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ABSTRACT 
 
The waste heat released by high-temperature processes can be exploited by power cycle designed for 
full electric or combined heat and power applications, with the potential to cover even the cooling 
demand in a trigenerative perspective. The use of CO2-based mixtures as working fluids for power 
cycles can be a promising solution for power production. These systems present a rejected heat in a 
temperature range (50–180 °C) that allows, depending on the needs, an effective coupling with a district 
heating and cooling network. This work investigates the potential of trigenerative system adopting CO2-
based power cycles which exploit the residual thermal power of the exhaust gases of a small-scale gas 
turbine. First, the performances of lithium bromide absorption chiller are investigated for various heat 
source levels, adopting different configuration. Then, various designs of CO2-based power cycles are 
simulated focusing on the coupling with both the district heating and the chiller. A sensitivity analysis 
on the cycle minimum temperature is presented, evidencing that CO2 mixtures can achieve remarkable 
net electric efficiency values even at high cycle minimum temperatures, marking a significant difference 
with respect to CO2 cycles. Considering the yearly demand of district heating and cooling, keeping the 
electric output at design value, the economic profitability of the investment is characterized presenting 
the LCOE of the retrofitted solution, considered comparable with actual selling prices. 
 

1 INTRODUCTION 
 
The demand and production of thermal power for space heating and cooling applications rose 
significantly in the last decades: the International Energy Agency (IEA) reports that from 1990 to 2016 
the space cooling demand has tripled, and it is mainly provided by air conditioning systems, consuming 
2000 TWh of electricity per years worldwide (IEA, 2018). On the other hand, the agency highlights that 
fossil fuels account for the 64% of the primary energy used for space heating, with natural gas covering 
42% of the share (at around 760 billion Nm3 in 2021) (IEA, 2022). In this scenario polygeneration plants 
are crucial not only to achieve high overall efficiency, but also to save primary energy and provide 
flexible operations. Organic Rankine Cycles (ORC) are nowadays the most used technology for waste 
heat recovery from high temperature industrial process and from small gas turbine (below 500°C). 
(Macchi & Astolfi, 2017). In recent years, pure CO2 (carbon dioxide) and CO2 mixtures power cycles 
have been proposed as an alternative technology to ORC (and steam cycle in large size applications) 
thanks to the higher fluid thermal stability and the compactness of turbomachinery. These systems have 
been recently investigated in several European H2020 funded projects like SCARABEUS, 
DESOLINATION, CO2OLHEAT, SCO2FLEX and SOLARSCO2OL. A previous work (Morosini et 
al., 2023) underlined the advantages of coupling CO2-based power cycles with a high (180°C) and a 
low temperature (100°C) thermal user, in a cogenerative perspective. These results indicate a potentially 
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exploitable source to produce chilled water too, thus adopting both district heating and cooling 
networks.  
The concept of trigeneration and polygeneration, using a pure CO2 based power block, is well known 
in the literature (Bellos et al., 2022). These systems typically consider electricity, hot and cold water 
and hydrogen as useful outputs providing an economic analysis on the specific case study. This work 
aims at investigating the trigeneration potential of pure and mixture CO2-based power cycles for heat 
recovery applications. For this purpose, the absorption chiller (AC) is modelled to estimate the 
coefficient of performance (COP) of the component at various conditions. Then, different 
configurations of CO2-based power cycles are investigated, aiming at an effective coupling with both 
the DHC networks. In particular, the revamping of a plant operating with small-scale gas turbines is 
explored. The heat rejected from the CO2 power block together with the heat recovered from low 
temperature exhaust gases is used to produce pressurized hot water for the district heating (DH) during 
winter season and chilled water for the district cooling (DC) during summer season. Finally a techno – 
economic analysis is carried-out comparing the original and proposed system layouts in order to 
minimize the differential electricity production cost. Aspen Plus® V12 (Aspen Plus  n.d.) is selected as 
modeling software for all the analyses. 
 

2 ABSORPTION CHILLER 
 
An absorption chiller produces cold thermal power (typically chilled water) exploiting a low-medium 
temperature heat source, adopting a thermodynamic cycle with a mixture of a refrigerant and an 
adsorbent (Somers et al., 2011). In this work both single effect AC (SEAC) and double effect AC 
(DEAC) are investigated using H2O-LiBr (lithium bromide) mixture as working fluid. 

