

10th UK Catalysis Conference, 3rd-5th January 2024

Novel synthesis approaches for CO2 Hydrogenation catalysts using Ionic Liquids

 Marina Maddaloni¹, Ander Centeno-Pedrazo², Simone Avanzi¹, Nayan Jyoti Mazumdar², Haresh Manyar² and Nancy Artioli¹*
 ¹CEEP Laboratory, Department of Civil Engineering, Architecture, Territory, Environment and Mathematics, University of Brescia, via Branze 38, 25123 Brescia, Italy;
 ²School of Chemistry and Chemical Engineering, Queen's University Belfast, David-Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK *nancy.artioli@unibs.it

Introduction

The conversion of carbon dioxide into lower olefins (C2-C4) represents a highly desirable process for establishing a sustainable production pathway¹. These lower olefins, including ethylene, propylene, and butenes, play pivotal roles in the chemical industry and the production of Liquefied Petroleum Gas (LPG). The reaction unfolds through two consecutive primary processes: Reverse Water Gas Shift (RWGS), generating CO, followed by the subsequent transformation of CO into hydrocarbons through the Fischer–Tropsch reaction². Recent research has underscored the cost-effectiveness and satisfactory performance of Febased catalysts in both reaction steps, with an exploration of bimetallic catalysts, particularly combinations of Ru and Fe, aimed at enhancing olefin selectivity³. Precise synthesis of multinanoparticle (MNP) becomes a critical factor for performance control in this context.

The study introduces an innovative approach to synthesize iron-ruthenium bimetallic catalysts, utilizing ionic liquids as solvents⁴. This method ensures the precise and uniform distribution of active metal phases. Advanced characterizations and extensive tests reveal that this technique outperforms traditional colloid-based methods, resulting in superior selectivity for the desired hydrocarbons.

Materials and Methods

In the traditional colloidal synthesis (COL) process³, Ru nanoparticles (Ru-NPs) were generated using a modified Schlenk technique, employing $Ru_3(CO)_{12}$ and oleylamine at 543 K. Likewise, Fe nanoparticles were created through the use of oleylamine and Fe(acac)₃ at 573 K. Bimetallic Ru-Fe nanoparticles were formulated in hexane as a comparative benchmark. In the ionic liquid (IL) method, [BmIm][BF₄] was employed with either Fe(acac)₃ or $Ru_3(CO)_{12}$ at temperatures of 523 K for a duration of 18 hours. Subsequently, nanoparticles were recovered, and for bimetallic Fe-Ru NPs, three distinct molar ratios (1:1, 3:1, and 9:1) were investigated using Fe(acac)₃ and $Ru_3(CO)_{12}$ in [BmIm][PF₆] at 523 K for 18 hours. The nanocatalysts were supported on γ -Al₂O₃ with varying metal loadings (1 or 4 wt.%). Characterization involved XRF, XRD, SEM, and H₂ chemisorption. Kinetic experiments were conducted at 593 K and 6 or 20 bar pressures, adjusting the gas-hourly space velocity (GHSV) to maintain CO₂ conversion below 5%. FT-IR gas analysis was employed to assess yield and selectivity.

Results and Discussion

In **Figure 1**, TPR profiles of catalysts 1wt% Fe-Ru 3:1/Al₂O₃ (COL) and 1 wt% Fe-Ru 3:1/Al₂O₃ (IL) are presented. Both exhibit a low-temperature reduction peak, around 380°C, associated to the reduction of Fe₂O₃ to Fe₃O₄, and an high-temperature peak, starting at 620°C, indicates further reduction to FeO and Fe⁰. The reduction peak for Fe₂O₃ in RuO₂-Fe₂O₃ catalysts shifts to lower temperatures compared to literature values for pure Fe₂O₃⁵, that suggests easier reduction of RuO₂ species, showcasing the acceleration of Fe species reduction and hydrogen spillover from Ru to Fe₂O₃. The cooperative effect between RuO₂ and Fe₂O₃ enhances reduction properties, correlating with improved catalytic performance.

Figure 1. H₂-TPR profiles of catalysts 1 wt% Fe-Ru 3:1/Al₂O₃ (COL and (IL)).

Notably, at low temperatures $(300^{\circ}C < T)$ < 470 °C), the colloidal catalyst shows a pronounced peak for the reduction of Ru⁴⁺ to Ru⁰, while this peak diminishes in the IL catalyst, attributed to a more isolated ruthenium metal phase in the COL catalyst and a closer proximity synergistic effect in the IL catalyst. The reduction at 500 °C, linked to RuO₂ reduction associated with Fe, is more prominent in the ionic liquid catalyst. Figure 2a COL and Figure 2b IL reveal distinct selectivity profiles using catalysts via COL and IL methods. Generally, the COL catalyst exhibits a preference for CO, whereas the IL catalyst

tends to shift towards CH_4 and C2-C5 hydrocarbons, whether considering monometallic or bimetallic catalysts. This selectivity shift intensifies with a higher metal loading (4 wt%).

Figure 2. Hydrocarbon selectivity and CO_2 conversion at 20 bar (3:1 H₂:CO₂, 523 K, 45 mL/min)

Significance

In summary, this research highlights the superior performance of bimetallic Fe-Ru species synthesized via the IL method over conventional colloidal synthesis. This advancement holds promise for sustainable energy solutions, including CO₂ conversion into net-zero e-fuels and its use as a carbon feedstock for renewable resources.

References

1

- IPCC, Global warming of 1.5°C, 2022.
- 2 M. D. Porosoff, B. Yan and J. G. Chen, *Energy Environ. Sci.*, 2016, 9, 62–73.
- 3 A. Aitbekova, E. D. Goodman, L. Wu, A. Boubnov, A. S. Hoffman, A. Genc, H. Cheng, L. Casalena, S. R. Bare and M. Cargnello, *Angew. Chemie - Int. Ed.*, 2019, 58, 17451–17457.
- 4 J. Krämer, E. Redel, R. Thomann and C. Janiak, Organometallics, 2008, 27, 1976–1978.
- 5 Wang, H.M.; Ning, P.; Zhang, Q.L.; Liu, X.; Zhang, T.X.; Hu, J.; Wang, L.Y., Journal of Fuel Chemistry and Technology 2019, 47, 215–223, doi:10.1016/s1872-5813(19)30011-8.

