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Simple Summary: Oral cavity is the most common site of head and neck cancer which is ranked
as the eighth most common cancer worldwide. Oral cancer treatment is often associated with sig-
nificant morbidity and is sometimes ineffective. These cancers, mainly due to tobacco and alcohol
consumption, can develop from oral potentially malignant disorders, the most common of which
is oral leukoplakia. Some of these oral potentially malignant disorders disappear, while others will
transform to oral cancer. Patients may also develop cancer in the field of cancerization. Unfortu-
nately, except for the surgical excision of lesions with dysplasia, there is no effective intervention to
effectively prevent transformation or cancer development in the field of cancerization. Moreover, no
standardized biomarker has been clearly identified as sufficient to predict malignant transformation.
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In this article, several experts discuss the main challenges in oral cancer prevention, in particular the
need (i) to define new a new classification system integrating cellular and molecular features aiming
(ii) at better identifying patients at high risk of malignant transformation, and (iii) at developing
treatment strategies to prevent their malignant transformation of oral potentially malignant disorders.

Abstract: Oral potentially malignant disorders (OPMD) may precede oral squamous cell carcinoma
(OSCC). Reported rates of malignant transformation of OPMD range from 3 to 50%. While some
clinical, histological, and molecular factors have been associated with a high-risk OPMD, they
are, to date, insufficiently accurate for treatment decision-making. Moreover, this range highlights
differences in the clinical definition of OPMD, variation in follow-up periods, and molecular and
biological heterogeneity of OPMD. Finally, while treatment of OPMD may improve outcome, standard
therapy has been shown to be ineffective to prevent OSCC development in patients with OPMD.
In this perspective paper, several experts discuss the main challenges in oral cancer prevention, in
particular the need to (i) to define an OPMD classification system by integrating new pathological and
molecular characteristics, aiming (ii) to better identify OPMD at high risk of malignant transformation,
and (iii) to develop treatment strategies to eradicate OPMD or prevent malignant transformation.

Keywords: oral potentially malignant disorders; oral preneoplasia; oral cancer; prevention; diagnosis

1. Introduction

Oral cavity is the most common site of Head and Neck Squamous Cell Carcinoma
(HNSCC), which is ranked as the eight most common cancer worldwide [1]. Oral SCC
(OSCC) is a major cause of morbidity and mortality [2,3]. OSCC are preceded by mucosal
precancerous changes that might be visible as white (leukoplakia) or red (erythroplakia)
lesions, but are mostly not macroscopically visible, which explains that most OSCC seem
to develop de novo. However, the preceding precancerous changes can present under the
microscope as abnormal mucosal epithelium, also indicated as dysplasia, graded as mild
moderate and severe, or they can be identified by genetic markers. In 2017, the World
Health Organization (WHO) defined oral potentially malignant disorders (OPMD) as
“clinical presentations that carry a risk of cancer development in the oral cavity, whether in
a clinically definable precursor lesion or in clinically normal mucosa” [4]. Thus, OPMD
may precede OSCC, and may be visible or not [5]. While it is traditionally assumed
that OPMD and OSCC are associated with similar risk factors (e.g., alcohol, tobacco,
betel quid), a proportion of OPMD and OSCC cases occur in the complete absence of
any identifiable risk factor, particularly in young patients who have never been drinkers
or smokers [6–9]. The overall worldwide prevalence of OPMD is about 4.5% [10]. The
main risk factors of malignant transformation of OPMD described to date are patient-
related, clinical (e.g., female, >50 years; non-smoker with a nonhomogeneous red lesion
of the tongue and floor of mouth >200 mm2 and existing for several years; history of
previous OSCC; diabetes mellitus), tumor-related, histological (i.e., severe dysplasia), and
molecular factors (i.e., aneuploidy, loss of heterozygosity [LOH]). The reported malignant
transformation rates range from 3 to 66%, indicating that variable definitions may be used,
data with different follow-up periods have been collected and the existence of histological
and, in particular, molecular heterogeneity of OPMD [11–15]. For OPMDs that are visible,
standard policy is to take multiple, repeated, and deep incision biopsies to check for invasive
growth and dysplasia. Treatment of the OPMD may prevent malignant transformation
and improve outcome [6,11]. The surgical excision of OPMD can decrease the risk of
malignant transformation at the same site, but it does not eliminate the risk of subsequent
development of SCC at other sites [16]. To date, no standard therapy has been shown to
be effective in patients with OPMD to prevent OSCC development in the entire field of
cancerization [17].
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The main challenges are (i) to define an OPMD classification system integrating new
pathological and molecular characteristics, aiming (ii) to better identify OPMD at high risk
of malignant transformation, and (iii) to develop prevention strategies that would treat both
the visible lesion and the entire field of cancerization [18,19]. Large longitudinal studies
of OPMD cases with malignant transformation, as the most relevant clinical outcome,
are required.

