Magnetic resonance imaging criteria for the assessment of the rotator cuff after repair: a
 systematic review and quality assessment of reliability studies

.

7 Abstract

8

9 Purpose: To perform a systematic review of the literature on magnetic resonance (MR) criteria for the
10 assessment of rotator cuff after repair and summarize risk of bias and results of intra and interobserver
11 reliability studies.

Methods: Search was performed using major electronic databases from their inception to February 2014.
All studies reporting postoperative MR assessment after rotator cuff repair were included. After the
identification of avalaible MR criteria, reliability studies were further analyzed. Descriptive statistics
were used to summarize findings. Methodological quality was assessed using the Quality Appraisal of
Reliability Studies (QAREL) checklist.

Results: One hundred twenty studies were included in the review. Twenty six different criteria were 17 identified. Each criterion was evaluated through presence/absence or a dedicated classification. Ten 18 19 studies reported interobserver reliability and only two assessed intraobserver reliability of some of the identified criteria. Structural integrity was the most investigated topic. The dichotomization of Sugaya's 20 classification showed the highest correlation (k= 0.80-0.91). All other criteria showed moderate to low 21 22 interobserver reliability. Tendon signal intensity and footprint coverage showed a complete discordance. 23 Intraobserver agreement was high for the presence of structural integrity; moderate to low for all other 24 criteria. Methodological quality was high only for one study and moderate for 3 studies.

Conclusion: Twenty six different criteria, further described by multiple classification systems, have been
identified for the MR assessment of rotator cuff after repair. Reliability of most of them has not been analyzed yet.
With the data available, only the presence of structural integrity showed substantial intra and interobserver
agreement.

29 Keywords: magnetic resonance, rotator cuff repair, interobserver and intraobserver reliability

31 INTRODUCTION

32

33

Healing of rotator cuff tendons after surgical repair is problematic, especially for large and massive 34 35 tears [19, 35]. Although clinical outcome of rotator cuff repair seems not to be predicted by tendon healing, some studies have documented that tendon healing is associated with greater functional 36 improvement than tendon non-healing or re-tear [25, 143]. 37 Several prognostic factors have been identified in rotator cuff surgery that may influence clinical and 38 structural outcome of the repair, some of which can only be assessed with imaging studies. Different 39 40 imaging modalities are used for the preoperative and postoperative evaluation of the rotator cuff, such as: ultrasounds (US), computed tomography (CT), magnetic resonance (MR), CT-arthrography (CTA) 41 42 and MR-arthrography (MRA) [89, 125, 136]. Recent studies [36, 54, 141, 155] showed that US and MR are 43 comparable in both sensitivity and specificity for diagnosing a rotator cuff tear. However, US accuracy 44 is still strictly dependent on radiologist experience [116]. CT and CTA are less accurate than MR and are 45 usually recommended only in patients who cannot undergo MR examination [14]. MRA is the most sensitive and specific technique for diagnosing both full- and partial-thickness rotator cuff tears and re-46

tears [24, 155]. However, as MRA is more expensive, time-consuming and invasive than MR, the latter
remains the most commonly used imaging modality for the assessment of rotator cuff before and after
surgery.

Although the evaluation of tendon integrity remains the most relevant imaging information at follow-up, MR also allows the evaluation of some other outcomes, such as: the size of re-tear, muscle atrophy and fatty infiltration [30, 83, 99, 101], which may explain the reasons for the observed discrepancy between clinical and anatomical results. 54 Several classifications have been reported in the literature for MRI assessment of the rotator cuff after 55 repair, but no clear information is available on the reliability of these outcome measurements. The 56 purpose of the present systematic review was threefold: to identify all the MR criteria available in the 57 literature for the assessment of rotator cuff after repair; to summarize available data on reliability of 58 identified criteria, and to assess methodological quality of reliability studies.

59

60 METHODS

61

This systematic review was conducted following the PRISMA guideline (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) [107].

64

65 Literature search

Two authors independently searched the major electronic databases to identify studies which reported 66 postoperative MR assessment following rotator cuff repair. There were no restrictions on the date of 67 publication or language. This search was applied to MEDLINE through OVID (1948 to February 68 69 2014), and adapted for EMBASE (1988 to February 2014). To minimize the number of missed studies, no filters were applied to the search strategy (see Appendix A). Studies with levels of evidence I, II, 70 III, and IV were included. Articles designated as E-published only as well as E-published ahead of print 71 were included. All studies enrolling people of any age who underwent rotator cuff repair and reporting 72 73 postoperative MR assessment of the rotator cuff were included.. No restrictions on surgical technique 74 were applied; therefore, studies reporting MR imaging outcomes following open, mini-open or 75 arthroscopic rotator cuff repair were considered. Studies that included different postoperative imaging

76 modalities were allowed, with only the data from MR evaluation included in this analysis. Exclusion

criteria were evaluation of repair of isolated subscapularis tears and revision surgeries. Literature

78 reviews, editorial pieces and expert opinions were also excluded.

79 References within included studies and review articles were manually cross-referenced for potential

80 inclusion if omitted from the initial search.

In cases of disagreement of paper inclusion/exclusion at any stage of the selection process, a consensus was reached through discussion or, if not possible, by arbitration from the senior author. Titles of journals, names of authors or supporting institutions were not masked at any stage.

84

85 Data extraction and analysis

The same reviewers independently extracted available data from all eligible studies using a piloted form. Information gathered included the following study characteristics: authors and year of publication, MR setting (magnetic field strength and sequences obtained), semi-quantitative or qualitative MR criteria; precise definitions of the criteria; normal and abnormal values (if applicable), data reflecting the reproducibility of results such as the intra- and inter-observer reliability of each semi-quantitative or qualitative MR criterion. A third author checked the extracted data.

In view of the studies' objectives, heterogeneous populations and outcomes investigated, descriptive statistics were used to summarize findings across all reliability studies. Although different measures of reliability are reported in the literature, according to the most accredited recommendations on measurement properties of reliability [96, 108], the following statistical methods were considered valid for the assessment of intra-observer and inter-observer reliability: Kappa (k) statistics for dichotomous/nominal/ordinal scores and intraclass correlation coefficients (ICCs) for continuous scores. Magnitude of agreement between repeated observations was interpreted according to the values of k
coefficients and ICCs as follows: < 0 as absent (complete discordance between observations), 0–0.20 as
poor, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as good, and 0.81–1 as very good [85].

101

102 Methodological quality

Only studies reporting intra- and/or inter-observer reliability were included in the evaluation of the study 103 104 methodological quality. Methodological quality was assessed using the Quality Appraisal of Reliability Studies (QAREL) checklist [96]. It has been developed as a specific quality appraisal tool for studies of 105 106 diagnostic reliability. The QAREL checklist includes 11 items that explore seven principles. Items cover the spectrum of subjects, spectrum of examiners, examiner blinding, order effects of examination, 107 suitability of the time interval among repeated measurements, appropriate test application and 108 interpretation, and appropriate statistical analysis. Each item is equally weighted and graded as Yes, No 109 110 or Unclear based on guidelines provided [96]. The risk of bias was based on the number of positive items (scored Yes). A high risk of bias was considered if < 7 items were positive and a low risk was considered 111 if > 8 items were positive. Seven positive items identified a moderate risk of bias [12, 140]. 112 Methodological evaluation was initially conducted independently by two reviewers and results were 113 subsequently discussed until a completely unanimous grade was allocated to each item. If a consensus 114 115 was not possible, the grade was assigned by arbitration of the senior author.

116

117 **RESULTS**

118

119 *Literature search*

The electronic search resulted in 3410 hits, 2283 for Medline and 1127 for Embase. After removing the
duplicates and studies not eligible for inclusion based on their title and abstract, 156 studies remained.

122 Of these, 36 were excluded based on the full text. One hundred twenty studies were included in the 123 review (**Fig. 1**).

124

125 Included studies

All the included studies reported an MRI evaluation after rotator cuff repair [2–11, 13, 15–18, 20–23,

127 26–28, 31, 32, 34, 37–42, 44, 46–53, 55–79, 81, 82, 84, 86, 87, 90–93, 97, 98, 100, 102–106, 109, 111,

128 113, 114, 117–124, 126, 127, 129–132, 135, 137–139, 144, 145, 147, 148, 150–152, 156–158, 161–

129 163, 166, 167, 169]. Twenty six different criteria for the evaluation of the rotator cuff after repair have

been described. Each criterion has been evaluated through a semi-quantitative method (present/absent)

131 or a dedicated classification. Moreover, different MR settings have been used for the evaluation of the

same criteria. Detailed data on study characteristics and MR criteria are reported in the **Table 1**.

133

134 Reliability studies

Only 2 studies [48, 63] reported intra-observer agreement, whereas 10 studies [7, 23, 52, 63, 73, 82, 103,

136 104, 106, 166] reported inter-observer agreement for some of the above-mentioned criteria.

137

138 *Structural integrity*

Structural integrity was assessed in almost all the included studies using 7 different staging systems [22, 50, 62, 98, 117, 147, 152]. Intra-observer reliability was evaluated only by 2 studies [48, 63]. Both studies dichotomized the outcome (yes or no). Hantes et al [48] showed an ICC equal to 0.96 (95% CI, 0.90-0.98), indicating an excellent reliability, whereas Khazzam et al [63] showed a k coefficient equal to 0.71, indicating a good reliability. Inter-observer reliability was evaluated by 6 studies [7, 23, 52, 73, 106, 139]

144	166]. Four studies [7, 23, 52, 166] analyzed a dichotomous outcome (yes or no). The reliability analysis
145	showed k coefficients between 0.68 and 0.81 and Cronbach's alfa coefficient equal to 0.92 indicating
146	good to very good reliability. Sugaya's classification [147] was evaluated by one study and it showed a
147	good reliability (k= 0.72; 95%CI, 0.63-0.80) [73]. Two studies [73, 106] dichotomized the Sugaya's
148	classification, as follows: type I-II were considered intact, type III-V were considered re-torn/non-healed.
149	Kappa coefficients were between 0.80 and 0.91, indicating a very good reliability.
150	
151	Footprint coverage
152	Footprint coverage was assessed in the healed rotator cuff repair in 4 studies[9, 13, 21, 63] using 2
153	different classifications [9, 13]. One study [63] reported intra and inter-observer reliability for Burks'
154	classification [9]. Intra-observer reliability was poor (k=0.10). Inter-observer reliability analysis showed
155	a complete disagreement (k=-0.01).
156	
156 157	Tendon thickness
156 157 158	<i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies
156 157 158 159	<i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer
156 157 158 159 160	<i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer reliability (k =0.01) was found in one study [63] for Burks' classification [9].
156 157 158 159 160 161	<i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer reliability (k =0.01) was found in one study [63] for Burks' classification [9].
156 157 158 159 160 161 162	<i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer reliability (k =0.01) was found in one study [63] for Burks' classification [9]. <i>Tendon signal intensity</i>
156 157 158 159 160 161 162 163	Tendon thickness Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer reliability (k =0.01) was found in one study [63] for Burks' classification [9]. Tendon signal intensity Tendon signal intensity was evaluated in the healed cuff repair in 7 studies [9, 13, 21, 63, 74, 82, 145] using
156 157 158 159 160 161 162 163 164	<i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer reliability (k =0.01) was found in one study [63] for Burks' classification [9]. <i>Tendon signal intensity</i> Tendon signal intensity was evaluated in the healed cuff repair in 7 studies [9, 13, 21, 63, 74, 82, 145] using 5 different classifications [9, 13, 74, 82, 168]. Poor intra-observer reliability (k=0.09) and a complete inter-
156 157 158 159 160 161 162 163 164 165	<i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer reliability (k =0.01) was found in one study [63] for Burks' classification [9]. <i>Tendon signal intensity</i> Tendon signal intensity was evaluated in the healed cuff repair in 7 studies [9, 13, 21, 63, 74, 82, 145] using 5 different classifications [9, 13, 74, 82, 168]. Poor intra-observer reliability (k=0.09) and a complete inter- observer disagreement were reported by one study [63] for Burks' classification [9].
156 157 158 159 160 161 162 163 164 165 166	 <i>Tendon thickness</i> Tendon thickness was evaluated in the healed cuff repair and compared to normal thickness in 5 studies [9, 13, 63, 82, 158] using 4 different classifications [9, 13, 82, 158]. Poor intra- (k=0.13) and inter-observer reliability (k =0.01) was found in one study [63] for Burks' classification [9]. <i>Tendon signal intensity</i> Tendon signal intensity was evaluated in the healed cuff repair in 7 studies [9, 13, 21, 63, 74, 82, 145] using 5 different classifications [9, 13, 74, 82, 168]. Poor intra-observer reliability (k=0.09) and a complete inter-observer disagreement were reported by one study [63] for Burks' classification [9].