Г

10th UK Catalysis Conference, 3-5 January 2024 Loughborough, UK

Wednesday, 3 rd January			
11:00	Registration desk opens at Burleigh Court Hotel		
12:30	Lunch at Holywell Park		
13.50	Welcome – Conference commence	s at Holywell Park	
		Chair – Prof. Chris Hardacre	
14.00	PI	01 – Prof. Richard Catlow (Turing Lecture T	heatre)
14.45		Coffee	
	Session A	Session B	Session C
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
	CatalysisHub session		
Chair/IT	Beale/Centeno	Kondrat/Mazumdar	Garforth/Inrirai
15.15	K1 (Weller)	O4	O11
15.35		O5	O12
15.55	O1	O6	O13
16.15	O2	07	K2 (Matam)
16.35	O3	O8	
16.55	Coffee		
Chair/IT	Artioli/Maddaloni	Lennon/Wilding	Wang/ Nieva De La Hidalga
17.25	K3 (Fey)	O9	O14
17.45		O10	O15
18.10	Careers Question Time – (Turing Lecture Theatre)		
20.00	Dinner		

Thursday, 4 th January			
	Chair – Prof. Graham Hutchings		
9.00	PI	02 – Prof. Silvia Bordiga (<i>Turing Lecture Th</i>	neatre)
	Session A	Session B	Session C
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
Chair/IT	Mitchell/Olsen	Simons/Asad	Petkov/Collins
	C RSC INTEREST GROUP SESSION		
10.00	K4 (Zhang)	O18	O28
10.20		O19	O29
10.40	O16	O20	O30
11.00		Coffee	
Chair/IT	Paterson/Ross	Matam/Mazumdar	Delarmelina/Maddaloni
11.30	K5 (Gibson)	O21	O31
11.50		O22	O32
12.10	O17	O23	O33
12.30	Lunch		
		Chair – Prof. Richard Catlow	
14.00	PI 03 – RSC Award Lecture – (Turing Lecture Theatre)		
14.45	Coffee		
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
Chair/IT	Mulholland/Centeno	Garforth/Mohammad	Weller/Inrirai
	RSC INTEREST GROUP SURFACE REACTIVITY SESSION & CATALYSIS		
15.15	K6 (Artioli)	O24	O34
15.35		O25	O35
15.55	K7 (Hermans)	O26	O36
16.15		O27	O37
16.35	Coffee		
17.00	Poster session		
to 19.00			
20.00	Conference Dinner		

10th UK Catalysis Conference, 3-5 January 2024 Loughborough, UK

		Friday, 5 th January	
	Session A	Session B (Brunel/Murdoch Lecture Theatre)	Session C (Stephenson Lecture Theatre)
Chair/IT	Freakley/Centeno	Zhang/Mohammad	Lin/Olsen
9.00	K8 (Nastase)	O40	O46
9.20		O41	O47
9.40	O38	O42	O48
10.00	Coffee		
Chair/IT	Dingwall/Ross	Fey/Asad	D'Agostino/Collins
10.30	K9 (Wang)	O43	O49
10.50		O44	O50
11.10	O39	O45	O51
	Chair – Prof. Matthew Davidson		
11.35	PI 04 – Prof. Walter Leitner (Turing Lecture Theatre)		
12.20	Closing remarks		

10th UK Catalysis Conference, 3-5 January 2024 Loughborough, UK

UKCC 2024 Organising Committee

Dr. Haresh Manyar, Queen's University Belfast, UK Dr. Nancy Artioli, Queen's University Belfast, UK Dr. Chunfei Wu, Queen's University Belfast, UK Dr. Simon Kondrat, Loughborough University, UK Prof. Chris Hardacre, University of Manchester, UK Prof. Graham Hutchings, Cardiff University, UK Prof. Richard Catlow, Cardiff University, UK Dr. Josie Goodall, UK Catalysis Hub Dr. James Paterson, BP Dr. Keith Whiston, Invista Dr. Chris Mitchell, Sabic UK Dr. Paul Collier, Johnson Matthey

Plenary and Keynote Speakers

PLENARY AND KEYNOTE SPEAKERS

UKCC 2024 will feature a number of plenary and keynote presentations from leaders across all areas of catalysis.

PLENARY SPEAKERS

Prof. Walter Leitner

Max Planck Institute for Chemical Energy Conversion, Germany

New Carbon Sources for the Energetic and Chemical Value Chain: Challenges and Opportunities for Catalysis - TEN YEARS AFTER!

Prof. Sir Richard Catlow

Cardiff Catalysis Institute, UK

Modelling of Catalytic Structures and Mechanisms: Achievements and Challenges

Prof. Silvia Bordiga

University of Turin, Italy MOFs and MOFs derivatives used as catalysts

KEYNOTE SPEAKERS

Dr. Nancy Artioli, University of Brescia, Italy and Queen's **University Belfast, UK** Dr. Natalie Fey, University of Bristol, UK Dr. Emma Gibson, University of Glasgow, UK **Prof.** Ive Hermans, University of Wisconsin-Madison, USA Dr. Santhosh Matam, Cardiff University, UK Dr. Stefan Nastase, King Abdullah University of Science and Technology, Saudi Arabia **Dr. James Paterson, BP, UK** Dr. Xiaodong Wang, Lancaster University, UK **Prof. Andrew Weller, University of York, UK** Dr. Xiaolei Zhang, University of Strathclyde, UK

ORGANISED BY:

List of Talks UKCC 2024

#	Title	Authors
PI 01	Modelling of Catalytic Structures and	Richard Catlow
	Mechanisms: Achievements and	
	Challenges	
PI 02	MOFs and MOFs derivatives used as	Silvia Bordiga
	Catalysts	Jamos Patorson
FIUS	an Applied Process	James Faterson
PI 04	New Carbon Sources for the Energetic and	Walter Leitner
	Chemical Value Chain: Challenges and	
	Opportunities for Catalysis - TEN YEARS	
	AFTER!	
K 01	"Solid-State Molecular OrganoMetallic Catalysis: Crystalline Molecular Factories"	Andrew Weller
K 02	Electrochemical CO ₂ reduction over Cu-	Santhosh Matam
	based gas diffusing electrodes: a study by	
	complementary spectroscopic techniques	
K 03	Towards Data-Led Prediction in	Natalie Fey
K OA	Mochanistic insights into the role of hi	Viaoloj Zhang
K 04	functional and hi-metallic catalysts during	
	hydrodeoxygenation of converting wastes	
	into fuels	
K 05	The Impact of Aging on the Structure-	Emma Gibson
	Activity Relationships of TWC Catalysts	
K 06	Novel synthesis approaches for CO ₂	Nancy Artioli
K 07	Hydrogenation catalysts using Ionic Liquids	
K U 7	Modulation Excitation Spectroscopy	Ive Hermans
K 08	Methanol activation on Brønsted acid and	Stefan Nastase
N OO	defect sites in zeolites	
K 09	Heterogeneous catalysis mediated	Xiaodong Wang
	cofactor regeneration for biosynthesis	
	1	
0 01	Operando X-ray photoelectron	Charalampos Drivas, Elizabeth Jones,
	spectroscopy at the solid-liquid interface	Robert Weatherup, Mark Isaacs and
0.02	A Disectalutia Angeresch Towards Alashal	Christopher Parlett
0.02	A BIOCATAIVLIC APPROACH TOWARDS AICONOL	Simon D. Anderson, Gavin J. Willer,
0.03	Influence of Sulfation on Activity & Stability	Ander Centeno Gunian Dechmukh
	of Metal oxide Catalysts for Vapor-phase	Maicon Delarmelina. Helen Dalv
	Ketonisation of Volatile Fatty Acids	

		Alexandre Goguet, Chris Hardacre, Richard Catlow, Haresh Manyar
0 04	Glucose isomerisation in zeolite Y: Adsorption effects on catalytic performances studied by NMR relaxation and in-situ DRIFTS	Carmine D'Agostino, Luke Forster, Mohamed M.M. Kashbor, James Railton, Sarayute Chansai, Christopher Hardacre and Marco Conte
0.05	Synthesis Catalysis with Pd/Al2O3: An In Situ Infrared Spectroscopic Study	and David Lennon
O 06	Laser Induced Temperature-Jump Time- Resolved IR Spectroscopy of Zeolites from Nanoseconds to Seconds	Alexander P. Hawkins, Amy E. Edmeades, Christopher D.M. Hutchison, Michael Towrie, Russell F. Howe, Gregory M. Greetham and Paul M. Donaldson
0 07	2D-IR spectroscopy. Developing an ultra- fast IR laser technique as a tool for studying heterogeneous catalysts	Paul Donaldson, Alex Hawkins, Russell Howe and Greg Greetham
O 08	Operando characterisation of the products of Fischer-Tropsch synthesis within catalyst pellets using magnetic resonance	Qingyuan Zheng, Jack Williams, Mick Mantle, Andrew Sederman, G. Bezemer, Constant Guédon and Lynn Gladden
O 09	Photocatalytic ZnO Molecular Foams for the degradation of micropollutants	Zachary Warren, Thais Guaraldo, Jannis Wenk and Davide Mattia
O 10	Plastic microfibers upcycling to carbon nanomaterials to prevent water pollution from laundering.	Silvia Parrilla-Lahoz, Marielis C. Zambrano, Joel J. Pawlakb, Richard A. Venditti, Tomas Ramirez Reina and Melis Duyar
0 11	Operando DRIFTS-MS studies of switchable dual function materials for integrated CO ₂ capture and conversion	Loukia-Pantzechroula Merkouri, Juan Luis Martín Espejo, Luis F. Bobadilla, Jose Antonio Odriozola, Anna Penkova, Tomas R. Reina and Melis Duyar
0 12	Light-induced CO ₂ hydrogenation over Au/g-C ₃ N ₄ photocatalysts	Auttaphon Chachvalvutikul, Mbongiseni Dlamini, James Carter, James Hayward, Philip Davies, Stuart Taylor and Graham Hutchings
0 13	Structure-activity relationships in Ni/CeO ₂ for CO_2 methanation	Sining Chen and Andrew Beale
0 14	Oxidation of Carbon Monoxide Over Ceria Supported Copper Catalyst	Oday Hakami, Abdullah Alhelali, Sarayute Chansai, Christopher Hardacre, Amanda Lea-Langton and Arthur Garforth
0 15	EthaneDehydrogenationProcessPerformanceEvaluationOf Fe, Cr And MoCatalystsSupportedOverZSM-5	Mujtba Alnasser, Vincenzo Spallina, Arthur Garforth
O 16	Enhanced Production and Control of Liquid Alkanes in the Hydrogenolysis of Polypropylene over Shaped Ru/CeO ₂ Catalysts	Donald Inns, Ajay Tomer, Mazharul Islam, Mounib Bahri, Troy Manning, John Claridge, Nigel Browning, Richard

