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Abstract. In this paper we prove the optimal convergence of a standard adaptive scheme based
on edge finite elements for the approximation of the solutions of the eigenvalue problem associated
with Maxwell’s equations. The proof uses the known equivalence of the problem of interest with a
mixed eigenvalue problem.
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1. Introduction. In this paper we present an adaptive scheme, based on stan-
dard three-dimensional edge elements, for the approximation of the Maxwell eigen-
value problem and analyze its convergence.

A posteriori error estimates for Maxwell’s equations have been studied by several
authors for the source problem (see, in particular, [32, 3, 37, 19, 36, 20, 38, 22, 14,
23, 43, 15, 21, 18] and the references therein). The eigenvalue problem has been
studied only recently in [12, 13] where residual type error estimators are considered
and proved to be equivalent to the actual error in the standard framework of efficiency
and reliability. The analysis relies on the classical equivalence with a mixed variational
formulation [10]. The numerical results presented in [13] confirm that the adaptive
scheme driven by our error estimator converges in three dimensions with optimal rate
with respect to the number of degrees of freedom.

Reference [11] presented the first convergence analysis for an adaptive scheme
applied to the Laplace eigenvalue problem in mixed form. The main tools for the
analysis originate from various papers related to adaptive finite elements, in partic-
ular from [41, 17, 29]. Thanks to the well-known isomorphism between the spaces
H(curl; Ω) and H(div; Ω) in two space dimensions, the result for the Laplacian in
mixed form implies the convergence of the 2D adaptive scheme for Maxwell’s eigen-
problem: actually, the isomorphism carries over to the corresponding mixed formu-
lation as well as to the error estimators. In this paper we extend the results of [11]
to the mixed formulation associated with Maxwell’s eigenproblem in three dimen-
sions; as we will notice, such extension is not trivial: several technical details have
to be checked and suitably designed interpolation operators are used to complete the
analysis. Useful results in this direction are reported in [38, 44].
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of Mathematics and System Analysis, Aalto University, Helsinki, Finland (daniele.boffi@unipv.it,
http://www-dimat.unipv.it/boffi/).
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It is well understood that the convergence analysis of the adaptive scheme for
eigenvalue problems has to consider multiple eigenvalues and clusters of eigenvalues in
order to prevent suboptimal convergence. In particular, degeneracy of the convergence
may be observed when the error estimator is computed by taking into account only a
subset of the discrete eigenmodes approximating the eigensolutions we are interested
in (multiple or belonging to a cluster) [40, 28, 9].

Starting from this remark, the analysis performed in [11] has been carried out
for generic clusters of eigenvalues. This approach has the inconvenience of adding
heavy notation dealing with deep technicalities. For this reason, we decided in this
paper to develop our theory in the case of simple eigenvalues. We believe that the
presentation in the case of a simple eigenvalue better highlights the novelties with
respect to the previous results for the mixed Laplacian that would be hidden by the
technical machinery related to clusters of eigenvalues. Nevertheless, the general case
can be dealt with by using arguments similar to those in [11].

In section 2 we recall Maxwell’s eigenvalue problem, its standard variational for-
mulation, and the equivalent mixed formulation, together with their finite element dis-
cretizations. Section 3 defines our error estimator and describes the adaptive scheme.
Reliability and efficiency from [13] are recalled and the theory concerning the con-
vergence of the adaptive method is described. The auxiliary results needed for the
convergence proof are collected in section 4. These include in particular discrete
reliability, quasi-orthogonality, and the contraction property.

2. Maxwell’s eigenvalue problem and its finite element discretization.
In this paper we deal with the well-known eigenvalue problem associated with the
Maxwell equations (see, for instance, [30, 33, 7]).

Given a polyhedral domain Ω, after eliminating the magnetic field, the problem
reads as follows: find ω ∈ R and u 6= 0 such that

(2.1)

curl(µ−1 curlu) = ω2εu in Ω,

div(εu) = 0 in Ω,

u× n = 0 on ∂Ω,

where u represents the electric field, µ and ε represent the magnetic permittivity and
electric permeability, respectively, and n is the outward unit normal vector to ∂Ω, the
boundary of Ω. For general inhomogeneous, anisotropic materials, µ and ε are 3-by-3
positive definite and bounded matrix functions. We are considering for simplicity
the case when Ω is simply connected: more general situations will be described in
Remark 3.

A standard variational formulation of our eigenvalue problem is obtained by con-
sidering the functional space H0(curl; Ω) of vector fields in L2(Ω)3 with curl in L2(Ω)3

and vanishing tangential component along ∂Ω. The formulation reads as follows: find
ω ∈ R with ω > 0 and u ∈ H0(curl; Ω) with u 6= 0 such that

(2.2) (µ−1 curlu, curlv) = ω2(εu,v) ∀v ∈ H0(curl; Ω).

It is well known, in particular, that the condition ω2 6= 0 is equivalent to the divergence
condition div(εu) = 0 due to the Helmholtz decomposition (see also Remark 1). We
assume that the domain Ω and the coefficients ε, µ are such that the problem is
associated with a compact solution operator. The eigenvalues can then be numbered
in an increasing order as follows:

0 < ω1 ≤ ω2 ≤ · · · ≤ ωj ≤ . . . ,
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480 DANIELE BOFFI AND LUCIA GASTALDI

where the same eigenvalue is repeated as many times as its algebraic multiplicity.
The associated eigenfunctions are denoted by uj and normalized according to the L2

norm, that is, ‖ε1/2uj‖0 = 1.
A powerful tool for the analysis of this problem is a mixed formulation introduced

in [10]. With the notation σ = ωu, p = −µ−1/2 curlu/ω, and λ = ω2, the variational
formulation (2.2) is equivalent to the following mixed eigenproblem: find λ ∈ R and
(σ,p) ∈ H0(curl; Ω)×Q with p 6= 0 such that

(2.3)
(εσ, τ ) + (µ−1/2 curl τ ,p) = 0 ∀τ ∈ H0(curl; Ω),

(µ−1/2 curlσ, q) = −λ(p, q) ∀q ∈ Q,

where Q = µ−1/2 curl(H0(curl; Ω)).
The eigenvalues of (2.3) are denoted by

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . .

Given j, we use the notation pj = −µ−1/2 curluj/ωj and σj = ωjuj with λj = ω2
j ,

so that (λj ,σj ,pj) solves (2.3) and the following normalization holds true for the
eigenfunction: ‖pj‖0 = 1.

The finite element approximation of (2.2) is usually performed with edge elements.
Given a tetrahedral decomposition of Ω, we consider Nédélec edge elements introduced
in [34, 35]. More general families of finite elements could be considered in the spirit
of [2]. More precisely, the general situation can be described by adopting the following
standard notation related to the de Rham complex:
(2.4)

0 −−−→ H1
0(Ω)

∇−−−→ H0(curl; Ω)
curl−−−→ H0(div; Ω)

div−−−→ L2(Ω) −−−→ Ry y y y
0 −−−→ Nh

∇−−−→ Σh
curl−−−→ F h

div−−−→ DGh −−−→ R.

In the case when Σh is a sequence of tetrahedral edge finite elements, the re-
maining finite element spaces will be composed by nodal Lagrange elements Nh, face
elements F h, and discontinuous elements DGh, respectively. The corresponding di-
agrams in the case of Nédélec elements of the first and second families can be found
in (2.5.58) and (2.5.59) of [8], respectively.

The discretization of (2.2) reads as follows: find ωh ∈ R with ωh > 0 and uh ∈ Σh

with uh 6= 0 such that

(2.5) (µ−1 curluh, curlv) = ω2
h(εuh,v) ∀v ∈ Σh.

The corresponding mixed formulation is as follows: find λh ∈ R and (σh,ph) ∈
Σh ×Qh with ph 6= 0 such that

(2.6)
(εσh, τ ) + (µ−1/2 curl τ ,ph) = 0 ∀τ ∈ Σh,

(µ−1/2 curlσh, q) = −λh(ph, q) ∀q ∈ Qh,

whereQh = µ−1/2 curl(Σh). In particular, we have thatQh is a subspace of µ−1/2F h
and it can be easily seen that µ−1/2 curlσh = −λhph.

Following [10, Theorem 2.1], the equivalence between (2.5) and (2.6) can be proved
using the definition of Qh and the identities σh = ωhuh, ph = −µ−1/2 curluh/ωh,
and λh = ω2

h.
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With natural notation, we denote by 0 < ωh,1 ≤ ωh,2 ≤ · · · ≤ ωh,N(h) the eigen-
values of (2.5) and by 0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,N(h) those of (2.6). Analogously,
the corresponding eigenfunctions are denoted by uh,j and (σh,j ,ph,j), respectively

(j = 1, . . . , N(h)), with ‖ε1/2uh,j‖0 = ‖ph,j‖0 = 1. The number of discrete frequen-
cies, repeated according to their multiplicity, is given by N(h) = dimQh. We discuss
this fact in the next remark.

Remark 1. It is straightforward to check that the number of real eigenvalues of
problem (2.6) is equal to N(h) = dimQh. Indeed, the matrix form of (2.6) is, with
obvious notation, (

A B>

B 0

)(
�

p

)
= λh

(
0 0
0 −M

)(
�

p

)
.

The number of real eigenvalues of this problem is equal to the size N(h) of the matrix
M, as is evident by its equivalent formulation written in terms of the Schur complement

BA−1B>p = λhMp,

� = −A−1B>p.

The size of the matrix problem corresponding to (2.5) is equal to the dimension of
the space Σh. The Helmholtz decomposition in the case of simply connected domains
implies that dim(Σh) = dim(∇(Nh)) +N(h). Since the space ∇(Nh) is the kernel of
the curl operator, it follows that the number of eigenvalues corresponding to ωh > 0
is equal to N(h). For an additional discussion about this count when the domain is
multiply connected, the reader is referred to Remark 3.

Remark 2. It can be useful to recall that the mixed formulations (2.3) and (2.6)
are not used for the definition of the method (nor for its implementation) but are
crucial ingredients for its analysis.

Remark 3. It is well known that if the domain is not topologically trivial, then the
first row of the diagram presented in (2.4) is not an exact sequence. More precisely,
the following space of harmonic forms plays an important role:

H = {h ∈ H0(curl; Ω) : curlh = 0, div(εh) = 0 in Ω};

and it corresponds to the one form cohomology of the de Rham complex. The
Helmholtz decomposition in this case has the following form:

L2(Ω)3 = ∇(H1
0(Ω))⊕H⊕ ε−1 curl(H(curl; Ω)),

where the three components of the decomposition are ε-orthogonal; that is, they are
orthogonal with respect to the scalar product (ε ·, ·).

