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Abstract

In this paper we consider the linearized version of a system of partial differential equations arising from 
a fluid-structure interaction model. We prove the existence and the uniqueness of the solution under natural 
regularity assumptions.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The mathematical analysis and the numerical approximation of problems involving the in-
teraction of fluids and solids are essential for the modeling and simulation of a variety of 
applications related to engineering, physics, and biology.

We consider a model presented in [4,6] based on a fictitious domain approach and the use 
of a distributed Lagrange multiplier. The considered formulation is the evolution of a model 
originated from a finite element approach of the immersed boundary method [5,7,3]. The im-
mersed boundary method has been introduced by Peskin and his collaborators in several seminal 
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papers [33,35,26,34] where the interaction between the fluid and the solid was modeled by a 
suitably defined Dirac delta function and the numerical approximation was performed by finite 
differences. One of the differences of the immersed boundary method with respect to other pos-
sible approaches is that the discretization is performed by using two fixed meshes: one for the 
fluid domain (artificially extended to include the immersed solid) and one for the reference con-
figuration of the solid. This choice has the advantage that the computational meshes need not be 
updated at each time step. On other hand, the intersection between the fluid mesh and the image 
of the solid mesh into the actual solid configuration needs to be evaluated; in our approach the La-
grange multiplier is responsible for such coupling. The numerical analysis of the problem shows 
appealing properties related to its stability [32,4] and the numerical investigations demonstrate 
the superiority of the finite element approach with respect to the original finite difference scheme 
in terms of mass conservation. Higher order time discretization has been investigated in [8].

In this paper we address the study of the existence and uniqueness of the continuous solu-
tion. The solution has four components: fluid velocity u and pressure p (extended into the solid 
region in the spirit of the fictitious domain), the position of the solid domain inside the fluid, 
seen as a mapping X from a reference configuration, and the Lagrange multiplier λ supported 
in the solid reference domain that is used to enforce the coupling between the solid and the 
fluid. The problem is highly non linear; in particular the unknown X defines mathematically the 
region occupied by the solid at a given time. We consider a linearization of the problem with 
respect to the variable X and, for simplicity, we neglect the convective term of the Navier–Stokes 
equations.

Our existence and uniqueness proof is based on a Faedo–Galerkin approximation as done 
in [41] for the study of the Navier–Stokes equations. We extend the results of [18] where the 
coupling of the incompressible Navier–Stokes equations with a linear elasticity model in a fixed 
domain is considered.

Existence and uniqueness results for models related to fluid-structure interactions have a lim-
ited but not empty occurrence in the literature. In particular, some authors discussed the existence 
of weak solutions in the case of a fluid containing rigid solids or elastic bodies whose behav-
ior is described by a finite number of modes [12,15–17,19,21–23,38,40,39]. Other results are 
available for the existence of weak solutions in the case of a fluid enclosed in a solid mem-
brane [42,11,28,27,29–31] or interacting with a plate [20]; the typical example of application is 
the blood flowing in a vessel [36]. The existence of the solution in the case of viscoelastic parti-
cles immersed in a Newtonian fluid is discussed in [25] using the Eulerian description for both 
fluid and solid. Local-in-time existence and uniqueness of strong solutions for a model involving 
an elastic structure immersed in a fluid is analyzed in [13,14,37,9,10].

In the next section we recall the strong formulation of our model. Section 3 presents the 
fictitious domain approach together with its variational formulation. The linearized problem is 
described in Section 4 and the main existence and uniqueness result for the velocity u and the 
position of the solid X is stated and proved in Section 5. Finally, Section 6 is devoted to the 
existence and uniqueness of the pressure p and the multiplier λ.

2. Setting of the problem

In this section we recall the formulation of the fluid-structure interaction problem presented 
in [6]. We assume that we are given a Lipschitz and convex domain � ⊂Rd , d = 2, 3, which is 
occupied by a fluid and a solid. We denote by �f

t and �s
t the regions where the fluid and the 

solid are respectively located at time t , so that � is the interior of �
f ∪ �

s
. The regularity of 
t t
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the two subdomains will be made more precise later on as a consequence of Assumption 1. For 
simplicity we assume that ∂�s

t ∪ ∂� is empty, that is the solid is immersed in the fluid, and the 
moving interface ∂�

f
t ∩ ∂�s

t is denoted by �t .
We denote by u, σ , and ρ the velocity, stress tensor, and mass density, respectively, and we 

use subscripts f or s to refer to the fluid or to the solid. We assume that the densities ρf and ρs

are positive constants.
The following equations represent the strong form of the problem we are interested in, cor-

responding to the interaction of an incompressible fluid and an incompressible immersed elastic 
structure.

ρf u̇f = divσ f in �
f
t

div uf = 0 in �
f
t

ρs u̇s = divσ s in �s
t

div us = 0 in �s
t

uf = us on �t

σ f nf = −σ sns on �t .

(1)

The following initial and boundary conditions are imposed on ∂�.

uf (0) = uf 0 on �
f

0 ,

us(0) = us0 on �s
0,

uf (t) = 0 on ∂�.

(2)

The fluid stress tensor is defined by the Navier–Stokes law as it is common for Newtonian fluids

σ f = −pf I + νf ε(uf ), (3)

where ε(u) = (1/2) 
(∇ u + (∇ u)�

)
is the symmetric gradient and νf represents the viscosity of 

the fluid.
The solid domain �s

t is the image of a reference domain B = �s
0, which we assume to have a 

Lipschitz continuous boundary. Let X(t) : B → �s
t be the mapping that associates to each point 

s ∈ B a point x ∈ �s
t . When it is needed in order to avoid confusion we will use the notation 

X(s, t) to denote the dependence on both space and time. We assume that X is one to one and 
that, for all t ∈ [0, T ], ‖X(s1, t) − X(s2, t)‖ ≥ γ ‖s1 − s2‖ for all s1, s2 ∈ B for a positive constant 
γ . In particular, X(t) is invertible with Lipschitz inverse.

We denote by F = ∇s X the deformation gradient; its determinant is denoted by |F |. We have 
that |F | is constant in time since the fluid and the solid are incompressible; it is not restrictive to 
assume that X(s, 0) = X0(s) = s for s ∈ B, so that |F | = 1 for all t .