 

Typically, SEAC works at lower pressures (up to 10 kPa) in the vapor generator and exploits heat source 
temperatures lower than 100°C, leading to COP values of around 0.7. Meanwhile, DEAC and multi 
effect AC work at higher pressure levels (up to 100 kPa), heat source temperature up to 160°C–180°C, 
generally resulting in COP above 1 (Somers et al., 2011).  In a SEAC (Figure 2 left), the pumped mixture 
is pre-heated in a recuperator and then heated by the hot source in the generator, up to a partial 
evaporation, depending on temperature and pressure. The LiBr-rich flow (strong solution) is conveyed 
to the recuperator, depressurized and fed to the absorber. The generated vapour is first condensed using 
ambient air as cold sink and expanded down to the evaporation pressure. The pressure levels are set by 
saturation conditions at the temperature 𝑇𝑇���� and 𝑇𝑇���. In the evaporator, cold thermal power is 
produced typically by cooling down chilled water. The refrigerant enters the adsorber where is mixed 
with the strong solution, cooled down and send to the pump. In the DEAC solution (Figure 2, right), a 
layout with two generators in series at different pressure levels is adopted since this layout allowed the 

 
Figure 1: Absorption chiller layout: single effect (left) and double effect (right). 
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employment of only one pump is adopted (Farshi et al., 2012). As shown in Figure 2 the strong solution 
exits from the high-pressure generator and it is expanded to an intermediate pressure, corresponding to 
condensation pressure. Then the evaporated water and strong solution flow into the components 
previously presented. The advantage of the double effect is to separate more water from the solution, 
thus increasing the cooling capacity and COP. The H2O-LiBr mixture is modelled with the ELECNRTL 
pre-defined package in ASPEN Plus, as suggested in literature (Somers et al., 2011). The boundary 
conditions and assumptions, which are consisted with other works (Somers et al., 2011) (Farshi et al., 
2012),  for the simulation of the AC are reported in Table 1. 
 

Table 1:  Simulation boundary conditions and assumptions for the absorption chiller 
Chiller Parameter  
Condensation conditions, 𝑇𝑇����/𝑃𝑃���� 40 °C / 7.38 kPa 
Evaporation conditions, 𝑇𝑇���/𝑃𝑃��� 3 °C / 0.75 kPa 
LiBr concentration (massic) 55% 
Minimum approach temperature difference in the generators 5 °C 
Pitch point temperature difference in the generators 5 °C 
Temperature approach for DC-AC 3 °C 

 
The thermal power is provided by pressurized water that works as heat transfer fluid (HTF). The 
analysis consists in identify the COP, defined in Eq. (1) as the ratio between the cooling capacity 
�̇�𝑄�� and the thermal input �̇�𝑄���, for various conditions of the HTF, neglecting the electric consumption 
of the pump (Osta-Omar & Micallef, 2016). 

𝐶𝐶𝐶𝐶𝑃𝑃 =  
�̇�𝑄��

�̇�𝑄���
 (1) 

An optimization analysis is carried out on the maximum pressure of the double effect cycle to find the 
best value of COP for each HTF maximum temperature (𝑇𝑇���,��) and HTF temperature difference 
(∆𝑇𝑇���), compatible with system constraints. In fact, according to the Dühring chart,  crystallization 
phenomena occurs when the mass concentration of LiBr is above 65% (Salehi et al., 2019). For this 
reason, the maximum pressure level must be compatible with this threshold to prevent pipes and 
components clogging. The resulting trends of the COP for both configurations are reported in Figure 2. 

 
Figure 2: Absorption chiller COP: single effect (left) and double effect (right) 

 
For both categories of AC, higher COP are computed at high 𝑇𝑇���,�� and low ∆𝑇𝑇��� (close to isothermal 
hot source), with a flat response over a certain value of 𝑇𝑇���,��, equal to 95°C and 150°C for the SEAC 
and DEAC, respectively. As in the SEAC the pressure level is fixed by the condensation condition, 
increasing the 𝑇𝑇���,�� corresponds to a higher vapor fraction leading to a higher cooling capacity. 
Situations in which the ∆𝑇𝑇��� is low also correspond to conditions in which the internal regeneration 
of the AC is greatest. Therefore, at high 𝑇𝑇���,�� the COP is favoured by greater steam production and, 
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at the same time, by less �̇�𝑄��� introduction at low ∆𝑇𝑇���. In the DEAC, every case is optimised 
maximising the COP and varying the maximum pressure, so this effect is not evident and it is possible 
to achieve a COP in the range between 1.25 and 1.45 even with relatively low  𝑇𝑇���,�� and large ∆𝑇𝑇���. 
In the DEAC the optimum high pressure varies from 50 kPa to 105 kPa and for each case, the limit is 
set due the reaching of the crystallization constraint.  
 