Partial re-tear

168 Khazzam et al [63] defined partial-thickness re-tear location as bursal- or articular-sided. Poor intra and 169 inter-observer reliability was found (k=0.06 and k=0.01, respectively).

170

171 Full thickness re-tear location

One study [63] evaluated full-thickness re-tear location on the coronal view, as follows: greater tuberosity or musculotendinous junction Intra- and inter-observer reliability was poor (k=0.21 and k=0.04, respectively).

175

176 *Tear size*

The size of re-tear was reported in 12 studies [60, 61, 63, 103, 104, 109, 119, 120, 131, 151, 163, 169]. Intra-177 observer reliability was evaluated only by one study [63], which reported a poor to fair reliability in both 178 sagittal and coronal planes: k=0.20 and k=0.23, respectively. Inter-observer agreement was evaluated by 179 3 studies [63, 103, 104]. The overall reliability was very different between studies. On the coronal view, 180 181 Mellado et al [103, 104] showed a Pearson's correlation coefficient (PCC) of 0.90 in both studies, whereas Khazzam et al [63] reported a poor reliability (k =0.14). Similarly, on the sagittal plane, Mellado et al 182 [103, 104] showed PCCs between 0.8 and 0.9, whereas Khazzam et al [63] reported a k coefficient equal 183 to 0.31, indicating a fair reliability. 184

185

186 Number of tendons involved

187 Assessment of number of tendons involved in full-thickness re-tears was reported only by one study [63].

188 Fair intra- and inter-observer reliability (k=0.29 and k=0.40, respectively) was found for this outcome.

189

190 *Tendon retraction*

The amount of retraction was reported in 4 studies using 4 different classifications [16, 22, 63, 151].
Moderate inter-observer reliability (k=0.45) was found for the classification reported by Khazzam et al
[63].

194

195 *Muscle atrophy*

Muscle atrophy was assessed on 34 studies [2, 4, 5, 15, 21, 32, 37–40, 47, 49, 56–58, 61, 63, 74, 78, 82, 196 93, 104, 114, 119, 130, 152, 157, 161, 164, 166, 167, 169] and 8 classifications were reported [39, 49, 63, 197 198 153, 159, 162, 164, 165]. Only one study reported the intra-oberserver reliability [63] and two studies [63, 199 104] reported the inter-observer reliability for the Zanetti's classification [165]. Intra-observer reliability was moderate for supraspinatus (k=0.52) and infraspinatus (k=0.43), and poor for subscapularis (k=0.32). 200 201 The overall inter-observer reliability was very different between studies. Mellado et al [104] showed a PCC of 0.90 for each muscle belly, whereas Khazzam et al [63] reported k values ranging from 0.11 for 202 203 the subscapularis, 0.28 for the infraspinatus to 0.31 for the supraspinatus, showing a poor to fair reliability. 204

205

206 *Fatty infiltration*

Although fatty infiltration was described on postoperative MRIs in several studies using 3 different classifications [43, 44, 112], fair intra- and inter-observer reliability (k= 0.34 and k=0.24, respectively) was reported only by one study [63] for the Goutallier's classification [43].

210

211 Long head of the biceps

The evaluation of associated pathologies involving the long head of the biceps (LHB) has been reported

only by one study [63]. The authors evaluated the presence of the LHB into the intertubercular groove

(yes or no) as well as the presence of a longitudinal split of the intra-articular portion of the tendon (yes

215	or no) on T2 axial cuts. Intra-observer reliability was moderate for the two outcomes (k=0.43 and k=0.49,
216	respectively). Inter-observer reliability was poor for the presence of LHB signal (k=0.10) and fair for the
217	presence of a longitudinal split (k=0.35).
218	
219	Bone marrow edema in the humeral head
220	Presence and location of the bone marrow edema in the humeral head were considered by one study [63].
221	Moderate intra-observer reliability has been shown for the presence of bone marrow edema (k = 0.48),
222	whereas a complete disagreement was found for the location of the edema (k = -0.03). Poor inter-observer
223	reliability was found for both criteria (k=0.22).
224	
225	Cysts in the greater tuberosity
226	A moderate intra and inter-observer reliability (k=0.47 and k=0.43, respectively) was found for the
227	presence of cysts of the greater tuberosity by one study [63].
228	
229	Glenohumeral joint effusion
230	Glenohumeral joint effusion was assessed by the amount of fluid in subcoracoid and axillary recesses as
231	well as biceps tendon sheath and classified into 4 categories from absent to large amount of fluid [63].
232	Only one study reported the intra and inter-observer reliability [63] Kappa coefficients were equal to 0.47
233	(moderate reliability) and 0.24 (very low reliability), respectively.
234	
235	Acromio-humeral distance
236	Acromio-humeral distance was assessed in one study [63] on fat-suppressed sagittal sequences as the
237	distance between the superior aspect of the humeral head and the undersurface of the acromion.
238	Measurements were taken in millimeters at the midhumeral level. Results were classified into 4

categories: ≥ 10 mm, between 10 and 5 mm, < 5 mm, contact between the surfaces. Intra and interobserver reliability was fair (k=0.38 and k=0.31, respectively).

- 241
- 242

243 Methodological quality

The risks of bias of the included studies, according to the QAREL checklist are presented in Table 2. 244 Most of the studies showed a high risk of bias. The grading of the studies varied from 3 to 9 positive 245 items out of 11 possible. Seven studies were considered to be of high risk of bias [7, 23, 48, 52, 82, 103, 246 104]. Among these studies, four did not use appropriate statistical measures [23, 82, 103, 104]. Three 247 studies were considered to be of moderate risk [73, 106, 166] and only one was found to be at low risk of 248 bias [63]. None of the included studies specified if the order of MR examination varied between observers 249 or between different observation series. Among intra-observer reliability studies, only one study [63] 250 251 clearly stated the time interval between repeated measurements.

252

253 **DISCUSSION**

254

255 Summary of evidence

To our knowledge, the present study is the first systematic review assessing MR criteria for the evaluation
of rotator cuff after repair and summarizing risk of bias and results of intra- and inter-observer reliability
studies.

259 The principal finding is that only the evaluation of the structural integrity showed a good intra- and inter-

- observer reliability [7, 23, 48, 52, 63, 73, 106, 166]. Specifically, the dichotomization of the Sugaya's
- classification[147] into type I-II (intact) versus type III-V (re-tear) showed the highest reliability. Several

authors [8, 55, 57–59, 71, 81, 113] also proposed a different dichotomization into Type I-III versus Type
IV-V, but no data on intra- and inter-observer reliability are available.

Despite the high number of criteria and the multiple classifications reported by the studies included in the present review, only eleven studies reported reliability of a few criteria [7, 23, 48, 52, 63, 73, 82, 103, 104, 106, 166]. Moreover, methodological quality of available reliability studies was low to moderate. According to the QAREL checklist only one study was judged to be at low risk of bias [63]. QAREL checklist was chosen because is the most frequently reported quality appraisal tool for reliability studies[1, 12, 80]; moreover, it has been recently shown to be a [95] reliable assessment tool for reliability studies .

Structural integrity was the most investigated topic after rotator cuff repair across the studies included in 271 the review. Apart from Sugaya's classification, or its dichotomization, and the definition of presence or 272 absence of tendon integrity, we found other 5 different classifications reported in the literature [22, 50, 273 62, 98, 152]. Moreover, some studies applied existing classification to different MR sequences [4, 5, 39, 274 275 167]. Currently, neither proof of reliability of those classifications, nor estimation of the best sequence for the evaluation of tendon integrity has been reported. Similarly, different classifications or imaging 276 planes and sequences have been proposed for the evaluation of fatty infiltration and muscle atrophy, but 277 278 reliability on postoperative MRI has been taken into account only by one study [63] for Goutallier's classification [43] and by two studies [63, 104] for the quantification of muscle atrophy according to 279 280 Zanetti et al [165]. Although reported in several follow-up studies the following criteria were never tested for reliability: re-rupture pattern, tendon length, musculotendineous junction position, tendon thickness, 281 acromial morphology, thickness of the subacromial bursa, acromio-clavicular osteoarthritis, gleno-hum 282 eral osteoarthritis, artifacts and anchor characteristics. More interestingly, although most of these criteria 283 could be considered to be of secondary importance in clinical practice, several authors proposed different 284

grading system for their evaluation. Moreover, it must be highlighted that the lack of a detaileddescription of planes and sequences increases the uncertainty of their application.

Only one study analyzed reliability of multiple criteria [63]. Seven fellowship-trained orthopaedic 287 288 shoulder surgeons reviewed 31 MR scans from 31 patients who had previous rotator cuff repair. The 289 authors reported moderate inter-observer agreement for tendon retraction and presence of cysts of the greater tuberosity. Moderate intra-observer reliability was found for muscle quality of supraspinatus and 290 291 infraspinatus tendons, presence of a split in the long head of the biceps tendon, cysts in the greater tuberosity and bone marrow edema involving the humeral head. All other criteria showed poor to fair 292 intra- and inter-observer reliability. Finally, tendon signal intensity and footprint coverage showed a 293 complete discordance between observers. 294

In contrast, Mellado et al [103, 104], in two consecutive studies, found high inter-observer reliability for 295 296 tear size and muscle atrophy. Data pooling was not possible due to the use of different statistical measures of reliability. From a methodological standpoint, the study by Khazzam et al [63] was the only one with 297 a low risk of bias, whereas the studies by Mellado et al [103, 104] were found to be at high risk, due to 298 299 inappropriate statistical analysis. In fact, as stated by the general guidelines provided by the QAREL checklist [96], correlation statistics, such as Pearson's r or Spearman's rank correlation coefficient used 300 301 by Mellado et al [103, 104] are not appropriate for assessing reliability. Those correlation coefficients provide information regarding the consistency of the scores between repeated measures but does not 302 303 account for systematic differences, which may occur between repeated measures. Therefore, these 304 correlations are overly liberal, and inappropriate estimates of reliability [146].