It turns out that in the general case the formulation (2.2) is no longer the vari-
ational formulation of (2.1). Indeed, functions in H are eigenfunctions of (2.1) with
vanishing frequency. In this case, if we are not interested in the approximation of the
space of harmonic functions H, we can disregard the zero frequency and use formula-
tions (2.2) and (2.3) for the analysis of the rest of the spectrum. The approximation of
harmonic functions is outside the scope of this paper. We point the reader to possible
approaches for the approximation of H: a direct discretization of the space has been
proposed in [1]; an adaptive algorithm has been presented in [25]; another indirect
approach may be the use of the following alternative mixed formulation known as
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482 DANIELE BOFFI AND LUCIA GASTALDI

the Kikuchi formulation (see [31, 6]): find λ ∈ R such that for u ∈ H0(curl; Ω) and
p ∈ H1

0(Ω), with u 6= 0, it holds that

(µ−1 curlu, curlv) + (∇ p, εv) = λ(εu,v) ∀v ∈ H0(curl; Ω),

(∇ q, εu) = 0 ∀q ∈ H1
0(Ω).

It is not difficult to see that any solution of the Kikuchi formulation satisfies p =
0 (take v = ∇ p in the first equation). Hence, it is immediate to check that the
Kikuchi formulation is equivalent to the standard variational formulation (2.2) with
the additional solution λ = 0 corresponding to u ∈ H.

3. Error estimator and adaptive method. We are going to study and ana-
lyze an adaptive finite element scheme in the framework of [26, 24, 17, 29, 11]. The
scheme is based on the local error estimator (see [13])

η̃2K = h2K‖εuh − curl(µ−1 curluh)/ω2
h‖20,K + h2K‖ div(εuh)‖20,K

+
1

2

∑
F∈FI(K)

[
hF
∥∥[[
(
µ−1 curluh/ω

2
h

)
× n]]

∥∥2
0,F

+ hF ‖[[εuh · n]]‖20,F
]
,(3.1)

where K is an element of our triangulation Th, FI(K) is the set of inner faces of K,
hK and hF are the diameters of K and F , respectively, and [[·]] is the jump across an
inner face F .

Given a set of elements M, we use the notation

η̃(M)2 =
∑
K∈M

η̃2K ,

and we write η̃ = η̃(Th) for the global error estimator when no confusion arises.
Moreover, a subscript κ is used when η̃κ refers to the mesh Tκ.

Given an initial mesh T0 and a bulk parameter θ ∈ R, with 0 < θ ≤ 1, we compute
a sequence of meshes {T`}, solutions {(ω2

` ,u`)}, and estimators {η̃(T`)} according to
the standard solve/estimate/mark/refine strategy (see [26]). In particular, at a given
level `, the marking step consists in choosing a minimal subset M` of T` such that

θη̃2` (T`) ≤ η̃2` (M`).

The new mesh T`+1 is given by the smallest admissible refinement of T` satisfying
M` ∩ T`+1 = ∅ according to the rules defined in [4, 42].

Considering the equivalence between the standard formulation (2.5) and the
mixed formulation (2.6), the local error estimator for the mixed problem takes the
following form:

η2K = h2K‖εσh + curl(µ−1/2ph)‖20,K + h2K‖ div(εσh)‖20,K

+
1

2

∑
F∈FI(K)

(
hF

∥∥∥[[(µ−1/2ph)× n]]
∥∥∥2
0,F

+ hF ‖[[εσh · n]]‖20,F

)
.

(3.2)

It is easy to check that the following relation between the two estimators holds
true:

η̃2K =
1

λh
η2K ∀K ∈ Th.

In particular, the comments stated in Remark 2 can be extended to the error es-
timators: our analysis will be performed by using the mixed formulation (2.6) and
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the estimator (3.2) even if the scheme is originally defined in terms of the standard
formulation (2.5) and the estimator (3.1).

In the rest of this section we present our main result in the case of an eigenvalue
of multiplicity one, since we believe that in this case it is easier to describe the main
arguments leading to the optimal convergence of the adaptive scheme. Moreover, for
ease of notation, we assume from now on that ε and µ are scalar and ε = µ = 1. This
assumption does not reduce the relevance of our result: more general situations can
be dealt with by adopting arguments similar to those in [10] or [16].

Let ω = ωj be a simple eigenvalue of (2.2) and W̃ = span{uj} the associated one-
dimensional eigenspace. Let ω` = ω`,j be the jth discrete eigenvalue of (2.5) computed

with the adaptive scheme on the mesh T` and W̃` = span{u`,j} the corresponding

eigenspace. The gap between W̃ and W̃` is measured by

δ(W̃ , W̃`) = sup
u∈W̃

‖u‖curl=1

inf
u`∈W̃`

‖u− u`‖curl.

For the reader’s convenience, we recall the reliability and efficiency properties
proved in [13]. As is common for eigenvalue problems, the efficiency property is not
local in the sense that it relies on the difference between ω and ωh, which is a global
quantity.

Proposition 3.1. There exists C > 0 such that, if (ω,u) and (ωh,uh) are solu-
tions of problems (2.2) and (2.5), respectively (the latter approximating the former as
h goes to zero), we have for h small enough
Reliability

‖u− uh‖curl ≤ Cη̃, |ω2 − ω2
h| ≤ Cη̃2,

Efficiency

η̃K ≤ C
(
‖u− uh‖0,K′ + ‖curl(u− uh)‖0,K′ + hK

∥∥ω2u− ω2
huh

∥∥
0,K′

)
,

where K ′ denotes the union of the elements sharing a face with K.

Proof. See Propositions 5 and 6 of [13].