When dealing with moving domains it is essential to be precise with respect to the Eulerian 
and Lagrangian descriptions of the involved quantities. In (1), we used the dot over the velocity 
in order to denote the material time derivative. The Eulerian description of the fluid gives u̇f =
∂uf /∂t + uf · ∇ uf . The spatial description of the material velocity in the solid, where the 
Lagrangian representation is used, reads
138
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us(x, t) = ∂X(s, t)
∂t

∣∣∣
x=X(s,t)

(4)

so that u̇s(x, t) = ∂2X(s, t)/∂t2|x=X(s,t).
Following what we did in [7], we consider a viscous-hyperelastic solid structure and we define 

the Cauchy stress tensor as the sum of two contributions σ s = σ
f
s + σ s

s . There is a fluid-like part 
of the stress

σ
f
s = −psI + νsε(u)s (5)

for a positive constant viscosity νs and an elastic part σ s
s . The elastic part of the stress σ s

s can be 
written in terms of the first Piola–Kirchhoff stress tensor P with a change of variables from the 
Eulerian to the Lagrangian framework:

P (F(s, t)) = |F(s, t)|σ s
s(x, t)F−�(s, t) for x = X(s, t). (6)

Following [6] we are going to consider a linear dependence of P on F , namely

P (F) = κF = κ ∇s X. (7)

The following notation will be used throughout the paper.
If D is a domain in Rd , we denote by Ws,p(D) the Sobolev space on D (s ∈R, 1 ≤ p ≤ ∞), 

and by ‖ · ‖s,p,D its norm (see, for example, [1]). As usual we write Hs(D) = Ws,2(D) and 
omit p in the norm and seminorm when it is equal to 2. Moreover, bold characters denote vector 
valued functions and the corresponding functional spaces. The dual space of a Hilbert space X
will be denoted with X′. The notation (·, ·)D stands for the scalar product in L2(D) and the 
duality pairing is denoted by brackets 〈·, ·〉. The subscript indicating the domain is omitted if 
the domain is �, while we shall always use it for the reference domain B. We will make use of 
the space H 1

0 (D) of functions in H 1(D) with zero trace on the boundary of D and of its dual 
H−1(D). Moreover, L2

0(D) denotes the subspace of L2(D) of functions with zero mean value 
on D.

We denote by D(D) the space of C∞ functions with compact support in D. When X is a 
Banach space, we denote by Lp(0, T ; X) (1 ≤ p ≤ ∞) the space of Lp-integrable functions 
from (0, T ) into X, which is a Banach space with the norm

‖v‖Lp(X) =
⎛
⎝ T∫

0

‖v(t)‖p
X dt

⎞
⎠

1/p

.

Analogously, the space Cm([0, T ]; X) denotes the space of functions from [0, T ] to X which are 
continuous up to the m-th derivative in t .

Finally, we are going to use the following spaces:

V0 = {v ∈ D(�)d : div v = 0}
H0 = the closure of V0 in L2(�)

V = the closure of V in H1(�).

(8)
0 0 0
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3. Fictitious domain approach and Lagrange multiplier

We extend the fluid velocity and the pressure into the solid domain by introducing new un-
knowns with the following meaning:

u =
{

uf in �
f
t

us in �s
t

p =
{

pf in �
f
t

ps in �s
t

. (9)

The condition that the material velocity of the solid is equal to the velocity of the fictitious fluid 
is expressed by

∂X(s, t)
∂t

= u(X(s, t), t) for s ∈ B. (10)

We introduce the following bilinear form:

c(μ, z) = (∇s μ,∇s z)B + (μ, z)B ∀μ, z ∈ H1(B). (11)

It is obvious that for all μ, z ∈ H1(B)

c(z, z) = ‖z‖2
1,B = ‖z‖2

0,B + ‖∇s z‖2
0,B

c(μ, z) ≤ ‖μ‖1,B‖z‖1,B

c(μ, z) = 0 for all μ ∈ H1(B) implies z = 0.

System (1) can be formulated as follows.

Problem 1. Given u0 ∈ H1
0(�), us0 ∈ H1(�s

0), and X0(s) = s for s ∈ B, for almost every t ∈
]0, T ], find (u(t), p(t)) ∈ H1

0(�) × L2
0(�), X(t) ∈ H1(B), and λ(t) ∈ H1(B) such that it holds

ρf

d

dt
(u(t),v) + b(u(t),u(t),v) + a(u(t),v)

−(div v,p(t)) + c(λ(t),v(X(·, t))) = 0 ∀v ∈ H1
0(�) (12a)

(div u(t), q) = 0 ∀q ∈ L2
0(�) (12b)

δρ

(
∂2X
∂t2 (t), z

)
B

+ κ(∇s X(t),∇s z)B − c(λ(t), z) = 0 ∀z ∈ H1(B) (12c)

c
(

μ,u(X(·, t), t) − ∂X
∂t

(t)

)
= 0 ∀μ ∈ H1(B) (12d)

u(0) = u0 in �, (12e)

X(0) = X0 in B,
∂X

(0) = us0 in B. (12f)

∂t

140



D. Boffi and L. Gastaldi Journal of Differential Equations 279 (2021) 136–161
Here δρ = ρs − ρf and

a(u,v) = (νε(u), ε(v)) with ν =
{

νf in �
f
t

νs in �s
t

b(u,v,w) = ρf

2
((u · ∇ v,w) − (u · ∇ w,v)) .

We assume that ν ∈ L∞(�) and that there exists a positive constant ν0 > 0 such that ν ≥ ν0 > 0
in �, hence the following Korn’s inequality holds true for all u ∈ H1

0(�)

a(u,u) ≥ k‖∇ u‖2
0,�. (13)

We add the following compatibility conditions for the initial velocity

div u0 = 0, and u0|�s
0
= us0. (14)

The second condition is related to the fact that we are assuming B = �s
0.

4. Linearized problem

We fix a function X which satisfies the following assumption.

Assumption 1. Let X ∈ C1([0, T ]; W1,∞(B)) be invertible with Lipschitz inverse for all t ∈
[0, T ], with X(s, 0) = s for s ∈ B. In addition, we assume that

J (t) = det(∇s X(t)) = 1 for all t. (15)

This assumption and the fact that B has a Lipschitz continuous boundary imply that also 
X(B, t) has a Lipschitz continuous boundary.

From now one we are going to neglect the convective term so that our problem will read as 
follows.