Reliability is an important indicator of the potential of a test to be accurate and reproducible, therefore it is important to know that most of the commonly used criteria to assess the status of the rotator cuff after surgery have never been tested or show only moderate to low intra- and inter-observer reliability.

309 Agreements and disagreements with other studies or review

Although MRI has become the standard imaging modality for the assessment of the rotator cuff pathology and it allows the evaluation of a large number of features, surprisingly, no previous systematic review investigated the reliability of the criteria used for the MR evaluation after rotator cuff repair.

After carefully analyzing the results of the present review, apart from data on structural integrity, it has 313 been noticed that the evaluation of fatty infiltration showed poor inter-obsever agreement and moderate 314 315 intra-observer reliability. According to the current literature, fatty infiltration constitutes one of the most important predictive factor for successful outcomes after rotator cuff repair [30, 99, 101]. Therefore, the 316 presence of a reliable and valid classification system to assess the postoperative changes of rotator cuff 317 muscles is crucial. However, qualitative assessment of fatty infiltration of rotator cuff after surgery 318 319 should be interpreted with caution due to the limited reliability of the current grading systems and several concerns still remain. A consensus on imaging modalities, planes and sequences need to be achieved [33, 320 94, 110, 115, 149, 160]. Despite MRI is the reference standard for the evaluation of the rotator cuff 321 features, the grades of fatty infiltration are measured at one cross-sectional image, thus the section for 322 evaluation may be placed at a relatively medial portion and may not represent the true degree of fatty 323 infiltration of the whole muscle belly [115]. Moreover, the cross-sectional areas of the muscle may be 324 highly influenced by retraction of the musculotendinous junction of the rotator cuff [153, 154]. It has 325 been showed in an animal model that fatty infiltration is an infiltrative process that progresses over time 326 from the musculotendinous junction toward the muscle origin [128]. In clinical studies performed after 327 rotator cuff repair, if the repair is successful and the retracted tendon end is brought back to the footprint, 328 lateralization of the muscle belly may falsely improve the degree of fatty infiltration [88, 115]. Finally 329 the qualitative nature of the Goutallier's system implies a subjective assessment of the fatty infiltration 330 and the role of observer's experience on inter-observer reliability has been also questioned [115, 142]. 331

Therefore, quantitative measurements of muscle atrophy (rather than fatty infiltration) have been proposed, but none of them has been widely accepted yet [149, 152, 165].

334

335 *Limitations*

336 The present study has several limitations. Although an attempt was made to minimize the number of missed studies during the search process, only few reliability studies were found, despite the wide number of identified 337 criteria for the assessment of the rotator cuff after repair. Secondly, results of the present review have been 338 widely influenced by the results of one study [63] because it was the only well-conducted study available, which 339 340 took into account different criteria. Furthermore, in case of multiple studies assessing the same criteria, with meta-analysis deemed inappropriate, the choice of providing an average level of reliability is definitely arbitrary, 341 although largely used in systematic reviews of reliability studies [45, 133]. Some other limitations are strictly 342 dependent on the design of the included studies. Due to the lack of detailed descriptions on how to use 343 some classifications or how to interpret some MR findings, several criteria often are used or applied in 344 345 a different way among similar studies by using custom-made modifications or dichotomizations of 346 original classifications. Moreover, MR settings varied across the studies. Although most of the studies used 347 1.5 Tesla (T) magnetic fields, some studies used lower and some others used higher fields. Undoubtedly, the 348 strength of the magnetic field can influence the accuracy of the MR evaluation. In absence of reliability studies 349 that take into account comparisons between different planes and sequences described in literature, it is very 350 difficult to state any clear conclusion on the best modality to evaluate any criterion. Overall, this variability 351 reduces comparability of radiologic reports and may lead to misinterpretation of findings and severely limits the 352 value of some studies. In clinical practice, this uncertainty may have negative effects on the evaluation of the 353 outcome of rotator cuff repair.

354

355 CONCLUSION

In the present study, we have systematically reviewed the MR criteria to assess rotator cuff repair described in the literature and what has been reported about their intra- and inter-observer reliability. We found 26 different criteria described by multiple classification systems, albeit reliability of most of them has not been analyzed yet. With the data available, only the presence of structural integrity after rotator cuff repair showed substantial intra- and inter-observer reliability.

362

363 References

- 1. Adhia DB, Bussey MD, Ribeiro DC, Tumilty S, Milosavljevic S (2013) Validity and reliability of
- 365 palpation-digitization for non-invasive kinematic measurement a systematic review. Man. Ther.

366 18:26–34

- Agrawal V (2012) Healing rates for challenging rotator cuff tears utilizing an acellular human
 dermal reinforcement graft. Int. J. Shoulder Surg. 6:36
- 369 3. Barber FA, Hrnack SA, Snyder SJ, Hapa O (2011) Rotator cuff repair healing influenced by
- 370 platelet-rich plasma construct augmentation. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc.
- 371 Assoc. N. Am. Int. Arthrosc. Assoc. 27:1029–1035
- 4. Bartl C, Kouloumentas P, Holzapfel K, Eichhorn S, Wörtler K, Imhoff A, Salzmann GM (2012)
- Long-term outcome and structural integrity following open repair of massive rotator cuff tears. Int.
- 374 J. Shoulder Surg. 6:1–8
- 5. Bartl C, Senftl M, Eichhorn S, Holzapfel K, Imhoff A, Salzmann G (2012) Combined tears of the
- 376 subscapularis and supraspinatus tendon: clinical outcome, rotator cuff strength and structural
- integrity following open repair. Arch. Orthop. Trauma Surg. 132:41–50
- 378 6. Bergeson AG, Tashjian RZ, Greis PE, Crim J, Stoddard GJ, Burks RT (2012) Effects of platelet-
- rich fibrin matrix on repair integrity of at-risk rotator cuff tears. Am. J. Sports Med. 40:286–293

380	7.	Bishop J.	Klepps S.	Lo IK.	Bird J.	Gladstone.	JN. Flatow	7 EL (2006	5) Cuff	integrity a	after
					,		,				

arthroscopic versus open rotator cuff repair: a prospective study. J. Shoulder Elb. Surg. Am.

382 Shoulder Elb. Surg. Al 15:290–299

- 8. Boyer P, Bouthors C, Delcourt T, Stewart O, Hamida F, Mylle G, Massin P (2013) Arthroscopic
- double-row cuff repair with suture-bridging: a structural and functional comparison of two
- techniques. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA
- 386 9. Burks RT, Crim J, Brown N, Fink B, Greis PE (2009) A prospective randomized clinical trial
- comparing arthroscopic single- and double-row rotator cuff repair: magnetic resonance imaging
 and early clinical evaluation. Am. J. Sports Med. 37:674–682
- 10. Carbonel I, Martínez AA, Aldea E, Ripalda J, Herrera A (2013) Outcome and structural integrity of
 rotator cuff after arthroscopic treatment of large and massive tears with double row technique: a 2 year followup. Adv. Orthop. 2013:914148
- 11. Carbonel I, Martinez AA, Calvo A, Ripalda J, Herrera A (2012) Single-row versus double-row
- arthroscopic repair in the treatment of rotator cuff tears: a prospective randomized clinical study.
 Int. Orthop. 36:1877–1883
- 12. Carlsson H, Rasmussen-Barr E (2013) Clinical screening tests for assessing movement control in
 non-specific low-back pain. A systematic review of intra- and inter-observer reliability studies.
- 397 Man. Ther. 18:103–110
- 13. Castricini R, Longo UG, De Benedetto M, Panfoli N, Pirani P, Zini R, Maffulli N, Denaro V
- 399 (2011) Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized
- 400 controlled trial. Am. J. Sports Med. 39:258–265
- 401 14. Charousset C, Bellaïche L, Duranthon LD, Grimberg J (2005) Accuracy of CT arthrography in the
- 402 assessment of tears of the rotator cuff. J. Bone Joint Surg. Br. 87:824–828

403	15. Cho NS, Lee BG, Rhee YG (2011) Arthroscopic rotator cuff repair using a suture bridge technique:
404	is the repair integrity actually maintained? Am. J. Sports Med. 39:2108–2116
405	16. Cho NS, Rhee YG (2009) The factors affecting the clinical outcome and integrity of
406	arthroscopically repaired rotator cuff tears of the shoulder. Clin. Orthop. Surg. 1:96-104
407	17. Cho NS, Yi JW, Lee BG, Rhee YG (2010) Retear patterns after arthroscopic rotator cuff repair:
408	single-row versus suture bridge technique. Am. J. Sports Med. 38:664-671
409	18. Cho NS, Yi JW, Rhee YG (2009) Arthroscopic biceps augmentation for avoiding undue tension in
410	repair of massive rotator cuff tears. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc.
411	N. Am. Int. Arthrosc. Assoc. 25:183–191
412	19. Choi S, Kim MK, Kim GM, Roh Y-H, Hwang IK, Kang H (2014) Factors associated with clinical
413	and structural outcomes after arthroscopic rotator cuff repair with a suture bridge technique in
414	medium, large, and massive tears. J. Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al
415	20. Cole BJ, McCarty LP, Kang RW, Alford W, Lewis PB, Hayden JK (2007) Arthroscopic rotator
416	cuff repair: prospective functional outcome and repair integrity at minimum 2-year follow-up. J.
417	Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 16:579–585
418	21. Crim J, Burks R, Manaster BJ, Hanrahan C, Hung M, Greis P (2010) Temporal evolution of MRI
419	findings after arthroscopic rotator cuff repair. AJR Am. J. Roentgenol. 195:1361–1366
420	22. Demirors H, Circi E, Akgun RC, Tarhan NC, Cetin N, Akpinar S, Tuncay IC (2010) Correlations
421	of isokinetic measurements with tendon healing following open repair of rotator cuff tears. Int.
422	Orthop. 34:531–536
423	23. Deutsch A, Kroll DG, Hasapes J, Staewen RS, Pham C, Tait C (2008) Repair integrity and clinical
424	outcome after arthroscopic rotator cuff repair using single-row anchor fixation: a prospective study
425	of single-tendon and two-tendon tears. J. Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 17:845-
426	852

