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Preface

This Ph.D. thesis consists of two research papers and one chapter of literature re-

view which are the result of my studies at the University of Brescia. This work was

accomplished during my working period as Proprietary Trader at Banca IMI and later

as European Government Bond Trader at UniCredit. The three chapters are linked by

one common subject: innovations in Fixed Income instruments. This preface introduces

the content of the three chapters and briefly explains how the research questions have

been addressed. The first chapter of this thesis provides an introduction to the topic and

presents the instruments. In particular, we will review the literature for bonds and re-

lated portfolio problem while later we will look at Credit Default Swap (CDS) and related

payoff description.

The second chapter proposes a method for quantifying the variance risk premium in

the Credit Default Swap Index market. We derive theoretically and we show numerically

that the expected risk-neutral variance can be inferred from the market prices of the

credit index options. The variance risk premium is defined as the difference between the

realized variance and the synthetic simple variance swap rate. Using a novel data set,

we calculate the risk neutral variance and we empirically test the historical variance risk

premia magnitude on three European Credit Default Swap Indices.

The second paper, proposed in Chapter 3, jointly written with Francesco Menoncin

derives a closed-form solution to the optimal investment target problem for the bond

market. We show that the target problem is equivalent to the mean-variance one. We

model the bond market using a Dynamic Nelson-Siegel-Svensson model starting from the

yield to maturity curve that we enrich trough the addition of the liquidity spreads that

lead to an incomplete market representation. Finally, we have presented numerical results

of the optimal portfolio dynamics.

The three chapters, although not being conclusive, highlight the innovations in Fixed

Income. Further research is needed to assess the optimal trading strategy that can be

used to harvest the variance risk premium and to backtest the hedging performance of

the target based bond portfolio.



CHAPTER 1

Bond and Credit Default Swap: a literature survey

1.1. Introduction

In this chapter, the literature on bonds and credit default swaps will be analyzed.

In particular, we will look at the standard literature related to the modeling of these

instruments that will be explored in Chapters 2 and 3 which show new frameworks that are

more in line with the current market practice and the literature evolution. Subsequently,

we will present an introduction and review of the literature for variance risk premia and

mean variance portfolio problem that are studied in this thesis.

1.2. An overview on interest rate term structure

The modeling of interest rates and their term structure is at the very base of most

of financial models. The following list summarizes a taxonomy, proposed by Rebonato

(2018), of the different types of term-structure models:.

(1) Structural no-arbitrage models. These models start with the works of Vasicek

(1977), Cox et al. (1985a), and Cox et al. (1985b). They model the instantaneous

risk-less interest rate and they ensure that the no-arbitrage condition is satisfied.

In this framework the three components that drive the yield curve (expectations,

risk premia and convexity) can be derived. More recently, Cochrane and Piazzesi

(2005); Piazzesi and Cochrane (2009) and Adrian et al. (2014) have used multiple

risk factors to explain the risk premia.

(2) Statistical models. A part of the literature, summarized in Piazzesi and Cochrane

(2009), describes how the yield curve moves using the Vector Auto-Regressive

(VAR) models. In this framework the rates are modeled as discrete time sto-

chastic processes and the risk premium is estimated as the difference between

the forward and the yield forecasted by the model.. Given the quasi-unit-root

nature of rates, the estimations based of times-series models have some statistical

pitfalls and they cannot guarantee the absence of arbitrage.

(3) Snapshot models. The first models by Nelson and Siegel (1987), Fisher et al.

(1995), and Svensson (1994) use cross-sectional functions that interpolate prices

or yields of bonds that cannot be observed. Actually, these models are used by

practitioners in order to find whether a given bond is cheap/rich with respect

5
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to the model yield. Recent developments, proposed by Diebold and Rudebusch

(2013), have shown a dynamic interpretation to their parameters making a com-

parison with the Principal Component Analysis factors. So, these latest develop-

ments combine features of structural, statistical and snapshot models. Moreover,

Fontaine and Garcia (2009) have used a snapshot model to analyze the impact

of liquidity on the yield curve by adding another risk factor, called liquidity pre-

mium, that drives the common dynamics of the bonds but with factor loadings

varying with the maturity and the age of each bond. The model proposed in

Chapter 3 is an evolution of the Diebold and Rudebusch (2013) Snapshot model

that incorporated a liquidity correction for each bond of the curve.

(4) Derivatives models. They have been designed for derivatives pricing in such a

way to ensure the absence of arbitrage. After the first works of Vasicek (1977),

Cox et al. (1985a), and Cox et al. (1985b) the second generation of works by Hull

and White (1990), Heath et al. (1992) and Brace et al. (1997) only represent the

interest rate dynamics under the risk-neutral measure without estimating the

risk premia. In fact, they are designed to build the riskless portfolio composed

by the derivative and the hedging instrument therefore they do not provide a

representation of the underlying under the physical measure.

1.3. An overview on Credit Default Swaps

Another instrument analyzed in this thesis that has great relevance in the financial

literature is the Credit Default Swap (CDS). A CDS is a cleared derivative contract on

the credit risk of a reference entity and it is equivalent to an insurance contract. In fact an

investor called protection buyer can transfer the credit risk associated with the reference

entity to another investor, called the protection seller, by paying a quarterly annual coupon

called as CDS spread. The reference entity can be a corporation, a bank or a Government

and if becomes insolvent before the maturity of the CDS the protection seller must pay

the loss given default to the protection buyer. The failure of the reference entity is only

one of the credit events that could trigger the payments; other events are obligation

default, bankruptcy, repudiation, acceleration, and restructuring. The approaches used

to model and price a CDS can be divided into two groups: the reduced-form models and

the structural models.

(1) The structural approach was developed in Black and Scholes (1973) and Merton

(1974). The total value of a firm’s assets is modeled as a stochastic variable and

the default is triggered when this variable falls below a given threshold. The asset

value is often modeled by a geometric Brownian motion, while either the credit



1.4. PORTFOLIO PROBLEM 7

spread or the risk neutral probability are calibrated on the firm’s characteristics

as asset volatility and leverage.

(2) Reduced-Form Models were introduced by Jarrow and Turnbull (1995) and they

assume that the default time occurs randomly and follows a Poisson process.

In this framework a CDS is priced under the risk neutral probability and it is

possible to find the CDS spread that makes the contract fair at inception, as can

be seen in Duffie (1999).

More recently, Jarrow and Protter (2012) have shown that if an incomplete information

set is applied to a structural model it is possible to derive the equivalent reduced form

model.

In the second chapter the Credit Default Swap Index, that is a standard CDS written

on a fixed portfolio of several reference entities, will be described. The literature on these

instruments is particularly limited and furthermore it does not take into account the

market conventions currently in place. The main references are Morini and Brigo (2008)

and Armstrong and Rutkowski (2009) where options on Credit Default Swap Index are

presented too. These options are priced through an approximation of the payoff that does

not respect market conventions. Our novelty is that in 2 we will show how to correctly

represent the options.

1.4. Portfolio problem

1.4.1. Bond portfolio problem. Modern portfolio theory, proposed by Markowitz

(1952), has been having an enormous impact on the literature and on investor’s decisions.

However, its application is mainly related to equity markets while for the fixed income

market more suitable tools and models are missing. In fact, bond portfolios are nowadays

mainly managed by a comparison of portfolio risk measures with respect to a benchmark.

Generally, the portfolio manager’s views about the future evolution of the term struc-

ture of interest rates is simply applied by taking a relative value positions with respect

to a benchmark, over weighting or under weighting pillars of the term structure, without

using a theoretical portfolio optimization framework.

The very well known models about the evolution of interest rates are not commonly

used in the industry because of the characteristics of the bond variance-covariance matrix.

In fact, its estimation of the term structure is almost impossible, given the collinearity of

the interest rates .

One of the first work about bond portfolio selection using a dynamic term structure

model was proposed by Wilhelm (1992) that derives an optimal portfolio in a static

mean-variance framework using a CIR model while Fabozzi and Fong (1994) identify the
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variance covariance matrix estimation as the main problem of the static mean variance

portfolio.

Two other works related to the modern portfolio theory for bonds can be found in

Elton (2003), that proposed a multifactor model for bond modeling, and in Korn and

Koziol (2006) that analyze the problem of investing in zero-coupon bonds of different

maturities.

Another branch of literature instead analyses continuous-time portfolio starting from

seminal work of Merton (1971). Using a term structure driven by a Vasicek model Sørensen

(1999) proposes a portfolio optimization for an investor that maximizes a constant relative

risk aversion utility and can invest into a stock index, a zero-coupon bond, and a money

market account. Korn and Kraft (2002) solve the problem of a portfolio selection with

only bonds by using the stochastic control approach and affine process for the interest

rates, while Kraft (2004) extends this model to different term structure models. Another

important contribution is given by Munk and Sorensen (2004) who use the martingale

approach to solve the bond portfolio selection problem in a general Heath et al. (1992)

term structure framework.

1.4.2. CDS portfolio problem. The previous literature about portfolio optimiza-

tion was focused on default-free fixed income securities, but there are works that use also

structural and reduced form models. An optimal portfolio problem with defaultable as-

sets was proposed by Korn and Kraft (2003) in a Merton structural default framework,

while Steffensen and Kraft (2006) extended the analysis by defining the default as the

first passage time of an economic state variable below a given threshold.

Furthermore, using a reduced form approach, Walder (2002) studies the optimal port-

folio problem for an agent that can invest in a treasury bond and a portfolio of corporate

zero-coupon bonds and Bielecki and Jang (2006) derive optimal investment strategies for

a constant relative risk aversion (CRRA) investor. In a similar framework, Bo et al.

(2010) study an infinite horizon portfolio optimization problem. Finally, Ambrosini and

Menoncin (2018) derive the optimal investment strategy for an agent with hyperbolic ab-

solute risk aversion (HARA) who can invest in a risk-free asset, a defaultable bond, and

a CDS written on the bond.

1.4.3. Target based and mean variance optimization. The literature reviewed

in the previous section divides portfolio problems into two classes: static mean-variance

optimization and continuous-time optimization that maximizes a utility function. This is

due to the fact that the mean-variance problem is time inconsistent given that it contains

a non-linear function of the expectation (actually, the variance contains the square of an

expected value).



1.5. VARIANCE RISK PREMIUM 9

The definition of time inconsistency was given by Strotz (1956) and occurs when an

optimal strategy at some time t is no longer optimal at another time s > t. In this case,

the Bellman’s principle does not hold and the dynamic programming cannot be applied.

Vigna (2020) presents a review of the literature regarding the possible approaches to deal

with a time consistent version of the mean-variance portfolio problem. These approaches

are summarized in the following list.

(1) Precommitment approach. In this case the optimal control at an initial time is

computed and then, the agent precommits himself to follow this initial strategy

despite the fact that it could not be optimal at a future date. Solutions to mean-

variance problem using the precommitment approach can be found in Richardson

(1989), Zhou and Li (2000), and Li and Ng (2000).

(2) Consistent planning or Nash equilibrium. As pointed by Strotz (1956), this

approach consists in searching the ”best plan among those that will be actually

followed" and translates it into the search of a Nash subgame perfect equilibrium.

Basak and Chabakauri (2010) adopt this technique in a mean-variance framework,

while Bjork et al. (2017) extends it to a more general class of time-inconsistent

problems.

(3) Dynamical optimality. The most recent approach, called dynamically optimal

strategy, has been proposed by Pedersen and Peskir (2017) for the mean-variance

portfolio selection problem. The strategy is time-consistent in the sense that it

does not depend on initial time and initial state variable. In particular, it consists

in representing the behavior of an optimizer who continuously reevaluates his

position and solves infinitely many problems in an instantaneously optimal way.

In fact, for each time the investor solves the precommitment problem forgetting

about his past and ignoring his future (Vigna, 2020). Menoncin and Vigna (2020)

present a comparison between the precommitment approach and the dynamical

optimal strategy for a mean-variance problem for a DC pension scheme.

In 3 we propose a time consistent bond portfolio optimization using the approach proposed

by Zhou and Li (2000) that transforms the mean variance problem into an equivalent linear

quadratic target based problem, which can be solved by using the dynamic programming

approach.

1.5. Variance risk premium

The Variance Risk Premium (VRP) is the premium that can be accrued by bearing

the variance risk using a portfolio of options or a variance swap and it is defined as

the difference between expected risk neutral variance and the expectation of the realized

variance under the physical measure.
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In their seminal work, Carr and Wu (2008) propose to measure the VRP by using

the difference between a synthetic variance swap and the realized variance. In particular,

they compute the variance swap rate as a linear combination of options prices. They also

show that traditional risk factors fail to explain the VRP. In fact, later works as Bollerslev

et al. (2009), Rosenberg and Engle (2002), Bakshi and Madan (2006), and Bollerslev et al.