Katsoulidis and Matthew Rosseinsky 0 17 A Fundamental Approach to Deconvoluting TWC Deactivation Saloni Pun, Maria Vlachou and Amy Kolpin 0 18 Isomerisation and direct amination of isohexides over Ru/C Hang Hu, Raphael Wischert, François Jerôme, Carine Michel, Karine de Oliveira Vigier and Marc Pera-Titus 0 19 The Effect of Iron-Doping of ZSM-5 in a Xylene Isomerisation Reaction Christos E. Ballas, Stewart F. Parker, Charles Kanyi, Paul Collier, Timothy Hyde, Andrew York and David Lennon 0 20 Mechanism of Ammonia Synthesis on FeaMosN(111) Michael Higham, Richard Catlow, Justin Hargreaves and Constantinos Zeinalipour-Yazdi 0 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added Chemicals Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal 0 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZNO/CN catalyst Arzoo Chauhan and Rajendra Srivastava daviget burget burget burget burget burget game burget burget burget burget Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer jorgene in flow 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to progene with Row Stalion of Aromatic Alcohols in Pickering Foam Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 245 The influence of preparation method on r			Catlow, Alberto Roldan, Alexandros
0 17 A Fundamental Approach to Deconvoluting TWC Deactivation Saloni Pun, Maria Vlachou and Amy Kolpin 0 18 Isomerisation and direct amination of isohexides over Ru/C Hang Hu, Raphael Wischert, François Jerôme, Carine Michel, Karine de Oliveira Vigier and Marc Pera-Titus 0 19 The Effect of Iron-Doping of ZSM-5 in a Xylene Isomerisation Reaction Christos E. Ballas, Stewart F. Parker, Charles Kanyi, Paul Collier, Timothy Hyde, Andrew York and David Lennon 0 20 Mechanism of Ammonia Synthesis on Fe3Mo ₃ N(111) Michael Higham, Richard Catlow, Justin Hargreaves and Constantinos Zeinalipour-Yazdi 0 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value added Chemicals Anurag Jaswal, Piyush Pratap Singh and Z-methylfuran, a 2nd generation biofuel, from biomass-derived furfural 0 23 Chemoselective reduction of cinnamaldehyde to cinnamy lachol and hydrocinnamaldehyde over Ru@2nO/CN catalyst Arzoo Chauhan and Rajendra Srivastava diraker and Philip Dyer 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0 26 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 26 Dhe influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. </td <td></td> <td></td> <td>Katsoulidis and Matthew Rosseinsky</td>			Katsoulidis and Matthew Rosseinsky
TWC Deactivation Kolpin 0 18 Isomerisation and direct amination of isohexides over Ru/C Hang Hu, Raphael Wischert, François Jerôme, Carine Michel, Karine de Oliveira Vigier and Marc Pera-Titus 0 19 The Effect of Iron-Doping of ZSM-5 in a Xylene Isomerisation Reaction Christos E. Ballas, Stewart F. Parker, Charles Kanyi, Paul Collier, Timothy Hyde, Andrew York and David Lennon 0 20 Mechanism of Ammonia Synthesis on Fe3Mo ₃ N(111) Michael Higham, Richard Catlow, Justin Hargreaves and Constantinos Zeinalipour-Yazdi 0 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added Chemicals Ganesh More and Rajendra Srivastava derived Furfural and Vanillin into Value- added Chemicals 0 22 A vapor phase route for the production of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Arzoo Chauhan and Rajendra Srivastava 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Oliver Wright, Ouardia Adkim, Mark D Duthwaite, Samuel Pattisson and Graham H Hutchings 0 27 On-purpose Renewable LPG production: Scaling up Project KatJa! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum	0 17	A Fundamental Approach to Deconvoluting	Saloni Pun, Maria Vlachou and Amy
0.18 Isomerisation and direct amination of Hang Hu, Raphael Wischer, François isohexides over Ru/C 0.19 The Effect of Iron-Doping of ZSM-5 in a Xylene Isomerisation Reaction Arristos E. Ballas, Stewart F. Parker, Charles Kanyi, Paul Collier, Timothy Hyde, Andrew York and David Lennon 0.20 Mechanism of Ammonia Synthesis on Fe3MosN(111) Michael Higham, Richard Catlow, Justin Hargreaves and Constantinos Zeinalipour-Yazdi 0.21 Catalytic Hydrogenation of Biomass-derived Furfural and Vanillin into Value-added Chemicals Ganesh More and Rajendra Srivastava 0.22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal 0.23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Arzoo Chauhan and Rajendra Srivastava Caravetta and Marc Pera-Titus 0.24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0.25 Bottom-up Synthesis of Surface-active foam Caravetta and Marc Pera-Titus 0.26 The influence of preparation method on rate enhancements exhibited in bimetallic Dividbation. Oliver Wright, Ouardia Adkim, Mark D 0.27 On-purpose Renewable LPG production. Scaling up Project KatJa! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Haf		TWC Deactivation	Kolpin
isohexides over Ru/C Jerôme, Carine Michel, Karine de Oliveira Vigier and Marc Pera-Titus 0 19 The Effect of Iron-Doping of ZSM-5 in a Xylene Isomerisation Reaction Christos E. Ballas, Stewart F. Parker, Charles Kanyi, Paul Collier, Timothy Hyde, Andrew York and David Lennon 0 20 Mechanism of Ammonia Synthesis on Fe ₃ Mo ₃ N(111) Michael Higham, Richard Catlow, Justin Hargreaves and Constantinos Zeinalipour-Yazdi 0 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added Chemicals Ganesh More and Rajendra Srivastava derived Furfural 0 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal 0 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Yiping Shi, Andrew Weller, A. John metathesis cascade to convert butanol to propene in flow 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 27 On-purpose Renewable LPG production: Scaling up Project KatJa! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum 0 28 Exploring the Relationship Between Heterogeneous Reacti	0 18	Isomerisation and direct amination of	Hang Hu, Raphael Wischert, François
Oliveira Vigier and Marc Pera-Titus 0 19 The Effect of Iron-Doping of ZSM-5 in a Xylene Isomerisation Reaction Christos E. Ballas, Stewart F. Parker, Charles Kanyi, Paul Collier, Timothy Hyde, Andrew York and David Lennon 0 20 Mechanism of Ammonia Synthesis on Fe3Mo3N(111) Michael Higham, Richard Catlow, Justin Hargreaves and Constantinos Zeinallpour-Yazdi 0 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value added Chemicals Ganesh More and Rajendra Srivastava derived Furfural and Vanillin into Value added Chemicals 0 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal 0 23 Chemoselective reduction of Arzoo Chauhan and Rajendra Srivastava cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Arzoo Chauhan and Rajendra Srivastava cinnamaldehyde over Ru@ZnO/CN catalyst 0 24 A triple dehydration, isomerisation and must Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0 24 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 27 On-purpose Renewable LPG production: Scaling up Project KatJa! Serinad Marc Pera-Titus David Brown, Os		isohexides over Ru/C	Jerôme, Carine Michel, Karine de
 O 19 The Effect of Iron-Doping of ZSM-5 in a Xylene Isomerisation Reaction O 20 Mechanism of Ammonia Synthesis on Fe₃Mo₃N(111) O 21 Catalytic Hydrogenation of Biomass derived Furfural and Vanillin into Value added Chemicals O 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural O 23 Chemoselective reduction of hiomass-derived furfurant a 2nd generation biofuel, from biomass-derived furfural O 24 A triple dehydration, isomerisation and hydrocinnamaldehyde over Ru@ZnO/CN catalyst O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam O 26 The influence of preparation method on rate enhancements exhibited in bimetalic Douthwaite, Samuel Pattisson and thermocatalytic alcohol oxidation. O 27 On-purpose Renewable LPG production: Scaling up Project Katal O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Fahling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for 			Oliveira Vigier and Marc Pera-Titus
Xylene Isomerisation ReactionCharles Kanyi, Paul Collier, Timothy Hyde, Andrew York and David Lennon0 20Mechanism of Ammonia Synthesis on Fe ₃ Mo ₃ N(111)Michael Higham, Richard Catlow, Justin Hargreaves and Constantinos Zeinalipour-Yazdi0 21Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added ChemicalsGanesh More and Rajendra Srivastava0 22A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfuralAnurag Jaswal, Piyush Pratap Singh and Tarak Mondal0 23Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@2DO/CN catalystArzoo Chauhan and Rajendra Srivastava0 24A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flowYiping Shi, Andrew Weller, A. John Blacker and Philip Dyer0 25Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobio Oxidation of Aromatic Alcohols in Pickering FoamOliver Wright, Quardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersGavin Lennon and Paul Dingwall0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 29Multiscale investigation of the mechanism and selectivity of C02 h	0 19	The Effect of Iron-Doping of ZSM-5 in a	Christos E. Ballas, Stewart F. Parker,
