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In this paper we study a vehicle routing problem where customers request multiple commodities. We study the
impact on transportation cost from using vehicles dedicated to a single commodity compared with using flexible

vehicles capable of carrying any set of commodities. With vehicles that carry multiple commodities, we consider
when the delivery to a customer can be made by more than one vehicle. If multiple vehicles can be used, we
examine when deliveries of individual commodities may be split and when they may not be split. The latter
problem has not previously been studied, and we present a mathematical programming model for it. We use worst
case and computational analysis to compare these different models.
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1. Introduction
In most of the literature on vehicle routing problems
(VRPs), a single numeric value expresses the demand
of a customer even though it may represent a collection
of different products. It is usually understood that
all vehicles can serve all customers and deliver all
products. If there are reasons to use different vehicles
for different sets of products, it is assumed that it has
been previously decided which set of vehicles will
deliver which set of products. Then routing problems
are solved, each limited to the customers that demand
a set of products and to the vehicles assigned to this
service.

In this paper, we compare the transportation cost
implications from using vehicles dedicated to a set
of products with using flexible vehicles capable of
delivering all products. We will refer to a set of products
that is served by a dedicated set of vehicles as a single
commodity. Thus, if there are several sets of products
with a set of vehicles dedicated to each, we will say
that there are as many commodities as the number of
sets of dedicated vehicles. This paper compares the
situation when each of the multiple commodities is
handled separately from the others with the situation
when all commodities are handled jointly. In the latter
situation, we examine several specific ways to handle
the multiple commodities jointly. For example, when
the same customer requests multiple commodities, the
complete demand of an individual commodity may be

requested to be served with a single vehicle, or this
may not be necessary.

The comparison between handling commodities
separately and handling them jointly is of interest in
many different applications. The first category concerns
situations where different sets of products are handled
separately for organizational convenience and simplicity.
Even though vehicles can carry multiple products, an
individual vehicle is often loaded with one or only
a small set of them. Having a single product or a
small set of products on a vehicle speeds pickup from
the warehouse, simplifies the loading and unloading
phases, and avoids the need for reshuffling the load
during the distribution process. Our study can be
viewed as an examination of what this convenience
translates to in terms of transportation costs.

There are also situations where different kinds of
vehicles are available, namely vehicles that are spe-
cific to a commodity and vehicles that are flexible
and may be used for different commodities. These
flexible vehicles are often more expensive than the
commodity-specific vehicles, and a decision has to be
made about whether it is beneficial to invest in the
flexible vehicles. A decision can be made only through
the evaluation of the reduction of the operational costs
with flexible vehicles with respect to the operational
costs with commodity-specific vehicles. An example of
this category of problems can be observed in waste
management, where vehicles are available that collect
one kind of waste only, and more expensive vehicles
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are available that may collect two or more different
kinds of waste at a time. These latter vehicles have
the container divided in as many compartments as
the number of different commodities they may collect
at the same time. The size of the compartments may
be fixed, which implies that each compartment has a
given capacity, or they may be totally or partly flexible.
In many cases, the capacity of a compartment can be
chosen among a predefined set of options. A similar
situation can be found in the distribution of groceries,
where a flexible vehicle may have compartments for
frozen, refrigerated, and dry goods.

A multicompartment routing problem, with fixed
capacity of each compartment, has been recently stud-
ied by Derigs et al. (2011), where research in multicom-
partment routing problems is discussed and related
references can be found. Many of the analytical results
in this stream of literature relax the problem to assume
that the size of the compartments can be freely adjusted.
These results provide upper bounds on the benefits
from using vehicles with limited options on the size of
the compartments. Similarly, in this paper we assume
complete flexibility on the amount of each commodity
(up to the vehicle capacity). In this way, our study
provides an upper bound on the value of such flexible
vehicles in terms of transportation costs.

The third category of applications concerns the evalu-
ation of the opportunity for carriers to collaborate. Each
carrier is associated with a commodity and serves a set
of customers with its fleet of vehicles. Carriers want
to know if it is beneficial to invest in a collaboration
project where they would share customers and vehicles.
This requires comparing a situation where commodities
are handled separately (that is, each carrier handles its
own customers) with one where multiple commodities
are served jointly (that is, carriers share customers and
vehicles). Based on a case study, it is estimated that the
cost reduction achieved through cooperation ranges
between 5% and 15% and can be higher (Cruijssen
and Salomon 2004). The carrier collaboration prob-
lem has received an increasing amount of attention
in recent years, and several different aspects have
been investigated. We mention here some of the recent
contributions to this area. A broad introduction to
various forms of cooperation in logistics can be found
in Cruijssen, Cools, and Dullaert (2007). When carriers
collaborate, they have to determine which customers
to share or exchange, and they must also decide how
to share the resulting profit. The profit-sharing prob-
lem, together with the request allocation problem in a
pickup and delivery context, is considered in Krajewska
et al. (2008). A significant amount of work has been
done for the truckload carrier collaboration problem. In
Özener, Ergun, and Savelsbergh (2011) a good overview
of the research in the area is provided and a lane
exchange mechanism proposed. Our study examines

the impact on transportation costs from collaboration
both from a worst case and computational perspective
without a truckload assumption.