Problem 2. Given u0 ∈ H1
0(�), us0 ∈ H1(B), and X0(s) = s for s ∈ B, for almost every t ∈]0, T ]

find (u(t), p(t)) ∈ H1
0(�) × L2

0(�), X(t) ∈ H1(B), and λ(t) ∈ H1(B) such that it holds

ρf

d

dt
(u(t),v) + a(u(t),v) − (div v,p(t))

+c(λ(t),v ◦ X) = 0 ∀v ∈ H1
0(�) (16a)

(div u(t), q) = 0 ∀q ∈ L2
0(�) (16b)

δρ

(
∂2X
∂t2 (t), z

)
B

+ κ(∇s X(t),∇s z)B − c(λ(t), z) = 0 ∀z ∈ H1(B) (16c)

c
(

μ, (u ◦ X)(t) − ∂X
∂t

(t)

)
= 0 ∀μ ∈ H1(B) (16d)

u(0) = u0 in �, (16e)
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X(0) = X0 in B,
∂X
∂t

(0) = us0 in B. (16f)

In the previous equations we used the notation v ◦X = v(X(·, t)) and (u ◦X)(t) = u(X(·, t), t).
Let us split the second order in time Equation (16c) into a system of two differential equations 

of first order in time by introducing a new unknown w = ∂X
∂t

. Then Problem 2 becomes:

Problem 3. Given u0 ∈ H1
0(�), us0 ∈ H1(B), and X0(s) = s for s ∈ B, for almost every t ∈]0, T ]

find (u(t), p(t)) ∈ H1
0(�) × L2

0(�), (X(t), w(t)) ∈ H1(B) × H1(B), and λ(t) ∈ H1(B) such that 
it holds

ρf

d

dt
(u(t),v) + a(u(t),v) − (div v,p(t))

+c(λ(t),v ◦ X) = 0 ∀v ∈ H1
0(�) (17a)

(div u(t), q) = 0 ∀q ∈ L2
0(�) (17b)

δρ

(
∂w
∂t

(t), z
)
B

+ κ(∇s X(t),∇s z)B − c(λ(t), z) = 0 ∀z ∈ H1(B) (17c)

(
∂X
∂t

(t),y
)
B

= (w(t),y)B ∀y ∈ L2(B) (17d)

c
(
μ, (u ◦ X)(t) − w(t)

) = 0 ∀μ ∈ H1(B) (17e)

u(0) = u0 in �, (17f)

X(0) = X0 in B, w(0) = us0 in B. (17g)

We set

Kt = {(v, z(t)) ∈ V0 × H1(B) : c(μ,v ◦ X(t) − z(t)) = 0 ∀μ ∈ H1(B)}. (18)

We observe that (14) implies that (u0, us0) ∈ K0.
Problem 3 is equivalent to the following one.

Problem 4. Given (u0, us0) ∈ K0 and X0(s) = s for s ∈ B, for almost every t ∈]0, T ], find 
(u(t), w(t)) ∈ Kt and X(t) ∈ H1(B) such that

ρf

d

dt
(u(t),v) + a(u(t),v) + δρ

(
∂w
∂t

(t), z(t)
)
B

+ κ(∇s X(t),∇s z(t))B = 0 ∀(v, z(t)) ∈Kt(
∂X
∂t

(t),y
)
B

= (w(t),y)B ∀y ∈ L2(B)

u(0) = u0 in �, w(0) = us0 in B,

X(0) = X in B,

(19)
0
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In the following section we are going to prove existence and uniqueness of the solution to 
Problem 4. In the next section we will show existence and existence for the pressure p and the 
multiplier λ as well.

5. Existence and uniqueness

We start this section by showing existence and uniqueness of the solution to Problem 4 by 
following the Galerkin approximation technique used in [41, Chapt. III.1]. The proof of the next 
theorem will be obtained in several steps.

Theorem 1. We set X0(s) = s for s ∈ B. Let X ∈ C1([0, T ]; W 1,∞(B)) be such that Assumption 1
is satisfied. Then, given u0 ∈ V0 and us0 ∈ H1(B) satisfying the compatibility condition (14), for 
a.e. t ∈ (0, T ) there exist (u(t), w(t)) ∈Kt and X(t) ∈ H1(B) satisfying Problem 4 and

u ∈ L∞(0, T ;H0) ∩ L2(0, T ;V0)

w ∈ L∞(0, T ;L2(B)) ∩ L2(0, T ;H1(B))

X ∈ L∞(0, T ;H1(B)) with
∂X
∂t

∈ L∞(0, T ;L2(B)) ∩ L2(0, T ;H1(B)).

5.1. Basis in Kt

We introduce a basis in Kt that will be used for the Galerkin approximation of our problem. 
Let ψj (j ∈ N) be the complete set of eigenfunctions for the eigenvalue problem: find λf ∈ R
and ψ ∈ V0 with ψ �= 0 such that

a(ψ,v) = λf (ψ,v) ∀v ∈ V0. (20)

It is well known that the eigenvalues are positive and can be enumerated in an increasing se-
quence going to +∞. The associated eigenfunctions {ψj }∞j=1 are orthogonal with respect to the 

scalar product in L2(�) and to the bilinear form a(·, ·). We normalize them with respect to the 
L2(�) norm, so that ‖ψj‖0,� = 1 for all j ∈ N .

Moreover, let χj (j ∈ N) be the complete set of eigenfunctions for the eigenvalue problem: 
find λs ∈ R and χ ∈ H1(B) with χ �= 0 such that

c(μ,χ) = λs(χ ,μ)B ∀μ ∈ H1(B). (21)

Also the eigenvalues of (21) are positive and can be enumerated in increasing sequence going to 
+∞. We have that {χj }∞j=1 are orthogonal we respect to the scalar product in L2(B) and to the 
bilinear form c(·, ·). We normalize them with respect to c so that c(χj , χ j ) = 1 for all j ∈ N .

Proposition 2. For j ∈ N and t ∈ [0, T ], let us set ϕj (t) = ψj ◦ X(t) ∈ H1(B). Then, for each 
t ∈ [0, T ], {ϕj (t)}∞j=1 is a basis of H1(B).

Proof. Given z ∈ H1(B) we will show that it can be written as a combination of the {ϕj (t)}’s. 

Thanks to the assumptions on X, we have that vz(t) = z ◦X(t)−1 ∈ H1(�s
t ) where �s

t = X(B, t). 
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Let ṽz(t) ∈ H1
0(�) be an extension of vz(t) to �, so that ṽz(t)|�s

t
= vz(t). Then we can write 

ṽz(t) in terms of the basis functions ψj , that is

ṽz(t) =
∞∑

j=1

αj (t)ψj .

By construction we have that ṽz(X(·, t), t) = z ∈ H1(B), hence we obtain

z = ṽz(X(·, t), t) =
∞∑

j=1

αj (t)ψj ◦ X =
∞∑

j=1

αj (t)ϕj (t). �

As a consequence of the previous proposition, a basis in Kt is given by {(ψj , ϕj (t))}∞j=1}.