2. Pathological Perspective

As defined in the recent OPMD WHO classification, OPMD include fifteen disor-
ders affecting the oral mucosa (e.g., leukoplakia, erythroplakia, proliferative verrucous
leukoplakia, oral submucous fibrosis . . . ) and which are either secondary to genetic aberra-
tions, exposure to exogenous factors such as tobacco and/or immune-mediated disorders
or related to rare inherited diseases [4,20]. The different histologic features, especially
those usually used to grade dysplasia (architectural and cytologic changes . . . ) have been
reviewed elsewhere [21].

The histopathological diagnosis and grading of dysplasia are the gold standard in
guiding OPMD management. Unfortunately, especially in the oral cavity, it is challenging
due to the high degree of inter and intra-observer variability, resulting in limited value
of grading of dysplasia as a predictive factor for OPMD malignant transformation [22,23].
The WHO classification postulates that the more advanced the degree of dysplasia, the
higher the likelihood of developing oral squamous cell carcinoma (OSCC). However, the
literature reports that OSCC may also arise from seemingly non-dysplastic epithelium. The
histology of these lesions is subtle and easily underdiagnosed. In particular, by studying the
abnormalities in the mucosa surrounding OSCC, it was recently shown that the dysplastic
changes are most commonly subtle (70%, with the features of so-called differentiated
dysplasia) and therefore may easily be undervalued by the pathologist [24]. To improve the
dysplasia diagnosis, authors proposed refined histopathological criteria, and have shown
that immunohistochemistry with antibodies against cytokeratin 13, cytokeratin 17, and Ki67
is a useful diagnostic adjunct. It has been shown that, compared to the classic histologic
criteria (Who 2017), differentiated dysplasia improves the prediction of oral leukoplakia at
increased risk of malignant progression [25]. To address the issues in histological diagnosis
and grading of dysplasia, we should develop refined and standardized histopathological
criteria encompassing the various histological appearances for reliable diagnosis of OPMD
and implement validated immunohistochemical and molecular biomarkers.

In addition, Artificial Intelligence methods are becoming a powerful diagnostic ad-
junct [26]. In particular, machine learning and deep learning algorithms are promising for
diagnostic support (enhance laboratory efficiency and quality assurance), as disruptive
technology to standard biomarkers, and to derive patterns not achievable by a human
observer [27]. Although this field is rapidly evolving, currently very few algorithms have
reached clinical implementation [28].

3. Biomarkers, Prospective High-Risk Cohorts with Embedded Trials

Besides the clinical and histological characteristics of OPMD [4], several biomarkers
have been proposed to identify patients with OPMD at high risk of OSCC development [29].
LOH at specific chromosomal sites (3p14 or 9p21) has been validated prospectively [30].
LOH was also found to be a biomarker predicting the development of second oral malignan-
cies in patients with an OPMD, subsequent to the treatment of a OSCC [31,32]. Prospective
cohorts with long-term follow-up of patients with OPMD are needed to identify other
predictive biomarkers that may be used for clinical practice.