Hyde, Andrew York and David Lennon0 20Mechanism of Ammonia Synthesis on Fe3M03N(111)Michael Higham, Richard Catlow, Justin Hargreaves a and Constantinos Zeinalipour-Yazdi0 21Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added ChemicalsGanesh More and Rajendra Srivastava0 22A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfuralAnurag Jaswal, Piyush Pratap Singh and Tarak Mondal0 23Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalystArzoo Chauhan and Rajendra Srivastava0 24A triple dehydration, isomerisation and metathesis cascade to convert butanol to Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering FoamYiping Shi, Andrew Weller, A. John Blacker and Philip Dyer Deren-Titus0 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatalKeite E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersGain Lennon and Paul Dingwall0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueShijia Sun, Michael Higham and Richard Catlow0 30Multiscale investigation of the mechanism and se		Xylene Isomerisation Reaction	Charles Kanyi, Paul Collier, Timothy
 O 20 Mechanism of Ammonia Synthesis on Fe₃Mo₃N(111) O 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added Chemicals O 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural O 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst O 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam O 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. O 27 On-purpose Renewable LPG production: Scaling up Project Katal O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Cechnigue O 20 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation orer O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation orer O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Sunthesis of Esters 			Hyde, Andrew York and David Lennon
Fe3M03N(111) Hargreaves and Constantinos Zeinalipour-Yazdi 0 21 Catalytic Hydrogenation of Biomass-derived Furfural and Vanillin into Value-added Chemicals Ganesh More and Rajendra Srivastava 0 22 A vapor phase route for the production of Irom biomass-derived furfural Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal 0 23 Chemoselective reduction of cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Arzoo Chauhan and Rajendra Srivastava 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Oliver Wright, Quardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 27 On-purpose Renewable LPG production: Scaling up Project Katla! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum 0 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique Gavin Lennon and Paul Dingwall 0 30 Multiscale investigation of the mechanism and selectivity of CO ₂ hydrogenation orer Rh(111) Sin Zhang, Mark Douthwaite, Huizhen Lin and Graham Hutchings	0 20	Mechanism of Ammonia Synthesis on	Michael Higham, Richard Catlow, Justin
O 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added Chemicals Ganesh More and Rajendra Srivastava O 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal O 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Arzoo Chauhan and Rajendra Srivastava O 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Patisson and Graham H Hutchings O 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Patisson and Graham H Hutchings O 27 On-purpose Renewable LPG production: Scaling up Project KatJa! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters Fernando Vega-Ramon, Christopher Hardacre and Dongda Zhang Apparent Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO ₂ hyd		Fe ₃ Mo ₃ N(111)	Hargreaves and Constantinos
 O 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added Chemicals O 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural O 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN O 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam O 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. O 27 On-purpose Renewable LPG production: Scaling up Project KatJa! O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for D atima function and selectivity of CO₂ hydrogenation over Rh(111) O 21 Ambient-pressure Alkoxycarbonylation for D Bin Zhang, Mark Douthwaite, Huizhen Liu and Graham Hutchings 			Zeinalipour-Yazdi
derived Furfural and Vanillin into Value- added Chemicals 0 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal 0 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Arzoo Chauhan and Rajendra Srivastava 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Kang Wang, Shi Zhang, Marina Carravetta and Marc Pera-Titus 0 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 27 On-purpose Renewable LPG production: Scaling up Project KatJa! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum 0 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters Gavin Lennon and Paul Dingwall 0 30 Multiscale investigation of the mechanism and selectivity of CO ₂ hydrogenation over Rh(111) Shijia Sun, Michael Higham and Richard Catlow Bin Zhang, Mark Douthwaite, Huizhen Liu and Grabam Hutchinge	0 21	Catalytic Hydrogenation of Biomass-	Ganesh More and Rajendra Srivastava
added Chemicals A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural Anurag Jaswal, Piyush Pratap Singh and Tarak Mondal 0 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst Arzoo Chauhan and Rajendra Srivastava 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer propene in flow 0 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Kang Wang, Shi Zhang, Marina Carravetta and Marc Pera-Titus 0 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 27 On-purpose Renewable LPG production: Scaling up Project KatJa! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum 0 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters Gavin Lennon and Paul Dingwall 0 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique Shijia Sun, Michael Higham and Richard Catlow 0 30 Multiscale investigation of the mechanism and selectivity of CO ₂ hydrogenation over Rh(111) Bin Zhang, Mark		derived Furfural and Vanillin into Value-	
 O 22 A Vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural O 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst O 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam O 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. O 27 On-purpose Renewable LPG production: Scaling up Project KatJa! O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Technique O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for Ilivear Subtom-up Synthesis of Feters 		added Chemicals	
 2-methylfurah, a 2hd generation blofuel, from biomass-derived furfural 0 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow 0 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam 0 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. 0 27 On-purpose Renewable LPG production: Scaling up Project KatJa! 0 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters 0 29 Exploring the Relationship Between Heterogeneous Reaction My Using Flow as a Differential Kinetic Technique 0 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) 0 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Suffered 	0 22	A vapor phase route for the production of	Anurag Jaswal, Piyush Pratap Singh and
 O 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst O 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam O 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. O 27 On-purpose Renewable LPG production: Scaling up Project KatJa! O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(11) O 31 Ambient-pressure Alkoxycarbonylation for Il inpar-selective Switchesi and Apparent Kinetic Parameters 		2-methylturah, a 2nd generation biotuel,	Tarak Mondal
0 23 Chemoselective reduction of Arzoo Chaunan and Rajendra Srivastava 0 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow Yiping Shi, Andrew Weller, A. John Blacker and Philip Dyer 0 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Kang Wang, Shi Zhang, Marina 0 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings 0 27 On-purpose Renewable LPG production: Scaling up Project KatJa! Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum 0 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters Gavin Lennon and Paul Dingwall 0 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique Gavin Lennon and Paul Dingwall 0 30 Multiscale investigation of the mechanism and selectivity of CO ₂ hydrogenation over Rh(111) Shijia Sun, Michael Higham and Richard Catlow	0.22	from biomass-derived furfural	Auron Chauban and Daian dua Cuivantava
