.53), Item 1) in Lemma 3.6
and computations analogous to those leading to (3.52) and (3.65) now yield

∥u(t)− ũ(t)∥L1(Ω;R) + ∥w(t)− w̃(t)∥L1(Ω;R)

≤ ∥uo − ũo∥L1(Ω;R) exp (Kα t (1 +Kw,∞(t))) + ∥wo − w̃o∥L1(Ω;R)e
Kβ t

+Kβ e
tKβKw,∞(t)

(∫ t

0
∥u(τ)− ũ(τ)∥L1(Ω;R) + ∥w(τ)− w̃(τ)∥L1(Ω;R) dτ

)
+K1(t)

∫ t

0
∥w(τ)− w̃(τ)∥L1(Ω;R) dτ ,

where

Kw,∞(t) = min {Cw,∞(t), Cw̃,∞(t)} ,
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K1(t) = min
{
Cu,1(t)Cv(t, Cw,1(t)) +Kv C

TV
u (t) +KαCu,∞(t), (3.66)

Cũ,1(t)Cv(t, Cw̃,1(t)) +Kv C
TV
ũ (t) +KαCũ,∞(t)

}
,

and Cw̃,1, Cw̃,∞, CTV
w̃ , Cũ,1, Cũ,∞, CTV

ũ are defined accordingly to (3.48),
(3.49), (3.50), (3.58), (3.59), (3.60), corresponding to the initial datum
(ũo, w̃o). Then, Gronwall Lemma [3, Lemma 3.1] yields

∥u(t)− ũ(t)∥L1(Ω;R) + ∥w(t)− w̃(t)∥L1(Ω;R)

≤
(
∥uo − ũo∥L1(Ω;R) + ∥wo − w̃o∥L1(Ω;R)

)∫ t

0
Ko(τ) exp

(∫ t

τ
K(s) ds

)
dτ ,

with

Ko(τ) = exp (max {(Kα τ (1 +Kw,∞(τ))) ,Kβ τ}) ,
K(τ) = Kβ e

τ KβKw,∞(τ) +K1(τ).

Uniqueness of solution readily follows.
We focus now on the stability of (1.1) with respect to the controls a and

b. Let a, ã satisfy (a), b, b̃ satisfy (b). Call (u,w) and (ũ, w̃) the solutions

to (1.1) corresponding to the functions a, b and ã, b̃ respectively. Similarly
to the previous step, by (3.6), (3.47), (3.53), Item 1) in Lemma 3.6 and
computations analogous to those leading to (3.52) and (3.65), we obtain

∥u(t)− ũ(t)∥L1(Ω;R) + ∥w(t)− w̃(t)∥L1(Ω;R)

≤ ∥a− ã∥L1([0,t]×Ω;R) exp (Kα t (1 +Kw,∞(t))) +
∥∥b− b̃

∥∥
L1([0,t]×Ω;R)e

Kβ t

+Kβe
tKβKw,∞(t)

(∫ t

0
∥u(τ)− ũ(τ)∥L1(Ω;R) + ∥w(τ)− w̃(τ)∥L1(Ω;R) dτ

)
+K1(t)

∫ t

0
∥w(τ)− w̃(τ)∥L1(Ω;R) dτ ,

where Kw,∞(t) and K1(t) are defined as in (3.66), with the main difference

that the tilde-versions of C∗,∗ now corresponds to the functions ã and b̃. An
application of Gronwall Lemma [3, Lemma 3.1] yields the desired estimate.

□
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