4. Biology of Precancerous Changes

In 1953, Slaughter et al., concluded from histopathological studies of oral cancer
specimen: “From the foregoing observations it would appear that epidermoid carcinoma of
the oral stratified squamous epithelium originates in a process of “field cancerization,” in
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which an area of epithelium has been preconditioned by an as-yet-unknown carcinogenic
agent. Such a carcinogenic influence if operative enough in time and intense enough in
exposure produces an irreversible change in cells and cell groups in the given area, so that
change of the process toward cancer becomes inevitable” [33]. It is remarkable that this
model was already reported before tobacco and alcohol were identified as the major culprits
of OSCC, and before the scientific world had any clue on molecular carcinogenesis and the
role of mutated cancer genes. At present, we know that cancer arises by the accumulation
of genetic and epigenetic changes, causing a changed circuitry of many signal transduction
routes and invoking the acquired capabilities of cancer cells characterized as the “hallmarks
of cancer” [34]. Hence, the onset and driving force of carcinogenesis is the accumulation
of genetic changes, albeit stroma interactions likely play a role in parallel. The genetic
changes occurring during oral carcinogenesis are now well defined [33,35–38]. Typical
chromosomal changes such as loss of 3p, 9p, and 17p that are frequently found in invasive
HNSCC are also found in precancerous changes and are in fact the most accurate predictors
of malignant transformation of the OPMD, as discussed above [30].

Given the causal role of genetic changes in carcinogenesis, the upper aerodigestive
tract field cancerization may be explained, at least partially, by the accumulation of genetic
changes in the mucosal keratinocytes. There are no specific markers of stem cells in the
mucosa, but we may assume that these exist in the basal layer of the mucosal epithelium.
The stemness of such cells is not intrinsic and fixed, but most likely the result of a dynamic
process as it is in the intestine [39]. These stem cells form the basis of the mucosal units of
transit, amplifying cells and differentiating cells in areas of approximately 200 cells wide,
which together make up the mucosal epithelium. This clonal unit was demonstrated in
mouse epidermis using Axin2 lineage tracing experiments [40]. A somatic mutation in such
a cell with stemness properties will give rise to a mutated clonal unit as first described in
2002 using TP53 mutations as a molecular marker [41]. These rare somatic mutations in
cells have since been shown in numerous tissues and are studied using next generation
sequencing approaches [42,43]. The mutated cells compete with the wild type cells. In the
skin, UV-induced cell death of normal cells supports the extension of the preneoplastic
cells [44]. In the oesophagus, oxidative stress has been identified as a potential factor
that supports the proliferation of TP53-mutated cells over the wild type cells [45]. When
applying N-acetylcysteine (NAC) as oxidative stress reducing agent, the balance was shifted
in advantage of wild type cells. However, no effect of NAC to prevent recurrent cancer or
second primary tumours in both lung and head and neck cancer patients was seen in the
EUROSCAN trial [46].

Besides environmental factors that may favour the growth of genetically damaged
cells, the accumulation of subsequent genetic alterations may induce a growth advantage
and change the balance between normal cells and genetically damaged cells, the latter
displacing the normal mucosa by so far unresolved mechanisms. It is likely not related to
proliferation rate as normal keratinocytes, precancer and cancer cells may have comparable
cell division times, at least in vitro [47].

5. Field of Cancerization

A field should be defined as a group of cells with tumour-associated somatic genetic
alterations. Irrespective of the underlying biology and cellular interaction, the preneoplastic
fields will develop in time and can reach dimensions greater than 10 cm in diameter. As
explained above, the minority is clinically visible as an asymptomatic persistent white or
red lesion that cannot be rubbed off [20]. The clinical aspect is poorly specific of OPMD,
given that not all lesions harbour histologically proven dysplasia [25]. Hence, the visible
lesions form the tip of the iceberg. Indeed, some normal surgical margins of oral cancer
specimen showed genetic changes, indicating that not all precancerous fields are recognized
by histology, and that we must rely on genetic markers to identify all potentially malignant
fields. However, with the introduction of differentiated dysplasia as novel morphological
entity [24,25], this may change soon. Whether they are visible or not, these potentially
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malignant changes may transform into invasive cancers. The tumours are diagnosed and
treated, but particularly when these fields are not visible to the naked eye, they may stay
behind and cause local relapses clinically diagnosed either as local recurrence or second
primary tumour, depending on the distance (2 cm and/or different subsite) and the time
interval (3 years) [35,36]).