In this paper, we consider a routing problem where
multiple commodities are distributed to a set of cus-
tomers with capacitated vehicles. Each vehicle starts
from a depot, visits a set of customers, and returns to
the depot at the end of the tour. Any customer may
request any set of commodities. We assume that a
vehicle that carries multiple commodities is totally
flexible, in that it can carry any amount of any com-
modity, provided the constraint on the vehicle capacity
is satisfied. We examine different ways of handling
the commodities, depending on whether a vehicle is
dedicated to a commodity or is flexible and depending
on whether the demand of a customer may be satisfied
by one or several vehicles. If the demand needs to be
satisfied by more than one vehicle, we examine when
the delivery to a customer of an individual commodity
can be split among vehicles. Each situation gives rise
to a different optimization problem. Whereas most of
these problems are known, one is new. We compare
the problems from a worst case perspective in terms
of transportation cost and show in particular that,
although it is intuitive that it may be highly beneficial
to use flexible vehicles, there are situations where it is
beneficial to use dedicated vehicles. We complement
the worst case analysis with a computational study
and test different classes of instances generated from
benchmark instances.

The paper is organized as follows. In §2, we introduce
the different problems we consider and the notation
we use. In §3, we analyze the savings that can be
achieved by serving all commodities with the same
vehicle with respect to using dedicated vehicles for
each commodity and vice versa. In §4, we study the
impact of splitting the demand of a customer over
different vehicles. A mathematical formulation for the
new problem is presented in §5. Section 6 presents the
solution algorithms we adopted to solve the problems,
and in §7 the computational study is presented. Finally,
we draw some conclusions in §8.

2. Definitions and Notation
We consider a distribution network represented by
a graph where the vertex set V is composed of ver-
tex 0, which is the depot, and vertices 11 0 0 0 1 n, which
are the customers. We will indicate by C the set of
customers. The graph is undirected and we denote
by cij the distance or cost of the edge that connects
vertices i and j . We assume the triangle inequality
holds. An unlimited fleet of vehicles of capacity Q is
available. A vehicle may carry a single commodity
or all commodities, depending on the problem we
consider. Commodities 11 0 0 0 1m have to be distributed
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Figure 1 Example Instance

from the depot to the customers. We indicate by M the
set of commodities. Let us denote by dib the demand
of commodity b to be delivered to customer i. Let
tb =

∑

i dib be the total demand of commodity b and
let di =

∑

b dib be the total demand of customer i. We
assume that the total demand of each customer i is not
greater than the vehicle capacity.

We use an example to highlight how the different
restrictions change the optimal solution. The example
instance is in Figure 1, where a square indicates the
location of the depot and three customers are repre-
sented by circles. The number of commodities m is
three. The number on each edge represents the cost
to travel on the edge, and the numbers above each
customer reflect the demand for each of the three
commodities. For example, customer 1 demands three
units of commodity one, two units of commodity two,
and one unit of commodity three. Each vehicle has a
capacity of 10 units.

In the separate routing problem (C-VRP), a specific set
of vehicles is dedicated to each commodity, and any
commodity is delivered to any customer by one visit
of a vehicle only. In this case, a classical VRP has to be
solved for each commodity (see Christofides, Mingozzi,
and Toth 1979; Toth and Vigo 2002; Golden, Raghavan,
and Wasil 2008). A customer will receive as many visits
as the number of commodities requested. The solution
to this problem is found in Figure 2(a). Three vehicles
are needed, one for each commodity, and each vehicle
visits all customers. Each trip costs 14, for a total cost
of 42.

The mixed routing problem is one where any vehicle
can deliver any set of commodities. No customer
can be visited more than once; that is, if a customer
requests one or more commodities, all the requested
commodities are carried to the customer by one vehicle
in one visit. This problem corresponds to a single
classic VRP, and thus we will refer to this problem
simply as VRP. The solution to this problem is in

Figure 2(b). Three vehicles are needed, one for each
customer. Each trip to customers 1 and 3 costs 8, and
the trip to customer 2 costs 9, for a total cost of 25.

We also consider the problem where any vehicle can
deliver any set of commodities and split deliveries
of a commodity are allowed, and the same problem
where split deliveries of a commodity are not allowed.
The split delivery mixed routing is the problem where
any vehicle can deliver any set of commodities and
split deliveries are allowed; that is, the demand of a
customer, requesting one or several commodities, can
be served by one or several vehicles. The commodities
can be split in any possible way. A customer can be
visited several times if beneficial, even if he requests
only one commodity. This problem corresponds to the
split-delivery VRP (see Archetti and Speranza 2012
for a survey), and thus we will refer to this problem
simply as SDVRP. The use of split deliveries has a
big impact for our example problem, as shown in
Figure 2(c). Now only two vehicles are needed to
serve all of the demand. The first vehicle can use
its capacity by serving all of customer 1’s demand
(six units) and four units of customer 2’s demand.
Customer 2 receives all of commodity one from the
first vehicle, but the delivery of commodity two to
customer 2 is split where only one unit is delivered by
the first vehicle. This trip has a cost of 11.5. The second
vehicle delivers the rest of customer 2’s demand (four
units) and all of customer 3’s demand (six units). This
trip also costs 11.5, for a total cost of 23 and use of
only two vehicles.

Finally, we consider the problem where the vehicles
are flexible and can deliver any set of commodities,
and multiple visits of a customer are allowed only if
the customer requests multiple commodities. When
a commodity is delivered to a customer, the entire
amount requested by the customer is carried. If the
customer is visited more than once, the different vehi-
cles will deliver different sets of commodities. We call
this problem the commodity-constrained split-delivery
mixed routing problem (C-SDVRP). Splitting the demand
of a customer for different commodities on different
vehicles is more natural and likely more acceptable to
customers than splitting the delivery of an individual
commodity. In terms of our example, the solution to
this variant is found in Figure 2(d). The deliveries can
still be accomplished by two vehicles, but the delivery
of commodity two to customer 2 cannot be split among
vehicles. Thus, vehicle one satisfies all of customer 1’s
demand (six units) and fills the rest of the truck with
four units from customer 3. This can be accomplished
by satisfying customer 3’s complete demand for com-
modity one and three. This trip costs 13. Now vehicle
two satisfies all of customer 2’s demand (eight units)
and the rest of customer 3’s demand (two units), which
represents its complete demand for commodity two.
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(a) Separate routing (b) Mixed routing

(c) Split-delivery mixed routing (d) Commodity-constrained split-delivery mixed routing

Figure 2 Example Solutions

Vehicle two’s trip cost is 11.5. The total cost for the two
trips is 24.5. The C-SDVRP is a new problem for which
we will present an optimization model and a heuristic
later in this paper.