The convergence of the adaptive scheme is usually described by making use of the
nonlinear approximation classes discussed in [4]. Denoting by T(m) the set of admissi-
ble refinements of T0 whose cardinality differs from that of the initial triangulation by
less than m, the best algebraic convergence rate s ∈ (0,+∞) for the approximation of
functions belonging to a space W is characterized in terms of the following seminorm:

|W |As
= sup
m∈N

ms inf
T ∈T(m)

δ(W ,ΣT ),

where ΣT is the edge finite element space on the mesh T .
The main result of our paper, stated in the next theorem, shows that if W̃ has

bounded As-seminorm for some s, then the optimal convergence order s is obtained
by the sequence of solutions constructed by the adaptive procedure described above.

Theorem 3.2. Provided the meshsize of the initial mesh T0 and the bulk param-
eter θ are small enough, if the eigenspace satisfies |W̃ |As

< ∞, then the sequence of

discrete eigenspaces W̃` computed on the mesh T` fulfills the optimal estimate

δ(W̃ , W̃`) ≤ C(card(T`)− card(T0))−s|W̃ |As
.
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Moreover, the eigenvalue satisfies the double order rate of convergence

|ω − ω`| ≤ Cδ(W̃ , W̃`)
2.

The proof of Theorem 3.2 is based on the corresponding result written in terms
of the mixed formulations (2.3) and (2.6).

Let λ = λj be a simple eigenvalue of (2.3) and W = span{(σj ,pj)} the associated
one-dimensional eigenspace. Let λ` = λ`,j be the jth discrete eigenvalue correspond-
ing to the `th level of refinement in the adaptive scheme and W` = span{(σ`,j ,p`,j)}
the associated eigenspace. The gap between W and W` is measured by

δ(W,W`) = sup
(σ,p)∈W
‖p‖0=1

inf
(σ`,p`)∈W`

(
‖σ − σ`‖20 + ‖p− p`‖20

)1/2
.

We recall the reliability and efficiency properties proved in [13]. It turns out that
in the case of the mixed formulation it is possible to obtain a local efficiency estimate.

Proposition 3.3. Let (λ,σ,p) and (λh,σh,ph) be solutions of problems (2.3)
and (2.6), respectively, such that the latter approximates the former as h goes to zero.
Reliability There exist ρrel1(h) and ρrel2(h) tending to zero as h → 0 and positive

constants C independent of the mesh size such that

‖σ − σh‖0 + ‖p− ph‖0 ≤ Cη + ρrel1(h)(‖σ − σh‖0 + ‖p− ph‖0),

|λ− λh| ≤ Cη2 + ρrel2(h)(‖σ − σh‖0 + ‖p− ph‖0)2.

Efficiency For each K ∈ Th,

ηK ≤ C(‖σ − σh‖0,K′ + ‖p− ph‖0,K′),

where K ′ is the union of the tetrahedra sharing a face with K.

Proof. See Theorems 3 and 4 of [13]. The estimate for |λ − λh| is an immediate
consequence of (4.2).

The counterpart of Theorem 3.2 in the framework of the mixed formulation is
stated as follows.

Theorem 3.4. Provided the meshsize of the initial mesh T0 and the bulk param-
eter θ are small enough, if the eigenspace satisfies |W |As < ∞, then the sequence of
discrete eigenspaces W` corresponding to the solution computed on the mesh T` fulfills
the optimal estimate

δ(W,W`) ≤ C(card(T`)− card(T0))−s|W |As
.

Moreover, the eigenvalue satisfies the double order rate of convergence

|ω − ω`| ≤ Cδ(W,W`)
2.

The proof of our main result has the same structure as the one presented in [11],
based on [28] and [17]. For this reason, we do not repeat it here, but we conclude
this section by listing some keystone properties that are essential for the proof of our
main result. We refer the interested reader to [11] and to the references therein for a
rigorous proof of how to combine them in order to get the result of Theorem 3.4.

The following properties involve quantities related to meshes that will be denoted
by TH , Th, or T`. In general, Th denotes an arbitrary refinement of a fixed mesh

D
ow

nl
oa

de
d 

06
/0

3/
22

 to
 1

92
.1

67
.1

6.
4 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AFEM FOR MAXWELL’S EIGENVALUES 485

TH , while T` refers to the sequence of meshes designed by the adaptive procedure.
The eigenmode approximating {λ, (σ,p)} will be indicated by {λκ, (σκ,pκ)}, where
κ may be H, h, or `, respectively. We assume that the sign of (σκ,pκ) is chosen in
such a way that the scalar product between p and pκ is positive (so that the same is
true for the scalar product between σ and σκ).

Property 1 (discrete reliability). There exist a constant Cdrel and a function
ρdrel(H) tending to zero as H goes to zero, such that, for a sufficiently fine mesh TH
and for all refinements Th of TH , it holds that

‖σh − σH‖0 + ‖ph − pH‖0 ≤ CdrelηH(TH \ Th)

+ ρdrel(H)(‖σ − σh‖0 + ‖p− ph‖0 + ‖σ − σH‖0 + ‖p− pH‖0).

Property 2 (quasi-orthogonality). There exists a function ρqo(h) tending to
zero as h goes to zero, such that

‖σh − σH‖20 + ‖ph − pH‖20 ≤ ‖σ − σH‖20 + ‖p− pH‖20 − ‖σ − σh‖20 − ‖p− ph‖20
+ ρqo(h)(‖σ − σh‖20 + ‖p− ph‖20 + ‖σ − σH‖20 + ‖p− pH‖20).

Property 3 (contraction). If the initial mesh T0 is sufficiently fine, there exist
constants β ∈ (0,+∞) and γ ∈ (0, 1) such that the term

ξ2` = η(T`)2 + β(‖σ` − σ`+1‖20 + ‖p` − p`+1‖20)

satisfies for all integers `
ξ2`+1 ≤ γξ2` .