In vitro cultures of visible lesions were reported in 2002 [48]. More recently, 98 2D
cultures from normal appearing mucosa of the surgical margins of patients with primary
HNSCC were generated and characterized for their molecular alterations and the number
of population doublings (PDs) [47]. Cultures with more than 20 PDs and a random selection
of nine other cultures with a normal life span (<20 PDs) were analysed for copy number
changes and for mutations of the ten key HNSCC driver genes using target-enrichment
sequencing. Irrespective of the lifespan of < or >20 PD, in 50% of the cultures somatic genetic
changes were identified with a large variety in type and number. Despite many genetic
alterations in some cultures and an apparent immortal lifespan, none formed tumours
in immunodeficient mice, demonstrating the lack of invasive capacity and confirming
the precancerous state [48]. This supports that acquisition of immortality is an earlier
event during OSCC progression than acquisition of invasive properties. Most frequently
mutated genes were TP53, NOTCH1 and FAT1, whereas CDKN2A showed frequent copy
number losses. Most intriguingly, in four cultures copy number changes were found but no
mutations in key driver genes, suggesting that carcinogenesis may start with copy number
changes, although such precancerous cells may never transform.

In summary, field cancerization has been well characterized in genetic terms, the cells
can be cultured and even used for therapeutic target screening [49,50]. A field should be
defined as a group of cells with tumour-associated somatic genetic alterations. A field
should be larger than the clonal unit and, consequently, larger than at least 200 cells wide
and can reach dimensions of up to 10 cm in diameter. Some fields present as dysplasia
under the microscope, and some are macroscopically visible as a non-specific persistent
white or red lesion. These fields contain a variety of genetic changes, but typically also
mutations in the cancer driver genes of head and neck cancer. They develop by a process of
somatic mutation in relation to aging and carcinogen exposure. The reason as to why the
normal epithelium is displaced remains an enigma. Enhanced proliferation seems logical
but is likely not the cause, and biological processes perhaps stimulated by environmental
cues may be more likely.

6. The OPMD Immune Microenvironment (IME)

The interplay between OPMD and IME has been poorly explored, while it appears as a
promising and actionable target [51,52]. Briefly, compared to OPMD that transformed into
OSCC, patients with dysplastic OPMD and no subsequent malignant transformation had
significantly more infiltrating CD3+, CD4+ and CD8+ T-cells and decreased T-regulatory
cells [53–56]. Furthermore, the progression from OPMD to OSCC has shown increased
number of CD163+ cells (M2 Macrophages), PD-L1 expression and a decreased number of
CD8+ cells [52,53,56–59]. More recently, the Saintigny Team (JB, PS) studied the dynamic
of the IME in the 4-NQO murine model of oral carcinogenesis [60], an accepted model
for the human disease in particular at early steps of tumorigenesis [61]. They found that
changes in the composition of immune infiltrate (T-cells, B-cells, M1/M2 macrophages) can
already be observed in histologically proven premalignant stages. Transcriptomic changes
revealed activation of immune related processes at early steps of oral carcinogenesis. On
the other hand, when the gene expression data of 86 patients with OPMD were challenged
with transcriptomic features coming from HNSCC patients, the lesions could be stratified
in several clusters, and the OPMD from the mesenchymal, hypoxia and classical molecular
subgroups showed a higher risk of malignant transformation in comparison with the
immune-related ones [62].

It is tempting to speculate on OPMD within the concept of “immunoediting”, hypoth-
esizing that these lesions are in the equilibrium phase of a dynamic process between the
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malignant transformation and surveillance of the immune system. One hypothesis is that
malignancy will develop in the presence of an immunosuppressive microenvironment.
Another hypothesis is that OPMD do not elicit a sufficient immune response, and that for
two main reasons: (i) OPMD highly resemble “self” and are not detected as non-self by the
immune system; (ii) OPMD barely induce local tissue-damage and therefore insufficiently
release the immune-attracting damage-associated molecular patterns.

Overall, while promising, our knowledge of the complex and dynamic nature of the
OPMD IME remains incomplete, which might explain the failure of immunoprevention
strategies [63,64]. Thus, further characterization of the dynamic changes in immune re-
sponse during oral carcinogenesis is required [51,52], especially differences between OPMD
that subsequently transformed into OSCC and those that did not.