In the following, we denote by z∗4C-VRP5, z∗4VRP5,
z∗4SDVRP5, and z∗4C-SDVRP5 the cost optimum of the
problems we study.

3. Separate vs. Mixed Routing
In this section, we study the savings that can be
achieved by the VRP with respect to the C-VRP. We
will evaluate the maximum possible savings through
a worst case analysis. Although it is intuitive that
the availability of flexible vehicles may be beneficial
and may reduce the routing costs, it is interesting
to understand the maximum amount of the savings.
Moreover, we will show that there exist situations
where the C-VRP may reduce the routing costs with
respect to the VRP. This is a quite counterintuitive
result. In the C-VRP and VRP, no split delivery is
allowed; that is, either each commodity required by a
customer is delivered by a single vehicle (in the C-VRP

case) or each customer is visited by a single vehicle
(in the VRP case). This is the simplest comparison to
evaluate from the organizational point of view.

Let us start by considering a simple case. If there
is only one customer, one vehicle is necessary and
sufficient to serve all of the demand in the VRP, whereas
in the C-VRP as many vehicles as the number of
commodities are needed. For the sake of simplicity, let
us denote by c the distance of the customer from the
depot.

Theorem 1. In the case of one customer and m com-
modities, z∗4C-VRP5= z∗4VRP5+ 2c4m− 15.

Proof. The claim follows from z∗4C-VRP5 =

2c
∑

b�d1b/Q� = 2cm in the case where a customer
receives a delivery for each commodity. Moreover,
z∗4VRP5 = 2c4�4

∑

b d1b5/Q�5 = 2c since we assumed
di ≤ Q for any customer i. Thus, z∗4C-VRP5 = 2c +

2c4m− 15= z∗4VRP5+ 2c4m− 15. �

Corollary 1. In the case of one customer and m com-
modities, z∗4C-VRP5/z∗4VRP5=m.
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Proof. As z∗4C-VRP5 = z∗4VRP5+ 2c4m− 15, then
z∗4C-VRP5/z∗4VRP5 = 1 + 2c4m − 15/z∗4VRP5 = 1 +

2c4m− 15/42c5=m. �
Now we build on these ideas as we consider the

general case of n customers and analyze the maximum
possible savings that can be achieved by the VRP with
respect to the C-VRP.

Theorem 2. In the case of n customers, with n> 1, and
m commodities, z∗4C-VRP5/z∗4VRP5≤m and the bound is
tight.

Proof. Consider an optimal solution to the VRP
with optimum value z∗4VRP5. A feasible solution to the
C-VRP can be obtained from this solution as follows.
Take any vehicle used in the optimal solution to the
VRP and use it to serve only the subset of customers
served by that vehicle in the optimal solution to the
VRP that have a demand of the first commodity, and
serve the first commodity only to those customers. Obvi-
ously, the capacity constraint is satisfied as each vehicle
serves less demand with respect to the mixed case. Also,
because of the triangle inequality, the cost to serve the
first commodity is not greater than z∗4VRP5. Having an
unlimited fleet, we can repeat the procedure for the sec-
ond commodity and for any commodity. Let z4C-VRP5
be the cost of this feasible solution to the C-VRP. Triv-
ially, z4C-VRP5≤mz∗4VRP5. As z∗4C-VRP5≤ z4C-VRP5,
the claim follows.

To show that the bound is tight, consider the instance
in Figure 3. The depot is located in the center of
a circle of radius c. There are n customers spread
out along the circle at a distance of 2c apart. There
are m commodities and each customer requires each
commodity with dib = Q/m. In the C-VRP, a single
vehicle can handle each commodity by visiting all
customers. The cost to serve each commodity is c (from
the depot)+2c4n−15 (visiting all customers)+ c (return
to depot) = 2cn, and thus the optimal solution has
value z∗4C-VRP5= 2cnm. In the VRP, a vehicle serves
a single customer completely. The cost to serve each
customer is the cost of a roundtrip from the depot (2c),

2c
2c

cc

c

Figure 3 Tight Example for Theorem 2

and thus the cost of the optimal solution to the VRP is
2cn. Thus, z∗4C-VRP5/z∗4VRP5=m. �

Thus, the C-VRP may cause an increase of the routing
cost of up to m times the cost of the VRP. Surprisingly,
however, there are situations where the C-VRP is more
effective than the VRP.

Theorem 3. z∗4VRP5/z∗4C-VRP5≤ 2 and the bound is
tight.