3 CASE STUDY 
 
An existing trigeneration power plant, located in the city of Milan (A2A, 2023), is selected as case 
study. In Table 2 the components and the power balance of the system are listed. The electric power is 
produced by two Taurus 60S-7801 5MWe gas turbines by Solar Turbine (Taurus 60, n.d) each one 
powered by natural gas with an input thermal power of 17 MW. The expander outlet temperature is 
510°C and the flue gas mass flow rate is 43.22 kg/s. In this study, the heat recovery units and the 
compressors chiller are replaced by a trigenerative CO2 based power cycle for additional electricity 
production. 
 

Table 2: Trigeneration power plant components 

Components Power 
Gas turbines 10 MWe 
Heat recovery steam generator  16 MWth 
Compressor chillers 7.5 MWth 

 
3.1 CO2 power cycles 
For the power cycles analysis, the stack temperature is set to 120°C leading to an available thermal 
power (�̇�𝑄��) of 18.33 MW from both turbines at full load. The flue gas directly releases heat to the 
working fluid with a minimum temperature approach of 30°C in the primary heat exchanger (PHE) thus 
avoiding the use of a high temperature HTF loop. The cascade cycle is selected for this application as 
suggested by a previous work (Morosini et al., 2023) and it is here proposed in two different 
architectures (Figure 3) differing in one recuperator with the aim to consider three different design 
criteria: maximization of thermal recovery (MTR) namely ensure a complete exploitation of the heat 
source from the power plant, maximization of the power production (MPP) and maximization electric 
efficiency (MEE). Each cycle is investigated with both pure CO2 in supercritical cycle and mixture of 
CO2 and dopant in transcritical cycle. 
 

 
Figure 3: Cascade Cycle. MTR configuration (left), MPP/MEE (right) 

MTR cycle adopts only one recuperator to exploit the heat available from high temperature turbine 
exhaust for heating the fluid expanded by the low temperature turbine. As result the heat introduction 
process starts right after the compressor (pure CO2 cycle) or the pump (CO2 mixtures), allowing for a 
complete cooling of the heat source in the power cycle heat introduction process and leading to a heat 
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source recovery factor (𝜒𝜒 = �̇�𝑄���/�̇�𝑄��) equal to 1. The heat rejected by the cycle is recovered in the 
HRejU unit by heating up a HTF loop (Figure 3). On the contrary MPP and MEE cycles adopt an 
additional recuperator that allows to preheat the high temperature working fluid loop fluid before the 
heat introduction by cooling down the hot working fluid released by the low temperature turbine. In 
this case, the internal heat recovery is improved allowing to increase the cycle thermodynamic 
efficiency at the expense of the heat source recovery factor. As a result, the heat source is not totally 
exploited and thus after the power plant utilization it can still release heat to the HTF loop in the HrecU 
unit (Figure 3). A sensitivity analysis is carried out on the minimum cycle temperature (𝑇𝑇���,��) 
between 50°C and 70°C considering ambient air as cold sink when the plant is not working in 
cogenerative mode or when a fraction of the rejected thermal power cannot be used for HTF heating. 
For each design criteria (MTR, MPP, MEE), for each minimum temperature and for both pure CO2 and 
blended CO2, the power plant (for a total number of 30 cases) is optimized with the aim to maximized 
the electric power for MTR (while guaranteeing 𝜒𝜒 = 1) and MPP architectures and to maximize electric 
efficiency for MEE one. The following design parameters are varied to identify the optimal design: i) 
minimum pressure which impacts on the dopant molar fraction for working fluid blends, ii) split fraction 
after the pump and iii) maximum cycle temperature. Table 3 reports the assumed values for the analysis: 
turbomachinery efficiencies refer to small-scale applications, while a maximum pressure (250 bar) is 
necessary in order to do not penalize the performance (Alfani et al., 2021) (Morosini et al., 2023) .  
 