7. Oral Microbiome

The study of the potential contribution of the microbiome in the carcinogenesis of
different cancer types including OSCC is emerging [65]. Regarding the very few studies
which have reported the microbiome composition associated with OPMD, results are het-
erogeneous and difficult to compare because of diversity in microbiota and methodological
heterogeneity [66,67]. Briefly, it was suggested that the microbiota may contribute to tu-
morigenesis, both directly (production of microbial genotoxin inflicting DNA damages),
and indirectly through its interplay with the immune system (stimulation of chronic inflam-
mation alters the immune responses and aberrant immune responses facilitate dysbiosis,
especially in aging context) [68]. Moreover, the dysregulation by the microbiome of some
physiological activities that are critical for oral carcinogenesis (nitrogen transport, response
to stress, interspecies interactions, Wnt pathway modulation, and amino acid and lipid
biosynthesis) were identified using the 4-NQO mice model [69]. Overall, the understanding
of the role of the oral microbiome in carcinogenesis is still an area of investigation [67].

8. Early Diagnosis of OPMD

The early detection of OPMD serves the purpose of secondary prevention of oral
cancer [70]. Examination of the oral cavity (visual inspection and palpation) is the con-
ventional method for identifying and monitoring OPMD. However, clinical recognition
of OPMD is challenging [5]. Thus, methods to enhance the early detection of OPMD are
required [4,5,71].

In 2008, the International Agency for Research in Cancer (IARC) published a digital
manual to help physicians in this aim. Furthermore, non-invasive in vivo optical imaging
provides unique opportunities for real-time diagnosis of oral pre-malignancies. These
techniques are mainly autofluorescence imaging (AFI), targeted fluorescence imaging
(TFI), high-resolution microendoscopy (HRME), narrow band imaging (NBI) and Raman
spectroscopy (RS) (Table 1) [72,73].

Using AFI, altered and dysplastic tissues appear darker compared to the healthy
surrounding tissue (autofluorescence loss). AFI devices displayed superior accuracy levels
in the identification of OPMD compared to clinical examination [74]. AFI devices evaluated
for early diagnosis of OPMD are practical and cost-effective but suffer from low speci-
ficity [5]. Moreover, mucosa with hyperkeratinisation such as some oral leukoplakia can
demonstrate increased autofluorescence when compared to normal mucosa, which limits
the ability to detect malignant change within such lesions [75]. TFI utilizes a targeting
fluorescence probe which can specifically target some elements by approved antibodies
(targeted immune-fluorescence imaging). However, the lesion heterogeneity could decrease
the TFI sensitivity.
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Table 1. Main in vivo optical imaging methods that could be used as an adjunct to conventional oral
examination in oral premalignant disorders screening are autofluorescence imaging (AFI), targeted
fluorescence imaging (TFI), high-resolution microendoscopy (HRME), narrow band imaging (NBI),
Raman spectroscopy (RS). For each method, basic principles, advantages and inconvenient are
described as well as references.

In Vivo Optical
Imaging Methods to

Detect OPMD
Basic Principle Advantages Inconvenient

Interesting Studies on
Methods to Detect

OPMD

Autofluorescence
imaging (AFI)

Visualization of the
autofluorescence from

endogenous
fluorophores (NADH

and FAD)
Metabolic and

morphologic changes
related to carcinologic

process led to
autofluorescence loss.
Altered/dysplastic

mucosa appears darker
compared with the

healthy surroundings.

Practical
Cost-effective
Non-invasive

Low specificity:
-False positives: tissues

with rich micro
vascularity

(granulation tissue,
inflammation, and

oedema)
-False negatives:

regions with
hyperkeratosis

(Leukoplakia+++) or
overgrowth of bacteria

(producing extra
fluorophores)

[5,72–75]

Targeted Fluorescence
imaging (TFI)

Visualization of a
fluorescence probe

specifically targeting
the neoplastic tissues

The targeted
immune-fluorescence
imaging: targeting an

over-expressed protein
by approved antibodies

Intra-tumour
phenotype

heterogeneity decreases
it sensitivity

[5]

Narrow band imaging
(NBI)

Visualization of the
neoangiogenic patterns

of tissues using an
illumination light

within the absorption
spectrum of

haemoglobin

The abnormal intra
epithelial capillary

loops (ICPL) patterns
can be used to

differentiate neoplastic
from normal tissues
The NBI endoscopic

system is widely
available

Characterization of
IPCL patterns is

subjective and false
positive results are
frequent (level of

keratinization,
lymphoid tissue,

previous radiation or
surgery, inflammation
and vascular lesions)

[5,76,77]

High resolution
microendoscopy

(HRME)