5.2. Galerkin approximation

We introduce a Galerkin approximation of the solution of Problem 4. Let us consider Vm
0 =

span(ψ1, . . . , ψm), Wm(t) = span(ϕ1(t), . . . , ϕm(t)), and Hm = span(χ1, . . . , χm). We define a 
subspace Km

t of Kt generated by the first m basis functions in Kt as follows

Km
t = {(v, z(t)) ∈ Vm

0 × Wm : c(ϕi (t),v ◦ X(t) − z(t)) = 0 for i = 1, . . . ,m}. (22)

It is clear that if (v, z(t)) ∈Km
t then

v =
m∑

j=1

αjψj z(t) =
m∑

j=1

αjϕj (t)

for the same coefficients {αj }. The Galerkin approximation of the solution of Problem 4 is given 
by

um(t) =
m∑

j=1

α
(m)
j (t)ψj , wm(t) =

m∑
j=1

α
(m)
j (t)ϕj (t),

Xm(t) =
m∑

j=1

β
(m)
j (t)χ j

(23)

such that

ρf

d

dt
(um(t),v) + a(um(t),v) + δρ

(
∂wm

∂t
(t), z(t)

)
B

+κ(∇s Xm(t),∇s z(t))B = 0 ∀(v, z(t)) ∈Km
t(

∂Xm

(t),y
)

= (wm(t),y)B ∀y ∈ Hm (24)

∂t B
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um(0) = um
0 in �, wm(0) = um

s0 in B

Xm(s,0) = Xm
0 for s ∈ B.

The initial conditions in (24) are obtained by projecting the initial data, that is

um
0 =

m∑
j=1

α
(m)
0j ψj with α

(m)
0j = (u0,ψj )

(ψj ,ψj )

um
s0 =

m∑
j=1

α
(m)
0j ϕj (0)

Xm
0 =

m∑
j=1

β
(m)
0j χ j with β

(m)
0j = (s,χ j )

(χ j ,χ j )
,

(25)

where we have taken into account the compatibility assumption (14).
Using (23) in (24) we obtain for (v, z) = (ψ i , ϕi (t)) and y = χ i the following system:

ρf

m∑
j=1

α′
j (t)(ψj ,ψ i ) +

m∑
j=1

αj (t)a(ψj ,ψ i )

+ δρ

⎛
⎝ m∑

j=1

(
α′

j (t)ϕj (t) + αj (t)ϕ
′
j (t)

)
,ϕi (t)

⎞
⎠

B

+ κ

m∑
j=1

βj (t)(∇s χ j ,∇s ϕi (t))B = 0

m∑
j=1

β ′
j (t)(χ j ,χ i )B =

m∑
j=1

αj (t)(ϕj (t),χ i )B,

(26)

where we omitted the superscript m in order to simplify the notation.
Thanks Proposition 2, ϕj (t) ∈ H1(B) can be written in terms of the basis {χ i}∞i=1 as follows

ϕj (t) =
∞∑

r=1

δjr (t)χ r with δjr (t) = c(ϕj (t),χ r ), (27)

therefore δjr (t) inherits the regularity in time of ϕj (t).

Lemma 3. Under Assumption 1, we have for j ∈ N

∥∥∥∥
∞∑

δ2
jr (t)cr

∥∥∥∥
L∞(0,T )

≤ C‖X‖2
L∞(L∞(B))‖ψj‖2

0,�
r=1
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∥∥∥∥
∞∑

r=1

δ2
jr (t)

∥∥∥∥
L∞(0,T )

≤ C‖X‖2
L∞(W1,∞(B))

‖ψj‖2
1,� (28)

∥∥∥∥
∞∑

r=1

(δ′
jr (t))

2cr

∥∥∥∥
L∞(0,T )

≤ C‖X‖2
W 1,∞(L∞(B))

‖ψj‖2
1,�,

where cr = ‖χ r‖2
0,B = 1

λsr
(see (21)).

Proof. For each j ∈ N , ψj∈V0 is an eigenfunction of (20) with ‖ψj‖2
0,�=1 and ‖ε(ψj )‖2

0,� =
λfj . Hence ϕj is continuous from [0, T ] into H1(B) with the time derivative in L∞(0, T ; L2(B)). 
Taking into account the properties of the eigensolutions of (21) we have

‖ϕj (t)‖2
0,B =

∞∑
r=1

δ2
jr (t)‖χ r‖2

0,B =
∞∑

r=1

δ2
jr (t)cr .

Hence we have:

∥∥∥∥
∞∑

r=1

δ2
jr (t)cr

∥∥∥∥
L∞(0,T )

= ‖ϕj (t)‖2
L∞(L2(B))

≤ C‖X‖2
L∞(L∞(B))‖ψj‖2

0,�.

Similarly, we set dr = ‖ ∇s χ r‖2
0,B = λsr−1

λsr
where λsr are the eigenvalues of (21). It is easy to 

see that 0 < λs1−1
λs1

≤ dr < 1. Then we have

‖∇s ϕj (t)‖2
0,B =

∞∑
r=1

δ2
jr (t)‖∇s χ r‖2

0,B =
∞∑

r=1

δ2
jr (t)dr .

The above equations imply that for each t ∈ [0, T ] the series on the right hand side is convergent 
and that the first two inequalities in (28) hold true. Let us now show the third one. We have that the 

time derivative of ϕj (t) is given by 
∂ϕj

∂t
(t) = ∇ ψj

∂X
∂t

(t), hence it belongs to L∞(0, T ; L2(B)); 
moreover we have

∂ϕj

∂t
(t) =

∞∑
r=1

δ′
jr (t)χ r ,

from which we obtain

‖ϕ′
j (t)‖2

0,B =
∞∑

r=1

(δ′
jr )

2cr

and we conclude again that the series on the right hand side is convergent and that the estimate 
in the second inequality of (28) is verified. �
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Using the expression (27) into (26), we arrive at

ρf α′
i (t) + a(ψ i ,ψ i )αi(t)

+ δρ

m∑
j=1

(
Cij (t)α

′
j (t) + Dij (t)αj (t)

)
+ κ

m∑
j=1

δij (t)djβj (t) = 0

β ′
i (t) =

m∑
j=1

αj (t)Bji(t),

where B(t), C(t), D(t), and E(t) are real matrices in Rm×m with elements

Bji(t) = δji(t) Cij (t) =
∞∑

r=1

δjr (t)δir (t)cr

Dij (t) =
∞∑

r=1

δ′
jr (t)δir (t)cr Eij (t) = δij (t)dj .

(29)

Let α(m)(t) and β(m)(t) be the vector valued functions with components α(m)
j (t) and β(m)

j (t), 
respectively. We have obtained the following system of linear ordinary differential equations

(
ρf Im + δρC(t)

)
(α(m)(t))′ + (

a(ψ i ,ψ i )Im + D(t)
)
α(m)(t)

+ E(t)β(m)(t) = 0

(β(m)(t))′ = BT α(m)(t)

α(m)(0) = α
(m)
0

β(m)(0) = β
(m)
0 ,

(30)

where α(m)
0 and β(m)

0 are the vectors with components α(m)
0j and β(m)

0j (see (25).

Lemma 4. Under Assumption 1, the matrices B(t), C(t), D(t), and E(t) given by (29) are 
well defined and continuous in [0, T ]. Moreover, the matrix ρf Im + δρC(t) is invertible with 
continuous inverse.