427	24. Duc SR, Mengiardi B, Pfirrmann CWA, Jost B, Hodler J, Zanetti M (2006) Diagnostic
428	performance of MR arthrography after rotator cuff repair. AJR Am. J. Roentgenol. 186:237-241
429	25. Duquin TR, Buyea C, Bisson LJ (2010) Which method of rotator cuff repair leads to the highest
430	rate of structural healing? A systematic review. Am. J. Sports Med. 38:835-841
431	26. El-Azab H, Buchmann S, Beitzel K, Waldt S, Imhoff AB (2010) Clinical and structural evaluation
432	of arthroscopic double-row suture-bridge rotator cuff repair: early results of a novel technique.
433	Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 18:1730–1737
434	27. Ellera Gomes JL, da Silva RC, Silla LMR, Abreu MR, Pellanda R (2012) Conventional rotator cuff
435	repair complemented by the aid of mononuclear autologous stem cells. Knee Surg. Sports
436	Traumatol. Arthrosc. Off. J. ESSKA 20:373–377
437	28. Von Engelhardt LV, von Falkenhausen M, Fahmy U, Wallny T, Schmitt O, Kraft CN (2004) [MRI
438	after reconstruction of the supraspinatus tendon: MR-tomographic findings]. Z. Für Orthop. Ihre
439	Grenzgeb. 142:586–591
440	29. Epstein RE, Schweitzer ME, Frieman BG, Fenlin JM, Mitchell DG (1993) Hooked acromion:
441	prevalence on MR images of painful shoulders. Radiology 187:479-481
442	30. Fermont AJM, Wolterbeek N, Wessel RN, Baeyens J-P, de Bie RA (2014) Prognostic factors for
443	successful recovery after arthroscopic rotator cuff repair: a systematic literature review. J. Orthop.
444	Sports Phys. Ther. 44:153–163
445	31. Frank JB, ElAttrache NS, Dines JS, Blackburn A, Crues J, Tibone JE (2008) Repair site integrity
446	after arthroscopic transosseous-equivalent suture-bridge rotator cuff repair. Am. J. Sports Med.
447	36:1496–1503
448	32. Fuchs B, Gilbart MK, Hodler J, Gerber C (2006) Clinical and structural results of open repair of an
449	isolated one-tendon tear of the rotator cuff. J. Bone Joint Surg. Am. 88:309-316

- 450 33. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C (1999) Fatty degeneration of the muscles of
- 451 the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J.
- 452 Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 8:599–605
- 453 34. Gaenslen ES, Satterlee CC, Hinson GW (1996) Magnetic resonance imaging for evaluation of
- 454 failed repairs of the rotator cuff. Relationship to operative findings. J. Bone Joint Surg. Am.
 455 78:1391–1396
- 456 35. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K (2004) The outcome and repair
 457 integrity of completely arthroscopically repaired large and massive rotator cuff tears. J. Bone Joint
 458 Surg. Am. 86-A:219–224
- 36. Gazzola S, Bleakney RR (2011) Current Imaging of the Rotator Cuff: Sports Med. Arthrosc. Rev.
 19:300–309
- 37. Gerber C, Fuchs B, Hodler J (2000) The results of repair of massive tears of the rotator cuff. J.
 Bone Joint Surg. Am. 82:505–515
- 463 38. Gerber C, Schneeberger AG, Hoppeler H, Meyer DC (2007) Correlation of atrophy and fatty
- infiltration on strength and integrity of rotator cuff repairs: a study in thirteen patients. J. Shoulder
- 465 Elb. Surg. Am. Shoulder Elb. Surg. Al 16:691–696
- 466 39. Gerhardt C, Hug K, Pauly S, Marnitz T, Scheibel M (2012) Arthroscopic single-row modified
- 467 mason-allen repair versus double-row suture bridge reconstruction for supraspinatus tendon tears: a
 468 matched-pair analysis. Am. J. Sports Med. 40:2777–2785
- 469 40. Gladstone JN, Bishop JY, Lo IKY, Flatow EL (2007) Fatty infiltration and atrophy of the rotator
- 470 cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am. J.
 471 Sports Med. 35:719–728
- 472 41. Gotoh M, Mitsui Y, Shibata H, Yamada T, Shirachi I, Nakama K, Okawa T, Higuchi F, Nagata K
- 473 (2013) Increased matrix metalloprotease-3 gene expression in ruptured rotator cuff tendons is

- 474 associated with postoperative tendon retear. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA
 475 21:1807–1812
- 476 42. Gotoh M, Mitsui Y, Yoshimitsu K, Nakama K, Okawa T, Higuchi F, Nagata K (2013) The
- 477 modified massive cuff stitch: functional and structural outcome in massive cuff tears. J. Orthop.
- 478 Surg. 8:26
- 479 43. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC (1994) Fatty muscle degeneration in
 480 cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin. Orthop. 78–83
- 481 44. Goutallier D, Postel J-M, Gleyze P, Leguilloux P, Van Driessche S (2003) Influence of cuff muscle
- fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears.
- 483 J. Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 12:550–554
- 484 45. Green A, Liles C, Rushton A, Kyte DG (2014) Measurement properties of patient-reported
- 485 outcome measures (PROMS) in Patellofemoral Pain Syndrome: A systematic review. Man. Ther.
- 486 46. Gumina S, Campagna V, Ferrazza G, Giannicola G, Fratalocchi F, Milani A, Postacchini F (2012)
- 487 Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: a prospective
- randomized study. J. Bone Joint Surg. Am. 94:1345–1352
- 489 47. Haneveld H, Hug K, Diederichs G, Scheibel M, Gerhardt C (2013) Arthroscopic double-row repair
 490 of the rotator cuff: a comparison of bio-absorbable and non-resorbable anchors regarding osseous
- 491 reaction. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 21:1647–1654
- 492 48. Hantes ME, Karidakis GK, Vlychou M, Varitimidis S, Dailiana Z, Malizos KN (2011) A
- 493 comparison of early versus delayed repair of traumatic rotator cuff tears. Knee Surg. Sports
- 494 Traumatol. Arthrosc. Off. J. ESSKA 19:1766–1770
- 495 49. Hata Y, Saitoh S, Murakami N, Kobayashi H, Kaito T, Kato H (2005) Volume changes of
- 496 supraspinatus and infraspinatus muscles after supraspinatus tendon repair: a magnetic resonance
- 497 imaging study. J. Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 14:631–635

498	50.	Hayashida K, Tanaka M, Koizumi K, Kakiuchi M (2012) Characteristic retear patterns assessed by
499		magnetic resonance imaging after arthroscopic double-row rotator cuff repair. Arthrosc. J.
500		Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 28:458-464
501	51.	Iannotti JP, Deutsch A, Green A, Rudicel S, Christensen J, Marraffino S, Rodeo S (2013) Time to
502		failure after rotator cuff repair: a prospective imaging study. J. Bone Joint Surg. Am. 95:965–971
503	52.	Ide J, Tokiyoshi A, Hirose J, Mizuta H (2007) Arthroscopic repair of traumatic combined rotator
504		cuff tears involving the subscapularis tendon. J. Bone Joint Surg. Am. 89:2378-2388
505	53.	Iyengar JJ, Porat S, Burnett KR, Marrero-Perez L, Hernandez VH, Nottage WM (2011) Magnetic
506		resonance imaging tendon integrity assessment after arthroscopic partial-thickness rotator cuff
507		repair. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc.
508		27:306–313
509	54.	De Jesus JO, Parker L, Frangos AJ, Nazarian LN (2009) Accuracy of MRI, MR Arthrography, and
510		Ultrasound in the Diagnosis of Rotator Cuff Tears: A Meta-Analysis. Am. J. Roentgenol.
511		192:1701–1707
512	55.	Jo CH, Kim JE, Yoon KS, Lee JH, Kang SB, Lee JH, Han HS, Rhee SH, Shin S (2011) Does
513		platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study. Am.
514		J. Sports Med. 39:2082–2090
515	56.	Jo CH, Shin JS (2013) Changes in appearance of fatty infiltration and muscle atrophy of rotator
516		cuff muscles on magnetic resonance imaging after rotator cuff repair: establishing new time-zero
517		traits. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc.
518		29:449–458
519	57.	Jo CH, Shin JS (2013) Cross-sectional area of the supraspinatus muscle after rotator cuff repair: an
520		anatomic measure of outcome. J. Bone Joint Surg. Am. 95:1785–1791

- 521 58. Jo CH, Shin JS, Lee YG, Shin WH, Kim H, Lee SY, Yoon KS, Shin S (2013) Platelet-rich plasma
- for arthroscopic repair of large to massive rotator cuff tears: a randomized, single-blind, parallel-
- 523 group trial. Am. J. Sports Med. 41:2240–2248
- 524 59. Jo CH, Shin JS, Park IW, Kim H, Lee SY (2013) Multiple channeling improves the structural
- 525 integrity of rotator cuff repair. Am. J. Sports Med. 41:2650–2657
- 526 60. Jost B, Pfirrmann CW, Gerber C, Switzerland Z (2000) Clinical outcome after structural failure of
 527 rotator cuff repairs. J. Bone Joint Surg. Am. 82:304–314
- 528 61. Jost B, Zumstein M, Pfirrmann CWA, Gerber C (2006) Long-term outcome after structural failure
 529 of rotator cuff repairs. J. Bone Joint Surg. Am. 88:472–479
- 530 62. Kasten P, Keil C, Grieser T, Raiss P, Streich N, Loew M (2011) Prospective randomised
- comparison of arthroscopic versus mini-open rotator cuff repair of the supraspinatus tendon. Int.
 Orthop. 35:1663–1670
- 63. Khazzam M, Kuhn JE, Mulligan E, Abboud JA, Baumgarten KM, Brophy RH, Jones GL, Miller B,
- 534 Smith M, Wright RW (2012) Magnetic resonance imaging identification of rotator cuff retears after
- repair: interobserver and intraobserver agreement. Am. J. Sports Med. 40:1722–1727
- 536 64. Kim JR, Cho YS, Ryu KJ, Kim JH (2012) Clinical and radiographic outcomes after arthroscopic
- repair of massive rotator cuff tears using a suture bridge technique: assessment of repair integrity
- on magnetic resonance imaging. Am. J. Sports Med. 40:786–793
- 539 65. Kim KC, Shin HD, Cha SM, Kim JH (2013) Repair integrity and functional outcomes for
- arthroscopic margin convergence of rotator cuff tears. J. Bone Joint Surg. Am. 95:536–541
- 541 66. Kim KC, Shin HD, Cha SM, Lee WY (2013) Comparison of repair integrity and functional
- 542 outcomes for 3 arthroscopic suture bridge rotator cuff repair techniques. Am. J. Sports Med.
- 543 41:271–277

- 544 67. Kim KC, Shin HD, Cha SM, Park JY (2013) Clinical outcomes after arthroscopic trans-tendon
- suture-bridge technique in partial-thickness articular-side rotator cuff tear. Knee Surg. Sports

546 Traumatol. Arthrosc. Off. J. ESSKA 21:1183–1188

- 547 68. Kim KC, Shin HD, Cha SM, Park JY (2014) Repair Integrity and Functional Outcome After
- 548 Arthroscopic Conversion to a Full-Thickness Rotator Cuff Tear: Articular- Versus Bursal-Side
- 549 Partial Tears. Am. J. Sports Med. 42:451–456
- 69. Kim KC, Shin HD, Lee WY (2012) Repair integrity and functional outcomes after arthroscopic
 suture-bridge rotator cuff repair. J. Bone Joint Surg. Am. 94:e48
- 552 70. Kim KC, Shin HD, Lee WY, Han SC (2012) Repair integrity and functional outcome after
- arthroscopic rotator cuff repair: double-row versus suture-bridge technique. Am. J. Sports Med.
 40:294–299
- 555 71. Kim YK, Moon SH, Cho SH (2013) Treatment outcomes of single- versus double-row repair for
- larger than medium-sized rotator cuff tears: the effect of preoperative remnant tendon length. Am.
- 557 J. Sports Med. 41:2270–2277
- 558 72. Klepps S, Bishop J, Lin J, Cahlon O, Strauss A, Hayes P, Flatow EL (2004) Prospective evaluation
 559 of the effect of rotator cuff integrity on the outcome of open rotator cuff repairs. Am. J. Sports
 560 Med. 32:1716–1722
- 73. Kluger R, Bock P, Mittlböck M, Krampla W, Engel A (2011) Long-term survivorship of rotator
 cuff repairs using ultrasound and magnetic resonance imaging analysis. Am. J. Sports Med.
 39:2071–2081
- ⁵⁶⁴ 74. Knudsen HB, Gelineck J, Søjbjerg JO, Olsen BS, Johannsen HV, Sneppen O (1999) Functional and
- 565 magnetic resonance imaging evaluation after single-tendon rotator cuff reconstruction. J. Shoulder
- 566 Elb. Surg. Am. Shoulder Elb. Surg. Al 8:242–246