Christmanatelenyue to christmyr alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst0 24A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flowYiping Shi, Andrew Weller, A. John Blacker and Philip Dyer0 25Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering FoamKang Wang, Shi Zhang, Marina Carravetta and Marc Pera-Titus0 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang Apparent Kinetic Technique0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Linear-selective Swnthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Linear-selective Swnthesis of Esters	0.23	chemoselective reduction of	Arzoo Chaunan and Rajendra Srivastava
InvalidationInvestigation0 24A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flowYiping Shi, Andrew Weller, A. John Blacker and Philip Dyer0 25Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering FoamKang Wang, Shi Zhang, Marina Carravetta and Marc Pera-Titus0 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Bin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen		budracingamaldabuda aver Bu@7gO/CN	
Catalyst0 24A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flowYiping Shi, Andrew Weller, A. John Blacker and Philip Dyer0 25Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering FoamKang Wang, Shi Zhang, Marina Carravetta and Marc Pera-Titus0 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang Apparent Kinetic Technique0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Bin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of Esters		catalyst	
 A triple deliveration, isomensation and metathesis cascade to convert butanol to propene in flow Backer and Philip Dyer Blacker and Philip Dyer Carravetta and Marc Pera-Titus Carravetta and Marc Pera-Titus	0.24	A triple dehydration isomerisation and	Vining Shi Andrew Weller A John
 O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam O 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. O 27 On-purpose Renewable LPG production: Scaling up Project KatJa! O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Exters 	0 24	metathesis cascade to convert hutanol to	Blacker and Philin Dver
O 25Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering FoamKang Wang, Shi Zhang, Marina Carravetta and Marc Pera-TitusO 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H HutchingsO 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa KarroumO 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda ZhangO 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul DingwallO 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard CatlowO 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of ExtersBin Zhang, Mark Douthwaite, Huizhen Linu and Graham Hutchings		propene in flow	blacker and r milp byer
Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering FoamCarravetta and Marc Pera-Titus0 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of ExtersBin Zhang, Mark Douthwaite, Huizhen Lin and Graham Hutchings	0 25	Bottom-up Synthesis of Surface-active	Kang Wang, Shi Zhang, Marina
Oxidation of Aromatic Alcohols in Pickering FoamOxidation of Aromatic Alcohols in Pickering Foam0 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Lin and Graham Hutchings		Janus Catalyst: Application to the Aerobic	Carravetta and Marc Pera-Titus
Foam0.26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H Hutchings0.27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0.28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0.29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0.30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0.31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Lin and Grabam Hutchings		Oxidation of Aromatic Alcohols in Pickering	
O 26The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Oliver Wright, Ouardia Adkim, Mark D Douthwaite, Samuel Pattisson and Graham H HutchingsO 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa KarroumO 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda ZhangO 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul DingwallO 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard CatlowO 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Lin and Graham Hutchings		Foam	
rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation.Douthwaite, Samuel Pattisson and Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of Esters	O 26	The influence of preparation method on	Oliver Wright, Ouardia Adkim, Mark D
thermocatalytic alcohol oxidation.Graham H Hutchings0 27On-purpose Renewable LPG production: Scaling up Project KatJa!Keith E Simons, Hendrik van Rensberg, David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Lin and Graham Hutchings		rate enhancements exhibited in bimetallic	Douthwaite, Samuel Pattisson and
 O 27 On-purpose Renewable LPG production: Scaling up Project KatJa! O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters 		thermocatalytic alcohol oxidation.	Graham H Hutchings
Scaling up Project KatJa!David Brown, Osman Akpolat and Hafsa Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of Esters	O 27	On-purpose Renewable LPG production:	Keith E Simons, Hendrik van Rensberg,
Karroum0 28Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic ParametersFernando Vega-Ramon, Christopher Hardacre and Dongda Zhang0 29Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic TechniqueGavin Lennon and Paul Dingwall0 30Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111)Shijia Sun, Michael Higham and Richard Catlow0 31Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of EstersBin Zhang, Mark Douthwaite, Huizhen Liu and Graham Hutchings		Scaling up Project KatJa!	David Brown, Osman Akpolat and Hafsa
 O 28 Exploring the Relationship Between Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters 			Karroum
 Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters Hardacre and Dongda Zhang Hardacre and Dongda Zhang Hardacre and Dongda Zhang Hardacre and Dongda Zhang Gavin Lennon and Paul Dingwall Gavin Lennon and Paul Dingwall Calow 	O 28	Exploring the Relationship Between	Fernando Vega-Ramon, Christopher
Apparent Kinetic Parameters O 29 Enabling High Throughput Kinetic Gavin Lennon and Paul Dingwall Experimentation by Using Flow as a Differential Kinetic Technique Gavin Lennon and Paul Dingwall O 30 Multiscale investigation of the mechanism and selectivity of CO ₂ hydrogenation over Rh(111) Shijia Sun, Michael Higham and Richard Catlow O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters Bin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of Esters		Heterogeneous Reaction Microkinetics and	Hardacre and Dongda Zhang
 O 29 Enabling High Throughput Kinetic Gavin Lennon and Paul Dingwall Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO₂ hydrogenation over Rh(111) O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters 		Apparent Kinetic Parameters	
Experimentation by Using Flow as a Differential Kinetic Technique O 30 Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111) Shijia Sun, Michael Higham and Richard Catlow O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters Bin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of Esters	0 29	Enabling High Throughput Kinetic	Gavin Lennon and Paul Dingwall
O 30 Multiscale investigation of the mechanism and selectivity of CO2 hydrogenation over Rh(111) Shijia Sun, Michael Higham and Richard Catlow O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters Bin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of Esters		Experimentation by Using Flow as a	
0.30 Wulliscale investigation of the mechanism and Sinjia Sun, Wichael Higham and Richard and selectivity of CO ₂ hydrogenation over Rh(111) Sinjia Sun, Wichael Higham and Richard Catlow 0.31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters Bin Zhang, Mark Douthwaite, Huizhen Linear-selective Synthesis of Esters	0.20	Differential Kinetic Leconique	Chille Sup Michael Highers and Distant
O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters Bin Zhang, Mark Douthwaite, Huizhen	0.30	and solocitivity of CO, budrogonation over	Shijia Sun, wichael Higham and Kichard
O 31 Ambient-pressure Alkoxycarbonylation for Bin Zhang, Mark Douthwaite, Huizhen		Rh(111)	
Linear-selective Synthesis of Esters	0.31	Ambient-pressure Alkovycarbopylation for	Bin Zhang Mark Douthwaite Huizben
		Linear-selective Synthesis of Esters	Liu and Graham Hutchings