Proof. By definition (27), it is clear that the elements of B(t) and E(t) are continuous in [0, T ]. 
Let us consider the elements of C(t). Thanks to the Cauchy–Schwarz inequality we have

‖Cij‖L∞(0,T ) =
∣∣∣∣∣

∞∑
r=1

δjr (t)δir (t)cr

∣∣∣∣∣
≤

( ∞∑
r=1

δ2
jr (t)cr

)1/2 ( ∞∑
r=1

δ2
ir (t)cr

)1/2

≤ ‖ϕ ‖ ∞ 2 ‖ϕ ‖ ∞ 2 .
j L (L (B)) i L (L (B))
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Since ϕj (t) for j ∈ N is continuous in [0, T ] with values in H1(B), the series 
∑∞

r=1 δ2
jr (t)cr is 

continuous in [0, T ]. This implies that the elements of C(t) are also continuous in [0, T ].
A similar argument shows that ‖Dij‖L∞(0,T ) is bounded.
Now we show that ρf Im + δρC(t) is invertible. Since C(t) is symmetric, it is enough to show 

that C is also positive semidefinite that is xT Cx ≥ 0 for all x ∈ Rm. This can be obtained by 
direct computation as follows

xT Cx =
m∑

i,j=1

xi

( ∞∑
r=1

δir (t)crδjr (t)

)
xj

=
∞∑

r=1

cr

(
m∑

i=1

xiδir (t)

)⎛
⎝ m∑

j=1

xj δjr (t)

⎞
⎠

=
∞∑

r=1

cr

(
m∑

i=1

xiδir (t)

)2

≥ 0. �

Proposition 5. The system of ordinary differential equations (30) has a unique solution α(m) ∈
C1([0, T ]) and β(m) ∈ C1([0, T ]).

Proof. As a consequence of Lemma 4, the matrix ρf Im + δρC(t) is invertible with continuous 
inverse, hence the standard theory for systems of linear first order ordinary differential equations 
gives that (30) has a unique solution in C1([0, T ]). �

The above proposition yields the existence of the solution of (24), stated in the following 
theorem

Theorem 6. There exists a unique solution (um(t), wm(t)) ∈ Km
t and Xm(t) ∈ Hm of (24)

and (25) with

(um,wm) ∈ C1([0, T ];Km
t ), Xm ∈ C1([0, T ];Hm). (31)

5.3. A priori estimates

We have the following a priori estimates for the solution of (24) and (25).

Proposition 7. The following bounds hold true with C > 0 independent of m:

‖um‖L∞(L2(�)) + ‖um‖L2(H1
0(�)) ≤ C

(
‖um

0 ‖0,� + ‖um
s0‖0,B + |B|1/2

)
(32a)

‖wm‖L∞(L2(B)) + ‖wm‖L2(H1(B)) ≤ C
(
‖um

0 ‖0,� + ‖um
s0‖0,B + |B|1/2

)
(32b)

‖Xm‖L∞(H1(B)) ≤ C
(
‖um

0 ‖0,� + ‖um
s0‖0,B + |B|1/2

)
(32c)
148



D. Boffi and L. Gastaldi Journal of Differential Equations 279 (2021) 136–161
∥∥∥∥∂Xm

∂t

∥∥∥∥
L∞(L2(B))

+
∥∥∥∥∂Xm

∂t

∥∥∥∥
L∞(H1(B))

≤ C
(‖um

0 ‖0,� + ‖um
s0‖0,B + |B|1/2), (32d)

where |B| stands for the measure of B.

Proof. By definition (23) we have that

∂um

∂t
∈ L2(0, T ;V0)

∂wm

∂t
∈ L2(0, T ;H1(B))

∂Xm

∂t
∈ L2(0, T ;H1(B))

implying that

2

(
∂um

∂t
(t),um(t)

)
= d

dt
‖um(t)‖2

0,�

2

(
∂wm

∂t
(t),wm(t)

)
B

= d

dt
‖wm(t)‖2

0,B

2

(
∇s

∂Xm

∂t
(t),∇s Xm(t)

)
B

= d

dt
‖∇s Xm(t)‖2

0,B.

Let us take (v, z(t)) = (um(t), wm(t)) in the first equation in (24), then

ρf

2

d

dt
‖um(t)‖2

0,� + ν0‖ε(um(t))‖2
0,�

+ δρ

2

d

dt
‖wm(t)‖2

0,B + κ(∇s Xm(t),∇s wm(t))B ≤ 0.

Thanks to the fact that (um(t), wm(t)) ∈ Km
t , we have that wm(t) belongs to H1(B) and the 

second equation in (24) implies that it is equal to the time derivative of Xm(t), so that the last 
inequality can be rewritten as

ρf

2

d

dt
‖um(t)‖2

0,� + ν0‖ε(um(t))‖2
0,�

+ δρ

2

d

dt
‖wm(t)‖2

0,B + κ

2

d

dt
‖∇s Xm(t)‖2

0,B ≤ 0.

Integrating on (0, t) with t ∈ (0, T ] and taking into account (13), we arrive at

ρf ‖um(t)‖2
0,� + 2k

t∫
0

‖∇ um(τ)‖2
0,� dτ + δρ‖wm(t)‖2

0,B + κ‖∇s Xm(t)‖2
0,B

≤ ρf ‖um
0 ‖2

0,� + δρ‖um
s0‖2

0,B + κ‖Xm
0 ‖2

0,B.

(33)

Thanks to (25), the last inequality implies (32a). In order to obtain (32b), we observe that a.e. in 
t wm(t) = (um ◦ X)(t) in H1(B). Therefore

∇s wm(t) = (∇ um ◦ X)(t)∇s X(t)
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and

‖∇s wm‖2
L2(L2(B))

=
T∫

0

‖∇s wm(t)‖2
0,B dt

=
T∫

0

‖(∇ um ◦ X)(t)∇s X(t)‖2
0,B dt

≤ ‖∇s X(t)‖2
L∞(L∞(B))

T∫
0

‖(∇ um ◦ X)(t)‖2
0,B dt

≤ C

T∫
0

‖∇ um‖2
0,�s

t
dt ≤ C‖∇ um‖2

L2(L2(�))

which together with (33) gives (32b). It remains to bound Xm. Since

∂Xm(t)

∂t
= wm(t),

we obtain (32d) directly. Moreover, the inequality (33) gives the estimate for ‖ ∇s Xm‖L∞(L2(B)). 
Let us now estimate Xm(t) in the L2(�)-norm. Integrating in time the last equation, we obtain

Xm(t) = Xm
0 +

t∫
0

wm(τ)dτ. (34)

After some computations, we get

‖Xm(t)‖2
0,B ≤ ‖Xm

0 ‖2
0,B +

∥∥∥∥∥∥
t∫

0

wm(τ)dτ

∥∥∥∥∥∥
2

0,B

≤ ‖Xm
0 ‖2

0,B +
∥∥∥∥∥∥t

t∫
0

|wm(τ)|2dτ

∥∥∥∥∥∥
2

0,B

≤ ‖Xm
0 ‖2

0,B + t

t∫
0

‖wm(τ)‖2
0,Bdτ.