(2011) have interpreted the VRP as a measure of the aggregate risk aversion. Instead,

Drechsler and Yaron (2011) interpret it as a measure of economic uncertainty.

Finally, Martin (2017) shows how to link the expected return of the equity market

and the risk neutral variance (again calculated from option prices).

In the second chapter we show how to calculate the expected return for a generic asset.

Then, we will consider the specific case of CDS Indices in order to show the relationship

between the credit expected return and the risk neutral variance.



CHAPTER 2

Credit Variance Risk Premium

2.1. Introduction

The study of the variance risk premium is one of the topics that have received the

most attention since Carr and Wu (2008) who showed the presence of VRP in the equity

market. Subsequently, the same focus on risk premiums has been applied to: (i) the

treasury market by Choi et al. (2017), (ii) the interest rate swap by Trolle and Schwartz

(2014), (iii) commodities by Trolle and Schwartz (2010), and (iv) foreign exchange markets

by Ammann and Buesser (2013).

However, there is a lack of works formalizing and estimating VRP, mainly because of

the lack of data and the great complexity of the payoff of CDS indices and options.

Despite the literature on CDS Index and Options pricing, to the best of our knowledge,

our thesis is the first work that is aligned to the market convention which involves the

exchange of the upfront and not the payment of the running premium. This feature

complicates both the pricing of CDS Index and Options, and the risk-neutral variance

calculations, which are performed through approximation in Armstrong and Rutkowski

(2009) Ammann and Moerke (2022) .

The results and the mathematical formulas that we present below are newly developed

precisely to account for the proper modeling of the upfront amount.

In Section 2.2 we show how to to correctly represent the payoff of both the CDS

Index and Options. In Section 2.3 we theoretically present the risk neutral variance and

a decomposition that will allow us to numerically analyze the variance risk premium.

In Section 2.4 we expose the novel data set and the methodology used to compute the

variance risk premium and to test its magnitude. Section 2.5 describes and discusses the

empirical findings, while Section 2.6 concludes.

2.2. Credit Default Swap index and options

2.2.1. The financial market. In this section we describe the Credit Default Swap

Index and the CDS Index Option, and we introduce the variables involved in their pric-

ing. Our main references for the description of the contracts are Bloomberg Quantitia-

tive Analytics (2012); Pedersen (2003); Armstrong and Rutkowski (2009); ISDA (2014).

Throughout this document, we work with a complete filtered probability space

11
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(Ω,F ,Q, (Ft)), with t ∈ [0, T ], where the filtration Ft satisfies the usual hypotheses as

defined in Pascucci (2011). We refer to Ft as the reference filtration sufficiently rich to

contain all the information available about the financial market but the default times.

We also assume that a riskless asset exists, whose price Gt solves the ordinary differential

equation
dGt

Gt

= rtdt,

where rt is the stochastic instantaneously riskless interest rate and whose (unique) solution

is

Gt = Gt0e
∫ t
t0

rsds,

given the boundary condition Gt0 = 1.

We assume the absence of arbitrage which ensures the existence of an equivalent

martingale measureQ usingGt as numéraire of the economy, withQ absolutely continuous

with respect to P, the so called historical probability measure.

Using the Fundamental Theorem of Asset Pricing the value of a zero coupon bond

P (t, T ), that pays 1 for sure in T , is given by

B (t, T ) = EQ
[
Gt

GT

∣∣∣∣Ft

]
.

Following Armstrong and Rutkowski (2009), we define the default time τ as a strictly

positive random variable defined on a filtered probability space ((Ω,H,Q) , (Ht)). How-

ever, in this work we are interested in a particular derivative on the default time (the

Credit Default Index Swaps) which is written on a fixed portfolio of reference entities.

Thus, we have to generalize the previous notation in order to take into account the multi-

name default times.

A credit index is a fixed portfolio of n underlying reference entities and for every

possible name we define a sequence of ordered default times, τ1 ≤ ... ≤ τn, and Hi
t is the

filtration generated by τi which, thus, contains only the information regarding the credit

risk. We define F̂t
.
= Ft ∨ H1

t ∨ ...Hn−1
t as the filtration that does not contain the last

default and the enlarged filtration Gt
.
= F̂t ∨ Hn

t given τ̂ = τn the last default time when

all firms are defaulted. In fact, in the next sections we will use directly F̂t since we will

not analyze the behavior of the CDS Index or the CDS Index option at τ̂ . Clearly, the

default of all underlying credit names is not impossible but it is very unlikely and out

of our scope since this particular case has been exposed in greater detail in Morini and

Brigo (2008).

2.2.2. CDS index payoff. A Credit Default Swap Index (CDSI) is a standard CDS

written on a credit index, in which the protection buyer pays quarterly a fixed annual
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coupon c (either 100 or 500 basis points). There are two kinds of CDSIs: the CDX,

relative to the US market, and the iTraxx, relative to the European market.

At each time t, the “spread” of a CDSI (St) is the fixed coupon that should be paid

from t up to the maturity of the contract for equating the value of the fixed leg to the

value of the floating leg. Nevertheless, on the actual contract, the fixed payment is already

set to c and, accordingly, any agent who enters the contract (and should pay a constant

spread St) must pay (or receive) an upfront whenever St ̸= c.

We will show how to compute both the spread St and the upfront, since the former is

a quoting convention used by the market operators in order to compute the latter. In the

next section we will analyze in detail the market conventions regarding the upfront.

When a new CDSI series is issued, it contains n reference entities called “names”, that

are equally weighted and, accordingly, the notional of each name is 1/n. A new series

is established approximately every six months with a new underlying portfolio of names

and maturity date. The last series of the CDSI index is called “on-the-run”, while the

previous series are called “off-the-run”. Every CDSI series starts as “version 1” with n

names. When a name is removed from the index because of a default, the CDSI begins

trading on its “version 2” with n− 1 names and so on.

The two legs of the swap, without upfront and with maturity M , are described below:

• Default (floating) Leg: when the ith name defaults before maturity the protection

buyer receives

1

n
(1− ϕτi) ,

where ϕτi is the name’s recovery rate. We point out that although this amount is

stochastic, it is a market convention to set ϕτi as a constant, and such a constant

is assumed to be the same for all i, so we can write ϕτi = ϕ,∀i ∈ {1, 2, ..., n}.
• Premium (fixed) Leg: in exchange for the Default Leg, the protection buyer pays

a constant amount of money on the names which have not defaulted yet. After

a default: (i) a new version of the index without the defaulted name is created,

and (ii) the protection buyer pays the same spread but on a face value that is

multiplied by the ratio between the number of survived names and the original

number of constituents, until the maturity or until the next default. Hence, the

cash-flow of the Premium Leg can be written as

∫ M

t

St

nt∑
i=1

1τi>u
1

n
du
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at each instant 1u ∈]t,M ] where nt is the number of survived names at time t,

which is the date when the CDSI is traded.

Recalling the Fundamental Theorem of Asset Pricing, we can write the value of the Default

Leg as

(2.2.1) Dt
.
= EQ

[
nt∑
i=1

1t<τi<M
1

n
(1− ϕτi)

Gt

Gτi

∣∣∣∣∣ F̂t

]
,

and the value of the Premium Leg, given by StAt, as

(2.2.2) At
.
= EQ

[∫ M

t

nt∑
i=1

1τi>u
1

n

Gt

Gu

du

∣∣∣∣∣ F̂t

]
.

In particular, the term At is called risky annuity. At the time of subscription (t), the

equivalence Dt = StAt must hold, and the theoretical spread St is given by:

(2.2.3) St =
Dt

At

=

EQ
[∑nt

i=1 1t<τi<M (1− ϕτi)
Gt

Gτi

∣∣∣∣ F̂t

]
EQ

[∫M

t

∑nt

i=1 1τi>u
Gt

Gu

du

∣∣∣∣ F̂t

] .

As mentioned before, the protection buyer does not actually pay St. Instead, he pays

a constant c ̸= St. As a consequence, an upfront fee is transferred at inception and

is calculated as the difference between the premium leg, calculated by using c, and the

premium leg of the standard running CDS, exchanged at zero, with the spread St. Since

the upfront Ut (St) is the amount that makes the trade fair, we can write

0 = Dt − cAt − Ut (St) = Dt − StAt,

from which

Ut (St) = At (St − c) .(2.2.4)

2.2.3. Market conventions for valuing a CDS index with upfront . The risky

annuity At, defined in the previous section and necessary to obtain the upfront, is not

directly observable on the market and it is calculated by using the following conventions

described in the ISDA CDS Standard Model ISDA (2009):

(1) Homogeneous Portfolio: all the firms in the index are identical and the CDSI

is calculated like a single name CDS with notional proportional to
nt

n
where nt

is the number of survived names at time t. Moreover, the intensity of default

λSt of a CDSI traded at spread level St is assumed to be constant, therefore

under these hypotheses λi = λSt ,∀λi. We derive λSt under the continuous-time

1Here we have used the continuous time approximation. In reality, the coupon is paid quarterly and

the accrual should be calculated.
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approximation of the premium leg, while for the most realistic description of the

contract a numerical root search is required. The precise convention used for the

discrete time payment can be found in Bloomberg (2015).

(2) The cash flows are discounted by using a conventional discount curve, LIBOR

based, where the interest rate is assumed to be independent of λSt .

Given the first two assumptions, we can simplify equation (2.2.3) as follows

St =
EQ
[∫M

t
(1− ϕ)λSte−

∫ s
t (λSt+ru)duds

∣∣∣ F̂t

]
EQ
[∫M

t
e−

∫ s
t (λSt+ru)duds

∣∣∣ F̂t

] ,(2.2.5)

and obtain the value of the constant default intensity:

λSt =
St

1− ϕ
.

Using this result and the discount curve, LIBOR based, we can compute the market

annuity, At

(
λSt , nt

)
, like a single name annuity with whose notional is

nt

n
:

(2.2.6) At

(
λSt , nt

)
=

∫ M

t

nt

n
e−λSt (s−t)B (t, s) ds,

given the Homogeneous Portfolio hypothesis. In fact, the summation of default times∑nt

i=1 1τi>u can be rewritten as nt1τ>u. Finally we obtain the upfront from (2.2.4):

(2.2.7) Ut (St, nt) = At

(
λSt , nt

)
(St − c) .

We notice that the annuity At

(
λSt , nt

)
, calculated under the ISDA CDS Standard

Model, is a particular case of the annuity At. In fact, while the latter does not depend

on the spread, the former is a function of the spread itself since it is calculated by using

the flat default intensity λSt .

2.2.4. CDS index option. A CDS Index Option is a contract that provides buyers

the right, at the exercise date T < M , to enter a CDS at the strike spread K. If the

option buyer has the right to buy (sell) protection, we call the contract a payer (receiver)

swaption. The main characteristics of these options are the following:

• they call for physical delivery rather than cash settlement,

• they have a European-style expiry,

• they are quoted in basis points upfront,

• their standard maturities are 1, 2, 3, or 6 months,

• they have a so called ‘no knockout’ clause: while the credit default swaption on

a single name cancels out if default occurs before swaption maturity, this Index

option can be exercised on the remaining names. Additional details can be found

in ISDA (2014).
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Finally, a payer swaption has the following payoff:

• Front-end protection: a cash amount equal to the accumulated loss on the defaults

occurred since the option subscription inception t,

(2.2.8) F (T, nt) =
nt∑
i=1

1τi≤T
1− ϕτi

n
.

• A CDS on the non-defaulted names with strike spread K, where the buyer of

protection will receive a default leg, will pay a premium leg and will exchange

an upfront fee calculated using K as the equilibrium spread. We notice that in

case of defaults, if the auction occurred before the option expiry T , the upfront

resulting from the exercise will be computed on the running version at the option

inception, with reduced notional equal to
nt

n
. On the other hand, the default leg

and the premium leg will be on the next version with reduced notional equal to
nT

n
.

Hence, the mark to market of the long protection CDSI, CT (K,nt), resulting from the

option exercise will be

CT (K,nt) = DT − cAT

(
λST , nT

)
− UT (K,nt) ,

with UT (K,nt) = AT

(
λK , nt

)
(ST − c) and AT

(
λK , nt

)
=
∫M

T

nt

n
e−λK(s−T )B (T, s) ds.

Then, the price of a payer credit default index swaption at time s ∈ [t, T ] can be

written as

Pa (s, T,K, nt) = EQ
[
Gs

GT

(F (T, nt) + CT (K,nt))
+

∣∣∣∣ F̂s

]
,

where (x)+ is either 0 is x < 0 or x if x ≥ 0. On the contrary, the price of a receiver

credit default index swaption satisfies

Re (s, T,K, nt) = EQ
[
Gs

GT

(−F (T, nt)− CT (K,nt))
+

∣∣∣∣ F̂s

]
,

since it is an option to enter the opposite contract. In case of exercise, the option buyer

pays the front-end protection and enters the CDS on the side of the protection seller.