Proof. Consider an instance of the problem with
any number m of commodities. From Archetti, Savels-
bergh, and Speranza (2006), we know that z∗4VRP5≤

2z∗4SDVRP5. On the other hand, we have z∗4C-VRP5≥

z∗4SDVRP5. Therefore, z∗4VRP5≤ 2z∗4C-VRP5.
To show that the bound is tight consider the instance

in Figure 4. The depot is located in the center of a circle
of radius 1. There are k customers spread out along
the circle at a distance � apart. Furthermore, let there
be k additional customers on a circle of radius 1 + �,
perfectly aligned (along the radius) with the other
k customers. The number of commodities is m = 2
and we assume that Q ≥ 2k. Each customer in the
inner circle has demand Q/2 − 1 for commodity 1 and
demand 2 for commodity 2, whereas each customer
in the outer circle has demand equal to Q/2 + 1 for
commodity 1 and 0 for commodity 2. An optimal
solution to the VRP requires visiting all customers
with out-and-back tours, which results in a cost of
4k+ 2k�. In contrast, a feasible solution to the C-VRP
visits two customers along the radius together, deliv-
ering Q/2 + 1 units of commodity 1 to the farthest
customer and Q/2 − 1 units of commodity 1 to the
closest customer. Commodity 2 is delivered to all cus-
tomers on the inner circle with a single route. This
results in a cost of 2k+ 2k�+ 2 + 4k− 15�. Therefore,
the ratio z∗4VRP5/z∗4C-VRP5 is greater than or equal
to 44k+ 2k�5/42k+ 2k�+ 2 + 4k− 15�5. For k going to
infinity (and � going to 0) this ratio tends to 2. �

Q/2 + 1 | 0

Q/2 + 1 | 0

Q/2 + 1 | 0

�
�

Q/2 – 1 | 2 Q/2 – 1 | 2

1

Q/2 – 1 | 2

Figure 4 Tight Example for Theorem 3
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Thus, although in general we expect the VRP to
be more effective than the C-VRP, there is no strict
dominance between them.

4. The Impact of Split Deliveries
If the commodities requested by a single customer can
be split over different trips, it may create some savings
with respect to z∗4VRP5 in terms of delivery cost. This
may be beneficial even when the total delivery quantity
to a customer is less than the truck capacity Q for the
same reason that the split delivery routing problem
can yield cheaper solutions than the standard VRP.
In Archetti, Savelsbergh, and Speranza (2006), it is
shown that z∗4VRP5≤ 2z∗4SDVRP5 and that the bound
is tight.

When only the different commodities can be split up
but not the delivery quantity of a specific commodity
to a customer, some of the gains of the SDVRP with
respect to the VRP may be achieved, but not necessarily
all. However, the following result shows that, at least
from a worst-case perspective, the same gain can be
achieved.

Theorem 4. z∗4VRP5/z∗4C-SDVRP5 ≤ 2 and the
bound is tight.

Proof. As

z∗4VRP5
z∗4SDVRP5

≤ 2 and z∗4C-SDVRP5≥ z∗4SDVRP51

it follows that

z∗4VRP5
z∗4C-SDVRP5

≤
z∗4VRP5

z∗4SDVRP5
≤ 20

The tightness of the bound follows from the same
instance used in the proof of Theorem 3. �

Theorem 5. z∗4C-SDVRP5/z∗4SDVRP5 ≤ 2 and the
bound is tight.

Proof. As

z∗4VRP5
z∗4SDVRP5

≤ 2 and z∗4C-SDVRP5≤ z∗4VRP51

it follows that

z∗4C-SDVRP5
z∗4SDVRP5

≤
z∗4VRP5

z∗4SDVRP5
≤ 20

The tightness of the bound follows from an instance
adapted from Archetti, Savelsbergh, and Speranza
(2006) to show that z∗4VRP5/z∗4SDVRP5≤ 2. As illus-
trated in Figure 5, the depot is located in the center
of a circle of radius 1. There are k customers spread
out along the circle at a distance � apart. Further-
more, let there be k additional customers on a circle of
radius 1 + �, aligned along the radius with the other k
customers. We assume that Q ≥ 2k, and the number of

Q/2 + 1

Q/2 + 1

Q/2 + 1�
�

Q/2 + 1 Q/2 + 1

1

Q/2 + 1

Figure 5 Tight Example for Theorem 5

commodities is k. Each customer demands a different
commodity, each at a quantity of Q/2 + 1. An optimal
solution to the C-SDVRP will have to visit all customers
with out-and-back tours, which results in a cost of
4k+2k�. Yet a feasible solution to the SDVRP visits two
customers along the radius together, delivering Q/2 + 1
units to the farthest customer and Q/2 − 1 units to the
closest customer. The remaining demand is delivered
to all customers on the inner circle with a single route.
This results in a cost of 2k+2k�+2+ 4k−15�. Therefore,
the ratio z∗4C-SDVRP5/z∗4SDVRP5 is greater than or
equal to 44k+ 2k�5/42k+ 2k�+ 2 + 4k− 15�5. For k going
to infinity (and � going to 0) this ratio tends to 2. �

4.1. The k-Split Cycle Property
Consider a set C = 8i11 i21 0 0 0 1 ik9 of customers and
suppose that there exist k routes r11 0 0 0 1 rk1 k ≥ 2, such
that rw contains customers iw and iw+1, w = 11 0 0 0 1 k− 1,
and rk contains customers i1 and ik. Such a configuration
is called a k-split cycle.

Dror and Trudeau (1989) prove that, if the distances
satisfy the triangle inequalities, there always exists
an optimal solution to the SDVRP with no k-split
cycle. This means that there always exists an optimal
solution where no two routes have more than one split
delivery in common. This does not hold anymore for
the C-SDVRP, as shown by the following example.