- 567 75. Ko S-H, Lee C-C, Friedman D, Park K-B, Warner JJP (2008) Arthroscopic single-row
- supraspinatus tendon repair with a modified mattress locking stitch: a prospective, randomized
- 569 controlled comparison with a simple stitch. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc.
- 570 Assoc. N. Am. Int. Arthrosc. Assoc. 24:1005–1012
- 571 76. Koh KH, Kang KC, Lim TK, Shon MS, Yoo JC (2011) Prospective randomized clinical trial of
- single- versus double-row suture anchor repair in 2- to 4-cm rotator cuff tears: clinical and
- 573 magnetic resonance imaging results. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc.
- 574 N. Am. Int. Arthrosc. Assoc. 27:453–462
- 575 77. Koh KH, Laddha MS, Lim TK, Lee JH, Yoo JC (2012) A magnetic resonance imaging study of
- 576 100 cases of arthroscopic acromioplasty. Am. J. Sports Med. 40:352–358
- 577 78. Koh KH, Laddha MS, Lim TK, Park JH, Yoo JC (2012) Serial structural and functional
- assessments of rotator cuff repairs: do they differ at 6 and 19 months postoperatively? J. Shoulder
 Elb. Surg. Am. Shoulder Elb. Surg. Al 21:859–866
- 79. Koh KH, Shon MS, Lim TK, Yoo JC (2011) Clinical and magnetic resonance imaging results of
 arthroscopic full-layer repair of bursal-side partial-thickness rotator cuff tears. Am. J. Sports Med.
 39:1660–1667
- 583 80. Kottner J, Hauss A, Schlüer A-B, Dassen T (2013) Validation and clinical impact of paediatric
- pressure ulcer risk assessment scales: A systematic review. Int. J. Nurs. Stud. 50:807–818
- 585 81. Kuroda S, Ishige N, Mikasa M (2013) Advantages of arthroscopic transosseous suture repair of the
 586 rotator cuff without the use of anchors. Clin. Orthop. 471:3514–3522
- 587 82. Kyrölä K, Niemitukia L, Jaroma H, Väätäinen U (2004) Long-term MRI findings in operated
 588 rotator cuff tear. Acta Radiol. Stockh. Swed. 1987 45:526–533

589	83. Lambers Heerspink FO, Dorrestijn O, van Raay JJAM, Diercks RL (2014) Specific patient-related
590	prognostic factors for rotator cuff repair: a systematic review. J. Shoulder Elb. Surg. Am. Shoulder
591	Elb. Surg. Al 23:1073–1080
592	84. Lambers Heerspink FO, Hoogeslag RA, Diercks RL, van Eerden PJ, van den Akker-Scheek I, van
593	Raay JJ (2011) Clinical and radiological outcome of conservative vs. surgical treatment of
594	atraumatic degenerative rotator cuff rupture: design of a randomized controlled trial. BMC
595	Musculoskelet. Disord. 12:25
596	85. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data.
597	Biometrics 33:159–174
598	86. Lapner PLC, Sabri E, Rakhra K, McRae S, Leiter J, Bell K, Macdonald P (2012) A multicenter
599	randomized controlled trial comparing single-row with double-row fixation in arthroscopic rotator
600	cuff repair. J. Bone Joint Surg. Am. 94:1249–1257
601	87. Lee BG, Cho NS, Rhee YG (2012) Effect of two rehabilitation protocols on range of motion and
602	healing rates after arthroscopic rotator cuff repair: aggressive versus limited early passive
603	exercises. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc.

604 Assoc. 28:34–42

- 88. Lee E, Choi J-A, Oh JH, Ahn S, Hong SH, Chai JW, Kang HS (2013) Fatty degeneration of the
 rotator cuff muscles on pre- and postoperative CT arthrography (CTA): is the Goutallier grading
 system reliable? Skeletal Radiol. 42:1259–1267
- 608 89. Lenza M, Buchbinder R, Takwoingi Y, Johnston RV, Hanchard NC, Faloppa F (2013) Magnetic
- resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator
- 610 cuff tears in people with shoulder pain for whom surgery is being considered. In The Cochrane
- 611 Collaboration (ed) Cochrane Database Syst Rev John Wiley & Sons, Ltd, Chichester, UK

612	90. Lichtenberg S, Liem D, Magosch P, Habermeyer P (2006) Influence of tendon healing after
613	arthroscopic rotator cuff repair on clinical outcome using single-row Mason-Allen suture
614	technique: a prospective, MRI controlled study. Knee Surg. Sports Traumatol. Arthrosc. Off. J.
615	ESSKA 14:1200–1206
616	91. Liem D, Bartl C, Lichtenberg S, Magosch P, Habermeyer P (2007) Clinical outcome and tendon
617	integrity of arthroscopic versus mini-open supraspinatus tendon repair: a magnetic resonance
618	imaging-controlled matched-pair analysis. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc.
619	Assoc. N. Am. Int. Arthrosc. Assoc. 23:514–521
620	92. Liem D, Lichtenberg S, Magosch P, Habermeyer P (2008) Arthroscopic rotator cuff repair in
621	overhead-throwing athletes. Am. J. Sports Med. 36:1317-1322
622	93. Liem D, Lichtenberg S, Magosch P, Habermeyer P (2007) Magnetic resonance imaging of
623	arthroscopic supraspinatus tendon repair. J. Bone Joint Surg. Am. 89:1770–1776
624	94. Lippe J, Spang JT, Leger RR, Arciero RA, Mazzocca AD, Shea KP (2012) Inter-rater agreement of
625	the Goutallier, Patte, and Warner classification scores using preoperative magnetic resonance
626	imaging in patients with rotator cuff tears. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc.
627	Assoc. N. Am. Int. Arthrosc. Assoc. 28:154–159
628	95. Lucas N, Macaskill P, Irwig L, Moran R, Rickards L, Turner R, Bogduk N (2013) The reliability of
629	a quality appraisal tool for studies of diagnostic reliability (QAREL). BMC Med. Res. Methodol.
630	13:111
631	96. Lucas NP, Macaskill P, Irwig L, Bogduk N (2010) The development of a quality appraisal tool for
632	studies of diagnostic reliability (QAREL). J. Clin. Epidemiol. 63:854-861
633	97. Magee T, Shapiro M, Hewell G, Williams D (2003) Complications of rotator cuff surgery in which

bioabsorbable anchors are used. AJR Am. J. Roentgenol. 181:1227–1231

- 98. Magee TH, Gaenslen ES, Seitz R, Hinson GA, Wetzel LH (1997) MR imaging of the shoulder after
 surgery. AJR Am. J. Roentgenol. 168:925–928
- 637 99. Mall NA, Tanaka MJ, Choi LS, Paletta GA (2014) Factors affecting rotator cuff healing. J. Bone
 638 Joint Surg. Am. 96:778–788
- 639 100. McCarron JA, Derwin KA, Bey MJ, Polster JM, Schils JP, Ricchetti ET, Iannotti JP (2013)
- Failure with continuity in rotator cuff repair "healing." Am. J. Sports Med. 41:134–141
- 101. McElvany MD, McGoldrick E, Gee AO, Neradilek MB, Matsen FA (2014) Rotator Cuff
- 642 Repair: Published Evidence on Factors Associated With Repair Integrity and Clinical Outcome.
- 643 Am. J. Sports Med.
- Melean P, Lichtenberg S, Montoya F, Riedmann S, Magosch P, Habermeyer P (2013) The
 acromial index is not predictive for failed rotator cuff repair. Int. Orthop. 37:2173–2179
- 103. Mellado JM, Calmet J, Olona M, Ballabriga J, Camins A, Pérez del Palomar L, Giné J (2006)
- MR assessment of the repaired rotator cuff: prevalence, size, location, and clinical relevance of
 tendon rerupture. Eur. Radiol. 16:2186–2196
- 649 104. Mellado JM, Calmet J, Olona M, Esteve C, Camins A, Pérez Del Palomar L, Giné J, Saurí A
- 650 (2005) Surgically repaired massive rotator cuff tears: MRI of tendon integrity, muscle fatty
- degeneration, and muscle atrophy correlated with intraoperative and clinical findings. AJR Am. J.
- 652 Roentgenol. 184:1456–1463
- 105. Mihata T, Watanabe C, Fukunishi K, Ohue M, Tsujimura T, Fujiwara K, Kinoshita M (2011)
- Functional and structural outcomes of single-row versus double-row versus combined double-row
 and suture-bridge repair for rotator cuff tears. Am. J. Sports Med. 39:2091–2098
- 656 106. Milano G, Saccomanno MF, Careri S, Taccardo G, De Vitis R, Fabbriciani C (2013) Efficacy of
- 657 marrow-stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study.

- Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc.
 29:802–810
- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2010) Preferred reporting items
 for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. Lond. Engl. 8:336–
 341
- Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, Bouter LM, de Vet
 HCW (2010) The COSMIN checklist for assessing the methodological quality of studies on
- 665 measurement properties of health status measurement instruments: an international Delphi study.
- 666 Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil. 19:539–549
- 109. Motamedi AR, Urrea LH, Hancock RE, Hawkins RJ, Ho C (2002) Accuracy of magnetic
- resonance imaging in determining the presence and size of recurrent rotator cuff tears. J. Shoulder
 Elb. Surg. Am. Shoulder Elb. Surg. Al 11:6–10
- 670 110. Müller CT, Buck FM, Mamisch-Saupe N, Gerber C (2014) Good correlation of goutallier rating
- of supraspinatus fatty changes on axial and reformatted parasagittal computed tomographic images.
- 672 J. Comput. Assist. Tomogr. 38:340–343
- 111. Nada AN, Debnath UK, Robinson DA, Jordan C (2010) Treatment of massive rotator-cuff tears
- with a polyester ligament (Dacron) augmentation: clinical outcome. J. Bone Joint Surg. Br.
- **675** 92:1397–1402
- 112. Nakagaki K, Ozaki J, Tomita Y, Tamai S (1995) Function of supraspinatus muscle with torn
 cuff evaluated by magnetic resonance imaging. Clin. Orthop. 144–151
- 113. Neyton L, Godenèche A, Nové-Josserand L, Carrillon Y, Cléchet J, Hardy MB (2013)
- 679 Arthroscopic suture-bridge repair for small to medium size supraspinatus tear: healing rate and
- 680 retear pattern. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc.
- 681 Assoc. 29:10–17

682	114.	Nich C, Mütschler C, Vandenbussche E, Augereau B (2009) Long-term clinical and MRI
683	re	esults of open repair of the supraspinatus tendon. Clin. Orthop. 467:2613–2622

- 684 115. Oh JH, Kim SH, Choi J-A, Kim Y, Oh CH (2010) Reliability of the grading system for fatty
 685 degeneration of rotator cuff muscles. Clin. Orthop. 468:1558–1564
- 686 116. Ok J-H, Kim Y-S, Kim J-M, Yoo T-W (2013) Learning curve of office-based ultrasonography
 687 for rotator cuff tendons tears. Knee Surg. Sports Traumatol. Arthrosc. 21:1593–1597
- 688 117. Owen RS, Iannotti JP, Kneeland JB, Dalinka MK, Deren JA, Oleaga L (1993) Shoulder after
 689 surgery: MR imaging with surgical validation. Radiology 186:443–447
- 690 118. Ozbaydar MU, Bekmezci T, Tonbul M, Yurdoğlu C (2006) [The results of arthroscopic repair
 691 in partial rotator cuff tears]. Acta Orthop. Traumatol. Turc. 40:49–55
- 692 119. Ozbaydar MU, Tonbul M, Yalaman O (2005) [The results of arthroscopic repair of full-

thickness tears of the rotator cuff]. Acta Orthop. Traumatol. Turc. 39:114–120

- 694 120. Ozbaydar MU, Tonbul M, Yurdoğlu C, Yalaman O (2005) [Arthroscopic-assisted mini-open
 695 repair of rotator cuff tears]. Acta Orthop. Traumatol. Turc. 39:121–127
- 696 121. Parsons BO, Gruson KI, Chen DD, Harrison AK, Gladstone J, Flatow EL (2010) Does slower
- rehabilitation after arthroscopic rotator cuff repair lead to long-term stiffness? J. Shoulder Elb.
 Surg. Am. Shoulder Elb. Surg. Al 19:1034–1039
- 699 122. Pennington WT, Gibbons DJ, Bartz BA, Dodd M, Daun J, Klinger J, Popovich M, Butler B
- 700 (2010) Comparative analysis of single-row versus double-row repair of rotator cuff tears. Arthrosc.
- J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 26:1419–1426
- 123. Pilge H, Spang J, Rose T, Wolter H, Woertler K, Imhoff AB (2012) Osteolysis after rotator cuff
- repair with bioabsorbable anchors. Arch. Orthop. Trauma Surg. 132:305–310

- 124. Randelli P, Arrigoni P, Ragone V, Aliprandi A, Cabitza P (2011) Platelet rich plasma in
- arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. J. Shoulder Elb. Surg.

706 Am. Shoulder Elb. Surg. Al 20:518–528

- 707 125. Rhee RB, Chan KK, Lieu JG, Kim BS, Steinbach LS (2012) MR and CT arthrography of the
 708 shoulder. Semin. Musculoskelet. Radiol. 16:3–14
- 126. Rhee YG, Cho NS, Lim CT, Yi JW, Vishvanathan T (2008) Bridging the gap in immobile
- massive rotator cuff tears: augmentation using the tenotomized biceps. Am. J. Sports Med.

711 36:1511–1518

- 712 127. Rhee YG, Cho NS, Parke CS (2012) Arthroscopic rotator cuff repair using modified Mason-
- Allen medial row stitch: knotless versus knot-tying suture bridge technique. Am. J. Sports Med.
 40:2440–2447
- 715 128. Rubino LJ, Stills HF, Sprott DC, Crosby LA (2007) Fatty infiltration of the torn rotator cuff
- worsens over time in a rabbit model. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc.

717 N. Am. Int. Arthrosc. Assoc. 23:717–722

- 129. Sano H, Mineta M, Kita A, Itoi E (2010) Tendon patch grafting using the long head of the
- biceps for irreparable massive rotator cuff tears. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 15:310–
 316
- 130. Schaefer O, Winterer J, Lohrmann C, Laubenberger J, Reichelt A, Langer M (2002) Magnetic
- resonance imaging for supraspinatus muscle atrophy after cuff repair. Clin. Orthop. 93–99
- 131. Scheibel M, Brown A, Woertler K, Imhoff AB (2007) Preliminary results after rotator cuff
- reconstruction augmented with an autologous periosteal flap. Knee Surg. Sports Traumatol.
- 725 Arthrosc. Off. J. ESSKA 15:305–314
- 132. Di Schino M, Augereau B, Nich C (2012) Does open repair of anterosuperior rotator cuff tear
- prevent muscular atrophy and fatty infiltration? Clin. Orthop. 470:2776–2784

728	133. Schrama PPM, Stenneberg MS, Lucas C, van Trijffel E (2014) Intra-examiner reliability of
729	hand-held dynamometry in the upper extremity: A systematic review. Arch. Phys. Med. Rehabil.
730	134. Schweitzer ME, Magbalon MJ, Fenlin JM, Frieman BG, Ehrlich S, Epstein RE (1995) Effusion
731	criteria and clinical importance of glenohumeral joint fluid: MR imaging evaluation. Radiology
732	194:821–824
733	135. Sethi PM, Noonan BC, Cunningham J, Shreck E, Miller S (2010) Repair results of 2-tendon
734	rotator cuff tears utilizing the transosseous equivalent technique. J. Shoulder Elb. Surg. Am.
735	Shoulder Elb. Surg. Al 19:1210–1217
736	136. Sharma P, Morrison WB, Cohen S (2013) Imaging of the shoulder with arthroscopic
737	correlation. Clin. Sports Med. 32:339-359
738	137. Shin S-J (2012) A comparison of 2 repair techniques for partial-thickness articular-sided rotator
739	cuff tears. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc.
740	Assoc. 28:25–33
741	138. Shin S-J, Oh JH, Chung SW, Song MH (2012) The efficacy of acromioplasty in the
742	arthroscopic repair of small- to medium-sized rotator cuff tears without acromial spur: prospective
743	comparative study. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int.
744	Arthrosc. Assoc. 28:628–635
745	139. Shirachi I, Gotoh M, Mitsui Y, Yamada T, Nakama K, Kojima K, Okawa T, Higuchi F, Nagata
746	K (2011) Collagen production at the edge of ruptured rotator cuff tendon is correlated with
747	postoperative cuff integrity. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am.
748	Int. Arthrosc. Assoc. 27:1173–1179
749	140. Simopoulos TT, Manchikanti L, Singh V, Gupta S, Hameed H, Diwan S, Cohen SP (2012) A
750	systematic evaluation of prevalence and diagnostic accuracy of sacroiliac joint interventions. Pain
751	Physician 15:E305–344

752	141. Sipola P, Niemitukia L, Kröger H, Höfling I, Väätäinen U (2010) Detection and Quantification
753	of Rotator Cuff Tears with Ultrasonography and Magnetic Resonance Imaging – A Prospective
754	Study in 77 Consecutive Patients with a Surgical Reference. Ultrasound Med. Biol. 36:1981–1989
755	142. Slabaugh MA, Friel NA, Karas V, Romeo AA, Verma NN, Cole BJ (2012) Interobserver and
756	intraobserver reliability of the Goutallier classification using magnetic resonance imaging: proposal
757	of a simplified classification system to increase reliability. Am. J. Sports Med. 40:1728–1734
758	143. Slabaugh MA, Nho SJ, Grumet RC, Wilson JB, Seroyer ST, Frank RM, Romeo AA,
759	Provencher MT, Verma NN (2010) Does the literature confirm superior clinical results in
760	radiographically healed rotator cuffs after rotator cuff repair? Arthrosc. J. Arthrosc. Relat. Surg.
761	Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 26:393-403
762	144. Spahn G, Kirschbaum S, Klinger HM (2006) A study for evaluating the effect of the deltoid-
763	flap repair in massive rotator cuff defects. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA
764	14:365–372
765	145. Spielmann AL, Forster BB, Kokan P, Hawkins RH, Janzen DL (1999) Shoulder after rotator
766	cuff repair: MR imaging findings in asymptomatic individualsinitial experience. Radiology
767	213:705–708
768	146. Streiner DL (2008) Health Measurement Scales: A practical guide to their development and use.
769	OUP Oxford, Oxford ; New York
770	147. Sugaya H, Maeda K, Matsuki K, Moriishi J (2005) Functional and structural outcome after
771	arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthrosc. J.
772	Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 21:1307–1316
773	148. Sugaya H, Maeda K, Matsuki K, Moriishi J (2007) Repair integrity and functional outcome
774	after arthroscopic double-row rotator cuff repair. A prospective outcome study. J. Bone Joint Surg.
775	Am. 89:953–960

776	149. Tae S-K, Oh JH, Kim SH, Chung SW, Yang JY, Back YW (2011) Evaluation of fatty
777	degeneration of the supraspinatus muscle using a new measuring tool and its correlation between
778	multidetector computed tomography and magnetic resonance imaging. Am. J. Sports Med. 39:599-
779	606
780	150. Takeda H, Urata S, Matsuura M, Nakayama A, Yonemitsu H (2007) The influence of medial
781	reattachment of the torn cuff tendon for retracted rotator cuff tears. J. Shoulder Elb. Surg. Am.
782	Shoulder Elb. Surg. Al 16:316–320
783	151. Tashjian RZ, Hung M, Burks RT, Greis PE (2013) Influence of preoperative musculotendinous
784	junction position on rotator cuff healing using single-row technique. Arthrosc. J. Arthrosc. Relat.
785	Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 29:1748-1754
786	152. Thomazeau H, Boukobza E, Morcet N, Chaperon J, Langlais F (1997) Prediction of rotator cuf
787	repair results by magnetic resonance imaging. Clin. Orthop. 275–283
788	153. Thomazeau H, Rolland Y, Lucas C, Duval JM, Langlais F (1996) Atrophy of the supraspinatus
789	belly. Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop. Scand. 67:264-
790	268
791	154. Tingart MJ, Apreleva M, Lehtinen JT, Capell B, Palmer WE, Warner JJP (2003) Magnetic
792	resonance imaging in quantitative analysis of rotator cuff muscle volume. Clin. Orthop. 104–110
793	155. Tudisco C, Bisicchia S, Savarese E, Fiori R, Bartolucci DA, Masala S, Simonetti G (2013)
794	Single-row vs. double-row arthroscopic rotator cuff repair: clinical and 3 Tesla MR arthrography
795	results. BMC Musculoskelet. Disord. 14:43
796	156. Vandenbussche E, Bensaïda M, Mutschler C, Dart T, Augereau B (2004) Massive tears of the
797	rotator cuff treated with a deltoid flap. Int. Orthop. 28:226–230

798	157. Voigt C, Bosse C, Vosshenrich R, Schulz AP, Lill H (2010) Arthroscopic supraspinatus tendon
799	repair with suture-bridging technique: functional outcome and magnetic resonance imaging. Am. J.
800	Sports Med. 38:983–991

- 158. Walton JR, Bowman NK, Khatib Y, Linklater J, Murrell GAC (2007) Restore orthobiologic
- implant: not recommended for augmentation of rotator cuff repairs. J. Bone Joint Surg. Am.