It follows

‖Xm‖2
L2(L2(B))

≤ ‖Xm
0 ‖2

0,B + T ‖wm‖2
L2(L2(B))

‖Xm‖2
∞ 2 ≤ ‖Xm‖2 + T 2‖wm‖2

∞ 2 . �

L (L (B)) 0 0,B L (L (B))
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5.4. Passing to the limit

Step 1: um converges to u ∈ L∞(0, T ; H0) ∩ L2(0, T ; V0).
The a priori estimate (32a) shows the existence of an element u ∈ L∞(0, T ; H0) and of a subse-
quence m′ → ∞ such that

um′ ∗
⇀ u in L∞(0, T ;H0).

This means that for each v ∈ L1(0, T ; H0)

T∫
0

(um′
(t) − u(t),v(t)) dt → 0 as m′ → ∞. (35)

Since um′
is also bounded in L2(0, T ; V0), we can extract another subsequence (still denoted 

um′
) that converges weakly to u∗ ∈ L2(0, T ; V0), that is

um′
⇀ u∗ in L2(0, T ;V0).

The above convergence means that

T∫
0

〈um′
(t) − u∗(t),v(t)〉dt → 0 as m′ → ∞ ∀v ∈ L2(0, T ;V′

0). (36)

By the Riesz representation theorem, we can identify H0 with H′
0, so that

V0 ⊂ H0 = H′
0 ⊂ V′

0.

Moreover the duality pairing between V′
0 and V0 can be identified to the scalar product in H0 for 

u ∈ V0 and v ∈ H0, that is

〈v,u〉 = (v,u) ∀v ∈ H0, ∀u ∈ V0.

Comparing (35) and (36) with v ∈ L2(0, T ; H0), we obtain that

u = u∗ ∈ L∞(0, T ;H0) ∩ L2(0, T ;V0). (37)

Step 2: wm converges to w in L∞(0, T ; L2(B)) ∩ L2(0, T ; H1(B)).
With arguments similar to those used above, we obtain from (32b) the following convergence for 
some subsequences of wm′

:

wm′ ∗
⇀ w in L∞(0, T ;L2(B))

wm′
⇀ w∗ in L2(0, T ;H1(B)).

(38)
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Using again the Riesz representation theorem, we have that H1(B) ⊂ L2(B) ⊂ H1(B)′ and we 
can conclude that

w = w∗ ∈ L∞(0, T ;L2(B)) ∩ L2(0, T ;H1(B)). (39)

Step 3: The limit (u(t), w(t)) is contained in Kt .
By construction (um(t), wm(t)) ∈ Km

t , that is

c(ϕi (t), (u
m ◦ X)(t) − wm(t)) = 0 for i = 1, . . . ,m.

Since um ⇀ u in L2(0, T ; V0), we have that um ◦ X ⇀ u ◦ X in L2(0, T ; H1(B)).
Let us consider a scalar function φ ∈ C∞(0, T ). Then we have that φϕi belongs to 

L2(0, T ; H1(B)) and that

0 =
T∫

0

φ(t)c(ϕi (t), (u
m ◦ X)(t) − wm(t)) dt

=
T∫

0

c(φ(t)ϕi (t), (u
m ◦ X)(t) − wm(t)) dt.

Recalling that the bilinear form c(·, ·) is the scalar product in H1(B), we can pass to the limit as 
m → ∞. The weak convergence of um ◦ X and of wm in L2(0, T ; H1(B)) implies

T∫
0

φ(t)c(ϕi , (u ◦ X)(t) − w(t)) dt = 0 for i = 1, . . . ,m. (40)

The last equality is valid for each i, and by linearity for all finite linear combinations of ϕi (t). 
Using Proposition 2, by continuity, Equation (40) is still valid for all μ ∈ H1(B) and implies that

c(μ, (u ◦ X)(t) − w(t)) = 0 ∀μ ∈ H1(B)

holds true in the sense of distributions on (0, T ), so that we conclude that (u(t), w(t)) belongs to 
Kt .

Step 4: Limit of Xm and ∂Xm/∂t .
Since Xm and ‖∂Xm/∂t‖ are bounded in L∞(0, T ; H1(B)) and L∞(0, T ; L2(B)), respectively, 
there exist X ∈ L∞(0, T ; H1(B)), Y ∈ L∞(0, T ; L2(B)), and subsequences m′ such that

Xm′ ∗
⇀ X in L∞(0, T ;H1(B))

∂Xm′

∂t

∗
⇀ Y in L∞(0, T ;L2(B))

(41)

in the sense that
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T∫
0

〈Xm′
(t) − X(t),y(t)〉B dt → 0 as m → ∞ ∀y ∈ L1(0, T ;H1(B)′)

T∫
0

(
∂Xm′

∂t
(t) − Y(t),y(t)

)
B

→ 0 as m → ∞ ∀y ∈ L1(0, T ;L2(B)).

Let us consider a scalar function φ(t) which is continuously differentiable in [0, T ] and φ(T ) =
0, and let us denote by φ′(t) its derivative. Then for j = 1, . . . , m

T∫
0

(
∂Xm

∂t
(t),χ j

)
B

φ(t) dt = −
T∫

0

(
Xm(t),φ′(t)χ j

)
B dt − (Xm

0 ,χ j )Bφ(0).

From (25) we have that Xm
0 → X0 strongly in H1(B), hence we can pass to the limit and obtain

T∫
0

(
Y(t),χ j

)
B φ(t) dt = −

T∫
0

(
X(t), φ′(t)χ j

)
B dt − (X0,χ j )Bφ(0).

The above relation is valid for all finite linear combinations y of χ j with j = 1, . . . , m. Moreover, 
it depends linearly and continuously on y ∈ L2(B); hence, it is valid for all y ∈ L2(B). Taking 
φ ∈ D(0, T ) and integrating by parts, we get the following equation in the sense of distributions:

(
∂X
∂t

(t),y
)
B

= (Y(t),y)B ∀y ∈ L2(B).

Step 5: ∂X/∂t(t) = w(t).
We have (see (24))

(
∂Xm

∂t
(t) − wm(t),χ i

)
B

= 0 ∀χ i i = 1, . . . ,m.

The convergence of wm and of Xm obtained in (38) and (41) implies that

Y = w ∈ L∞(0, T ;L2(B)),

therefore the limits X and w satisfy the second equation in (19).