Table 3: Power block parameters 
Cycle Parameter      
Cycle maximum pressure 250 bar 
PHE minimum temperature approach 30 °C 
Recuperators pinch point (MITA)  10 °C 
Pressure drops (PHE/HRecU and HRejU)  3/1 bar 
Pressure drops recuperator (HP/LP)  1/2 bar 
Isentropic efficiency (expander/compression) 85/80 % 
Generator/Motor efficiency, 𝜂𝜂�/�  97/97 % 

 
Table 4 provides the properties for the chosen working fluids. Hexafluorobenzene (C6F6) is the selected 
dopant because its high thermal stability (up to 600°C) and the mixture is modelled with the Peng 
Robinson EoS (Di Marcoberardino et al., 2022). Differently, CO2 is modelled with the Span and Wagner 

EoS (Span & Wagner, 1996). 
 

Table 4: Pure fluids and mixture properties 
Fluids Molar weight 

[kg/kmol] 
Tcr 

[°C] 
Pcr 

[bar] 
Binary interaction parameter 

[-] 
CO2 44.01 31.06 73.83 𝑘𝑘�� = 0.16297 − 0.0003951 ∙ 𝑇𝑇 [𝐾𝐾] C6F6 186.06 243.58 32.73 

 
3.2 District heating and cooling system 
The water for DH is supplied at 95°C and has a return temperature of 60°C (Mise, 2020) and the 
provided temperature range for the chilled water is from 6°C to 12°C (AIRU - Annual Report, 2022). 
An intermediate loop (IL) of heat transfer fluid is implemented to avoid direct heat transfer between the 
power plant working fluid and both the district hating water or the absorption chiller mixture, as 
proposed in Figure 3. The temperature limits of the IL must be compatible with the source and 
utilization range; therefore, the selected IL range is defined once the temperature range of working fluid 
and gases are computed. A minimum temperature approach of 10°C is always considered in each heat 
exchanger. 
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3.3 Key Performance Indicators 
The performance of the power plant is evaluated trough the electrical efficiency 𝜂𝜂�� and the differential 
levelized cost of electricity (LCOE). The first is defined in Eq. (2).   
 

𝜂𝜂�� =
∑ �̇�𝑊���� ⋅ 𝜂𝜂�/� − �̇�𝑊����/����/𝜂𝜂�/�

�̇�𝑄���
=

�̇�𝑊��

�̇�𝑄���
 (2) 

From the economical point of view, the goal is finding the layout and the design parameters that 
minimize the differential LCOE related to the installation of the CO2 based power plant with respect to 
a reference case where the electric power is produced only with the gas turbines and the hot and cold 
thermal power are produced from a total exploitation of the exhaust gases sensible content (�̇�𝑄��), and 
the second, representing the solution proposed in this work. Therefore, the yearly differential cost 
considers the annualized investment cost of the power block (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), the operating costs (𝑂𝑂&𝑀𝑀) and 
the profit loss related to the reduced fraction of hot and cold thermal power with respect to the reference 
scenario because of electrical power production. LCOE is expressed as follow: 
 

𝐿𝐿𝐶𝐶𝑂𝑂𝐿𝐿 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑂𝑂&𝑀𝑀 +  ∆𝐿𝐿��� ∙ 𝐿𝐿𝐶𝐶𝑂𝑂𝐿𝐿 + ∆𝐿𝐿���� ∙ 𝐿𝐿𝐶𝐶𝑂𝑂𝐶𝐶

8760 ∙ 𝑢𝑢�� ∙ �̇�𝑊��
 (3) 