0 32	Towards improvement of the atom economy in phosgene synthesis catalysis	Rory Hughes and David Lennon
0 33	A new mesoporous carbon carrier for fixed bed applications	M. M. Schubert, M.K. Lynch, M. Baraldi
O 34	Selective Synthesis Catalysts comprising Metal Nanoparticles Encapsulated within Silicalite-1 Cavities	Zixuan Han and Simon Beaumont
O 35	Intensification of C5 and C6 Sugars Dehydration in an Agitated Cell Reactor	Abdullahi Adamu, Kamelia Boodhoo and Fernando Russo Abegao
O 36	Structure Sensitive Catalysis: Efficacy of Cu on Manganese Oxide Catalysts in Levulinic Acid Hydrogenation	Nayan Jyoti Mazumdar, Praveen Kumar, Miryam Arredondo-Arechavala, Nancy Artioli and Haresh Manyar
0 37	Chemical recycling of commercial-grade polyolefins over titania-supported ruthenium nanoparticles via hydrogenolysis	Shibashish D. Jaydev, Antonio J. Martín, Marc-Eduard Usteri, Katia Chikri, Henrik Eliasson, Rolf Erni, Javier Pérez Ramírez
O 38	Selective Conversion of Lignocellulosic Xylose into Xylitol using Hexagonal Mesoporous Silica supported Ni/Alumina	Sneha Shetty and Ganapati Yadav
O 39	Hetero-Bio Catalytic Systems for Redox Reactions	T. Sudmeier, K. A. Vincent, S. J. Freakley
O 40	Photooxidative Activity of Au/TiO ₂ Systems and Charge Separation Mechanism in Chloride-Containing Solutions	Maicon Delarmelina, Fozia Iram and Richard Catlow
0 41	Photocatalytic Reforming of Polyols: H ₂ Production/Energy Recovery from Waste Streams	Luke Roebuck, Helen Daly and Chris Hardacre
O 42	Publishing reproducible results supported by FAIR data	Abraham Nieva de La Hidalga, Leandro Liborio, Patrick Austin and Alejandra Gonzalez Beltran
0 43	Mechanistic Insights into the Pathways for Methanol Synthesis over Cu-ZnO and Cu- ZrO ₂	George Fulham, Xianyue Wu, Wen Liu and Ewa Marek
O 44	Theoretical studies investigating the mechanism of methanol formation over Cu/ZnO based catalysts	David Jurado, Michael Higham, Richard Catlow and Ingo Krossing
O 45	Significance of the formate intermediate in CO ₂ hydrogenation on Pd-based alloy catalysts – an ab initio study	Igor Kowalec, Lara Kabalan, Zhongwei Lu, Naomi Lawes, Richard Catlow and Andrew Logsdail
O 46	Advanced Electrochemical System based on Pickering Emulsions for Sustainable Energy Storage and Chemistry	Yucheng Wang, Kang Wang and Marc Pear-Titus
O 47	Room-temperature electro-hydrogenation reduction of acetylene via palladium membrane reactor	Yining Ma and Feng Ryan Wang