Step 6: Passing to the limit in Equation (24).
Let φ(t) be defined as before. We have:

T∫ (
∂um

∂t
,ψj

)
φ(t) dt = −

T∫
(um(t),ψjφ

′(t)) dt − (um(0),ψj )φ(0)
0 0
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and

T∫
0

(
∂wm

∂t
,ϕj (t)

)
B

φ(t) dt = −
T∫

0

(wm(t),ϕj (t)φ
′(t))B dt

−
T∫

0

(wm(t),ϕ′
j (t)φ(t))B dt − (wm(0),ϕj (0))Bφ(0).

Using these relations in (24) we obtain

− ρf

T∫
0

(um(t),ψjφ
′(t)) dt +

T∫
0

a(um(t),ψjφ(t)) dt

− δρ

T∫
0

(wm(t),ϕj (t)φ
′(t))B dt − δρ

T∫
0

(wm(t),
∂ϕj

∂t
(t)φ(t))B dt

+ κ

T∫
0

(∇s Xm(t),∇s ϕj (t)φ(t))B dt

= ρf (um(0),ψj )φ(0) + δρ(wm(0),ϕj (0))Bφ(0).

For j fixed, passing to the limit yields

− ρf

T∫
0

(u(t),ψjφ
′(t)) dt +

T∫
0

a(u(t),ψjφ(t)) dt

− δρ

T∫
0

(w(t),ϕj (t)φ
′(t))B dt − δρ

T∫
0

(w(t),
∂ϕj

∂t
(t)φ(t))B dt

+ κ

T∫
0

(∇s X(t),∇s ϕj (t)φ(t))B dt

= ρf (u0,ψj )φ(0) + δρ(us0,ϕj (0))Bφ(0).

(42)

Each element (v, z(t)) ∈Km
t can be written as

v =
m∑

j=1

ajψj

z(t) =
m∑

ajϕj (t) =
m∑

ajψj ◦ X(t).
j=1 j=1
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Let us denote by z′(t) the time derivative of z(t). We have

z′(t) =
m∑

j=1

aj ∇ ψj ◦ X(t)
∂X
∂t

(t)

which, due to the regularity of X, is continuous from [0, T ] into L2(B).
We write (42) as follows

− ρf

T∫
0

(u(t),vφ′(t)) dt +
T∫

0

a(u(t),vφ(t)) dt

− δρ

T∫
0

(w(t), z(t)φ′(t))B dt − δρ

T∫
0

(w(t), z′(t)φ(t))B dt

+ κ

T∫
0

(∇s X(t),∇s z(t)φ(t))B dt

= ρf (u0,v)φ(0) + δρ(us0, z(0))Bφ(0).

(43)

All the terms depend linearly and continuously on (v, z) ∈ C1([0, T ]; Km
t ), hence for each t ∈

[0, T ] Equation (43) holds true for all (v, z) ∈ C1([0, T ]; Kt ).
Taking φ ∈ D(0, T ) and integrating by parts with respect to t , we arrive at

ρf

T∫
0

(
∂u
∂t

(t),v
)

φ(t) dt +
T∫

0

a(u(t),v)φ(t) dt

+ δρ

T∫
0

(
∂w
∂t

(t), z(t)
)
B

φ(t) dt + κ

T∫
0

(∇s X(t),∇s z(t))Bφ(t) dt = 0,

which implies that the first equation in (19) holds true in the sense of distributions on (0, T ).

Step 7: Initial conditions.
It remains to check that u(0) = u0, w(0) = us,0 and X(0) = X0.

Since ∂X
∂t

= w ∈ L2(0, T ; H1(B)), then X is continuous from [0, T ] to H1(B), and we can 
pass to the limit in (34) for t = 0 arriving at X(0) = X0.

We recall that

(u,w) ∈ L2(0, T ;V0 × H1(B)).

Moreover, since (u(t), w(t)) ∈Kt and Kt ⊂ V0 × H1(B), we have that

(u,w) ∈ L2(0, T ;Kt ).
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In order to prove the continuity of u and w in the correct spaces for the initial conditions, we 
can use a general interpolation theorem. If we can show

(
∂u
∂t

,
∂w
∂t

)
∈ L2(0, T ;V′

0 × H1(B)′) (44)

then it follows

(u,w) ∈ C0([0, T ];H0 × L2(B)).

Given (v, z(t)) ∈Kt the first equation in (19) can be written as

ρf

(
∂u
∂t

(t),v
)

+ δρ

(
∂w
∂t

(t), z(t)
)
B

= −〈Au(t),v〉 − κ(∇s X(t),∇s(z(t)))B,

where A : V0 → V′
0 is the linear and continuous operator associated with the bilinear form a. 

Since u ∈ L2(0, T ; V0), the function Au belongs to L2(0, T ; V′
0). Taking into account that X ∈

L2(0, T ; H1(B)) we obtain also

T∫
0

(∇s X(t),∇s(v ◦ X(t)))B dt ≤ C‖∇s X(t)‖L2(L2(B))‖v‖V0 . (45)

It follows that

(
∂u
∂t

,
∂w
∂t

)
∈ L2(0, T ;K′

t ),

which, from Hahn–Banach theorem implies (44).
The general interpolation theory of Lions–Magenes [24] and [41, Lemma 1.2] implies that u

is continuous form [0, T ] to H0 and w is continuous from [0, T ] to L2(B).
It remains to check that u(0) = u0 and w(0) = us0. We multiply the first equation in (19) by 

a scalar function φ(t), continuously differentiable on [0, T ] with φ(T ) = 0, and integrate with 
respect to t

T∫
0

ρf

d

dt
(u(t),v)φ(t) dt +

T∫
0

δρ

(
∂w
∂t

(t), z(t)
)
B

φ(t) dt

+
T∫

0

a(u(t),v)φ(t) dt +
T∫

0

κ(∇s X(t),∇s z(t))Bφ(t) dt = 0.

Integration by parts in the first two integrals gives for (v, z(t)) ∈Kt
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ρf

T∫
0

d

dt
(u(t),v)φ(t) dt + δρ

T∫
0

(
∂w
∂t

(t), z(t)
)
B

φ(t) dt

= −ρf

T∫
0

(u(t),v)φ′(t) dt − δρ

T∫
0

(
w(t), z(t)φ′(t) + ∂z

∂t
(t)φ(t)

)
B

dt

− ρf (u(0),v)φ(0) − δρ(w(0), z(0))Bφ(0),

which inserted in the previous equation gives

− ρf

T∫
0

(u(t),v)φ′(t) dt − δρ

T∫
0

(
w(t), z(t)φ′(t) + ∂z

∂t
(t)φ(t)

)
B

dt

+
T∫

0

a(u(t),v)φ(t) dt +
T∫

0

κ(∇s X(t),∇s z(t))Bφ(t) dt

= ρf (u(0),v)φ(0) + δρ(w(0), z(0))Bφ(0).