 
The 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, corresponding to the sum of the equipment and Balance of Plant (BoP) costs, is calculated 
according to Weiland et al (Weiland et al., 2019), and the correlation of Wright et al (Wright et al., 
2016) only for the gas-CO2 PHE. The specific 𝑂𝑂&𝑀𝑀 is 30 $/kW and the BoP cost are the 30% of the 
total equipment cost (Marchionni et al., 2018). 𝐿𝐿𝐶𝐶𝑂𝑂𝐿𝐿 is the Levelized Cost Of Heating and it is equal 
to 80 $/MWh (Næss-Schmidt et al., 2021), while the Levelized Cost Of Cooling (LCOC) is calculated 
by using the correlations and assumptions proposed by Correa et al (Correa-Jullian et al., 2019): 
assuming a COP of 1.3, LCOC is equal to 40 $/MWh. The utilization factor 𝑢𝑢 is 91% (corresponding 
to 8000h/year) while heat for DH is required for 41% of the running hours (15 weeks/year) and heat for 
the absorption chiller 24% of the running hours (9 weeks/year). The capital recovery factor (CRF) is 
7.8%. ∆𝐿𝐿��� and ∆𝐿𝐿���� are the reduction of thermal energy and cooling energy with respect to the 
reference case. 
 

4 RESULTS AND DISCUSSION 
 
4.1 Considerations on Cycle optimization 
For the MTR and MPP conditions (pure CO2), optimal cycle minimum pressure is rather constant while 
reducing the cycle maximum temperature has two opposing effects: from one hand it allows to increase 
the heat input to the cycle by reducing the recuperator outlet temperature, while, on the other hand, it 
implies a reduction of cycle efficiency. However, the two effects are nearly balanced and the power 
output varies by less than 1.5% in the cycle maximum temperature optimal range between 440°C and 
480°C. For MEE the highest cycle efficiency corresponds to a turbine inlet temperature of 480°C 
(compatible with the minimum temperature approach in PHE). Results reported in this paper refer only 
to the optimal cases and nominal conditions. 
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4.2 Power Cycle Performance 
Figure 4 depicts the trend of electric efficiency and power output for all the cycle combination varying 
the cycle minimum temperature. 

 
Figure 4: Electric efficiency (left) and electric generation (right) 

Increasing the 𝑇𝑇���,�� implies a penalization of the cycle performance due to the increase of fluid 
specific volume (for pure CO2 cycles) and reduction of the pressure ratio (blended CO2) but the effect 
is more marked for the pure CO2 cases since transcritical cycles always benefit by a fluid pressurization 
in liquid state that is less affected by change in the working fluid volumetric behavior. Among the 
different cycles configuration, the MTR cycle with CO2 is the most penalized one since the need of 
ensuring a complete heat source cooling in the PHE which results in a limitation of the cycle pressure 
ratio and leads to cycle minimum pressures higher than the optimal one: all these effects are exacerbated 
when the cycle minimum temperature increases. While the use of pure CO2 always leads to the lowest 
efficiency and power production it is interesting to note that the MTR cycle with CO2 mixture for high 
cycle minimum temperature can get a power output close to the other cycles because the lower 
efficiency is compensated by and higher recovery factor with respect to both MPP and MEE 
configurations. The complete cascade cycle featuring also the second recuperator in both MPP and MEE 
cases outperform the MTR thanks to a more effective regeneration. In the MEE case, the TIT (Turbine 
Inlet Temperature) is set to the maximum value of 480°C, compatible with the constraint on the 
minimum pinch temperature at the PHE, justifying the highest electric efficiency. At the same TIT, the 
mixture has higher thermodynamic efficiency (around +3%) thanks to more balanced heat capacities 
within the recuperators. However pure CO2 takes advantage of the lower PHE inlet temperature due to 
an unbalanced recuperator, experiencing higher electrical output. This effect is true only at low cycle 
minimum temperature, while at high temperatures an evident efficiency drops of pure CO2 compared 
to the mixture can be noticed due to the increase of the compressibility factor. As regards the MPP 
strategy, which represents the trade-off between the heat source cooling grade and the cycle efficiency, 
the mixture outperforms pure CO2 even if the optimal TIT is around 10°C lower to provide a more 
effective heat source cooling, without involving a substantial cycle efficiency penalization. In fact, pure 
CO2 suffers both the distance from the critical point and the unbalanced recuperators, while the mixture 
keeps the benefits of liquid compression and balanced heat capacities by varying the composition. 
 