Visualization of an
emitted light by

superficially applied
fluorophores using a

flexible fiber-optic
probe placed in direct

contact with the
suspicious tissue

Cost effective
Non-invasive

High resolution
High sensitivity and

specificity
Simple and portable

device Requires
minimal training
High inter-rater

reliability

Not commercially
available

The proflavine (the
most commonly used
contrast agent) is not
approved for in vivo

clinical use
Limited field-of-view

[5,78]

Raman Spectroscopy
(RS)

Visualization of the
‘molecular fingerprint’

(i.e., variations of
chemical components)

of a tissue using
vibrational

spectroscopic technique

Water absorption does
not disturb the
measurement

High signal-to-noise
ratio

Fewer sample volumes
are required for

analysis.

Analyses are difficult
No commercially

available
Too large for routine

clinical use
Time consuming

[5,79–82]
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NBI visualizes the angiogenic patterns within and surrounding lesions. NBI as an endo-
scopic system is widely available and easy to use [5,76,77]. Moreover, the neoangiogenesis-
related morphological changes, especially the abnormal intraepithelial capillary loops
(ICPL) patterns, have been widely reported [5,75]. Unfortunately, IPCL patterns characteri-
zation is subjective and the visualization of microvessel architecture may be affected by
various factors. Artificial intelligence may make the prediction of malignant transformation
more objective and with greater accuracy [26].

HRME is cost effective, non-invasive and provides real-time high-resolution micro-
scopic images (in situ “optical biopsy”) [78]. HRME has demonstrated high sensitivity and
specificity. However, HRME is not commercially available, its contrast agent is not yet
approved, and the field of view is limited [5].

RS is a non-destructive vibrational spectroscopic technique [79–81]. Raman spectra rep-
resent the overall molecular composition of the tissue and can be used to distinguish healthy
tissue from (pre-)malignant tissue [5]. RS is a promising tool for early diagnosis/biopsy
guidance and follow up (optical biopsy) of OPMD but required further development [82].

Other imaging techniques to detect OPMD are optical coherence tomography, elastic
scattering spectroscopy, diffuse reflectance spectroscopy, confocal laser endomicroscopy
and confocal reflectance microscopy, but they are not widely developed [5,83]. Vital staining
(toluidine blue, Methylene blue, Rose Bengal and Ludo’s iodine) are sensitive, simple, rapid,
efficient and low-cost techniques [5,77,84] but false positive results are frequent, and their
application is not without issues.

In summary, the previously described techniques are promising with high sensitivity
to detect OPMD but suffer from poor specificity. This is not only due to inherent limitations
of the techniques, but also to the lack of a good histological gold standard, which renders
the development of predictive algorithms based on optical methods very difficult [5,75,84].
To overcome the technical part of the problem, a combination of techniques, e.g., combining
AFI and HRME, are interesting [85,86]. Further investigations (large randomized clinical
trial with long follow-up) are needed.

9. Preclinical Models
9.1. In Vitro Tissue Culture Models
9.1.1. 2D Culture of Cell Lines

There are many reports of cell lines being established from OPMD biopsies (Table 2).
These OPMD cell line model systems recapitulate the key characteristics of the clinical
lesions closely and have been used to study the early stages of oral cancer and malignant
transformation of oral keratinocytes in vitro [87–94]. However, the major limitation of cell
line models is that these cells fail to grow in vivo, thereby prohibiting the study of the
involvement of the oral microenvironments.

9.1.2. 3D Culture of Organotypic Co-Culture

In this method, keratinocytes are cultured at an air-to-liquid interface on a fibroblast-
containing collagen type I matrix. While several refinements have been proposed to
overcome the major limitations of the classically used collagen-based connective tissue
equivalent (deficit of complex structural heterogeneity and collagen fibre crosslinking
present in mature connective tissue, induction of artificial epithelial invasion by lose of
biostability over a long period of culture and lack of a well-defined continuous basement
membrane between the epithelium and connective tissue) [95], to date, most organoids
lacked vasculature, fibroblasts and immune cell components that are known to influence
malignant transformation, which make them not a true representation of in vivo transfor-
mation of OPMD to OSCC.

Recently, to mimic the oral mucosal complexity, progress has been achieved in design-
ing more complex tissue engineering techniques in organotypic co-cultures that includes
the incorporation of blood capillaries to the cell surface [96], culturing oral keratinocytes
with fibroblasts [97], immune cells [98], and oral microbiota [99,100]. As protocols and
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analysis methods continue to improve, these 3D techniques will become more accessible
within the said field.