Example 1. Consider an instance with four cus-
tomers and m= 2 commodities, as in Figure 6. Cus-
tomers 1 and 2 require seven units of commodity 1
and zero units of commodity 2. Customer 3 requires
one unit of commodity 1 and one unit of commodity 2.
Customer 4 requires two units of commodity 1 and
two units of commodity 2. The capacity of the vehicles
is Q = 10. The distances between all customers and
the depot are all equal to c, c > 1, c34 = �, c13 = c14 =

c23 = c24 = 1, and c12 = 2. The optimal solution is to
make two routes as follows. The first route delivers
seven units of commodity 1 to customer 1, one unit
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Figure 6 Example Showing That the k-Split Property Does Not Hold for
the C-SDVRP

of commodity 1 to customer 3, and two units of com-
modity 1 to customer 4. The second route delivers
seven units of commodity 1 to customer 2, one unit
of commodity 2 to customer 3, and two units of com-
modity 2 to customer 4. The two routes share both
customers 3 and 4. The cost of the optimal solution is
4c+ 2 + 2�, and there is no other optimal solution that
does not share the two customers.

5. A Mathematical Formulation
for the C-SDVRP

We present in this section a mixed-integer linear pro-
gramming model for the C-SDVRP. It will be used to
find the optimal solutions presented in §7. Let K be the
set of vehicles. We fix �K� = n where n is a valid upper
bound on the number of vehicles needed. Moreover, let
Mi = 8b ∈M � dib > 09. We define the following decision
variables:

• xijk: Binary variable equal to 1 if edge 4i1 j5 is
traversed by vehicle k, i1 j ∈ V , j < i, k ∈K

• zik: Binary variable equal to 1 if vertex i is visited
by vehicle k, i ∈ V , k ∈K

• yikb: Binary variable equal to 1 if commodity b
of customer i is delivered by vehicle k, i ∈ C, k ∈K,
b ∈Mi.

The mathematical formulation of the C-SDVRP is
the following:

min
∑

i∈V

∑

j∈V 1 j<i

∑

k∈K

cijxijk1 (1)

∑

k∈K

yikb = 1 i ∈C b ∈Mi1 (2)

∑

j∈V 1 j<i

xijk =
∑

j∈V 1 j>i

xjik = 2zik i ∈ V k ∈K1 (3)

yikb ≤ zik i ∈C k ∈K b ∈Mi1 (4)

∑

i∈C

∑

b∈Mi

dibyikb ≤Qz0k k ∈K1 (5)

∑

i∈S

∑

j∈S1 j<i

xijk ≤
∑

i∈S

zik − ztk S ⊆C t ∈ S k ∈K1 (6)

xijk ∈ 80119 i1 j ∈ V 1 j < i k ∈K1 (7)

zik ∈ 80119 i ∈ V k ∈K1 (8)

yikb ∈ 80119 i ∈C k ∈K b ∈Mi0 (9)

The objective function (1) aims to minimize the total
transportation cost. Constraint (2) requires that each
commodity requested by each customer be delivered
by a single vehicle. Constraint (3) provides degree
constraints, and constraint (4) allows a vehicle to
deliver a commodity to a customer only if it visits
the customer. Capacity constraints are imposed by (5),
whereas (6) establishes subtour elimination constraints.
Constraints (7)–(9) are variable definitions.

6. Solution Algorithms
To create the computational study presented in the next
section, we used different heuristic algorithms for the
solution to the VRP and the SDVRP. In particular, for
the solution to the SDVRP we adopted the optimization-
based algorithm presented in Archetti, Savelsbergh,
and Speranza (2008), which is one of the best per-
forming heuristic solution procedures for the SDVRP.
The reader is referred to Archetti, Savelsbergh, and
Speranza (2008) for details on the algorithm. For the
solution to the VRP, we used the open-access injection-
ejection algorithm from the COIN-OR library (available
at http://www.coin-or.org/projects/VRPH.xml). This
algorithm is known to work well for the VRP.

To solve the C-SDVRP, we duplicated the node
associated with each customer for the number of times
that equals the number of commodities requested by
the customer. We associated with each duplicated node
the demand of the customer for the corresponding
commodity. We then used the same VRP heuristic
algorithm mentioned above.

To evaluate the quality of solutions given by the
heuristic algorithms, we implemented exact solution
approaches for all problems that are used to solve small
instances. To solve the VRP and C-VRP to optimality,
we implemented the classical three-index formulation
for the VRP (for details, see Toth and Vigo 2002).
Subtour elimination constraints are added when they
are found to be violated using the max flow-min-cut
algorithm presented in Padberg and Rinaldi (1991).
Capacity cut constraints are also added after they are
found to be violated through the separation algorithms
presented in Ralphs et al. (2003). For the formulation
of the capacity cuts, the reader is referred to Toth and
Vigo (2002).
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For the solution of the SDVRP, we adopted
the branch-and-cut algorithm proposed in Archetti,
Bianchessi, and Speranza (2014). Fractional capacity
cuts are inserted to enhance the formulation.

Finally, to obtain optimal solutions to the C-SDVRP,
we implemented a branch-and-cut algorithm based
on formulation (1)–(9), where subtour elimination
constraints are added after they are found to be violated
through the algorithm proposed in Padberg and Rinaldi
(1991). To enhance the formulation, we added the
following capacity cuts:

Q
∑

k∈K

∑

4i1 j5∈�4S51 j<i

xijk ≥ 2
∑

i∈S

∑

b∈Mi

dib S ⊆C1 (10)

where �4S5= 84i1 j5 ∈ E � 4i ∈ S1 j y S5 or 4i y S1 j ∈ S59. The
separation of the capacity cuts is performed through
the algorithms presented in Ralphs et al. (2003).

7. A Computational Study
In this section, we present a computational study to
compare the solutions of the C-VRP, VRP, C-SDVRP,
and SDVRP over a variety of instances. Our aim is
to understand the characteristics of the instances that
make the different problems yield different relative
results. If we can identify what types of instances make
flexible vehicles or split commodities yield particular
low-cost solutions, for example, it may be useful for
managers in deciding when these types of delivery
practices should be adopted.