By combining the two equations we can write

(2.2.9) Pa (s, T,K, nt)−Re (s, T,K, nt) = EQ
[
Gs

GT

(F (T, nt) + CT (K,nt))

∣∣∣∣ F̂s

]
.

The right side is the value of a forward CDSI Index, with strike K, plus the discounted

expected value of the front-end protection. Then, we can write the put-call parity for the

CDSI Options as:

(2.2.10)

Pa (s, T,K, nt)−Re (s, T,K, nt) = EQ
[
Gs

GT

F (T, nt)

∣∣∣∣ F̂s

]
+ EQ

[
Gs

GT

CT (K,nt)

∣∣∣∣ F̂s

]
.



2.2. CREDIT DEFAULT SWAP INDEX AND OPTIONS 17

Moreover, since CT (ST , nT ) = 0, we can rewrite the mark to market of CT (K,nt) in

the following way

CT (K,nt) = CT (K,nt)− CT (ST , nT )

= DT − cAT

(
λST , nT

)
− UT (K,nt)−

(
DT − cAT

(
λST , nT

)
− UT (ST , nT )

)
,

that can be written as an upfront fee difference

(2.2.11)

CT (K,nt) = UT (ST , nT )− UT (K,nt) = AT

(
λST , nT

)
(ST − c)− AT

(
λK , nt

)
(K − c) .

Then, the price of a payer can be written as

(2.2.12)

Pa (s, T,K, nt) = EQ
[
Gs

GT

(
F (T, nt) + AT

(
λST , nT

)
(ST − c)− AT

(
λK , nt

)
(K − c)

)+∣∣∣∣ F̂s

]
,

whereas the price of a receiver becomes

(2.2.13)

Re (s, T,K, nt) = EQ
[
Gs

GT

(
−F (T, nt)− AT

(
λST , nT

)
(ST − c) + AT

(
λK , nt

)
(K − c)

)+∣∣∣∣ F̂s

]
,

2.2.5. Loss-adjusted forward CDSI. In order to simplify the payoff of a credit

default index swaption we can define a new “theoretical” instrument that has the same

payoff described in the previous section. A loss-adjusted forward CDSI is a forward CDSI

starting at time f ≥ t where the protection buyer will receive a forward protection leg

plus the front end protection, F (f, nt), paid at f in case of defaults between subscription

date, t, and the forward start of the protection leg f . Moreover, also the premium leg

will start at f . Then, we can define the forward protection leg ∀ t with t ≤ f < M :

(2.2.14) Df
t

.
= EQ

[
nt∑
i=1

1f<τi<M
1

n
(1− ϕτi)

Gt

Gτi

∣∣∣∣∣ F̂t

]
,

and the forward annuity

(2.2.15) Af
t

(
λSt , nf

) .
= EQ

[∫ M

f

nf∑
i=1

1τi>u
1

n

Gt

Gu

du

∣∣∣∣∣ F̂t

]
.

Here, the subscript denotes the subscription date and the superscript denotes the

forward date. Given the no arbitrage condition we can find Ŝf
t , the so called loss-

adjusted forward equilibrium spread, such that the value of the loss-adjusted forward

CDSI, Ĉf
t

(
Ŝf
t , nt

)
, is equal to zero:
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Ŝf
t =

Df
t + EQ

[
F (f, nt)

Gt

Gf

∣∣∣∣ F̂t

]
Af

t (λ
St , nf )

(2.2.16)

=

EQ
[∑nt

i=1 1f<τi<M
1− ϕτi

n

Gt

Gτi

∣∣∣∣ F̂t

]
+ EQ

[∑nt

i=1 1τi≤f
1− ϕτi

n

Gt

Gf

∣∣∣∣ F̂t

]
EQ

[∫M

f

∑nf

i=1 1τi>u
1

n

Gt

Gu

du

∣∣∣∣ F̂t

] .

Of course, for f = t, when the forward date coincides with the inception date, the

forward CDSI becomes the spot CDSI, and accordingly Ŝf
f = Ŝf , so that Af

f

(
λSf , nf

)
=

Af

(
λSf , nf

)
, Ĉf

f

(
Ŝf
t , nt

)
= Ĉf

(
Ŝf
t , nt

)
, and Df

f = Df . Moreover, we assume the ISDA

model and the standard coupon payment also for the loss-adjusted forward CDSI, so we

have to find the upfront fee Uf

(
Ŝf
t , nf

)
, exchanged at f , that makes the trade fair at t.

Then we can write, recalling that interest rate is assumed to be independent of λSt ,

0 = Df
t + EQ

[
F (f, nt)

Gt

Gf

∣∣∣∣ F̂t

]
− cAf

t

(
λSf , nf

)
−B (t, f)Uf

(
Ŝf
t , nf

)
= Df

f + EQ
[
F (f, nt)

Gt

Gf

∣∣∣∣ F̂t

]
− Ŝf

t A
f
t

(
λSf , nf

)
,

and therefore

(2.2.17) Uf

(
Ŝf
t , nf

)
=

Af
t

(
λSf , nf

)
B (t, f)

(
Ŝf
t − c

)
= Af

f

(
λSf , nf

) (
Ŝf
t − c

)
.

Since the payoff of a loss-adjusted forward CDSI, given the fixed strike K, is exactly

the payoff of the CDSI swaption, we can simplify it without the front end protection but

with a different upfront difference. In fact, at T the protection buyer has the following

cash flows, considering nt the number of survived names at time t:

(2.2.18) ĈT
T (K,nt) = DT

T + F (T, nt)− cAT
T

(
λST , nT

)
− UT (K,nt) .

Following the same passages as in (2.2.11) we can show that the mark to market is

equal to

ĈT (K,nt) = ĈT (K,nt)− ĈT

(
ŜT , nt

)
= DT + F (T, nt)− cAT

(
λST , nT

)
− UT (K,nt)

−
(
DT + F (T, nt)− cAT

(
λST , nT

)
− UT

(
ŜT , nT

))
= UT

(
ŜT , nT

)
− UT (K,nt) = AT

(
λST , nT

) (
ŜT − c

)
− AT

(
λK , nt

)
(K − c) .(2.2.19)
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So, the price of a payer (2.2.12) can be rewritten as

(2.2.20)

Pa (s, T,K, nt) = EQ
[
Gs

GT

(
AT

(
λST , nT

) (
ŜT − c

)
− AT

(
λK , nt

)
(K − c)

)+∣∣∣∣ F̂t

]
,

whereas the price of a receiver becomes

(2.2.21)

Re (s, T,K, nt) = EQ
[
Gs

GT

(
−AT

(
λST , nT

) (
ŜT − c

)
+ AT

(
λK , nt

)
(K − c)

)+∣∣∣∣ F̂s

]
.

Moreover, we notice that the loss adjusted spread, at time T ,

ŜT
T =

DT
T +

∑nt

i=1 1τi≤T
1− ϕτi

n
AT

T (λST , nT )

coincides with the future spot spread ST only if there were no defaults during the life of

the option and the front end protection is worth zero.

Finally, we can observe that the payoff is the difference between the two upfront fees,

calculated by using two different default intensities as noted in (2.2.6). Armstrong and

Rutkowski (2009) derive the payoff as if the running spread St were effectively payed, and

under this hypothesis the value of the CDSI can be written as

(2.2.22) CT (K) =
(
ŜT −K

)
AT

(
λST , nT

)
.

However, this simplification is inaccurate as it assumes that the premium legs of two

CDSI differ only for the spread. However, in (2.2.6) we have shown that also the risky

annuity AT

(
λSt , nt

)
is different since it is function of the spread itself. Moreover, also the

number of names in the upfront calculation differs in case of default. In order to write

correctly the payoff of a CDS Index Option we have used the proper formula (2.2.11)

despite the previous literature has used (2.2.22) as an approximation. We point out that

neglecting how the upfront is calculated can lead to significant difference, especially when

options are exercised at market spread far away from the strike, that generally happens

in condition of deep credit market stress.

2.3. Expected returns and risk neutral variance

Following the work of Martin (2017), we can define the expected return for a generic

asset. In particular, we are interested in obtaining a relationship between the expected

return of iTraxx index and his risk neutral variance. First, we recall that the price at

time t of a claim XT at time T can be written also using the stochastic discount factor,

(SDF), M (t, T ):
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(2.3.1) Xt = EQ
t

[
Gt

GT

XT

]
= Et [M (t, T )XT ] ,

where Et [ ] is a shorthand notation for E [ | Ft] and E is the expected value under the

historical probability measure P . We define the return of an asset as R (t, T ) =
XT

Xt

while

Rf (t, T ) =
GT

Gt

is the return of the risk free bond that we assume to be deterministic.

Hence, we can write the risk neutral variance of R (t, T ), by using the SDF, as

(2.3.2)

VQ
t [R (t, T )] = EQ

t

[
R (t, T )2

]
−
(
EQ

t [R (t, T )]
)2

= Rf (t, T )Et

[
MTR (t, T )2

]
−(Rf (t, T ))

2 .

The expected return over the risk free rate and the risk neutral variance relationship can

be written in the following way:

Et [R (t, T )]−Rf (t, T ) =
[
Et

[
MTR (t, T )2

]
−Rf (t, T )

]
−
[
Et

[
MTR (t, T )2

]
− Et [R (t, T )]

]
=
VQ

t [R (t, T )]

Rf (t, T )
− Ct [MTR (t, T ) , R (t, T )] ,

recalling that Et [MTR (t, T )] = 1. Now, we want to compute the risk neutral variance of

R (t, T )

VQ
t [R (t, T )]

Rf (t, T )
=

1

X2
t

[
EQ

t [X2
T ]

Rf (t, T )
−
(
EQ

t [XT ]
)2

Rf (t, T )

]
=

1

X2
t

[
EQ

t [X2
T ]

Rf (t, T )
− (Ft,T )

2

Rf (t, T )

]
,

where the forward price satisfies Ft,T = EQ
t [XT ] under the hypothesis of deterministic

interest rate. We recall that x2 = 2
∫∞
0

max {0, x−K} dK for any x ≥ 0, so with x = XT ,

taking risk neutral expectations we can write

EQ
t [X2

T ]

Rf (t, T )
=

EQ
t

[
2
∫∞
0

max {0, XT −K} dK
]

Rf (t, T )
= 2

∫ ∞

0

Call (t, T,K) dK.

Using the put call parity formula Call (t, T,K) = Put (t, T,K)+
1

Rf (t, T )
(Ft,T −K), we

can write :

∫ ∞

0

Call (t, T,K) dK =

∫ Ft,T

0

(
Put (t, T,K) +

1

Rf (t, T )
(Ft,T −K)

)
dK +

∫ ∞

Ft,T

Callt,T (K) dK

=

∫ Ft,T

0

Put (t, T,K) +
F 2
t,T

2Rf (t, T )
+

∫ ∞

Ft,T

Call (t, T,K) dK.
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Hence, the risk neutral variance can be written as

VQ
t [R (t, T )] =

2Rf (t, T )

X2
t

[∫ Ft,T

0

Put (t, T,K) dK +

∫ ∞

Ft,T

Call (t, T,K) dK

]
,

and the expected return becomes:

E [R (t, T )]−Rf (t, T ) =
2

X2
t

[∫ Ft,T

0

Put (K) dK +

∫ ∞

Ft,T

Callt,T (K) dK

]
−Ct [MTR (t, T ) , R (t, T )] .

Now we want to use this formula to derive the expected return of a CDS Index that

represent the credit market. We recall that given the upfront we can compute the CDSI

equivalent bond price Pt
2 , that is always positive while the upfront could be also negative,

(2.3.3) Pt (St) = 1− Ut (St) = 1− At

(
λSt
)
(St − c) .

The bond price of the forward loss adjusted spread becomes

Pt

(
ŜT
t

)
= 1− UT

t

(
ŜT
t

)
= 1− AT

t

(
λSt
) (

ŜT
t − c

)
.

Adding and subtracting 1 into the receiver payer formula we can rewrite the receiver

as

Re (t, T,K, nt) = EQ
t

[
Gt

GT

(
−1 + AT

(
λK , nt

)
(K − c) + 1− AT

(
λST , nT

) (
ŜT − c

))+]
= EQ

t

[
Gt

GT

(
PT

(
ŜT

)
− PT (K)

)+]
,

and the price of a payer becomes

Pa (s, T,K, nt) = EQ
[
Gt

GT

(
PT (K)− PT

(
ŜT

))+]
.