In the next section we will show how to prove the above properties. While in
some cases these are natural extensions of the analogous results for the Laplace eigen-
problem in mixed form (see [11]), we will see that in particular the discrete reliability
property requires a more careful analysis.

4. Proof of the main results. We start this section by recalling some known
results for the approximation of problem (2.3) (recall that for simplicity we deal
with trivial topology and homogeneous material ε = µ = 1). The first one is a
superconvergence estimate which has been proved in [13, Lemma 9].

Lemma 4.1. Let (λ,σ,p) and (λh,σh,ph) be solutions of (2.3) and (2.6), respec-
tively, with ‖p‖0 = ‖ph‖0 = 1 and such that the latter approximates the former as h
goes to zero. Then, there exists a function ρsc(h) tending to zero as h→ 0 such that

(4.1) ‖Php− ph‖0 ≤ ρsc(h)(‖σ − σh‖0 + ‖p− ph‖0),

where Ph denotes the L2-projection onto Qh.

If (λ,σ,p) and (λκ,σκ,pκ) for κ = h,H are as in Lemma 4.1, thanks to the
definition of Qκ, it is not difficult to verify that the following equations hold true
(see [27, Lemma 4]):

(4.2)
λ− λh = ‖σ − σh‖20 − λh‖p− ph‖20,
λh − λH = ‖σh − σH‖20 − λH‖ph − pH‖20.

Using the error estimates for ‖σ−σh‖0 and ‖p−ph‖0, one can obtain the following
bound, which will be used several times in what follows: there exists ρ0(H) tending
to zero as H goes to zero such that

(4.3) |λh − λH | ≤ ρ0(H)(‖σh − σH‖0 + ‖ph − pH‖0).
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It is useful to recall the source problem associated with (2.3): given g ∈ L2(Ω)3,
find (σg,pg) ∈ H0(curl; Ω)×Q such that

(4.4)
(σg, τ ) + (curl τ ,pg) = 0 ∀τ ∈ H0(curl; Ω),

(curlσg, q) = −(g, q) ∀q ∈ Q.

Since we have taken µ = 1, it turns out that Q = curl(H0(curl; Ω)) = H0(div0; Ω),
which is the space of vectorfields in L2(Ω)3 with zero divergence and vanishing normal
component along the boundary.

Standard regularity results for (4.4) imply that, if Ω is a Lipschitz polyhedron,
then both components of the solution of (4.4) are in Hs(Ω) for some s > 1/2 (see, for
instance, the discussion related to [12, Theorem 2.1]).

The discretization of (4.4) reads as follows: find (σg,h,pg,h) ∈ Σh×Qh such that

(4.5)
(σg,h, τ ) + (curl τ ,pg,h) = 0 ∀τ ∈ Σh,

(curlσg,h, q) = −(g, q) ∀q ∈ Qh.

The following error estimate is well known (see [5]):

(4.6) ‖σg − σg,h‖0 + ‖pg − pg,h‖0 ≤ Chs‖g‖0, s > 1/2.

A special situation that will be useful in the proof of Property 1 is given by the
following problem: find (σ̂H , p̂H) ∈ ΣH ×QH such that

(4.7)
(σ̂H , τ ) + (curl τ , p̂H) = 0 ∀τ ∈ ΣH ,

(curl σ̂H , q) = −λh(ph, q) ∀q ∈ QH .

It is classical to obtain the estimate stated in the following lemma.

Lemma 4.2. Let (σH ,pH) ∈ ΣH ×QH be the solution of (2.6) on the mesh TH
and (σ̂H , p̂H) ∈ ΣH ×QH be the solution of (4.7). Then there exists ρ1(H) tending
to zero as H goes to zero such that
(4.8)
‖σH − σ̂H‖0 + ‖pH − p̂H‖0 ≤ C‖p̂H −PHph‖0 + ρ1(H)(‖σh−σH‖0 + ‖ph−pH‖0).

Proof. Let {λH,i, (σH,i,pH,i)} (i = 1, . . . , N(H)) be the family of eigensolutions
of problem (2.6) related to the mesh TH (recall that λH = λH,j). We have

‖pH − p̂H‖20 =

N(H)∑
i=1

a2i , ai = (pH − p̂H ,pH,i).

For i = j,

aj = (pH − p̂H ,pH) = 1− (p̂H ,pH) = 1 +
1

λH
(p̂H , curlσH) = 1− 1

λH
(σ̂H ,σH)

= 1 +
1

λH
(pH , curl σ̂H) = 1− λh

λH
(ph,pH) = 1− λh

λH
+
λh
λH

(
1− (ph,pH)

)
=
λH − λh
λH

+
λh

2λH
‖ph − pH‖20 =

(
1 +

λh
2λH

)
‖ph − pH‖20 −

1

λH
‖σh − σH‖20.

For i 6= j, since ai = −(p̂H ,pH,i), we can proceed as follows:

λH,i(p̂H ,pH,i) = −(curlσH,i, p̂H) = (σ̂H ,σH,i) = −(curl σ̂H ,pH,i)

= λh(ph,pH,i) = λh(PHph,pH,i),
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which gives
(λH,i − λh)(p̂H ,pH,i) = −λh(pH,i, p̂H − PHph).

Hence, ∑
i 6=j

a2i =
∑
i 6=j

ai
λh

λH,i − λh
(pH,i, p̂H − PHph)

≤ max
i 6=j

∣∣∣∣ λh
λH,i − λh

∣∣∣∣
(∑
i 6=j

a2i

)1/2(∑
i 6=j

(pH,i, p̂H − PHph)2

)1/2

≤ max
i 6=j

∣∣∣∣ λh
λH,i − λh

∣∣∣∣
(∑
i 6=j

a2i

)1/2

‖p̂H − PHph‖0.