4.3 Hot and cold power nominal availabilities  
Thermal power is released by the system to the IL through the HRecU and HRejU units that completes 
the flue gas cooling down to stack temperature and collects the useful heat released by the cycle 
respectively. The amount of heat collected by each unit depends on the specific cycle layout, the 
optimization strategy, and minimum cycle temperature, as shown in Figure 5 for 50°C and 70°C cycle 
minimum temperature cases. Moreover Figure 6 summarizes the resulting annual produced energy. In 
the MTR configuration, the entire thermal duty of the sensible heat source is provided to the cycle 
through the PHE and exploited with a relatively-low cycle efficiency compared to the other layouts 
considered (Figure 3), but the amount of rejected thermal power from the HRejU unit is considerable 
as represented in Figure 5. The good temperature level (above 180°C of the rejected heat) provided by 
the MTR configuration allows the exploitation of the total duty for DH and DC purposes, depending on 
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the seasonal need. Above 100°C the HRejU is used in a DEAC, while the fraction below 100°C in a 
SEAC, with COP evaluated according to the maps in Figure 2. 

 

 
On the other hand, the MEE and MPP configurations present a good fraction of thermal power available 
also from the HRecU at high temperatures (above 220°C), that can be entirely used for DH and DC 
through a DEAC. As regards the HRejU unit of these configurations, the thermal duty available for DH 
purposes strongly depends on the cycle minimum temperature since the required temperature range for 
the intermediate HTF is 70-100°C. Due to this limitation, an air cooler is always necessary to dissipate 
the residual thermal power. Instead, in summer season, the terminal temperatures of the HTF loop can 
be adjusted to exploit the entire rejected duty in a SEAC, with an associated COP depending on the 
specific temperature range and the air cooler is not required. As highlighted in Figure 6, the best annual 
energy production is reached with the mixture in MEE strategy at 70°C minimum temperature, mainly 
due to better thermodynamic efficiency compared to CO2 and higher valuable heat at the HrecU for DC 
and DH. 

 
Figure 6: Annual energy production for  𝑇𝑇���,�� = 50°𝐶𝐶 (left) and 𝑇𝑇���,�� = 70°𝐶𝐶 (right). 

 
4.4 Differential LCOE 
Previous results suggests that the cycles operating with a minimum cycle temperature of 70°C are 
reasonably the most promising ones since they allow to heat rejection to the environment during both 
summer and winter season, thus only this case is considered in this preliminary economic analysis. 
Figure 7 shows the resulting differential LCOEof the different cases, as expressed in Eq. (3), 
highlighting the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑂𝑂&𝑀𝑀 costs and the costs relating to the missed selling of heat and cold. 
Considering the annual energy balance depicted in Figure 6 (right), the higher electricity output 

Figure 5: Power balance for  𝑇𝑇���,�� = 50°𝐶𝐶 (left) and 𝑇𝑇���,�� = 70°𝐶𝐶 (right) in winter season. 
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produced by the mixture based cycles, with respect to the cycle operating with pure fluid, lead to a 
reduction of the LCOE. On the other hand, the CO2 MTR case of is characterized by the minimum 
∆𝐸𝐸��� and ∆𝐸𝐸���� because of the highest annual thermal production. Nevertheless, the annual electric 
production mainly affects the differential LCOE. Considering only electricity as output, all the analyzed 
cases are economically viable compared to different Italian electric gross prices (PUN – Prezzo Unico 
Nazionale) (GME, 2023), however the cases that has a lower electric energy generation are the most 
penalized. 

Figure 7: Differential LCOE for 𝑇𝑇���,�� = 70°𝐶𝐶 cases compared to the Italian PUN. 
 
MPP configuration has the lowest specific power cycle cost ranging from 3736 $/kW for the mixture to 
4723 $/kW for CO2 since the larger power production is not obtained with a substantial increase of 
equipment cost with respect to the MEE case. MTR case is on the contrary the most penalized one since 
it does not maximize power production and uses large heat exchangers to provide complete heat source 
coolingleading to a cost of 176 $/MWh. Also accounting for profit losses due to the missed selling of 
heating and cooling due to power production the LCOE strongly increases leading to final values that 
are up to three times higher than the LCOE due to only 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑂𝑂&𝑀𝑀 costs. MEE case with mixture 
has the lowest differential LCOE with values around 140 $/MWh. The studied trigeneration plant is 
economically feasible for PUN related to the recent years where the geopolitical circumstances lead to 
a very variable natural gas price and the relative PUN. On the contrary, adopting lower PUN prices 
related to a more stable global situation the installation of a cogenerative power plant would require 
incentives or the application of carbon tax to fossil fuel use to be economically competitive as generally 
true for any cogenerative power system. 
 