Moreover, the put call parity formula, with the receiver as call and the payer as put,

becomes

Re (t, T,K, nt)− Pa (t, T,K, nt) =
(
EQ

t

[
PT

(
ŜT

)]
− PT (K)

) 1

Rf (t, T )
,

2In the CDX HY market the CDSI protection is quoted in bond price and not in spread, through

the previous formula multiplied by 100 since the spread is quoted in basis points while the bond price is

quoted in cents.
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and defining R (t, T ) =
PT

(
ŜT
T

)
Pt

(
ŜT
t

) , XT = PT

(
ŜT

)
and Ft,T = EQ

t

[
PT

(
ŜT

)]
we can write

E [R (t, T )]−Rf (t, T ) =
2

Pt

(
Ŝt

)2
[∫ Ft,T

0

Pa (t, T,K, nt) dPt (K) +

∫ ∞

Ft,T

Re (t, T,K, nt) dPt (K)

]

− Ct [MTR (t, T ) , R (t, T )] ,(2.3.4)

while the risk neutral variance can be written as

VQ
t [R (t, T )] =

2Rf (t, T )

Pt

(
Ŝt

)2
[∫ Ft,T

0

Pa (t, T,K, nt) dPt (K) +

∫ ∞

Ft,T

Re (t, T,K, nt) dPt (K)

]
.

(2.3.5)

2.3.1. Decomposition of variance risk premium: upside and downside vari-

ance. In what follows, we decompose the variance into upside and downside variance,

following the approach of Feunou et al. (2017) and Carr and Wu (2008). First we de-

fine the ex-post realized variance, RV (t, T ),3 as the sum of the daily squared returns,

R (t, T ), of the bond price of the forward loss adjusted spread Pt

(
ŜT
t

)
. The calculation

of RV (t, T ) requires the calculation of the bond prices of the forward loss adjusted spread

Pt

(
ŜT
t

)
for each time step t = t0, t1, ..., tn = T as follows

RV (t0, tn) =
n∑

i=1

R (ti, ti−1;T )
2 ,

R (ti, ti−1;T ) =
Pt

(
ŜT
ti

)
Pt

(
ŜT
ti−1

) =
1− AT

ti

(
λSti

) (
ŜT
ti
− c
)

1− AT
ti−1

(
λSti−1

) (
ŜT
ti−1

− c
) ,

where n is the number of days between t and T. For each time step, both the Forward

CDSI and the forward Annuity are calculated as described in 2.2.3 for the same time

horizons (45, 75 and 105 days) by linearly interpolating between adjacent maturities. In

case of missing data for some time step, we keep the same value of the previous one.

When dealing with historical variance, it may happen that the current on-the run CDS

series alive at time t ceases at time tk ∈ (t, T ], hence becoming off-the-run. In this case,

the ratio R (tk+1, tk;T ) involves two bond price belonging to two different and consecutive

on-the-run series. Such inconsistency may lead to jumps in Historical Variance which

are not caused by market movements. We avoid such behavior by using the on-the-run

3In order to obtain the annualized variance we multiply the variance of period T − t by 252
T−t .
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series until tk (included) and the relative off-the-run series from tk+1 to tn = T . We recall

that RV (t, T ) can be seen as a measure of the variance under the physical probability as

denoted in Andersen et al. (2003). In fact, conditionally on the observed price path over

[t, T ], realized variance provides an ex-post unbiased estimator of the quadratic variation

of the return which is the risk neutral variance 2.3.5 in our framework. Consequently, the

conditional expectation at time t = 0 of the future quadratic return variation, denoted as

VP
t [R (t, T )], will also equal the conditional expectation of future realized variance:

VP
t [R (t, T )] = EP

t [RV (t, T )] .

We can decompose the ex-post realized variance into ex-post upside, RVU (t, T ), and

downside, RVD (t, T ) , realized variance by choosing 0 as threshold:

RVU (t, T ) =
n∑

i=1

R (ti, ti−1;T )
2
1R(ti,ti−1;T )>0,

RVD (t, T ) =
n∑

i=1

R (ti, ti−1;T )
2
1R(ti,ti−1;T )<0,

and we can see that the RVU (t, T ) is the variance of the positive returns, while VD (t, T )

is the variance of the negative returns. Following Martin (2017), we can also decompose

the risk neutral variance into downside and upside variance:

VQ
t [R (t, T )] = VQ

t,U [R (t, T )] + VQ
t,D [R (t, T )] =

2Rf (t, T )

Pt

(
Ŝt

)2 (∫ Ft,T

0

Pa (t, T,K, nt) dPt (K)

)
︸ ︷︷ ︸

downside variance

+

2Rf (t, T )

Pt

(
Ŝt

)2
(∫ ∞

Ft,T

Re (t, T,K, nt) dPt (K)

)
︸ ︷︷ ︸

upside variance

.(2.3.6)

In the empirical section we will show the comparison between the ex-ante risk neutral

variance and the ex-post realized variance in order to understand if the investors price

correctly the total, the upside, and the downside variance risk.

2.3.2. Variance and skewness risk premium. We define the Variance Risk Pre-

mium (VRP) as the premium accrued by bearing variance risk and can be written as

the difference between expectation of the risk neutral variance and the expectation of the

realized variance under the physical measure, i.e. EP
t [RV (t, T )] = VP

t [R (t, T )] . Hence,

we can write

(2.3.7) V RP (t, T ) = VQ
t [R (t, T )]− VP

t [R (t, T )] .
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Moreover, given the previous decomposition we can write also the upside variance risk

premium, V RPU (t, T ), and the downside variance risk premium V RPD (t, T ):

V RP (t, T ) =
(
VQ

t,D [R (t, T )] + VQ
t,D [R (t, T )]

)
−
(
VP

t,U [R (t, T )] + VP
t,U [R (t, T )]

)
,

=
(
VQ

t,U [R (t, T )]− VP
t,U [R (t, T )]

)
+
(
VQ

t,D [R (t, T )]− VP
t,D [R (t, T )]

)
,

.
=V RPU (t, T ) + V RPD (t, T ) .

Finally, we are interested in defining also the skewness risk premium and we start noticing

that the difference between realized upside and downside variance can be seen as a measure

of the realized skewness, denoted as

RSV (t, T ) = RVU (t, T )−RVD (t, T ) ,

and we recall that distribution of R (t, T ) is left-skewed if RSV (t, T ) < 0 otherwise it is

right-skewed. The theoretical justification for using RSV (t, T ) as measure of skewness

can be found in Feunou et al. (2017). Following the same definition of risk premium as we

did for the variance, we define the skewness risk premium, SRP (t, T ), as the difference

between the risk neutral skewness and the physical expectation of the realized skewness

SRP (t, T ) =
(
VQ

t,U [R (t, T )]− VQ
t,D [R (t, T )]

)
−
(
VP

t,U [R (t, T )]− VP
t,D [R (t, T )]

)
=V RPU (t, T )− V RPD (t, T ) .

If SRP (t, T ) < 0, there is a skewness premium on the market as a compensation for

an agent who bears downside risk. Alternatively, if SRP (t, T ) > 0 there is a skewness

discount that represents the amount that the agent is willing to pay to secure a positive

return on an investment.

We notice that all the measures that we have presented are non-parametric and model-

free. We will show the empirical results, based only on the price of the options and

forwards effectively quoted on the market, in the next session. We have used equation

2.3.7 as ex-ante risk neutral variance while we have used the approach of Feunou et al.

(2017), Bollerslev et al. (2014), and Martin (2017) for the expectation of future realized

variance, where they use the past realized variance as proxy of the forward-looking real-

world variance. This implies the following:

EP
t [RV (t, T )] = VP

t [R (t, T )] = RV (t− T, t) ,

where the daily realized variance of the return, RV (t− T, t), is computed at time t by

looking backward over the same horizon length, T−t. Comparing the ex-ante risk neutral

variance and the expectation of the realized variance we can test if the variance risk premia

are good predictor of the excess returns.
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2.4. Data and methodologies

In the present section we describe in detail the methodologies adopted to calculate

the main quantities introduced in the previous sections.

2.4.1. Risk neutral variance. The crucial element of equation 2.3.5 is the integral

of the credit swaption in the space of the CDSI equivalent bond price (equation 2.3.3).

Credit swaptions data (payer and receiver for several maturities and strikes) are ob-

tained from Intesa Sanpaolo proprietary database and we have used daily frequency data

available from April 2015 to December 2020 for two indices: iTraxx Main and iTraxx

Financial Senior. Spot Annuity, which is necessary to remap the strike K in Pt(K), is

calculated through the discretization of the formula 2.2.6, assuming zero defaults and

EURIBOR discounting. The coefficient Pt

(
Ŝt

)2
of 2.3.5 is calculated remapping the For-

ward CDSI Ŝt in Pt(Ŝt) and using the forward Annuity AT
t

(
λŜt

)
, both retrieved from the

same Database of the Credit Swaption, in correspondence with the same maturities; the

coefficient Rf (t, T ) is calculated using the OIS curve as proxy of the risk free rate.

The integral is computed via the trapezoidal method, using the set of available strikes

for each maturity. Therefore, for each day we calculate the risk neutral variance VQ
t [R (t, T )]

of the bond price returns for fixed time to maturity, in order to compare the market implied

variance with the the realized one. We have chosen 45, 75 and 105 days. In particular,

we linear interpolate between the risk neutral variance for maturities which are adjacent

to the reference fixed time to maturity. In case of missing lower bound or upper bound

maturity, we simply extrapolate .

The calculation of downside and upside variance is performed as well, by splitting the

integral as shown in 2.3.6.

2.5. Empirical results

In this section, we start by studying the existence, the sign and the average magni-

tude of the premia, and we will propose some explanation for this evidence. Then, we

investigate the dynamic properties of the variance risk premia. Finally, we analyze the

credit variance as predictor variable for the future excess returns of the underlying.

2.5.1. Which risks do investors price? If investors price the variance risk, the

sample average of the risk neutral variance should be greater than the sample average of

the expected realized variance. In fact, the VRP is the premium that an agent on the

financial market is willing to pay to hedge against future realized volatility.

In Tables 1 and 2 we report the summary statistics for the excess return, the risk

neutral variance, and the expected realized variance on the iTraxx Main and the iTraxx
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Financial Senior, respectively. All the values are annualized and we report the mean and

the median in basis points. The standard deviation is reported in percentage.

We can see that the VRP is positive and, in particular, the largest contributor is the

downside Variance VQ
t,D [R (t, T )]. As documented in Feunou et al. (2017) for the equity

market, we can see a positive value for V RPD (t, T ) and a negative value for V RPU (t, T ).

This leads the skewness risk premium to be negative as confirmed for both the iTraxx

Main and the iTraxx Financial Senior.

These empirical evidence confirms our expectations given the microstructure of the

market. Indeed, in the credit market, the agents are typically long on bonds and use

synthetic derivatives to hedge their positions. The demand for payers is therefore much

higher than the demand for receivers and leads to the downside risk premium being

considerably higher than the upside risk premium. Moreover, given the illiquidity of

options on credit indices, there is a lack of subjects who systematically sell options and

volatility although downside realized volatility is lower than the downside risk neutral

volatility priced in the market.

By following Carr and Wu (2008), we test the difference between the ex-post realized

variance over the period [t, T ] and the ex-ante VQ
t [R (t, T )] risk neutral variance. In

particular, we compare the risk-neutral variance with the variance actually realized over

the period, RV (t, T ), and not with the expectation EP
t [RV (t, T )] in order to see if the

magnitude and the signs of the variance risk premia are confirmed.

In fact, we test the basic form of the expectation hypothesis that assumes zero variance

risk premium. Therefore, the null hypothesis is that VQ
t [R (t, T )]− RV (t, T ) is equal to

zero. In Tables 3 and 4 we gather the summary statistics for iTraxx Main and iTraxx

Financial Senior of the realized VRP, respectively.

Moreover, we have calculated the log excess return, generated by a long position on

realized volatility over the period [t, T ]. We stress that in our framework the log return

ln
(
RV (t, T ) /VQ

t [R (t, T )]
)
is similar but not equal to a variance swap written on an

iTraxx Index. In fact, these instruments are not traded in the market and, above all, our

definition of variance does not coincide with the classic variance swap pricing formula (see

Carr and Wu, 2008). Finally, we also plot the time series of the realized VRP in figures

2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, and 2.6.6.

We can see that the mean of the realized risk premium is very close to the mean of

the expected risk premium but is more volatile. The signs and the magnitude of the VRP

are confirmed also in the ex-post comparison. In particular, looking at the log return,

we can see that the investors pay the downside variance much more of what they have

realized. In fact,we see that realized variance is typically lower than risk neutral except

for a few spikes due to unexpected events such as the Brexit referendum or the COVID-19
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pandemic. The excess return is above -60% for 45 days, in line with the results of -50%

per month estimated by Carr and Wu (2008) for the equity variance risk premium. Also,

in this case, the main contributor is the downside variance risk premium in line with the

results showed by downside variance risk premia. Finally, we can see from the t-statistics

that the results are strongly significant.