Putting things together, we get

(4.9)

‖pH − p̂H‖20 =

N(H)∑
i=1

a2i

≤ C(‖σh − σH‖20 + ‖ph − pH‖20)2 + max
i 6=j

∣∣∣∣ λh
λH,i − λh

∣∣∣∣2 ‖p̂H − PHph‖20.
If H is small enough (remember that we have assumed in Theorem 3.2 that the initial
mesh is fine enough), then the denominator λH,i − λh is bounded away from zero for
all i 6= j and for all h. This implies the desired estimate for ‖pH − p̂H‖0.

The estimate for ‖σ̂H − σH‖0 can be obtained as follows:

‖σ̂H − σH‖20 = −(curl(σ̂H − σH), p̂H − pH) = (λhPHph − λHpH , p̂H − pH)

≤ |λh − λH |‖p̂H − pH‖0 + λh‖pH − PHph‖0‖p̂H − pH‖0
≤ C(|λh − λH |2 + ‖p̂H − pH‖20 + ‖pH − PHph‖20)

≤ C(|λh − λH |2 + ‖p̂H − pH‖20 + ‖p̂H − PHph‖20).

Using (4.3) and (4.9), we obtain the final estimate.

Lemma 4.3. Let (σh,ph) ∈ Σh × Qh be the solution of (2.6) and (σ̂H , p̂H) ∈
ΣH ×QH be the solution of (4.7). Then for H small enough we have

‖p̂H − PHph‖0 ≤ CHs(‖σh − σH‖0 + ‖ph − pH‖0).

Proof. We use a duality argument in order to get a bound for ‖p̂H − PHph‖0.
Let (ξ,w) ∈ H0(curl; Ω)×Q be the solution of

(ξ, τ ) + (curl τ ,w) = 0 ∀τ ∈ H0(curl; Ω),

(curl ξ, q) = (p̂H − PHph, q) ∀q ∈ Q,

and let (ξh,wh) ∈ Σh × Qh (resp., (ξH ,wH) ∈ ΣH × QH) be the corresponding
discrete solution on the mesh Th (resp., TH). We have

‖p̂H − PHph‖20 = (curl ξH , p̂H − PHph) = (curl ξH , p̂H − ph)

= −(σ̂H − σh, ξH)

= −(σ̂H − σh, ξH − ξh)− (σ̂H − σh, ξh)

= −(σ̂H − σh, ξH − ξh) + (curl(σ̂H − σh),wh)

= −(σ̂H − σh, ξH − ξh) + (curl(σ̂H − σh),wh − PHwh).
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By the Cauchy–Schwarz inequality, we obtain

(4.10) ‖p̂H−PHph‖20 ≤ ‖σ̂H−σh‖0‖ξH−ξh‖0 +‖ curl(σ̂H−σh)‖‖wh−PHwh‖0.

In order to bound ‖ξH − ξh‖0 in (4.10), we use the triangle inequality and the
error estimates for the mixed source problem (4.6)

(4.11) ‖ξH − ξh‖0 ≤ ‖ξH − ξ‖0 + ‖ξ − ξh‖0 ≤ C(hs +Hs)‖p̂H − PHph‖0.

From the definition of the discrete spaces, since Qh = curl(Σh) for any choice of the
mesh, it is clear that

curl(σ̂H) = −λhPHph, curl(σh) = −λhph.

Therefore, from Lemma 4.2 we obtain

(4.12)

‖ curl(σh − σ̂H)‖0 ≤ λh‖ph − PHph‖0
≤ λh(‖ph − pH‖0 + ‖pH − PHph‖0)

≤ λh
(
‖ph − pH‖0 + C‖p̂H − PHph‖0

+ Cρ1(H)(‖σh − σH‖0 + ‖ph − pH‖0)
)
.

Considering again the definition of the solution of the dual problem, the last norm
appearing in (4.10) can be bounded by using (4.6) and the properties of the projection
operator PH :

(4.13)

‖wh − PHwh‖0 ≤ ‖wh −w‖0 + ‖w − PHw‖0 + ‖PH(w −wh)‖0
≤ C‖w −wh‖0 + ‖w − PHw‖0
≤ C(hs +Hs)‖p̂H − PHph‖0.

Collecting all the obtained estimates for the four norms in (4.10), we arrive at

‖p̂H − PHph‖20 ≤ CHs‖p̂H − PHph‖0ρ1(H)
(
‖σh − σH‖0 + ‖ph − pH‖0

)
+ C(hs +Hs)‖p̂H − PHph‖20,

which implies that, for H sufficiently small, we have

(4.14) ‖p̂H − PHph‖0 ≤ CHs(‖σh − σH‖0 + ‖ph − pH‖0).

4.1. Proof of Property 1. The proof of Property 1 (discrete reliability) con-
stitutes the main novelty with respect to the results present in the literature. The
structure of the proof is a combination of the analogous proof in [11] and of some
of the results in [13]. However, some new estimates are needed that will be detailed
in this section. The presentation of the proof has been made clearer following the
suggestions of an anonymous referee.

Let us start with the estimate of ‖σh−σH‖0. We split σh−σH using a discrete
Helmholtz decomposition as

(4.15) σh − σH = ∇αh + ζh,

where αh ∈ H1
0(Ω) is a Lagrange finite element in Nh and ζh is an edge element in

Σh satisfying

(4.16) (∇αh,∇ψh) = (σh − σH ,∇ψh) ∀ψh ∈ Nh,
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and, for some rh ∈ Qh,

(4.17)
(ζh, τ ) + (curl τ , rh) = 0 ∀τ ∈ Σh,

(curl ζh, q) = (curl(σh − σH), q) ∀q ∈ Qh.