Table 2. Available cell lines to study oral premalignant disorders. (PMID: PubMed identification
Member; ISSN: International Standard Serial Number).

Cell Line Dysplasia Features References

D9 Mild or Moderate dysplasia of ventral tongue [48]

D20 Moderate dysplasia of lateral tongue [48]

D34 Moderate dysplasia of posterolateral tongue [48]

D38 Mild dysplasia of lateral tongue [48]

DOK (dysplastic oral
keratinocyte)

Epithelial dysplasia from the dorsal tongue of a
57-year-old heavy smoker [89]

POE9n

Severely dysplastic oral epithelial lesion of a
65-year-old male possessing a homozygous
deletion at the p16INK4A/p14ARF locus,
lacking p53 expression, and exhibiting an

extended but finite replicative life span

[90]

MSK Leuk1 Spontaneously derived from an oral leukoplakia
lesion [91]

Leuk1
Dysplastic leukoplakia adjacent an early

invasive OSCC (T1N0M0) involving the tongue
of a 47-year-old female

[92]

Leuk2 Dysplastic leukoplakia in a 72-year-old female
with a history of recurrent new disease [92]

LDOK
Severe dysplasia on the lingual alveolus,

carrying a p53 gene mutation (G-T at codon 248)
and does not express p16

[93]

CDOK Mild dysplasia at the commissure [93]

LTDOK Mild dysplasia on the lateral tongue [93]

SPDOK Moderate dysplasia on the soft palate [93]

VU-pre-SCC M3 Glottic laryngeal tumour with dysplasia in the
mucosal resection margin [47,94]

9.1.3. In Vivo Rodent Models

1. Carcinogen-induced models

Several agents, including coal tar, cigarette smoke, benzo[a]pyrene (B[a]P),
3-methylcholanthrene, 7,12-dimethylbenz(a)anthracene (DMBA) and 4-nitroquinoline-
1-oxide (4-NQO) have been used to induce OSCC in rodent models. In particular, the
4-NQO-induced oral carcinogenesis murine model closely resembles human OSCC in
terms of pathogenesis, pathological changes, host immune activity, and molecular levels,
thus making this model widely acceptable to study OSCC, especially for the identification
of biomarkers for early diagnosis and the transformation of the epithelium [61]. The major
limitations of the carcinogen-induced models are (i) the requirement of prolonged animal
and carcinogen handling, making them laborious and time-consuming, (ii) the resulting
tumours do not recapitulate the tumours in patients, and (iii) it is not possible to study
specific gene alterations in the development and malignant transformation process.

2. Genetically engineered mouse models (GEMMs)

GEMMs that allow oncogene activation and/or tumour suppressor inactivation solely
in stratified epithelia of the oral cavity under the control of inducible promoters are ex-
tensively used to study OPMD [101]. While promising, there are still several barriers to
their full application in understanding the OPMD malignant transformation. The main
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limitation is that these models do not reflect human oral pathogenesis in terms of the
degree of gene expression during the transformation process. Secondly, these models have
low specificity to form premalignant lesions by gene activation or inactivation and appear
in sites other than the oral cavity. Thirdly, the introduction of exogenous genes or the
knockout of endogenous genes in GEMM will occur in almost every cell which does not
recapitulate the normal oral microenvironment of OPMD. Lastly, the potentially induced
changes or disruptions to the oral microbiome limit the use of GEMMs for understanding
the relationship between the oral microbiome and OPMD.

10. Prevention Strategies
10.1. Current Clinical Management of OPMD

To date, there has been a general consensus for the most appropriate management
of OPMD [75]. Primary prevention remains the first management measure. In all cases,
tobacco and alcohol consumption cessation is required to limit the risk of malignant
progression, as well as the screening of whole upper aero-digestive tract mucosa for
OPMD [20]. Furthermore, the histological assessment of the biopsy, especially the grading
of dysplasia, should be performed both at baseline and in case of clinical modifications
(macroscopic, clinic) because of its high prognostic value [12]. Surgical resection is applied
when possible and certainly indicated for OPMD with moderate or severe dysplasia [20].
When surgery is not feasible (patient not operable or surgery excessively mutilating), the
two available options are either destruction of the lesion (cryosurgery, carbon dioxide laser,
photodynamic therapy) and/or the close surveillance with repeated biopsies. Finally, a
recent Cochrane database review indicated no useful medical treatments to prevent OPMD
malignant transformation [17].