2.5.2. Dynamic behavior of the variance risk premia. A weaker form of the

expectations hypothesis is to assume that the variance risk premia are constant or inde-

pendent of the risk neutral variance. Then, we analyze the behavior of the variance risk

premia by running the following regressions:

RV (t, T ) = α + βVQ
t [RT ] + ϵt,(2.5.1)

RVU (t, T ) = α + βVQ
t,U [RT ] + ϵt,

RVD (t, T ) = α + βVQ
t,D [RT ] + ϵt,

(RVU (t, T )−RVD (t, T )) = α + β
(
VQ

t,U [RT ]− VQ
t,D [RT ]

)
+ ϵt,

where ϵt is a zero-mean error term. Under the null hypothesis that VRP are constant or

independent of the risk neutral variances we expect β = 1 and also α = 0.

A positive slope coefficient would imply that the risk neutral variance is informative

of the future realized variance. Moreover if β should be less than one, it might imply a

time-variation in variance risk premia.

We use OLS estimator with Newey–West estimator of the covariance matrix in order

to have estimates robust to autocorrelation and heteroscedasticity. Table 5 reports the

estimates, the t-statistics and the R2 of the regressions. All the estimated slope coefficients

are positive but the skew’s, in line with the previous results where we have seen that

SRP (t, T ) is negative.

We can see that for the upside variance risk premium we cannot reject the null hy-

pothesis of zero variance risk premium, in fact both α and β are not significantly different

from 0 and 1. This implies that the upside variance risk premium is closer to a constant

or is independent on both the variance risk premium and the downside risk premium. In

fact, we reject the null hypothesis of α = 0 for the downside variance that shows also a β

significantly lower than one.

These results support our evidence that the downside variance risk premium for the

credit market is the primary source of excess return. Finally, we highlight that our results

are in line with the findings of Carr and Wu (2008) about credit variance risk premiums.

2.5.3. Term structure of variance risk premia. In the previous section we pre-

sented the results using 45 calendar days as interpolation period. Now, we show in Table
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6 the realized variance risk premium also for the longer interpolation period of both 75

and 105 days.

We can see that total variance risk premium decreases over the interpolation period

and remains highly statistically significant. This result holds also for both the downside

variance risk premium and the upside variance risk premium, while the skewness risk

premium remains stable.

These results can be explained by analyzing the liquidity of options on the iTraxx.

Options with a maturity of 1 or 2 months are traded much more actively, while options

with a longer maturity are relatively more illiquid. Since most option purchases are con-

centrated on payers for hedging purposes this raises the volatility skew and consequently

the short-term variance risk premium.

2.5.4. Credit variance as predictor variable. Finally, we run a simple linear

regression of the excess return of CDS index by using as predictor a set of variables

that includes VQ
t [RT ], VQ

t,U [R (t, T )], VQ
t,D [R (t, T )], RV (t, T ), RVU (t, T ), RVD (t, T ),

V RP (t, T ), V RPU (t, T ), V RPD (t, T ), and SRP (t, T ).

By following the methodology of Feunou et al. (2017) the model used for our analysis

is

(2.5.2) RT −Rf (t, T ) = α + βxi (t, T ) + ϵt,

where xi (t, T ) is one of the predictor variables and RT −Rf (t, T ) is the excess return of

the forward CDSI. We report the t-statistics, under the null hypothesis of β = 0, based

on heteroscedasticity and serial correlations consistent standard errors using the Newey–

West estimator and also we report the predictive ability of regressions, measured by the

corresponding R2s.

In Tables 8 and 7 we show the result for iTraxx Main and iTraxx Financial Senior,

respectively.

We can see that the main source of predictability is driven by the risk neutral variance

that shows significant coefficient β and higher R2s with respect to the realized variance

predictors.

Moreover, we see similar levels of predictive ability for all the risk neutral variances

without significant differences between upside and downside variance. The predictability

results increase as a function of the maturity T reaching the maximum value for T = 105

days. Finally, we notice that the VRP is not a statistically significant predictors of the

excess return for both iTraxx Main and iTraxx Financial Senior. The R2s are very low

and all the coefficients are not significant. These results is the opposite of what discovered
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Figure 2.6.1. Risk Neutral Volatility, Realized Volatility and iTraxx Main.

in Feunou et al. (2017) where the VRP is the main driver of the excess returns for the

equity market.

2.6. Conclusions

In this paper we have described the payoff of CDSI and options using the market

convention of the upfront amount exchange. We showed that the upfront amount cannot

be neglected as it impacts both the payoff of the instruments and the definition of variance.

Using a novel data set we have derived, from option’s prices, the expected return and the

risk neutral variance of European credit market. The empirical results shows that the

VRP is mostly generated by the downside variance risk premium given the demand of

hedging in the credit market and the absence of volatility seller. Future research will focus

on developing an Equilibrium Model for VRP and on backtesting the optimal trading

strategy to harvest the VRP.
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Figure 2.6.2. Upside Risk Neutral Volatility, Upside Realized Volatility and

iTraxx Main.

Figure 2.6.3. Downside Risk Neutral Volatility, Downside Realized Volatility

and iTraxx Main.
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Figure 2.6.4. Risk Neutral Volatility, Realized Volatility and iTraxx Financial

Senior.

Figure 2.6.5. Upside Risk Neutral Volatility, Upside Realized Volatility and

iTraxx Financial Senior.
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Table 1. iTraxx Main Summary Statistics: This table reports the summary sta-

tistics for the annualized quantities of interest. Mean, median are exposed in basis point

while standard deviation value is exposed in percentage. The full sample is from April

2015 to December 2020.

iTraxx Main Mean Median Std.Dev. Skewness Kurtosis

Panel A:Excess Return

Itrxx Main 116.67 146.31 535.74 -1.28 10.15

Itrxx Main ex Covid 121.39 118.40 420.15 0.35 5.50

Panel B: Risk Neutral

Variance 4.97 3.28 6.62 5.25 36.21

Upside Variance 1.54 1.00 2.23 6.28 54.49

Downside Variance 3.43 2.29 4.46 4.92 31.49

Skewness -1.90 -1.26 2.41 -4.51 27.48

Panel C: Expected Realized

Variance 3.82 1.59 7.92 5.05 30.86

Upside Variance 1.77 0.79 3.49 4.87 29.36

Downside Variance 2.05 0.79 4.83 5.29 32.86

Skewness -0.27 0.02 2.88 -3.56 28.24

Panel D: Risk Premium

Variance 1.15 1.25 4.96 -1.89 32.94

Upside Variance -0.24 0.08 3.00 -1.96 29.76

Downside Variance 1.39 1.31 2.54 -1.61 27.17

Skewness -1.62 -1.25 2.52 -2.84 23.59
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Table 2. iTraxx Financial Senior Summary Statistics: This table reports the

summary statistics for the quantities of interest. Mean, median and standard deviation

value are annualized and in basis point. The full sample is from April 2015 to December

2020.

iTraxx Fin Sen Mean Median Std.Dev. Skewness Kurtosis

Panel A:Excess Return

Itrxx Fin Sen 131.54 178.34 674.11 -1.23 7.67

Itrxx Fin Sen ex Covid 140.86 142.82 547.51 -0.25 4.12

Panel B: Risk Neutral

Variance 8.69 6.39 9.90 4.31 26.75

Upside Variance 2.88 2.01 3.73 5.70 49.08

Downside Variance 5.81 4.36 6.34 3.90 21.81

Skewness -2.94 -2.18 3.19 -3.56 19.32

Panel C: Expected Realized

Variance 7.05 3.27 13.37 4.47 25.18

Upside Variance 3.32 1.51 5.97 4.64 27.36

Downside Variance 3.73 1.57 7.89 4.37 23.66

Skewness -0.42 0.07 4.14 -3.17 24.63

Panel C: Risk Premium

Variance 1.64 2.04 8.30 -2.28 20.01

Upside Variance -0.44 0.16 4.96 -1.43 27.69

Downside Variance 2.08 2.12 4.40 -2.35 14.79

Skewness -2.52 -2.15 4.36 -0.63 24.29
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Table 3. iTraxx Main Realized Summary Statistics: This table reports the

summary statistics for the realized VRP and the log returns. Mean, median and standard

deviation value are annualized and in basis point. The full sample is from April 2015 to

December 2020.

iTraxx Main Mean Median Std.Dev. Skewness Kurtosis t

Panel A :Realized Risk Premium

Variance 1.15 1.52 8.10 -3.91 30.50 5.21

Upside Variance -0.27 0.19 2.78 -6.21 46.67 -3.48

Downside Variance 1.42 1.36 5.88 -2.03 22.50 8.84

Skewness -1.68 -1.12 4.35 -1.21 19.38 -14.17

ln
(
RV (t, T ) /VQ

t [R (t, T )]
)

Variance -0.66 -0.81 0.89 2.05 10.56 -27.25

Upside Variance -0.16 -0.28 0.74 2.04 11.54 -8.01

Downside Variance -1.12 -1.23 1.15 1.25 6.61 -35.39

Skewness 0.96 0.95 0.80 -0.05 3.22 43.88

Table 4. iTraxx Financial Senior Realized Summary Statistics: This table

reports the summary statistics for the realized VRP and the log returns. Mean, median

and standard deviation value are annualized and in basis point. The full sample is from

April 2015 to December 2020

iTraxx Financial Senior Mean Median Std.Dev. Skewness Kurtosis t

Panel A :Realized Risk Premium

Variance 1.64 3.05 13.77 -3.54 24.46 4.35

Upside Variance -0.50 0.37 5.15 -5.40 37.36 -3.52

Downside Variance 2.14 2.65 9.23 -2.15 17.48 8.45

Skewness -2.64 -2.21 5.80 -0.33 13.65 -16.56

ln
(
RV (t, T ) /VQ

t [R (t, T )]
)

Variance -0.61 -0.83 0.93 2.03 8.72 -24.17

Upside Variance -0.17 -0.33 0.82 2.05 10.40 -7.76

Downside Variance -1.06 -1.27 1.17 1.34 5.61 -32.84

Skewness 0.88 0.88 0.80 -0.06 3.16 40.01
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Table 5. Expectation Hypothesis Regression : This table shows results for pre-

dictive regressions 2.5.1. The coefficent α is reported in basis points. T-statistics are

under the null hypothesis of α = 0 and β = 1 and are adjusted for heteroscedasticity and

autocorrelation using Newey and West (1987).*,** and *** denote the significance at

the 10%, 5% and 1% levels respectively. The columns under “R2” report the unadjusted

R-squared of the regression. The full sample is from April 2015 to December 2020.

α t β t R2

iTraxx Main

Variance 0.17 1.43 0.48 −8.80∗∗∗ 0.15

Upside Variance 0.03 0.85 1.00 -0.01 0.39

Downside Variance 0.16 1.83∗ 0.21 −15.98∗∗∗ 0.04

Skewness -0.13 -2.52∗∗ -0.42 −18.24∗∗∗ 0.13

iTraxx Financial Senior

Variance 0.37 1.66∗ 0.45 −7.34∗∗∗ 0.11

Upside Variance 0.10 1.34 0.87 -1.57 0.28

Downside Variance 0.30 1.97∗∗ 0.21 −11.04∗∗∗ 0.03

Skewness -0.15 −3.03∗∗∗ -0.30 −23.20∗∗∗ 0.06

Table 6. Credit Variance Risk Premium term structure: This table reports

the realized credit variance risk premium for periods of 45,75 and 105 days. Mean and

standard deviation value are annualized and in basis point. The full sample is from April

2015 to December 2020.

Realized Risk Premium 45 Days 75 Days 75 Days

iTraxx Main Mean Std.Dev t Mean Std.Dev t Mean Std.Dev t

Variance 1.15 8.10 5.21 1.03 7.56 4.90 0.86 6.97 4.35

Upside Variance -0.27 2.78 -3.48 -0.34 2.69 -4.54 -0.42 2.54 -5.92

Downside Variance 1.42 5.88 8.84 1.37 5.19 9.49 1.28 4.67 9.71

Skewness -1.68 4.35 -14.17 -1.71 3.33 -18.44 -1.70 2.81 -21.48

iTraxx Financial Senior 45 Days 75 Days 75 Days

Variance 1.64 13.77 4.35 1.31 12.52 4.35 0.77 11.43 2.39

Upside Variance -0.50 5.15 -3.52 -0.63 4.78 -3.52 -0.84 4.47 -6.65

Downside Variance 2.14 9.23 8.45 1.94 8.10 8.45 1.62 7.24 7.88

Skewness -2.64 5.80 -16.56 -2.57 4.49 -16.56 -2.46 3.74 -23.19
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Table 7. iTraxx Main Predictive Regression: This table shows results for pre-

dictive regressions 2.5.2 The reported t-statistics for the beta parameters, under the

null hypothesis of β1 = 0, are constructed from heteroscedasticity and serial correlation

consistent standard errors, following Newey and West (1987).*,** and *** denote the

significance at the 10%, 5% and 1% levels respectively. The columns under “R2” report

the unadjusted R-squared of the regression. The full sample is from April 2015 to De-

cember 2020.