5 CONCLUSIONS 
In this paper, a theoretical revamp of a trigeneration plant is presented. By first analyzing the H2O-LiBr 
absorber, it is possible to quantify the COP at different heat source condition. Then, simulations were 
carried out on a heat recuperative plant with different designs using CO2 and a CO2 mixture as working 
fluids. The maximum thermal recovery configuration in the PHE has higher thermal energy production 
comparing MPP and MEE, however on the economic aspect, the MTR presents a high differential 
LCOE due to the lowest electric energy production. The MPP strategy ensures high electric production 
and it proves to be the ideal approach when only energy production is considered as useful outcomes.  
However, for trigenerative scopes, the MEE configuration presents a good compromise between outputs 
and investment cost. The mixture of CO2 and C6F6 is preferrable with respect to pure CO2. 
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NOMENCLATURE 
 
Acronyms  
AC  Absorption Chiller  
BoP Balance of Plant 
Capex Capital Expenditure 
COP  Coefficient Of Performance 
CRF Capital Recovery Factor 
DC  District Cooling 
DEAC  Double Effect Absorption Chiller 
DH  District Heating 
ELECNRTL Electrolyte-NRTL 
HRecU  Heat Recovery Unit 
HRejU  Heat Rejection Unit 
HTF  Heat Transfer Fluid 
IL   Intermediate Loop 
IEA  International Energy Agency 
MITA  Minimum Internal Temperature 
Approach 
MPP Maximum Power Production 
MEE Maximum Electric Efficiency 
MTR Maximum Thermal Recovery 
O&M Operation & Maintenance  
PHE  Primary Heat Exchanger 
PUN Prezzo Unico Nazionale 
SEAC  Single Effect Absorption Chiller 
TIT Turbine Inlet Temperature 

 
Roman and Greek letter  
P Pressure  bar/kPa 
�̇�𝑄 Thermal power  MW 
𝑇𝑇 Temperature  °C 
�̇�𝑊 Mechanical Power MW 
Δ𝑇𝑇 Temperature difference °C 
𝜂𝜂 Efficiency   (-) 
𝜒𝜒           Recovery factor             (-) 
 
Chemical formula 
𝐶𝐶𝑂𝑂�      Carbon Dioxide 
𝐶𝐶�𝐹𝐹�     Hexafluorobenzene 
𝐻𝐻�𝑂𝑂      Water 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿     Lithium Bromide 
 
Subscript 
comp compressor 
cond     condensation 
cy cycle 
el electric 
eva evaporation 
fg  flue gases 
g generator 
m motor 
min minimum 
pump pump 
turb      turbine 
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This book contains the compilation of works contributed to the 7th International Se-
minar on Organic Rankine Cycle Power Systems (ORC 2023), held in Seville between 
the 4th and 6th of September 2023. The event was hosted by Universidad de Sevilla on 
behalf of the Knowledge Centre on Organic Rankine Cycle Technology (KCORC), in-
corporated in The Netherlands. 

The ORC conference, organized biennially, stems as the only conference that is specific 
to ORC technology, therefore gathering a diverse community whose affiliation spans 
across all the interested stakeholders, not only in this particular technology but also 
and in a broader context, in the energy transition. Original equipment manufacturers, 
professional associations, end-users, investors, policy makers, academics, scientists feel 
at home at ORC 2023. 

The almost 100 proceedings in this book cover a wide variety of topics, from fundamen-
tals to system integration through component design, accounting for thermodynamic 
performance as well as component design. In addition to this, and as a new track in 
2023, works on heat pump technology were also accepted in order to raise awareness of 
the strong ties between both technologies, specifically in energy storage applications. 

This book provides an excellent overview of the current maturity of power systems ba-
sed on Organic Rankine Cycle technology for applications as diverse as geothermal and 
waste heat recovery in industry or downstream of other prime movers (e.g., marine 
applications). It is also an excellent source of information to understand the current 
challenges faced by the technology, stemming from a very competitive market and in-
creasingly stringent environmental regulations. 

The organizers of ORC 2023 hope that the reader finds this work as exciting as the at-
tendees to the conference and, maybe, make the decision to join the 8th edition to the 
conference in 2025.

https://editorial.us.es
https://kcorc.org/
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