803 89:786–791

- 804 159. Warner JJ, Higgins L, Parsons IM, Dowdy P (2001) Diagnosis and treatment of anterosuperior
 805 rotator cuff tears. J. Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 10:37–46
- 806 160. Williams MD, Lädermann A, Melis B, Barthelemy R, Walch G (2009) Fatty infiltration of the
- supraspinatus: a reliability study. J. Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 18:581–587
- 808 161. Yamaguchi H, Suenaga N, Oizumi N, Hosokawa Y, Kanaya F (2011) Open repair for massive
- rotator cuff tear with a modified transosseous-equivalent procedure: preliminary results at short-
- term follow-up. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 16:398–404
- 811 162. Yamaguchi H, Suenaga N, Oizumi N, Hosokawa Y, Kanaya F (2012) Will preoperative atrophy
 812 and Fatty degeneration of the shoulder muscles improve after rotator cuff repair in patients with
- 813 massive rotator cuff tears? Adv. Orthop. 2012:195876
- 163. Yoo JC, Ahn JH, Koh KH, Lim KS (2009) Rotator cuff integrity after arthroscopic repair for
- 815 large tears with less-than-optimal footprint coverage. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ.
- 816 Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 25:1093–1100
- 817 164. Yoo JC, Ahn JH, Yang JH, Koh KH, Choi SH, Yoon YC (2009) Correlation of arthroscopic
- repairability of large to massive rotator cuff tears with preoperative magnetic resonance imaging
- 819 scans. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc.
- 820 25:573–582

821	165. Zanetti M, Gerber C, Hodler J (1998) Quantitative assessment of the muscles of the rotator cuff
822	with magnetic resonance imaging. Invest. Radiol. 33:163–170
823	166. Zanetti M, Jost B, Hodler J, Gerber C (2000) MR imaging after rotator cuff repair: full-
824	thickness defects and bursitis-like subacromial abnormalities in asymptomatic subjects. Skeletal
825	Radiol. 29:314–319
826	167. Zilber S, Carillon Y, Lapner PC, Walch G, Nové-Josserand L (2007) Infraspinatus delamination
827	does not affect supraspinatus tear repair. Clin. Orthop. 458:63-69
828	168. Zlatkin MB, Iannotti JP, Roberts MC, Esterhai JL, Dalinka MK, Kressel HY, Schwartz JS,
829	Lenkinski RE (1989) Rotator cuff tears: diagnostic performance of MR imaging. Radiology
830	172:223–229
831	169. Zumstein MA, Jost B, Hempel J, Hodler J, Gerber C (2008) The clinical and structural long-
832	term results of open repair of massive tears of the rotator cuff. J. Bone Joint Surg. Am. 90:2423-
833	2431
834	
835	

837 FIGURE LEGENDS

838

839 Fig. 1 Studies selection based on PRISMA flowchart.

842 Appendix B

Outcome	MR setting	CLASSIFICATION	REFERENCES
Structural integrity	T2 weighted images Coronal view	Y/N Full thickness tear: fluid-like signal intensity that extends through an area of the rotator cuff or the nonvisualization of a portion of the rotator cuff	[3, 6, 7, 13, 15–18, 20, 21, 26, 28, 32, 37, 38, 40–42, 44, 48, 51–53, 60, 61, 64, 64, 72, 84, 86, 87, 90–93, 97, 100, 102–104, 109, 114, 117, 119–121, 123, 124, 126, 127, 131, 132, 132, 135, 137, 138, 145, 150, 158, 166, 169]
	T2-weighted and STIR images. Coronal view	Full thickness tear: high signal intensity traversing the entire tendon thickness Partial-thickness tendon tear: fluid traversing a portion of the tendon (whether on the articular or the bursal surface or both) but not traversing the full thickness of the tendon. Cuff integrity	[10, 11, 34, 74, 98, 118]
	T2 weighted[152] T2 fat-suppressed sequences, including axial transverse, coronal oblique (parallel to the	Type I: Continuous and thick Type II: Continuous, but thin Type III: Retorn	[4, 5, 152, 167]

supraspinatus muscle), and sagittal oblique (perpendicular to the supraspinatus muscle)[167] T2-weighted, proton density weighted, as well as STIR, axial and paracoronal[4, 5]		
Oblique coronal, oblique sagittal, and transverse views Proton density weighted spin echo sequences, paracoronal view[39]	sugaya's classification: type I, repaired cuff appeared to have sufficient thickness compared with normal cuff with homogenously low intensity on each image; type II, sufficient thickness compared with normal cuff associated with partial high intensity area; type III, insufficient thickness with less than half the thickness when compared with normal cuff, but without discontinuity, suggesting a partial-thickness delaminated tear; type IV, presence of a minor discontinuity in only 1 or 2 slices on both oblique coronal	[39, 42, 46, 47, 55, 73, 75, 77– 79, 105, 122, 129, 139, 142, 147, 148, 161, 162]*

	and sagittal images, suggesting a small full-thickness tear; type V: presence of a major discontinuity observed in more than 2 slices on both oblique coronal and sagittal images, suggesting a medium or large full-thickness tear	
T2 weighted Oblique coronal, oblique sagittal, and transverse views	Sugaya's dichotomization intact (Sugaya types I and II); insufficient/not healed/retorn (Sugaya types III-V)	[65–68, 70, 73, 76, 79, 106, 157]
T2 weighted Oblique coronal, oblique sagittal, and transverse views	Sugaya's dychotmization: intact:Sugaya types I-III retorn: Sugaya types IV-V	[8, 55, 57–59, 71, 81, 113]
Fast proton-density with fat saturation and fast STIR Oblique coronal T2 with fat saturation	 type 1: sufficient thickness with homogeneously low intensity, type 2: sufficient thickness with partial high intensity, type 3: insufficient thickness without discontinuity, 	[22]

Sagittal view	type 4-A: presence of a partial-	
	thickness focal discontinuity,	
	type 4-B: presence of a full-	
	thickness focal discontinuity.	
	type 5: presence of a major	
	discontinuity with retraction.	
Not clearly specified	Type 1: tendon intact with	[62]
	regular thickness	
	Type 2: tendon intact but	
	thinning	
	Type 3: small hole<225	
	$mm^{2}(e.g. 1.5cm \times 1.5 cm)$	
	Type 4: big hole>225 mm^2	
Not clearly specified	Type 1: well-repaired tendon	[50]
	with thick continuity;	
	Type 2: deep partial retearing	
	(continuity of the thin superficial	
	tendon and interruption of the	
	deep tendon);	
	Type 3: superficial partial	
	retearing (continuity of the thin	
	deep tendon and interruption of	
	the superficial tendon around the	
	medial anchors with a well-	

		 preserved tendon on the footprint); Type 4: complete retearing at the middle of the tendon around the medial anchors with a healed rotator cuff footprint; Type 5: complete retearing of the tendon from the footprint 	
Muscle atrophy	T1 weighted Oblique sagittal view Y shaped view: the most lateral image on which the scapular spine is in contact with the rest of the scapula	Only supraspintus Grade 1: Normal/ slight atrophy Occupation ratio(1.00-0.60) Grade 2: Moderate atrophy Occupation ratio(0.60-0.40) Grade 3: Severe atrophy Occupation ratio(<0.40) Occupation ratio=cross section area of the muscle/cross section area of the fossa	[4, 5, 21, 28, 56, 57, 78, 82, 93, 114, 130, 152, 153, 157, 167]
	T2-weighted Oblique sagittal views obtained about 20mm proximal to the deepest point on the concave curve of the glenoid surface	The occupation ratio[153] is evaluated not only for suspraspiantus, but also for the subscapularis, and the combined infraspinatus and teres minor muscles	[162]

T1-weighted	Cross sectional area	[2, 28, 32, 37, 57, 78, 91, 104, 114,
		119, 130, 157, 165, 166, 169]
Parasagittal turbo spin-echo	Regions of interest are	
V shaped view	determined by the contours of	
I shaped view	the supraspinatus, infraspinatus,	
	teres minor, and subscapularis	
	muscles.	
	The cross-sectional areas (in	
	Cm ²) of these structures are	
	alculated. The area of the	
	supraspinatus fossa is also	
	measured. Standardized areas	
	are calculated by dividing	
	muscle areas by the area of the	
	fossa supraspinatus.	
	Measurements (mean and SD)	
	obtained in patients are	
	expressed as multiples of SD	
	below or above the mean of the	
	corresponding decade	
	Muscle atrophy is considered to	
	be present when the value of the	
	standardized area were more	
	than 2 SD below the mean	
	Tangent sign:	
	A line (tangent) is drawn	
	through the superior borders of	
	the scapular spine and the	

	superior margin of the coracoid.	
	The tangent sign is abnormal	
	(positive) when the	
	supraspinatus muscle do not	
	cross the tangent.	
NA	Normal	[74]
	Atrophic	
	Hypertrophic	
Oblique sagittal plane image	No atrophy = muscle completely	[15, 40, 159, 163]
medial to the level of the	fills its fossa, and the outer	
coracoid process	contour is convex;	
	Minimal atrophy = muscle's	
	outer contour is flat compared	
	with its fossa;	
	Moderate atrophy = muscle's	
	outer contour is concave into the	
	fossa;	
	Severe atrophy = muscle is	
	barely apparent in its fossa.	
	The overall degree of atrophy of	
	the rotator cuff muscles is	
	recorded on the basis of the most	
	severely affected muscle.	

Oblique coronal plane:	The first line (L1) is drawn from	
supraspinatus muscle.	the superior rim of the glenoid to	
A vial plana: infragminatus	the inferior rim, and the second	
Axiai plane. Infraspiliatus	line (L2) iss drawn parallel to L1	
muscle.	at the neck of the glenoid.	
The slice that pass through the center of the glenoid is selected for evaluation.	Width of the supraspinatus muscle: the distance between the superior and inferior end of the suprespinatus muscle on L2	
	(mm)	
	Infraspinatus	
	The first line (M1) is drawn	
	from the anterior rim to the	
	posterior rim, and the second	
	line (M2), parallel to M1, is	
	drawn at the neck of the glenoid.	
	Width of the infraspinatus	
	muscle: The distance between	
	the anterior end and posterior	
	end of the infraspinatus muscle	
	on M2. (mm)	
Oblique sagittal T1	Modified tangent sign	[56, 164]
	6	
Y shaped view	grade 3, positive sign;	
	grade 2, borderline;	
	grade 1, negative sign	

	Non fat satured sagittal view Y shaped view	Subjective grading applied to all muscles Normal 25% atrophy 50% atrophy 75% atrophy complete atrophy	[63]
	Parasagittal T1-weighted Y shaped view	After definition of elliptical regions of interest of identical size (25 mm2), the signal intensity was measured. Five elliptical regions of interest in the supraspinatus muscle and, for comparison, 5 elliptical regions of interest in the teres minor muscle were located to calculate the signal to- signal ratio : teres minor/supraspinatus.	[39, 47]
Fatty infiltration	Tl-weighted turbo spin-echo Parasagittal view Y shaped view T1 weighted	Grade 0 No fatty deposits Grade 1 Some fatty streaks Grade 2 More muscle than fat Grade 3 As much muscle as fat Grade 4 Less muscle than fat	[2, 32, 33, 37–40, 43, 51, 56, 57, 60, 61, 63, 78, 84, 91, 93, 104, 105, 111, 114, 119, 123, 132, 135, 144, 156, 157, 162, 163, 167, 169]*