In particular, (ζh, rh) approximates the solution of the mixed problem (4.4) with
source term g = − curl(σh − σH).

Clearly, we have

‖∇αh‖0 ≤ C‖σh − σH‖0, ‖ζh‖curl + ‖rh‖0 ≤ C‖ curl(σh − σH)‖0.

Let us estimate the first term of (4.15). By standard procedure, defining αH as
the Scott–Zhang interpolant of αh on TH (see [39]), we have

‖∇αh‖20 = (∇αh,σh − σH) = −(∇αh,σH) = −(∇(αh − αH),σH),

since (∇αh,σh) = (∇αH ,σH) = 0 from the first equation of (2.6). Integrating by
parts element by element, we get

(4.18)

‖∇αh‖20 =
∑

K∈TH\Th

(
(αh − αH ,divσH)− 1

2

∑
F∈K

∫
F

(αh − αH)[[σH · n]]
)

≤ C
∑

K∈TH\Th

(
‖ divσH‖0,KHK‖∇αh‖0,K

+
1

2

∑
F∈FI(K)

‖[[σH · n]]‖0,FH1/2
F ‖αh‖1,K

)

≤ C‖∇αh‖0

(( ∑
K∈TH\Th

H2
K‖divσH‖20,K

)1/2
+
( ∑
K∈TH\Th

∑
F∈FI(K)

HF ‖[[σH · n]]‖20,F
)1/2)

≤ C‖∇αh‖0ηH(TH \ Th).

In order to estimate the second term in (4.15), we proceed as follows:

(4.19)

‖ζh‖20 = (ζh, ζh) = −(curl ζh, rh) = −(curl(σh − σH), rh)

= (λhph − λHpH , rh)

= (λh − λH)(ph, rh) + λH(ph − pH , rh).

We bound the two terms in the last line separately.
From the classical inf-sup condition involving edge and face elements (see, for

instance, [10]), we have

(ph, rh) ≤ ‖ph‖0‖rh‖0 = ‖rh‖0

≤ C sup
τh∈Σh

(curl τh, rh)

‖τh‖curl
= C sup

τh∈Σh

(ζh, τh)

‖τh‖curl
≤ C‖ζh‖0.

Hence, using (4.3), we conclude the estimate of the first term in (4.19) as follows:

(4.20) (λh − λH)(ph, rh) ≤ Cρ0(H)
(
‖σh − σH‖0 + ‖ph − pH‖0

)
‖ζh‖0.
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The second term of (4.19) is easily bounded by considering the previously obtained
estimate ‖rh‖0 ≤ C‖ζh‖0. Then we have

(4.21)
‖σh − σH‖0 ≤ C

(
ηH(TH \ Th) + ‖ph − pH‖0

+ ρ0(H)(‖σh − σH‖0 + ‖ph − pH‖0)
)
.

We now move to the term ‖ph − pH‖0. We consider the following auxiliary
problem: find χh ∈ Σh and zh ∈ Qh such that

(4.22)
(χh, τ ) + (curl τ , zh) = 0 ∀τ ∈ Σh,

(curlχh, q) = (ph − pH , q) ∀q ∈ Qh.

Therefore, we have curlχh = ph − pH and ‖χh‖curl ≤ C‖ph − pH‖0.
We are going to use a technical tool introduced in [44, Theorem 4.1]. More

precisely, if Th is a refinement of TH , there exists an operator PH : Σh → ΣH such
that for all τ ∈ Σh it holds that PHτ = τ on the elements of TH that have not been
refined (more precisely, on the elements of TH whose closures have no intersection with
the closures of any refined elements). Such an operator is stable in the H(curl)-norm,
i.e., ‖PHτ‖curl ≤ C‖τ‖curl for all τ ∈ Σh.

We get
(4.23)
‖ph − pH‖20 = (ph − pH , curlχh) = −(σh,χh)− (pH , curlχh)

= −(σh,χh)− (pH , curl(χh −PHχh))− (pH , curlPHχh)

= −(σh,χh)− (pH , curl(χh −PHχh)) + (σH ,PHχh)

= −(σh − σH ,χh)− (pH , curl(χh −PHχh))− (σH ,χh −PHχh).

Let us set ϑh = χh −PHχh and denote by SH the operator introduced in [38,
Theorem 1] mapping H0(curl; Ω) into the space of lowest order Nédélec elements so
that there exist ϕ ∈ H1

0(Ω) and s ∈ H1
0(Ω) satisfying

ϑh − SHϑh = ∇ϕ+ s,

h−1K ‖ϕ‖0,K + ‖∇ϕ‖0,K ≤ C‖ϑh‖0,K′ ,

h−1K ‖s‖0,K + ‖∇ s‖0,K ≤ C‖ curlϑh‖0,K′

for all K ∈ Th and with K ′ denoting the union of elements in Th sharing at least a
vertex with K.

From the first equation in (2.6) it follows that (σH ,SHϑh) + (curlSHϑh,pH) =
0. This implies that (4.23) gives

(4.24) ‖ph−pH‖20 = −(σh−σH ,χh)− (pH , curl(ϑh−SHϑh))− (σH ,ϑh−SHϑh).