We now present the set of instances we generated
(§7.1), followed by the computational results (§7.2).
All tests were run on a 64-bit Windows machine, with
an Intel Xeon processor W3680, 3.33 GHz, and 12 GB
of RAM.

7.1. Test Instances
We created a set of instances based on the R101 and
C101 Solomon instances for the VRP. These data sets
represent examples of when customers are distributed
randomly and in a clustered manner. We generated
three sets of instance sizes: small, midsize, and large.
We first describe the settings we used to generate large
instances. Small and medium instances are generated
using a subset of the settings used to generate large
instances.

7.1.1. Large Instances. For the large instances, the
number of vertices (101) and the location of each
vertex of the original instances (R101 and C101) is
held constant, but we vary the remaining problem
instance data. In particular, for both R101 and C101, we
generated several instances according to the following
characteristics:

• Number of commodities: Two and three.

• Probability that a customer requires a commodity:
We considered two cases. Probability set to 100% means
that each customer requires a delivery of each commod-
ity. Probability set to 60% means that the probability
that a customer demands a delivery of a particular
commodity is 60%.

• Demand range: These data represent the interval
in which we generate the value of the demand of
each customer for each commodity. We considered two
intervals: 6131007 and 6403607.

• Vehicle capacity: Denoted as dmax = maxi∈C

∑m
j=1 dij ,

the vehicle capacity is generated as Q = �dmax. We
considered four values of �: 1.1, 1.5, 2, and 2.5.

For each of the 64 combinations of characteristics,
we randomly generate five different instances, creating
320 large instances in total.

7.1.2. Midsize Instances. To generate midsize in-
stances, we varied the number of customers n to see the
influence on solution values. In particular, we tested
n= 20, 40, 60, and 80. We did not try every combination
of characteristics, as for the large instances, but we
fixed the number of commodities to three, the demand
range to 6131007, and the value of � to 1.5. For each
combination of value of n, type of instance (R101 and
C101), and value of the probability (60% and 100%), we
generated five different instances by randomly choosing
customers from the original instance, applying the
probability to decide which commodities each customer
demands (for the 60% probability), and generating the
demands for each commodity in the interval 6131007.
The total number of midsize instances is 80.

7.1.3. Small Instances. We also created small in-
stances so that we could solve them to optimality and
evaluate the performance of the heuristic algorithms.
Small instances are defined here as having 15 customers,
as preliminary experiments showed that instances of
the C-SDVRP with more than 15 customers could not
be solved to optimality using the branch-and-cut proce-
dure described in §6. As mentioned, 64 combinations of
characteristics were considered for the large instances,
and five different instances were generated for each
combination. Here, we take the first instance for each
set of five random instances, and limit the data set to
the first 15 customers. Thus, the total number of small
instances evaluated is 64.

7.2. Computational Results
First, we present the results for the small instances
to prove the reliability of the heuristic algorithms
(§7.2.1). We then present the results on large (§7.2.2)
and midsize (§7.2.3) instances, respectively.

7.2.1. Results for Small Instances. Small instances
are solved by the branch-and-cut algorithms described
in §6 with a maximum time limit of 30 minutes. We
used CPLEX 12.5 as the solver. All 64 instances were
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Table 1 Number of Small Instances Solved to Optimality for the
C-SDVRP

m = 2 m = 3

�= 101 1/8 0/8
�= 105 2/8 1/8
�= 2 5/8 4/8
�= 205 6/8 6/8

solved to optimality for the SDVRP, VRP, and C-VRP.
The branch-and-cut algorithm for the C-SDVRP was
able to solve 25 of the 64 instances. For the instances
that are not solved, both the best feasible solution
found by CPLEX and the lower bound are of very poor
quality; thus, they cannot be used for further evaluation.
In Table 1, we report the number of instances solved
to optimality for each combination of values of m
and � for the C-SDVRP. Table 1 clearly shows that
instances with a larger value of � are easier to solve.
This is because fewer vehicles are needed to serve all
customers when � increases.

Table 2 compares the results for the 25 instances that
have been solved to optimality for all problems. In
particular, we report the average and the maximum
gap of the C-VRP solution relative to the solution of
the VRP, C-SDVRP, or SDVRP, respectively, in terms of
cost and number of vehicles. We compare this with the
C-VRP, as it is typically the problem with the largest
cost and number of vehicles required. Cost gaps are
calculated as follows:

100
z4C-VRP5− z4P5

z4C-VRP5
1

where P corresponds to the VRP, C-SDVRP, or SDVRP,
respectively. The calculation of the gaps in terms of
number of vehicles is similar. Table 2 clearly shows
the advantage of combining the distribution of the
different commodities. Cost savings relative to the
C-VRP average between 33% and 35% with a maximum
savings over 56%. The solutions of the VRP, C-SDVRP,
and SDVRP are not very different in terms of solution
costs, but the C-SDVRP and SDVRP use fewer vehicles,
on average, than the VRP solutions.

Table 3 looks at the performance of the heuristic
algorithms. In particular, we report the number of

Table 2 Results on Small Instances Solved to Optimality

Solution cost

VRP C-SDVRP SDVRP

Average % gap 33.53 34.17 34.53
Maximum % gap 56.27 56.82 56.85

Number of routes

VRP C-SDVRP SDVRP

Average % gap 11.73 15.24 16.04
Maximum % gap 33.33 33.33 33.33

Table 3 Heuristic Solution Quality

C-VRP VRP C-SDVRP SDVRP

No. optimal 60 (64) 64 (64) 23 (25) 56 (64)
Average % error 0.02 0.00 0.05 0.13
Maximum % error 0.54 0.00 0.65 2.79

optimal solutions found by the heuristic algorithms, as
well as the average and the maximum error with respect
to the optimal value. When reporting the number
of optimal solutions for the heuristics, we give in
parentheses the total number of instances solved to
optimality by the branch-and-cut approaches. The
results indicate that all of the heuristic algorithms
provide high-quality solutions, and thus we can trust
their results when using them to solve mid-size and
large instances.