45 75 105

iTraxx Main t R2 t R2 t R2

Risk Premium

Variance 0.73 0.82% 0.63 1.29% 0.64 1.50%

Upside Variance 0.26 0.13% 0.28 0.25% 0.18 0.09%

Downside Variance 1.34 1.80% 1.01 2.85% 1.11 4.24%

Skewness -1.00 0.92% −2.06∗∗ 2.47% −2.90∗∗ 6.81%

Risk Neutral

Variance 4.73∗∗∗ 19.02% 6.36∗∗∗ 29.16% 6.08∗∗∗ 33.96%

Upside Variance 3.96∗∗∗ 19.20% 5.00∗∗∗ 28.44% 5.65∗∗∗ 32.97%

Downside Variance 4.47∗∗∗ 18.38% 5.73∗∗∗ 28.54% 5.85∗∗∗ 33.02%

Skewness −4.40∗∗∗ 14.98% −5.93∗∗∗ 23.69% −6.45∗∗∗ 26.49%

Realized

Variance 4.27∗∗∗ 9.49% 4.69∗∗∗ 12.95% 3.46∗∗∗ 13.32%

Upside Variance 4.97∗∗∗ 6.33% 4.24∗∗∗ 8.71% 3.31∗∗∗ 10.03%

Downside Variance 4.09∗∗∗ 10.48% 5.00∗∗∗ 15.04% 3.67∗∗∗ 14.91%

Skewness −2.38∗∗ 5.91% −1.94∗ 11.77% −1.55∗ 10.92%
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Table 8. iTraxx Financial Senior Predictive Regression: This table shows re-

sults for predictive regressions 2.5.2 The reported t-statistics for the beta parameters,

under the null hypothesis of β1 = 0, are constructed from heteroscedasticity and serial

correlation consistent standard errors, following Newey and West (1987).*,** and ***

denote the significance at the 10%, 5% and 1% levels respectively. The columns under

“R2” report the unadjusted R-squared of the regression. The full sample is from April

2015 to December 2020.

45 75 105

iTraxx Financial Senior t R2 t R2 t R2

Risk Premium

Variance 0.32 0.11% 0.51 0.82% 0.82 1.84%

Upside Variance 0.00 0.00% 0.26 0.22% 0.45 0.48%

Downside Variance 0.69 0.40% 0.87 1.64% 1.25 3.81%

Skewness -0.52 0.44% -0.77 0.76% -1.24 2.39%

Risk Neutral

Variance 4.27∗∗∗ 17.08% 6.43∗∗∗ 27.91% 6.44∗∗∗ 30.98

Upside Variance 3.68∗∗∗ 16.47% 5.36∗∗∗ 27.90% 5.67∗∗∗ 31.26%

Downside Variance 3.92∗∗∗ 16.55% 6.25∗∗∗ 26.09% 6.67∗∗∗ 28.45%

Skewness −4.13∗∗∗ 11.20% −7.35∗∗∗ 14.80% −6.72∗∗∗ 14.20%

Realized

Variance 4.83∗∗∗ 8.13% 3.69∗∗∗ 10.84% 2.43∗∗ 9.11%

Upside Variance 4.82∗∗∗ 6.51% 3.52∗∗∗ 8.43% 2.43∗∗ 7.75%

Downside Variance 4.92∗∗∗ 8.44% 3.75∗∗∗ 11.90% 2.40∗∗ 9.59%

Skewness −1.89∗ 3.66% −1.75∗ 7.61% −1.22∗ 4.97%
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Figure 2.6.6. Downside Risk Neutral Volatility, Downside Realized Volatility

and iTraxx Financial Senior.



CHAPTER 3

Mean-variance target-based optimization in bond market

3.1. Introduction

The main aim of this work is to obtain a mean-variance target based optimal bond

portfolio. In Section 3.2 we present and enrich the Dynamic Term Structure Model of

Diebold and Rudebusch (2013) deriving the dynamics of a bond starting from the yield

curve. The bond market proposed here has two innovative elements compared to the

literature. First, we directly model and use the yield curve to obtain the bond dynamics

instead of modeling the short rate dynamics. This approach also allows us to add the

second innovative element, namely, obtaining a liquidity spread for each bond. Next,

the model was extended to the multifactor case to account for the different risk factors

that move the yield curve. Moreover, to the best of our knowledge, this is the first work

that derives the analytical formula of the so called roll-down. In Section 3.3 we analyze a

mean-variance target based problem that can be used for hedging or trading purposes and

we derive a closed form solution of the optimal portfolio. Finally, Section 3.6 concludes.

3.2. The Bond Market

Throughout this section, we work with a complete filtered probability space (Ω,F ,P, Ft)

with t ∈ [0, T ]. We also assume that a riskless asset exists, whose price Gt solves the or-

dinary differential equation

(3.2.1)
dGt

Gt

= rtdt,

where rt is the stochastic instantaneously riskless interest rate. We assume absence of

arbitrage which ensures the existence of (at least) a martingale measure Q equivalent to

the so-called historical probability P, using Gt as numéraire of the economy.

Using the Fundamental Theorem of Asset Pricing the value of a zero coupon bond

B (t, T ), that pays 1 for sure in T , is given by

B (t, T ) = EQ
t

[
Gt

GT

]
= EQ

t

[
e−

∫ T
t rudu

]
= e−r(t,T )(T−t),

where r (t, T ) is the spot rate known at time t. We decompose the price of a coupon bond

in two components, the value of the bond V (t, T ) and the residual or liquidity spread

R (t, T ), such as P (t, T ) = V (t, T ) +R (t, T ).

39
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At time t we call V (t, T ) the value of a bond expiring in T , with a continuous stream

of fixed payments δ, and that repays VT at maturity:

V (t, T ) = EQ
t

[∫ T

t

δ
G (t)

G (s)
ds+ VT

G (t)

G (T )

]
= δ

∫ T

t

B (t, s) ds+ VTB (t, T ) .

The yield to maturity (YTM) of this bond is the constant interest rate yv (t, T ), over

the period [t, T ], that satisfies the following equation

(3.2.2) V (t, T ) = δ

∫ T

t

e−yv(t,T )(s−t)ds+ VT e
−yv(t,T )(T−t).

Moreover, we recall that the YTM of a zero-coupon bond is equal to its spot rate since

the following holds

(3.2.3) B (t, T ) = e−r(t,T )(T−t) = e−yv(t,T )(T−t).

Then, in a market with friction the price of a bond is given by the following equation

(3.2.4) P (t, T ) = EQ
t

[∫ T

t

δe−(yv(t,T )+yr(t,T ))(s−t)ds+ VT e
−(yv(t,T )+yr(t,T ))(T−t)

]
where yr (t, T ), which measures the yield to maturity of the liquidity spread, is a bond

specific constant, that incorporates the idiosyncratic adjustments to the price of each

bond, driven by investor preference and market liquidity. Here, we assume that this

component cannot be explained by curve movements. We define the yield to maturity of

the price of a bond as y (t, T ) = yv (t, T ) + yr (t, T ). We assume that the YTM yv (t, T ),

which represents the level of the yield curve in this one factor model, has a stochastic

dynamics

(3.2.5) dyv (t, T ) = µ (t, T ) dt+ σ (t, T ) dW (t) ,

in which dW (t) is a Wiener process under P, with zero mean and variance dt and liquidity

spread yr (t, T ) evolves over time by the following mean-reverting stochastic differential

equation

(3.2.6) dyr (t, T ) = κr (θr − yr (t, T )) dt+ σr (t, T ) dWr (t) ,

with dWr (t) independent of dW (t)1.

1this hypothesis will be relaxed in the next section.
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Clearly, if yr (t, T ) = 0 the price of the bond is equal to the value. In this toy model we

could set θr = 0 since we assume that the liquidity spread should be temporary. In further

analysis we could model the fact that a bond can have a permanent liquidity premium.

We could add and analyze other aspects like presence of a bond in the deliverable basked

of bond futures or the cost of funding using the prices available in the repo market.

Starting from the previous equation we can derive the evolution of the bond price by

using the Ito’s Lemma,

dP (t, T ) =
∂P (t, T )

∂t
dt+

∂P (t, T )

∂yv (t, T )
dyv (t, T ) +

∂P (t, T )

∂yr (t, T )
dyr (t, T )

+
1

2

∂2P (t, T )

∂yv (t, T )
2 (dyv (t, T ))

2 +
1

2

∂2P (t, T )

∂yr (t, T )
2 (dyr (t, T ))

2

+
∂2P (t, T )

∂yv (t, T ) ∂yr (t, T )
(dyv (t, T ) dyr (t, T ))

whose derivatives are

∂P (t, T )

∂t
= −δ +

∫ T

t

δ
∂
(
e−(yv(t,T )+yr(t,T ))(s−t)

)
∂t

ds+ VT

(
∂
(
e−(yv(t,T )+yr(t,T ))(T−t)

)
∂t

)

= −δ + (yv (t, T ) + yr (t, T ))

∫ T

t

δe−(yv(t,T )+yr(t,T ))(s−t)ds

+ VT e
−(yv(t,T )+yr(t,T ))(T−t) (yv (t, T ) + yr (t, T ))

= −δ + (yv (t, T ) + yr (t, T ))P (t, T ) ,

∂P (t, T )

∂yv (t, T )
= −

∫ T

t

δ
(
e−(yv(t,T )+yr(t,T ))(s−t) (s− t)

)
ds− VT e

−(yv(t,T )+yr(t,T ))(T−t) (T − t) ,

∂P (t, T )

∂yr (t, T )
= −

∫ T

t

δ
(
e−(yv(t,T )+yr(t,T ))(s−t) (s− t)

)
ds− VT e

−(yv(t,T )+yr(t,T ))(T−t) (T − t) ,

∂2P (t, T )

∂yv (t, T )
2 = −

∫ T

t

δ
(
e−(yv(t,T )+yr(t,T ))(s−t) (s− t)2

)
ds− VT e

−(yv(t,T )+yr(t,T ))(T−t) (T − t)2 ,

∂2P (t, T )

∂yr (t, T )
= −

∫ T

t

δ
(
e−(yv(t,T )+yr(t,T ))(s−t) (s− t)2

)
ds− VT e

−(yv(t,T )+yr(t,T ))(T−t) (T − t)2 ,

∂2P (t, T )

∂yv (t, T ) yr (t, T )
= −

∫ T

t

δ
(
e−(yv(t,T )+yr(t,T ))(s−t) (s− t)2

)
ds−VT e

−(yv(t,T )+yr(t,T ))(T−t) (T − t)2 .

We can define the duration, D (t, T ), and the convexity, C (t, T ), of the bond price as
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D (t, T )
.
=

∫ T

t
δ
(
e−(yv(t,T )+yr(t,T ))(s−t) (s− t)

)
ds+ VT e

−(yv(t,T )+yr(t,T ))(T−t) (T − t)

P (t, T )
,

(3.2.7)

C (t, T )
.
=

∫ T

t
δ
(
e−(yv(t,T )+yr(t,T ))(s−t) (s− t)2

)
ds+ VT e

−(yv(t,T )+yr(t,T ))(T−t) (T − t)2

P (t, T )

(3.2.8)

and finally we can rewrite the dynamics of the bond as

dP (t, T )

P (t, T )
=

(
yv (t, T ) + yr (t, T )−

δ

P (t, T )

)
dt−D (t, T ) (dyv (t, T ) + dyr (t, T ))

+
1

2
C (t, T )

(
dyv (t, T )

2 + dyr (t, T )
2) ,

=

(
yv (t, T ) + yr (t, T )−

δ

P (t, T )
− (µ (t, T ) + κr (θr − yr (t, T )))D (t, T )

)
dt(3.2.9)

+
1

2

(
σ (t, T )2 + σr (t, T )

2) C (t, T ) dt

−D (t, T )σ (t, T ) dW (t)−D (t, T )σr (t, T ) dWr (t) ,

recalling that dyv (t, T ) dyr (t, T ) = 0 given the independence of dWr (t) and dW (t) . We

notice that both the duration and the convexity can be solved analytically as showed in

appendix. The addition of the liquidity spread is particularly important for bonds with

very close maturity as those belonging to the bond futures basket. We will explain the

rationale of this addiction in the subsection 3.2.3.