The first term can be estimated as follows using (4.22) and the definition of σ̂H :

−(σh − σH ,χh) = −(σh − σ̂H ,χh)− (σ̂H − σH ,χh)

= (curl(σh − σ̂H), zh)− (σ̂H − σH ,χh)

= −(σ̂H − σH ,χh)

≤ ‖σ̂H − σH‖0‖χh‖0
≤ ‖σ̂H − σH‖0‖ph − pH‖0.
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It follows from Lemmas 4.2 and 4.3 that there exists ρ2(H), tending to zero as H
goes to zero, such that

‖σ̂H − σH‖0 ≤ ρ2(H)(‖σh − σH‖0 + ‖ph − pH‖0).

The remaining two terms in (4.24) can be bounded together.

(pH , curl(ϑh − SHϑh)) + (σH ,ϑh − SHϑh)

=
∑

K∈TH\Th

(∫
K

curlpH · s+
1

2

∑
F∈FI(K)

∫
F

[[pH × n]] · s
)

+ (σH , s) + (σH ,∇ϕ)

=
∑

K∈TH\Th

(∫
K

(σH + curlpH) · s+
1

2

∑
F∈FI(K)

∫
F

[[pH × n]] · s
)

+
∑

K∈TH\Th

(
−
∫
K

divσHϕ+
1

2

∑
F∈FI(K)

∫
F

[[σH · n]]ϕ
)
.

Therefore,∣∣(pH , curl(ϑh − SHϑh)) + (σH ,ϑh − SHϑh)
∣∣

≤
∑

K∈TH\Th

(
‖σH + curlpH‖0,K‖s‖0,K +

1

2

∑
F∈FI(K)

‖[[pH × n]]‖0,F ‖s‖0,F
)

+
∑

K∈TH\Th

(
‖ divσH‖0,K‖ϕ‖0,K +

1

2

∑
F∈FI(K)

‖[[σH · n]]‖0,F ‖ϕ‖0,F
)

≤ C
∑

K∈TH\Th

(
HK‖σH + curlpH‖0,K‖ curlϑh‖0,K′

+
1

2

∑
F∈FI(K)

H
1/2
F ‖[[pH × n]]‖0,F ‖ curlϑh‖0,K′

)
+ C

∑
K∈TH\Th

(
HK‖ divσH‖0,K‖ϑh‖0,K′

+
1

2

∑
F∈FI(K)

H
1/2
F ‖[[σH · n]]‖0,F ‖ϑh‖0,K′

)
≤ CηH(TH \ Th)‖ϑh‖curl ≤ CηH(TH \ Th)‖ph − pH‖0.

Finally, (4.24) becomes

(4.25) ‖ph − pH‖0 ≤ CηH(TH \ Th) + ρ2(H)(‖σh − σH‖0 + ‖ph − pH‖0).

Putting things together, estimates (4.21) and (4.25) give the final result.

4.2. Proof of Property 2. The proof of Property 2 (quasi-orthogonality) can
be obtained after appropriate modification of the analogous result in [11].

By direct computation we have

‖σh − σH‖20 = ‖σ − σH‖20 − ‖σ − σh‖20 − 2(σ − σh,σh − σH),

‖ph − pH‖20 = ‖p− pH‖20 − ‖p− ph‖20 − 2(Php− ph,ph − pH).

D
ow

nl
oa

de
d 

06
/0

3/
22

 to
 1

92
.1

67
.1

6.
4 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

492 DANIELE BOFFI AND LUCIA GASTALDI

Since Th is a refinement of TH , we have that σH ∈ Σh; hence the error equations
relative to (2.3) and (2.6) give

(σ − σh,σh − σH) = −(curl(σh − σH),p− ph)

= (λhph − λHpH ,p− ph)

= (λhph − λHpH ,Php− ph).

Using Lemma 4.1 and the equalities in (4.2), we obtain

(σ − σh,σh − σH) + (Php− ph,ph − pH)

= (λhph − λHpH ,Php− ph) + (ph − pH ,Php− ph)

≤
(
|λh − λH |+ (1 + λH)‖ph − pH‖0

)
‖Php− ph‖0

≤
(
‖σh − σH‖20 + λH‖ph − pH‖20 + (1 + λH)‖ph − pH‖0

)
· ρsc(h)

(
‖σ − σh‖0 + ‖p− ph‖0

)
,

which, using Young’s inequality, gives the desired result with

ρdrel(H) = C(ρ2(H) + ρ0(H)).

4.3. Proof of Property 3. The contraction property is quite standard in the
framework of adaptive schemes; see [17]. It is a consequence of the following error
estimator reduction property: there exist constants β1 ∈ (0,+∞) and γ1 ∈ (0, 1) such
that, if T`+1 is the refinement of T` generated by the adaptive scheme, it holds that

η(T`+1)2 ≤ γ1η(T`)2 + β1
(
‖σ` − σ`+1‖20 + ‖p` − p`+1‖20

)
.

In our case, the proof can be obtained with natural modifications of the one outlined
in [11] and using the following notation:

e2` = ‖σ − σ`‖20 + ‖p− p`‖20, µ2
` = η(T`)2.

5. Conclusions. In this paper we have proved the optimal convergence of an
adaptive finite element scheme for the approximation of the eigensolutions of the
Maxwell system. The scheme makes use of the Nédélec edge finite element in three
space dimensions and a standard residual-based error estimator. The proof is based
on an equivalent mixed formulation. The most challenging part of the proof consists
in showing a suitable discrete reliability property.
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[37] S. Nicaise and E. Creusé, A posteriori error estimation for the heterogeneous Maxwell
equations on isotropic and anisotropic meshes, Calcolo, 40 (2003), pp. 249–271, https:
//doi.org/10.1007/s10092-003-0077-y.
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