7.2.2. Results for Large Instances. In Tables 4–7, we
report a summary of the results we obtained with large
instances. Midsize and large instances have been solved
heuristically. In each table, we report the percentage
gap between the solution of the problem reported in the
corresponding column and the solution of the C-VRP.
We report both the average and the maximum gap.
Instances are grouped based on the characteristic being
examined, so each row represents results gathered
across half of the instances (160), except for the last
four rows, which refer to the values of �. Here, each
row represents results gathered across 80 instances.
Table 4 reports the percentage difference in solution
cost, and Table 5 reports the percentage difference
in the number of vehicles. The full results on large
instances are available in the online appendix (available
as supplemental material at http://dx.doi.org/10.1287/
trsc.2014.0528) and at https://sites.google.com/site/
orbrescia/instances.

First, we will examine the results in Table 4. The most
obvious result is the dramatic cost increase, both in

Table 4 Solution Cost: Percentage Gap with Respect to the C-VRP

Average Maximum

VRP C-SDVRP SDVRP VRP C-SDVRP SDVRP

C101 14067 19022 19083 32025 33029 33036
R101 15054 19060 19095 38011 38075 38075
2 commodities 11010 14066 15058 25030 26046 30026
3 commodities 19010 24016 24020 38011 38075 38075
Probability 0.6 16024 17056 18010 35061 35061 35061
Probability 1.0 13096 21026 21068 38011 38075 38075
Demand 20079 22038 22044 38011 38075 38075

range 6131007
Demand 9042 16044 17034 27076 28040 30026

range 6403607
�= 101 11076 15078 17003 25043 29057 30026
�= 105 9047 18088 19025 32025 33029 33036
�= 200 18007 19095 20015 32063 33067 33067
�= 205 21011 23004 23013 38011 38075 38075
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Table 5 Number of Routes: Percentage Gap with Respect to the C-VRP

Average Maximum

VRP C-SDVRP SDVRP VRP C-SDVRP SDVRP

C101 −5003 1.87 3.15 11076 11076 19039
R101 −5028 1.87 2.79 11076 11076 14093
2 commodities −4011 1.54 3.62 7069 8000 19039
3 commodities −6020 2.21 2.32 11076 11076 11076
Probability 0.6 1000 2.92 3.99 11076 11076 17046
Probability 1.0 −11031 0.82 1.95 4035 6067 19039
Demand −0007 2.22 2.30 11076 11076 11076

range 6131007
Demand −10024 1.52 3.64 8000 8000 19039
range 6403607

�= 101 −4099 1.26 3.93 3013 5097 19039
�= 105 −13044 1.15 1.97 4017 8000 9030
�= 200 −1049 1.90 2.48 5056 6067 6067
�= 205 −0069 3.18 3.50 11076 11076 11076

terms of average and maximum values, associated with
the C-VRP versus all of the remaining problems. In fact,
we always get the relative performance we expect with
the average percentage gap for SDVRP > C-SDVRP >
VRP across all of the instance characteristics. This
shows computationally the value of combining com-
modities on trucks and allowing deliveries to be split.
We see slightly higher gaps with random data sets,
with the most noticeable difference for the VRP. This
indicates that it may be slightly more important to
combine commodities when customers are distributed
randomly. We can observe significant increases in gaps
for all problems with the increase in the number of
commodities from two to three. This is not surprising,
as more commodities yield more opportunities for
improvements through combined deliveries. The results
with the different probabilities are interesting. The
VRP with probability 1 has a lower gap than with
probability 0.6, since many customers now receive
total delivery quantities that do not combine well with
other customers. With probability 0.6, customers receive
different numbers of commodities and thus different

Table 6 Results on Midsize Instances: Solution Cost

VRP C-SDVRP SDVRP

n = 20 n = 40 n = 60 n = 80 n = 20 n = 40 n = 60 n = 80 n = 20 n = 40 n = 60 n = 80

Average % gap with respect to the C-VRP
C101—Probability 60% 34.18 32.45 25.65 22.68 36.46 33.91 27.30 23.43 37.30 34.42 27.56 23.61
C101—Probability 100% 38.16 25.90 19.26 16.85 40.17 29.18 22.68 19.44 41.55 29.72 23.01 19.46
R101—Probability 60% 30.59 30.03 25.55 23.56 33.43 30.54 26.36 24.40 33.71 30.84 26.82 24.55
R101—Probability 100% 29.60 28.36 25.50 24.31 33.70 31.36 27.64 26.44 34.50 31.79 27.85 26.58

Maximum % gap with respect to the C-VRP
C101—Probability 60% 40.11 35.86 28.22 25.40 44.34 36.23 29.41 25.76 44.34 36.98 30.71 25.94
C101—Probability 100% 39.70 30.04 24.00 18.91 42.63 32.53 26.22 20.87 43.58 32.53 26.22 20.87
R101—Probability 60% 34.34 32.03 28.72 25.21 36.46 33.12 29.62 25.81 36.46 33.12 29.83 26.24
R101—Probability 100% 36.21 30.69 28.97 27.37 39.10 33.83 30.23 28.86 39.76 33.83 30.26 29.28

size deliveries, allowing for nice combinations that
do not exist with probability 1. These same issues
do not occur when deliveries are allowed to be split.
When considering the range of delivery size of each
commodity, we see that a wider range of delivery sizes
allows for better combinations than more restrictive,
fairly large delivery sizes. Finally, we see interesting
results with increasing sizes of �. For the C-SDVRP
and SDVRP, we see increasing gaps as the vehicle
capacity grows. This is not surprising, as the splitting of
deliveries allows the larger-capacity vehicles to be used
well. It is interesting that this pattern is not maintained
for the VRP. This actually makes sense, as with �= 105,
few vehicles, especially in the probability 1 case, can
make deliveries to two customers since deliveries may
not be split.