Comparing the last equality with (43) gives for φ(0) �= 0

ρf (u(0) − u0,v) + δρ(w(0) − us0, z(0))B = 0 (46)

for all (v, z(0)) ∈ K0. Recalling that B = �s
0, w(0) = (u ◦ X)(t)(0), and the compatibility as-

sumption (14), we can write the last equation as

ρf (u(0) − u0,v)
�

f
0

+ ρs(u(0) − u0,v)�s
0
= 0,

that is, with obvious notation, (ρ(u(0) − u0), v)� = 0 which gives that u(0) = u0 in �. Substi-
tuting in (46) we obtain also that w(0) = us0 in B.

5.5. Uniqueness

Let us assume that (u1, w1, X1) and (u2, w2, X2) are two solutions of (19). Since the problem 
is linear the differences û = u1 − u2, ŵ = w1 − w2 and X̂ = X1 − X2 satisfy the same equations 
as u, w, X with vanishing initial conditions, that is

ρf

(
∂û
∂t

(t),v
)

+ a(û(t),v) + δρ

(
∂ŵ
∂t

(t), z(t)
)
B

+ κ(∇s X̂(t),∇s z(t))B = 0 ∀(v, z(t)) ∈Kt(
∂X̂
∂t

(t),y

)
B

= (ŵ(t),y)B ∀y ∈ L2(B)

û(0) = 0 in �, ŵ(0) = 0 in B, X̂(0) = 0 in B.
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We take (v, z(t)) = (û(t), ŵ(t)) in the first equation and use the fact that ŵ(t) = ∂X̂
∂t

(t), so that 
we get

ρf

(
∂û
∂t

(t), û(t)

)
+ a(û(t), û(t)) + δρ

(
∂ŵ
∂t

(t), ŵ(t)

)
B

+ κ

(
∇s X̂(t),∇s

∂X̂
∂t

(t)

)
B

= 0.

(47)

Thanks to (37), (39), (41), (44), Step 5, and [41, Lemma III.1.2], we can write

(
∂û
∂t

(t), û(t)

)
= 1

2

d

dt
‖û(t)‖2

0,�(
∂ŵ
∂t

(t), ŵ(t)

)
B

= 1

2

d

dt
‖ŵ(t)‖2

0,B(
∇s X̂(t),∇s

∂X̂
∂t

(t)

)
B

= 1

2

d

dt
‖∇s X̂(t)‖2

0,B.

Inserting these equalities into (47) gives

ρf

2

d

dt
‖û(t)‖2

0,� + k‖∇ û(t)‖2
0,� + δρ

2

d

dt
‖ŵ(t)‖2

0,B + κ

2

d

dt
‖∇s X̂(t)‖2

0,B ≤ 0,

which integrated from 0 to t implies

ρf

2
‖û(t)‖2

0,� + δρ

2
‖ŵ(t)‖2

0,B + κ

2
‖∇s X̂(t)‖2

0,B ≤ 0.

Therefore u1(t) = u2(t), w1(t) = w2(t), and X1(t) = X2(t) for all t .

6. Recovery of the pressure and of the Lagrange multiplier

In order to obtain existence and uniqueness of the solution of Problem 3, we need to show that 
starting from the solution (u, w, X) of Problem 4, we can define a Lagrange multiplier λ and a 
pressure p so that (u, p, X, w, λ) satisfies (17a)-(17g).

Proposition 8. Let (u, w, X) be the solution of Problem 4, then there exists λ ∈ L2(0, T ; H1(B))

such that for all t ∈ (0, T )

c(λ(t), z) = δρ

(
∂w
∂t

(t), z
)
B

+ κ(∇s X(t),∇s z)B ∀z ∈ H1(B). (48)

Proof. Since c is equal to the scalar product in H1(B), it is enough to show that the right hand 
side is a linear functional on H1(B). The linearity is obvious. We check now that both terms are 
continuous. Since ∂w ∈ L2(0, T ; H1(B)′) and X ∈ L2(0, T ; H1(B)) we have
∂t
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T∫
0

(
∂w
∂t

(t), z
)
B

dt ≤
∥∥∥∥∂w

∂t

∥∥∥∥
L2(H1(B)′)

‖z‖H1(B)

T∫
0

(∇s X(t),∇s z)B dt ≤ ‖X‖L2(H1(B))‖z‖H1(B).

These inequalities imply that the right hand side of (48) is a continuous functional on 
L2(0, T ; H1(B)). Therefore, from the Lax–Milgram lemma, we obtain existence and unique-
ness of the solution λ ∈ L2(0, T ; H1(B)). �

The above proposition allows us to split the first equation in (19) into two equations as follows:

ρf

d

dt
(u(t),v) + a(u(t),v) + c(λ(t),v ◦ X(t)) = 0 ∀v ∈ V0

δρ

(
∂w
∂t

(t), z
)
B

+ κ(∇s X(t),∇s z)B − c(λ(t), z) = 0 ∀z ∈ H1(B).

(49)

In order to obtain the solution of Problem 3, it remains to show the existence of p.

Proposition 9. Let (u, w, X) and λ be the solutions of Problem 4 and of (48). Then there exists a 
unique p ∈ L2(0, T ; L2

0(�)) such that (u, p, X, w, λ) is the solution of Problem 3.

Proof. The existence and uniqueness of (u, w, X) and λ are stated in Theorem 1 and in Proposi-
tion 8, respectively. The pressure p can be obtained as the solution of the following equation

(p(t),div v) = ρf

d

dt
(u(t),v) + a(u(t),v) + c(λ(t),v ◦ X(t)) ∀v ∈ H1

0(�). (50)

In order to see that this problem defines a function p(t) satisfying the required regularity, we can 
use standard arguments originating from the Banach closed range theorem (see, for instance [2, 
Theorem 4.1.4]). We need to show that the right-hand side of (50) is a linear and continuous 
functional on H1

0(�) belonging to the polar set of the kernel of the divergence operator in H1
0(�). 

Let us denote the right-hand side of (50) by �(v); the continuity of � can be shown as follows

∣∣∣∣∣∣
T∫

0

�(v) dt

∣∣∣∣∣∣ ≤
T∫

0

|�(v)|dt

≤ C

(∥∥∥∥∂u
∂t

∥∥∥∥
L2(H−1(�))

+ ‖u‖L2(H1
0(�)) + ‖λ‖L2(H1(B))

)
‖v‖H1

0(�).

Moreover, it is clear that � belongs to the polar set of the kernel of the divergence operator in 
H1

0(�): this is exactly what is stated in the first equation of (49).
From the closed range theorem, it follows that there exists p(t) satisfying (50) such that

‖p‖ 2 2 ≤ (1/β)‖�‖L2(H−1(�)),
L (L0(�))
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where β is the inf-sup constant associated with the divergence operator in H1
0(�) (see [41, 

(I.1.51) and Prop. I.1.2]). �
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