.

3.2.1. Dynamic Nelson-Siegel-Svensson Curve. In the previous section we have

presented a YTM evolution in order to derive the bond price evolution as a function of

yv (t, T ) and of yr (t, T ). Now, we enrich the yield curve model by moving from one factor

to a multifactor setting to obtain a more realistic description of the risk factors that drive

the yield curve. We use the dynamic Nelson-Siegel-Svensson (DNSS) proposed by Diebold

and Rudebusch (2013) but we model the yield to maturity instead of the short rate. The

YTM of the value of a bond is given by

yv (t, T ) = Lt + St

(
1− e−λ1(T−t)

λ1 (T − t)

)
+ C1

t

(
1− e−λ1(T−t)

λ1 (T − t)
− e−λ1(T−t)

)
(3.2.10)

+ C2
t

(
1− e−λ2(T−t)

λ2 (T − t)
− e−λ2(T−t)

)
,

where Lt, St, C
1
t , C

2
t are stochastic variables and λ1 and λ2 are constants.
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With this formulation, the DNSS models the YTM curve of bond value as a four factor

model, with latent factors Lt, St, C
1
t , C

2
t , the dynamics of which determines the dynamic

of yv (t, T ) for any T . Moreover, at any t, the cross section of yv (t, T ) is determined by

the coefficients 1,
(

1−e−λ1(T−t)

λ1(T−t)

)
,
(

1−e−λ1(T−t)

λ1(T−t)
− e−λ1(T−t)

)
,
(

1−e−λ2(T−t)

λ2(T−t)
− e−λ2(T−t)

)
that

we will call also factor loadings. Another interpretation to the four latent factors is given

by Diebold and Rudebusch (2013). In fact, we note that Lt, the level, moves yields in

a parallel fashion while St changes the slope of the yield curve. In fact
(

1−e−λ1(T−t)

λ1(T−t)

)
represents an exponential decay and allows the term structure to slope upwards (with

β1t < 0) or downwards (with β1t > 0). Finally, the last two factor loadings, the curvatures,

produce a butterfly effect; both C1
t and C1

2 create a hump (if > 0) or a trough in the yield

curve (if < 0).

The addition of C1
2 is justified by the fact that it allows better calibration for long

maturity bonds. In fact, C1
t is generally used to model the curvature of the short end

while C1
2 is used for the curvature of the extra long part of the curve. Furthermore, the

signs of the two coefficients may differ depending on the shape of the curve.

The YTM of the value of a bond and its dynamic are given by:

dyv (t, T ) =
∂yv (t, T )

∂t
dt+ dLt + dSt

(
1− e−λ1(T−t)

λ1 (T − t)

)
+ dC1

t

(
1− e−λ1(T−t)

λ1 (T − t)
− e−λ1(T−t)

)(3.2.11)

+ dC2
t

(
1− e−λ2(T−t)

λ2 (T − t)
− e−λ2(T−t)

)
,

where ∂yv(t,T )
∂t

is is the ‘roll-down’ R (t, T ), i.e., the change in yield as t changes by a small

amount. In our model we can derive an analytical formula for the roll-down as follows

∂yv (t, T )

∂t
=

(
-e−λ1(T−t)

(T − t)
+

1− e−λ1(T−t)

λ1 (T − t)2

)
St +

(
-e−λ1(T−t)

(T − t)
+

1− e−λ1(T−t)

λ1 (T − t)2
+−λ1e

−λ1(T−t)

)
C1

t

+

(
-e−λ2(T−t)

(T − t)
+

1− e−λ2(T−t)

λ2 (T − t)2
− λ2e

−λ2(T−t)

)
C2

t ,

=

(
-e−λ1(T−t)

(T − t)
+

1− e−λ1(T−t)

λ1 (T − t)2

)(
St + C1

t

)
− λ1e

−λ1(T−t)C1
t

+

(
-e−λ2(T−t)

(T − t)
+

1− e−λ2(T−t)

λ2 (T − t)2
− λ2e

−λ2(T−t)

)
C2

t .

(3.2.12)
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Here, we assume that the factor dynamics follows a system of independent mean

reverting SDE under historical probability P:
dLt

dSt

dC1
t

dC2
t

 =


κl 0 0 0

0 κs 0 0

0 0 κc1 0

0 0 0 κc2





θl
θs

θc1

θc2

−


Lt

St

C1
t

C2
t


 dt+

+


σl 0 0 0

0 σs 0 0

0 0 σc1 0

0 0 0 σc2




dWl (t)

dWs (t)

dWc1 (t)

dWc2 (t)

 .(3.2.13)

where for each state variable follows a Vasicek process with κ, speed of mean reversion, θ,

long term mean and σ, instantaneous volatility, constant parameters. Moreover, the four

state variables may interact dynamically or their shocks may be correlated and in that

case the matrix of the speed of mean reversion and the matrix of diffusion coefficients

could have non zero off-diagonal elements.

3.2.2. Bond market with correlated state variables. We can enrich the previous

model by adding correlations between the state variables. In fact, if the state variables

in the system 3.2.13 are correlated, then we can use the Cholesky Decomposition of the

covariance matrix in order to use independent Wiener processes. In particular, there

exists a C (t) sub-triangular matrix with elements ci,j such that


dLt

dSt

dC1
t

dC2
t

yr (t, Ti)

 =


κl 0 0 0 0

0 κs 0 0 0

0 0 κc1 0 0

0 0 0 κc2 0

0 0 0 0 κri






θl
θs
θc1

θc2

θri

−


Lt

St

C1
t

C2
t

yr (t, Ti)



 dt

+


σl 0 0 0 0

0 σs 0 0 0

0 0 σc1 0 0

0 0 0 σc2 0

0 0 0 0 σri




c1,1 0 0 . . . 0

c2,1 c2,2 . . . . . . 0

. . . . . . . . . . . . 0

. . . . . . . . . . . . . . .

cn,1 cn,2 . . . . . . cn,n




dWl (t)

dWs (t)

dWc1 (t)

dWc2 (t)

dWri (t)

 .(3.2.14)

This system can be written in the following form

(3.2.15) dz (t)
5×1

= µz (t, z)
5×1

dt+ Ω⊺ (t, z)
5×5

dW (t)
5×1

,
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and then we can use the Ito Lemma to obtain the dynamics of P (t, Ti):

and then we can use the multidimensional Ito Lemma in order to obtain the dynamics

of P (t, Ti).

dP (t, Ti) =

∂P (t, Ti)

∂t
+

(
∂P (t, Ti)

∂z

)⊺

1×5

µz (t, z)
5×1

+
1

2
tr

Ω⊺ (t, z)
5×5

Ω (t, z)
5×5

∂2P (t, Ti)

∂z′∂z
5×5

 dt

+

(
∂P (t, Ti)

∂z

)⊺

1×5

Ω⊺ (t, z)
5×5

dW.

The YTM of a bond can be rewritten as y (t, Ti) = f (t, Ti)
′zt where for the sake of

simplicity, we define the following vector of factor loadings f (t, Ti)

f1 (t, Ti) = 1

f2 (t, Ti) =
1−e−λ1(Ti−t)

λ1(Ti−t)

f3 (t, Ti) =
1−e−λ1(Ti−t)

λ1(Ti−t)
− e−λ1(Ti−t)

f4 (t, Ti) =
1−e−λ2(Ti−t)

λ2(Ti−t)
− e−λ2(Ti−t)

f5 (t, Ti) = 1.

The derivative with respect to the state variables becomes

∂P (t, Ti)

∂zt
= −

(∫ Ti

t

δ

(
e−(y(t,Ti))(s−t)∂ (y (t, Ti)) (s− t)

∂zt

)
ds+ (VTi

) e−(y(t,Ti))(Ti−t)∂ (y (t, Ti)) (Ti − t)

∂zt

)
,

and noticing that ∂y(t,Ti)
∂zt

= f we can write

∂P (t, Ti)

∂Lt

=−
(∫ Ti

t

δ
(
e−(y(t,Ti))(s−t) (s− t)

)
ds+ VTi

e−(y(t,Ti))(Ti−t) (Ti − t)

)
,

∂P (t, Ti)

∂St

=−
(∫ Ti

t

δ
(
e−(y(t,Ti))(s−t) (s− t)

)
ds+ VTi

e−(y(t,Ti))(Ti−t) (Ti − t)

)(
1− e−λ1(Ti−t)

λ1 (Ti − t)

)
,

∂P (t, Ti)

∂C1
t

=−
(∫ Ti

t

δ
(
e−(y(t,Ti))(s−t) (s− t)

)
ds+ VTi

e−(y(t,Ti))(Ti−t) (Ti − t)

)
(
1− e−λ1(Ti−t)

λ1 (Ti − t)
− e−λ1(Ti−t)

)
,

∂P (t, Ti)

∂C2
t

=−
(∫ Ti

t

δ
(
e−(y(t,Ti))(s−t) (s− t)

)
ds+ VTi

e−(y(t,Ti))(Ti−t) (Ti − t)

)
(
1− e−λ2(Ti−t)

λ2 (Ti − t)
− e−λ2(Ti−t)

)
,

∂P (t, Ti)

∂yr (t, Ti)
=−

(∫ Ti

t

δ
(
e−(y(t,Ti))(s−t) (s− t)

)
ds+ VTi

e−(y(t,Ti))(Ti−t) (Ti − t)

)
.
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The derivative with respect to t is

∂P (t, Ti)

∂t
=− δ +

∫ Ti

t

δ
∂
(
e−y(t,Ti)(s−t)

)
∂t

ds+ VTi

(
∂
(
e−y(t,Ti)(Ti−t)

)
∂t

)
,

=− δ + y (t, Ti)

(∫ Ti

t

δe−y(t,Ti)(s−t)ds+ VTi
e−y(t,Ti)(Ti−t)y (t, Ti)

)
− ∂y (t, Ti)

∂t

(∫ Ti

t

δe−y(t,Ti)(s−t) (t− s) ds+ VTi
e−y(t,Ti)(Ti−t) (Ti − s)

)
=− δ + y (t, Ti)P (t, Ti)

− ∂y (t, Ti)

∂t

(∫ Ti

t

δe−y(t,Ti)(s−t) (t− s) ds+ VTi
e−y(t,Ti)(Ti−t) (Ti − s)

)
.

Finally, we have to compute ∂2P (t,Ti)
∂z′∂z

that can be written as

∫ Ti

t

δ
(
e−(y(t,Ti))(s−t)f (t, Ti) f (t, Ti)

⊺

(s− t)2
)
ds+(VTi

) e−(y(t,Ti))(Ti−t)f (t, Ti) f (t, Ti)
⊺

(Ti − t)2 .

The evolution of the price of a bond becomes

dP (t, Ti)

P (t, Ti)
=

(
y (t, Ti)−

δ

P (t, Ti)
−D (t, Ti)

(
R (t, Ti) + f (t, Ti)

⊺

µz (t, z)
))

dt

+ C (t, Ti)
1

2
tr
(
Ω (t, z) Ω (t, z)

⊺
f (t, Ti) f (t, Ti)

⊺)
dt

−D (t, Ti) f (t, Ti)
⊺

Ω (t, z) dW.(3.2.16)

Using the DNSS framework to model the YTM curve, the liquidity spread yield of a

bond is immediately recovered. In fact, in a cross-sectional environment we have n bonds,

with n different maturities, that shares the yield-curve factors but each bond has its own

idiosyncratic factor given by its liquidity. Firstly, given n prices of the bonds, we calculate

the n YTM and we calibrate the YTM of value of the bonds using equation 3.2.10 and,

secondly, we calculate the yield spread as the difference between the yield of the bond and

the yield of the fitted curve. We notice that this representation generates incompleteness

in the market since we have n + 4 risk factors and n bonds. The market price of risk

ξ ∈ Rk can be written as

(3.2.17) Σ (t, z)⊺

n×n+4

ξ (t)
n+4×1

= µV (t, z)
n×1

+ I−1
V δV
n×1

− r 1
n×1

,
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with D (t, T ) f (t, T )
⊺

Ω (t, z) = Σ (t, z)⊺. If we add the liquidity spread to the model the

market is incomplete and there exist infinitely many market prices of risk that eliminate

any arbitrage opportunity from the market.

3.2.3. Futures price and delivery option. One application of the previous model

is the valuation of the delivery option embedded in the bond future contract. In the

following subsection we will describe the problem and why we need to use a multifactor

model with liquidity spreads.