Next, Table 5 reveals the percentage difference in the
number of vehicles used relative to the C-VRP. Here
the most interesting result is related to the negative
average gaps of the VRP, meaning that, on average,
the VRP uses a higher number of routes than the
C-VRP in these situations. Note that, by combining
this information with that in Table 4, we can conclude
that the VRP often has routes with fewer customers
than the others, including the C-VRP. Here we see that
the SDVRP yields more substantial savings than the
C-SDVRP in terms of the vehicles.

7.2.3. Results for Midsize Instances. In Tables 6
and 7 we report the results from the midsize instances
in terms of solution cost and number of vehicles,
respectively.

The two tables are organized in the following way.
The first column reports the kind of instance (R101
versus C101 and probability 60% versus probability
100%). The next 12 columns are grouped in three sets
of four columns each, where the first set refers to the
VRP, the second to the C-SDVRP, and the last to the
SDVRP. In all sets, each column refers to a given value
of n. Each cell in the top (bottom) part of the table
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Table 7 Results on Midsize Instances: Number of Routes

VRP C-SDVRP SDVRP

n = 20 n = 40 n = 60 n = 80 n = 20 n = 40 n = 60 n = 80 n = 20 n = 40 n = 60 n = 80

Average % gap with respect to the C-VRP
C101—Probability 60% 7022 3008 4.67 3038 10008 6015 5.85 5.20 12.58 6015 6096 6.20
C101—Probability 100% 7027 −3029 2.37 −0054 11009 4034 6.19 3.65 13.09 3052 6019 3.65
R101—Probability 60% 4072 3008 1.05 2082 10008 6015 3.50 3.69 12.58 6015 6091 3.69
R101—Probability 100% 5064 −2022 0.72 −0048 9045 4046 5.36 2.52 11.45 5046 6013 3.09

Maximum % gap with respect to the C-VRP
C101—Probability 60% 12050 15038 6.67 8000 14029 15038 6.67 8.70 14.29 15038 11011 8.70
C101—Probability 100% 18018 0000 4.17 3023 18018 5088 8.33 6.45 18.18 5088 8033 6.45
R101—Probability 60% 12050 15038 5.26 5000 14029 15038 6.67 8.70 14.29 15038 11011 8.70
R101—Probability 100% 18018 0000 3.85 3023 18018 5088 7.69 6.45 18.18 10000 11054 6.45

reports the average (maximum) gap with respect to the
solution given by the C-VRP.

The results on the solution cost show a fairly similar
behavior among the VRP, C-SDVRP, and SDVRP. What
we are interested in here is how the value of n changes
the results. We can observe across both averages and
maximums that the gaps with respect to the C-VRP
decrease as the dimension increases. Even though all
of the values of n show what appear to be significant
improvements by combining commodities on a vehicle,
it appears particularly important with low values
of n. This makes sense as lower n values yield fewer
good routing combinations without the option of split
deliveries.

In terms of number of vehicles, again the results
for the VRP are different than for the C-SDVRP and
SDVRP. The gaps are lower, and in some cases the VRP
uses a higher number of routes than the C-VRP.

8. Conclusions
In this paper, we studied different strategies of distribut-
ing a set of commodities to a number of customers. In
particular, we examined the impact of using flexible
vehicles, which can transport multiple commodities at
one time, versus vehicles dedicated to a single com-
modity. We also examined the impact of making split
deliveries to customers. We showed that these decisions
can have a big impact in terms of costs and number of
vehicles needed, both from a worst case analysis point
and experimental results from a wide computational
study.

Computationally we saw that:
• In practice, we often get the relative performance

we expect with costs from SDVRP < C-SDVRP < VRP <
C-VRP. This shows the value of combining commodities
on trucks and allowing deliveries to be split.

• It may be slightly more important to combine
commodities when customers are distributed randomly.

• Larger numbers of commodities yield more oppor-
tunities for improvements through combined deliveries.

Thus, we can infer that collaboration may yield more
benefits, as more parties participate in the collaboration.

• If all customers receive all commodities, the VRP
has much less room for improvement relative to the
C-VRP than when customers receive a varied number
of commodities.

• If all customers receive deliveries of each com-
modity of a similar size, it allows for much less room
for improvement relative to the C-VRP than when
the range of delivery size of each commodity is more
varied. This may indicate that flexible vehicles may be
more beneficial with flexible, rather than standardized,
compartments.

• As the vehicle capacity grows, we see increasing
gaps for the C-SDVRP and SDVRP. This is because
splitting deliveries allows the larger-capacity vehicles
to be used well.

• As the vehicle capacity grows, the VRP does not
always yield increasing improvements relative to the
C-VRP. This indicates that vehicle capacity needs to
be carefully considered when evaluating whether to
deliver commodities separately or together.

• The SDVRP yields more substantial savings than
the C-SDVRP in terms of the number of vehicles
required. If vehicles are expensive, as they often are,
this is an important reason to consider splitting the
delivery of individual commodities.

• The cost gaps with respect to the C-VRP decrease
as the number of customers increases. Thus, it may be
more important to consider combined deliveries, col-
laborations, or flexible vehicles with smaller customer
sets than larger ones to create better routes.
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