	Coronal view[40] T2 weighted, Y shaped view [78, 123, 163]		
	Non fat saturated Y shaped view[63, 167]		
		Global fatty degeneration index (GFDI): mean value of the grades for the supraspinatus, infraspinatus, and subscapularis	[15–18, 44, 57, 156, 163]
	T1-weighted images Oblique coronal plane	Linear bands of bright signal in the SS muscle belly: Grade 1: no linear band. Grade 2: 1 or 2 narrow linear bands. Grade 3: 3 or more narrow linear bands or 1 or 2 thick linear bands	[49, 112]
Footprint coverage	Not clearly specified	Footprint is compared with footprint of a normal supraspinatus tendon, which covers the entire greater	[9, 21, 63]

	-		
		tuberosity from medial to lateral.	
		In cases where the tendon	
		attachment is medialized, width	
		of the medialized footprint is	
		compared with width of the	
		greater tuberosity	
		Grade 4: >75%;	
		Grade 3: 51-75%;	
		Grade 2: 26-50%;	
		Grade 1: <25%	
	Not clearly specified	Footprint is compared with	[13]
	Juli Juli Juli	footprint of a normal	
		supraspinatus tendon, which	
		covers the entire greater	
		tuberosity from medial to lateral.	
		In cases where the tendon	
		attachment is medialized, width	
		of the medialized footprint is	
		compared with width of the	
		greater tuberosity	
		Grade 3: 3/3;	
		Grade 2: 2/3;	
		Grade 1: 1/3	
Tear size	T2 weighted	maximal mediolateral diameter	[60, 61, 103, 104, 109, 131, 163,
			169]

T2 STIR[103, 104]	maximal anteroposterior	
	diameter	
Oblique coronal and sagittal view		
T2 weighted Sagittal view	Anteroposterior length of the exposed rotator cuff footprintof the lateral-most section of the greater is measured. small: <1 cm; medium: 1-3 cm; large: 3 to 5 cm; massive: > 5 cm	[119, 151]
T2 weighted Coronal and sagittal view	The tear is measured at the greater and lesser tuberosities (insertion of the rotator cuff).	[63]
	1 cm < x < 2 cm $2 cm < x < 3 cm$ $3 cm < x < 4 cm$	

		4cm< x < 5cm	
		greater than 5cm	
Retear pattern (full thickness)	Oblique sagittal plane	Anterior: the center of the tear is within the anterior half of the supraspinatus tendon.Posterior: the center of the tear is within the posterior half of the tendon	[103]
	At least one T2 weighted or proton density weighted image	Type 1: if the cuff tissue repaired at the insertion site of the rotator cuff is not at all observed to be remaining on the greater tuberosity; Type 2: remnant cuff tissue remained at the insertion site in spite of retear	[15, 17, 64, 113]
	Not clearly specified	Greater tuberosity Muscolotendinous junction	[63]
Partial retear	T2 weighted Coronal and sagittal view	Articular surface tear Bursal surface tear Can not be determined	[63]
Tendon retraction	Coronal plane	Stage 1: the tear edge is lying over the greater tuberosity	[22]

	 (usually < 1 cm in greatest diameter); Stage 2: the tear exposes the humeral head but does not 	
	surface (between 1 and 3 cm in greatest diameter);	
	stage 3: tears that extends to the glenoid (between 3 and 5 cm in greatest diameter);	
	Stage 4: tears that is severely retracted medial to the glenoid (> 5 cm in greatest diameter)	
Not clearly specified	Minimal (within 5mm of the greater or lesser tuberosity) Midhumeral	[63]
	Glenohumeral Medial to the glenoid	
T2- weighted Coronal sections through the center of the supraspinatus muscle	Millimeters from the lateral edge of the greater tuberosity to the tendon end	[151]

Tendon length	T2 weighted	Millimeters from the lateral	[151]
	Coronal view	tendon edge to the	
		musculotendinous junction	
Museulster din sus investion	some concept T2 mainted	The most lateral paint of the	
Musculotendinous junction	same coronal 12-weighted	The most lateral point of the	
position	image on which tendon	supraspinatus at which inserting	
	retraction is measured	muscle fibers on the central	
		tendon	
		Two measurements:	
		Distance from the glenoid face	
		line (mm): a positive value if the	
		musculotendinous junction is	
		lateral to the glenoid face line	
		and a negative value if the	
		musculotendinous junction is	
		medial to the glenoid face line	
		Binary variable of medial/lateral	
		position	

		(glenoid face line: a line connecting the supraglenoid and infraglenoid tubercles; same coronal cut on which the musculotendinous junction position is identified)	
Tendon signal intensity	Not clearly specified	Low High Intermediate	[74]
	Intermediate weighted and T2 weighted	Type 1: diffuse mildly increased signal (not equal to that of fluid) and an intact tendon)	[82, 145, 168]
		Type 2:focally increased signal intensity (equal to that of fluid) bursal or articular	
		Type 3: focal increased signal entire thickness with or without retraction	
	Spin echo T1 and fast spin echo T2 sequences	Fullthickness tear: a signal intensity equal to water filling the entire thickness of the tendon	[82]

	Partial tear: signal equal to water extended through part of the thickness of the tendon.	
	Degenerative tendinosis: signal appeares moderately bright in the spin echo T1 and fast spin echo T2 sequences, but not as bright as water in fast spin echo T2, or a tendon that is heterogeneous or longitudinally striated in both sequences	
	Normal tendon: normal in thickness and low in signal intensity in all sequences	
Not clearly specified	Grade 4: normal signal intensity (low signal on all sequences)	[9, 21, 63]
	Grade 3: increased signal intensity in the tendon involving <1 cm distance or <25% of tendon width	

	Grade 2: increased signal intensity in the tendon involving 1-2cm distance or 25%-50% of tendon width	
	Grade 1: increased signal intensity in the tendon involving >2cm distance or >75% of tendon width	
Not clearly specified	Grade 3: light and diffused increase of the signal (different from that of the synovial fluid);	[13]
	Grade 2: tendon appears undamaged but there is a focal increase of the signal (the same as that of the synovial fluid) on the bursal or articular side;	
	Grade 1: the increase of the signal's intensity (the same as that of the signal of the synovial fluid) involves the entire thickness of the tendon, with or without tendinous retraction	

Tendon thickness	Coronal oblique plane	Supraspinatus tendon thickness (mm) is measured from the clear tendinous area below the anterolateral tip of the acromion Scale 0.5 mm	[82]
	Oblique coronal view	Mimimum thickness: measured immediately medial to the insertion of the supraspinatus tendon into the greater tuberosity, 1 cm posterior to the biceps tendon. 0 mm if there is a reatear	[158]
	Not clearly specified	Comparison with normal tendon thickness: Grade 4: >75%; Grade 3: 51-75%; Grade 2: 26-50%; Grade 1: <25%	[9, 21, 63]
	Not clearly specified	Comparison with normal tendon thickness: Grade III, normal thickness;	[13]

		Grade II, more than 50% normal thickness; Grade I, less than 50% normal thickness.	
		~	
Number of tendons involved	T2 coronal and sagital views	Supraspinatus only Supraspinatus and infraspinatus (posterosuperior tear) Supraspinatus, infraspinatus and teres minor (posterosuperior tear) Subscapularis Supraspinatus and subscapularis (anterosuperior tear)	[63]
Acromiohumeral distance	Non fat-saturated sequence Sagittal view	The slice that best represents the midhumeral level with regard to its anteroposterior dimension is chosen to measure the distance from the superior aspect of the humeral head and the undersurface of the acromion. 10mm or greater $10mm > x > 5mm$	[63]

		less than 5mm	
		contact between the 2 surfaces	
	Not clearly specified	Subacromial space narrowing: acromiohumeral distance ≤ 3 mm	[82]
Acromial morphology	Sagittal view (anterior third of the acromion) Coronal view (lateral third of the acromion: the image just anterior to the posterior aspect of the acromioclavicular joint)	Flat: the apex of the acromion undersurface is in the medial third of the acromion or there is no apex under the acromion. Curved: one with the apex of the acromion undersurface in the middle third Hooked: one with the apex in the lateral third	[29, 77]
Subacromial bursa (thickness)	Not clearly specified	Pathologic if measured more than 2 mm in thickness	[145]
	STIR or T2-weighted fat- suppressed	images parallel to the supraspinatus tendon Y/N: signal intensity abnormalities	[166]
Acromioclavicular osteoarthritis	Not clearly specified	Y/N	[74, 145]
Glenohumeral joint effusion	T1 weighted and T2 weighted fast spin echo and fat suppression	Based on the amount of fluid in the subcoracoid and axillary	[63, 134, 145]

	Coronal oblique	recesses and the biceps tendon sheat: Absent Small Moderate Large	
Evidence of subacromial impingement	Not clearly specified	Y/N: presence of a spur from the undersurface of the acromion or distal clavicle that indentes on the supraspinatus muscle or tendon	[98]
Bone marrow edema	T2 weighted	Y/N Localization: greater tuberosity lesser tuberosity subchondral bone of articular surface	[63]
Cysts of the greater tuberosity	T2 weighted Coronal view	Y/N	[63]
Artifacts	T2 weighted fast spin echo without fat saturation	Absent	[74, 145]

	Oblique coronal	Mild: involvement of the subutaneous tissue alone Moderate: involvement of the capsular structures Severe: preclude tha assessment of the rotator cuff	
Anchor features	Transaxial PD-weighted and paracoronal PD-sequences	Peri implant fluid Increased signal intensity around the anchor: No fluid slightly present fluid seam (1 mm) pronounced fluid (>1mm). For all measurements, care must be taken to distinguish between proximal, medial and lateral parts of the anchor. Structure Assuming that degradation is represented by a decreased visibility of the anchor structure:	[47]

	Grade 1 indicates a clearly	
	visible structure.	
	· · · · · · · · · · · · · · · · · · ·	
	Grade 2 a visible structure,	
	Grade 3 a partially visible	
	structure	
	Grade 4 describes a structure	
	which is not delimitable from	
	the surrounding tissue	
	Tunnel	
	T uniter	
	Applying an axis through the	
	central pin of the screw:	
	-	
	This enabled three perpendicular	
	measurements with a distance of	
	at least 0.5 mm	
 T1 and T2 weighted	Humeral head osteolysis	[123]
11 and 12 weighted	Humeral near Osteolysis	[123]
	Y/N: when the normal marrow	
	fat around the suture anchors is	
	replaced by tissue with a signal	
	isointense to muscle on T1-	
	weighted images and	
	hypointense to water on	
	intermediate and T2-weighted	
	images	
	muges	

Integrity of the long head of the biceps	Multiplanar gradient recall images or T2-weighted and proton-density Axial cut	Y/N Absence of the biceps tendon from the intertubercular groove and the inability to identify a medial dislocation of the tendon	[34]
	T2 weighted Axial cut	Y/N (increased or normal signal)	[63]
Presence of the long head of the biceps abnormality	T2 weighted Axial cut	Y/N Presence of a longitudinal split in the biceps	[63]