10.2. Systemic Strategies to Prevent Malignant Transformation of OPMD

Treatment of the lesion and prevention of malignant transformation of OPMD may im-
prove patient outcome [11]. Hence, inhibitors that eradicate the lesion, or chemopreventive
agents that prevent the malignant transformation of OPMD must be developed. Several
systemic agents have been tested such as bleomycin, Vitamin E, retinoids, beta carotene,
lycopene and mixtures of tea [31,75,102]. However, these agents showed limited benefits.
Although they caused macroscopic regression of OPMD, recurrences occurred frequently
after discontinuation of treatments, and they were not shown to prevent OPMD malignant
transformation [11,17].

It has been proposed to leverage premalignant biology for precision-based and more
specifically immune-based cancer prevention [103,104]. Unfortunately, targeted therapies
have failed to prevent malignant transformation of OPMD [31]. On the other hand, the
IME is an attractive therapeutic target [51,52]. The development of multimodal immune-
prevention strategies to halt OSCC progression, including immune check point inhibitors,
vaccines, adjuvants activating the innate immune system and in combination with some
chemopreventive agents that impact positively the tumour IME, is an interesting op-
tion [105]. In recent clinical trials evaluating PD-1- and PD-L1 targeting monoclonal
antibodies (pembrolizumab and avelumab) patients with OPMD at high-risk of oral cancer
development based on LOH status have been enrolled (NCT02882282 and NCT04504552),
but the results are still awaited.

11. Conclusions and Discussion

Given the knowledge gaps in OPMD clinical management, classification, and risk
stratification, as well as the lack of standardized procedures for biospecimen collection
(i.e., mucosal biopsy; oral brushes; saliva), the lack of efficient, acceptable, and approved
interventions to treat the whole cancerization field and the lack of a network of cooperating
centres for clinical research in this area, several European experts in the field give their
opinions and perspectives.
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Joint efforts of academic teams and societies, clinical cancer research organizations,
biotechs and pharmaceutical companies should be engaged to decipher the full temporal
spectrum of the disease that may evolve to OSCC. There is need to define standardized
procedures for sample collection, to refine OPMD classification and improve patients’
stratification. A biologically-driven classification of OPMD may identify clusters with
actionable biology, allowing the development of prevention strategies that treat the entire
field of cancerization.

There is a critical need for standardized protocols for the clinical screening and diag-
nosis of OPMD, in particular to encourage systematic biopsies, and for patient follow-up
and treatment. Minimally invasive technologies for OPMD detection should be prioritized.
For pathological diagnosis, the current gold standard, we should (i) develop standardized
histopathological criteria encompassing the various histological appearances for reliable di-
agnosis of OPMD; (ii) implement validated immunohistochemical and molecular biomark-
ers; (iii) incorporate artificial intelligence for diagnostic support; and (iv) develop and
implement objective detection techniques as well as non-invasive alternatives to biopsies
(buccal brushes, saliva, buccal rinses, optical techniques) [83,103–110].

Prospective population-wide studies of longitudinal disease trajectories to interrogate
the general medical histories of patients with cancer represent a recently developed concept
to improve healthcare monitoring and reduce costs. Analysis of national or regional data
hubs (e.g., clinical data warehouses, cancer registries, social security databases, hospital
electronic medical records etc.) may identify disease associations occurring prior to OSCC
diagnosis.

Electronic health (eHealth) interventions and patient-reported outcome tools (PROMs)
dedicated to patients with OPMD to monitor disease progression, to identify early signs
of transformation and to monitor the lifestyle and psychological impact of being at risk
(uncertainty, anxiety and depression) [111] should be developed and evaluated. This may
spare unnecessary visits and exams, while providing the best possible care.

Finally, there is a need to evaluate the socio-economic impact of preventive medicine
and to perform generalizable health technology assessment; a network of centres gathering
cost- and patient-related data should be built. Eventually, the aim here would be to decrease
the economic burden of OSCC.
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