O 48	Pd/C hydrogenation from mechanisms,	Nikolay Cherkasov, William P. Hems,
	autonomous catalyst development to	Samarth P. Singh, Jonty A. M. Thornton,
	intensified process scale-up	Shusaku Asano
O 49	The Effect of Metal Ratio and Precipitation	Liam Bailey, Parag Shah, David Morgan
	Agent on Highly Active Iron-Manganese	and Stuart Taylor
	Mixed-Metal Oxide Catalysts for Propane	
	Total Oxidation	
O 50	Recoverable Highly-dispersed Ni	Zhaoyue Weng, Nikolay Kosinov and
	Supported on LaTiO ₃ perovskite for Dry	Beale Andrew
	Reforming of Methane	
0 51	Synthesis and Optimisation of Single Atom	Andrea De Zanet, Simon Kondrat,
	doped Molybdenum Carbide Catalysts for	Jamieson Christie and Jonathan Wagner
	Sustainable Hydrogen Technologies	

List of Posters UKCC 2024

#	Title	Authors
P01	Chemical CO ₂ recycling via RWGS using nickel phosphide catalysts: Fine-tunning the Ni/P ratio for an optimal performance	Ali Goksu, Gul Hameed, Loukia Pantzechroula Merkouri, Tomas Ramirez Reina, Sergio Carrasco Ruiz and Melis Seher Duyar
P02	Date seed oil for biodiesel production using green solid catalyst derived from calcined waste fish bones	Raiedhah Alsaiari
P03	Bioethanol Upgrading Catalysed by Multifunctional Zeolites	Jessica Bedward and Russell Taylor
P04	Fischer-Tropsch Synthesis Rediscovered for Sustainable Fuel and Valuable Oxygenates	Habib Suleymanov, Alma B Santibanez Mendieta and James McGregor
P05	An investigation into the adsorption mechanism of n-butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach	Samuel Wallbridge, Stuart Archer, Jonathan Wagner, Jamieson Christie and Sandra Dann
P06	Designing Catalytic Pyrolysis of Biomass for Green Hydrogen Production	Sara Golenarges, Khalid Aziz, Johan Jacquemin, Christopher Hardacre and Marta Falkowska
P07	Hierarchically grown CeO ₂ /GO on nylon filter with enhanced hydrophilicity and permeation flux for oil-water separation	Naseer Ahmad, Dr. Dilshad Hussain and Muhammad Ikram Nabeel
P08	Catalytic fast pyrolysis of levoglucosan, furfural and furan over HZSM-5: An experimental and theoretical investigation	Amin Osatiashtiani, Jiajun Zhang, Stylianos Stefanidis, Anthony Bridgwater and Xiaolei Zhang
P09	The Continuous Flow Synthesis of Jasminaldehyde	Ander Centeno-Pedrazo, Harry Patterson, Meabh McAtamney, Nayan Mazumdar, Dipti Wagh, Nancy Artioli, Haresh Manyar
P10	Insights into Mechanochemical Synthesis of Copper on Manganese Oxide Catalysts for Levulinic acid Hydrogenation	Nayan Jyoti Mazumdar, Praveen Kumar, Miryam Arredondo-Arechavala, Nancy Artioli, Haresh Manyar
P11	Direct Capture and Conversion of CO ₂ to Glycerol Carbonate using CaO-CeO ₂ Dual Function Materials in Continuous Flow	Patcharaporn Inrirai, Dipti Wagh, Gunjan Deshmukh, Nancy Artioli, Haresh Manyar
P12	"Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation	Marina Maddaloni, Matteo Marchionni, Alessandro Abbá, Michele Mascia, Vittorio Tola, Maria Paola Carpanese, Giorgio Bertanza and Nancy Artioli
P13	The application of molecular spectroscopy and neutron scattering to investigate biocatalytic transamination intermediates	Ramandeep Singh Dosanjh, David Lennon and Stewart Parker

P14	Towards Avoidance of a Hydrogenolysis	Asma Nadia, Colin Brennan and David
	Sten in the Liquid Phase Heterogeneously	Lennon
	Catalysed Hydrogenation of Benzaldebyde	
D15	Catalysed Hydrogenation of Delizaidenyde	Edidiona Acuquo Nassor Algobtani
P15	Delvethylone (LDDE) using Nickel	Llasson Albassouri Manyi Zhang
	Polyetnylene (LDPE) using Nickel	Hassan Alnassawi, wenxi Zheng,
	l'ungstated Zirconia Catalyst	Hubertus Warsanartana, Dave Scapens,
		Christopher Parlett and Arthur Garforth
P16	Tuning Zeolite Catalysts using Organic	Matt Robinson and Andrew Logsdail
	Additives	
P17	Evaluation of the catalytic effect of metal	Elizabeth Ashton, Simon Kondrat,
	additives on hydrogen generation from	Jonathan Wilson, Matthew Brenton,
	lead-acid batteries, when operated as a	John Barton and Dani Strickland
	combined battery and electrolyser.	
P18	Surface modification of TiO ₂ with gold and	Juan Medina, Agileo Hernandez-
	copper nanoparticles for enhancing the	Gordillo, Sandra Rodil and Jennifer
	photocatalytic H ₂ production	Edwards
P19	N-Alkylation of Aliphatic Alcohols with	Zhuoli Wu and Marc Pera-Titus
	Amines over Hydrous Zirconia	
P20	Influence of Stabilizers on Catalytic	Bushra Mughal, Graham J. Hutching,
	Performance of Au/TiO ₂ for CO Oxidation	Mark Dowthwaite and Samuel Pattisson
P21	Selective and solvent-free oxidation of	Bahhaj Alshammari and Marco Conte
	ethylbenzene to acetophenone	-
P22	Continuous flow enzymatic processes –	Nikolay Cherkasov, Daniel Lambden,
	controlling mass transfer with the external	Samuel Adams
	agitation	
P23	Using Accelerated Deactivation to Bridge	Graham Lightfoot, Monica Garcia-
	the Time Gap Between Lab Testing and	Dieguez and Michael Nicholson
	Long-Term Industrial Operation: A Case	
	Study in Methanol Synthesis	
P24	Effect of synthesis temperature on	Jiaye Shao
	photocatalytic degradation of Congo red	
	dye by graphitic nitrogen carbide	
P25	High throughput experiment on silver:	Yifan Tang and King Kuok Hii
	Structure-Activity Relationship catalysis.	
P26	Mechanism of CO ₂ Reduction to Methanol	Chengxu Zhu, Carmine D'Agostino, Sam
_	with H ₂ on an Iron(II)- scorpionate Catalyst	P. de Visser
P27	On the Order of (Mo2/3Sc1/3)2C i-MXene	Xiangchao Meng. Ryan Wang
/	Monolaver: An Ab Initio Study	
P28	Understanding molecular behaviour in	Alexander O'Malley
120	microporous catalysts for sustainable	Alexander o Maney
	carbon conversions	
D20	Selective Hydrogenation of highest	Vinavak Kadam and Gananati D. Vaday
123	derived Eurfural using Dimetallic Motal	
	organic framowork establists	
020	Coloctive hydrogenetics of high-	Chalaka S. Mahira and Cananati D.
P30	selective nyurogenation of blobased	Shalaka S. Wohire and Ganapati D.
	citronelial to citronellol over Ru supported	Yauav

	Ni phyllosilicate modified MCF as a novel	
	nanocatalyst	
P31	Stabilization of the aqueous phase fraction	G. Bagnato, M. Signoretto, E. Ghedini, F.
	of pine wood bio-oil by hydrogenation	Menegazzo, H.J. Heeres, A. Sanna
	reaction	