The seller of a bond futures has the choice about the bond to be delivered. We define

the deliverable basket Ψ (t,D) as the set, at time t, of n bonds deliverable at the expiry,

D, of the futures contract . The flow received by the seller is the futures settlement price

multiplied by a conversion factor, plus the accrued interest.

The conversion factor is used to homogenize the deliverable bonds that have different

coupons and maturities. The conversion factor (CF) is a constant, different for each bond

and defined by the exchange at the beginning of the trading period of each futures. The

CF roughly corresponds to one-hundredth of the price of the deliverable bond at the yield

level of the notional coupon of the bond future contract, that usually is at 6%.

At maturity, the seller receives the payoff

F (D,D)CFi − P (D,Ti) ,

where F (D,D) is the settlement price of the futures, CFi is the conversion factor of ith

bond whose value is P (D,Ti) ∈ Ψ(t,D) .

The deliverable bond with the best payoff for the seller of the futures is called the

cheapest-to-deliver (CTD).

The futures contract is settled at each time so that its mark-to-market is constantly

zero. Since the settlement at any time s is worth the change in its market value dF (s,D),

then this market value must satisfy

EQ
t

[∫ D

t

G (t0)

G (s)
dF (s,D)

]
= 0.

This equation can hold only if dF (s,D) is a martingale under Q, i.e.

dF (s,D) = σFdW
Q (s) ,

and if we integrate both sides and we take the expected value we obtain

F (t,D) = EQ
t [F (D,D)] .

The price of the future contract at delivery must satisfy the following boundary con-

dition, in order to prevent arbitrage,
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(3.2.18)
n∏

i=1

(F (D,D)CFi − P (D,Ti))1 (Ti = τD) = 0,

where τD is the maturity of the CTD bond at time D, since the equation is equal to zero

only if the delivered bond is the CTD. Thus, we can rearrange the future price by defining

the CTD at t as the nth in the deliverable basket such as Tn = τt:

F (t,D) = EQ
t

[
P (D,Tτt)

CFτt

1 (Tn = τt = τD) +
n−1∏
i=1

P (D,Ti)

CFi

1 (Ti = τD)

]
= EQ

t

[
P (D,Tτt)

CFτt

]
−DO (t,D) ,

(3.2.19)

where DO (t,D), the value of the delivery option at time t, can be written as

DO (t,D) = EQ
t

[
P (D,Tτt)

CFτt

1 (Tn = τt ̸= τD)−
n−1∏
i=1

P (D,Ti)

CFi

1 (Ti = τD)

]
,

which is the different of the ratio between the price of bonds in the deliverable basket and

their conversion factor multiplied by the indicator function of the event that each bond

of the basket will become the cheapest-to-deliver at D. In this way we can see that the

price of the futures is equal to the forward price of the current CTD minus the delivery

option. We define the CTD switch as the event such that during the life of the futures

the CTD changes. We notice that the delivery options cannot be negative and could be

zero only if the probability of a CTD switch occurring during the life of the contract is

also zero.

3.2.4. Gross and net basis. The no-arbitrage relationship at delivery, given by

3.2.18, is the key for basis trade between the deliverable bonds and futures, with the

following conventions

GB (t,D, Ti) = P (D,Ti)− F (t,D)CFi(3.2.20)

NB (t,D, Ti) = EQ
t [P (D,Ti)]− F (t,D)CFi(3.2.21)

where GB (t,D, Ti) is the gross basis at t of the bond with maturity Ti over the futures

with delivery at D. We define the net basis as the same relationship but using the forward

bond price P (t,D, Ti) = EQ
t [P (D,Ti)] that represent the price of buying the bond with

maturity Ti at t until D through a repo transaction.

If at t a trader enters in a long basis trade he will buy the CTD bond, with maturity

τt, and he will profit if before D another bond will become the CTD. In fact, he will sell
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the previous CTD and he will buy the new one at a lower price with the following payoff,

obtained by

NB (t,D, Ti) = EQ
t [P (D,Tτt)]−

(
EQ

t [P (D,Tτt)]

CFτt

−DO (t,D)

)
CFτt .

This profile of risk makes the long net basis position like an out of the money options

written on the delivery options. In fact, if at D there is no switch the indicator function

1 (Tn = τt = τD) is equal to one and the net value of the net basis is zero. Otherwise, if

there was a CTD switch the net basis would have the following payoff greater than zero

P (t,D, Tτt)−
n−1∏
i=1

P (D,Ti)

CFi

1 (Ti = τD)CFτt .

To determine the value of the delivery option, we should calculate the probability that

one of the bonds in the basket could become the new cheapest to deliver. To model the

market realistically, we propose the use of the model exposed in the previous section since

both the change in the 4 risk factors of the bond value and the change in the liquidity

spread can determine the switch of the CTD.

Given the complexity of the calculation, the numerical example will be made in future

research by considering whether there is a closed-form solution to the problem or whether

it should be obtained through numerical simulations.

3.3. Target based portfolio optimization

3.3.1. Multifactor market . In this section we introduce the financial market,

based on the modeling of the previous section that we will use to solve a portfolio op-

timization of a market maker who has to hedge a bond using other bonds on the same

curve but with different maturities. We use the value of the bond, without the liquidity

spreads, in order to have a complete market in our numerical results. We will also show

how to solve the portfolio optimization problem in a incomplete market.

The framework is defined as follows:

• A set of k state variables exist, whose values zt solve the stochastic differential

equation:

(3.3.1) dz (t)
k×1

= µz (t, z)
k×1

dt+ Ω⊺ (t, z)
k×k

dW (t)
k×1

,

where dW (t) is a vector of independent Wiener processes with zero mean and

volatility dt. The set of the state variables could contain the factor dynamics of

the DNSS curve as 3.2.13.
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• n = k bonds whose values V (t, Ti) are continuously traded on a financial market

and solves the matrix stochastic differential equation

(3.3.2) I−1
V

n×n

dV (t, z)
n×1

= µV (t, z)
n×1

dt+ Σ⊺ (t, z)
n×k

dW (t)
k×1

,

in which IV is a diagonal matrix gathering the prices V (t, Ti), Ti is the n×1 vector

of maturity of the bonds, µV (t, z) is the vector of the instantaneous expected

returns of the bond and Σ (t, z)⊺ is their volatility matrix as defined from equation

3.2.16.

This market is arbitrage free if and only if there exists (at least a) vector ξ ∈ Rk such

that

(3.3.3) Σ (t, z)⊺

n×n

ξ (t)
n×1

= µV (t, z)
n×1

+ I−1
V δV
n×1

− r 1
n×1

,

in which 1 is a vector of ones and δV is a vector of the bond coupons. Furthermore, the

market is complete if the vector ξ is unique. The vector ξ is called “market price of risk”

– MPR. By using the MPR we can define a new probability Q under which the original

Wiener processes are transformed as follows (Girsanov’s theorem):

dWQ (t) = ξ (t) dt+ dW (t) .

3.3.2. The wealth process. We assume that the trader is a market maker who has

to buy or sell one the specific bond V (t, Tx), with maturity Tx ∈ [T1, Tn] on a forced

basis in order to satisfy customer demands. We assume that the curve is composed

by n bonds with different maturity such as the vector for the maturities of the curve,

Tc,∈ [T1, T2, ..., Tn] with T1 > 0.

Once the quantity of the bond is known, the trader then has to choose one or more

bonds of the curve, different from V (t, Tx), in order to reduce the variance of the total

wealth, maximizing the return, at a given time horizon T , with T ∈ [T0, Tn] and 0 < T0 ≤
T1.

We denote with Rt the total wealth at time t. The coupon paid or received from the

bond V (t, Tx) is constant and equal to c unit per time, with c = δxwx where wx could be

either 1 or −1 if the bond is bought or sold, respectively. Let us call ωt the dollar amount

invested at time t into the portfolio used to hedge wx the constant dollar amount of the

bond V (t, Tx). Then, the wealth dynamics is

dRt = (Rt − ω⊺
t 1)

dGt

Gt

+ ω⊺
t I

−1
V (dV (t) + δV )− cdt.

=(Rtrt − c+ ω⊺
t (µ (t, z)− r1)) dt+ ω⊺

t (Σ (t, z)⊺ dW (t)) ,(3.3.4)

with µ (t, z) = µV (t, z) + I−1
V δV . Furthermore, we set R0 = wx.
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3.3.3. The target hedging problem. We assume that the trader chooses the mean-

variance approach to solve his portfolio problem.

Definition 1. The mean-variance optimization problem is defined as

(3.3.5) (Pα) min J (ω (·)) .
= αV0 [RT −XT ]− E0 [RT −XT ] ,

with α > 0 and the scalar XT equal to wxV (T, Tx) over a set of admissible strategies,

that can be introduced as follows:

Definition 2. A portfolio ω (·) is said to be admissible if ω (·) ∈ L2
F (0, T,R2) and

E
(∫ T

0
|ωt|2

)
< ∞.

If ω∗ (·) solves(Pα) for some α > 0 and RT −XT is the associated wealth level, the set

(V0 [RT −XT ] ,E0 [RT −XT ]) is called the efficient frontier.

Moreover, we define

Πα (·) = {ω (·) |ω (·) is an optimal control of Pα} .

We know from Zhou and Li (2000) that the problem can be approached by solving

the following auxiliary problem

(3.3.6) (Pα,β) min J (ω (·)) .
= E0

[
α (RT −XT )

2 − β (RT −XT )
]
,

with −∞ < β < ∞ and we also define Πα,β (·) as the optimal control of auxiliary problem

Pα,β. Then, the following result shows the relationship between problems Pα and Pα,β.

Theorem 3. For any α > 0, one has

Πα (·) ⊆
⋃

−∞<β<+∞

Πα,β (·) .

Moreover, if ω∗ (·) ∈ Πα (·), then ω∗ (·) ∈ Πα,β (·) with β = 1 + 2αE0 [R
∗
T −XT ], where

R∗(·) is the wealth under optimal control.

Proof. See Appendix .2 □

3.3.4. The optimal portfolio. The implication of 3 is that if ω∗ (·) is a solution to

3.3.5 than it is also a solution to 3.3.6 with β = 1 + 2αE0 [R
∗
T −XT ]. Finally, we could

set γ = β
2α

and it turns out that 3.3.6 is equivalent to

min
ω

J (wt)
.
= E0

[α
2
((RT −XT )− γ)2

]
,
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over a set of admissible strategies. Since the actual value of J (wt) is mainly immaterial,

we rewrite the problem as the target problem Pγ

(3.3.7) (Pγ) min J (ω (·)) .
= E0

[
1

2
(RT − (XT + γ))2

]
.

The Problem (3.3.7) can be solved by backward induction as shown in Appendix .3.

Proposition 4. The optimal portfolio solving Problem (3.3.7) given the state vari-

ables (3.3.4) and (3.3.1) is

ω∗
t =

(
EQ

t

[∫ T

t

+ce−
∫ s
t rudu

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

]
−Rt

)
Σ⊺Σ−1 (µ− r1)

(3.3.8)

+Σ−1Ω

(
EQ

t

[∫ T

t
+ce−

∫ s
t rudu

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

])
∂z (t)

− Σ−1Ω

(
EQ

t

[∫ T

t
+ce−

∫ s
t rudu

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

]
−Rt

)
EQ2

t

[
e−

∫ T
t (2ru−ξ⊺uξu)du

] ∂EQ2
t

[
e−

∫ T
t (2ru−ξ⊺uξu)du

]
∂z

.

in which the Wiener processes under the new probability Q2 are defined as

(3.3.9) dWQ2 (t) = 2ξdt+ dW (t) .

Proof. See Appendix .3. □

3.3.5. The auxiliaries functions. The optimal portfolio can be rewritten using two

auxiliaries functions H (t, zt) and Fz as follow:

ω∗
t = (H −Rt) (Σ

⊺Σ)−1 (µ− r1) + (Σ)−1Ω.

(
Hz −

(H −Rt)Fz

F

)
,

withH (t, zt) = EQ
t

[∫ T

t
+ce−

∫ s
t rududs

]
+EQ

t

[
(XT + γ) e−

∫ T
t rudu

]
and F (t, zt) = EQ2

t

[
e−

∫ T
t (2ru−ξ⊺uξu)du

]
.

First, we notice that H (t, zt) can be simplified by using the Fundamental Theorem of Fi-

nance

H (t, zt) = EQ
t

[∫ T

t

ce−
∫ s
t rududs

]
+ EQ

t

[
γe−

∫ T
t rudu

]
+ EQ

t

[
XT e

−
∫ T
t rudu

]
= γB (t, T ) + EQ

t

[∫ T

t

δxe
−

∫ s
t rududs

]
+ EQ

t

[
V (T, Tx) e

−
∫ T
t rudu

]
,

with ωx = 1 for the sake of simplicity. We notice that EQ
t

[∫ T

t
δxe

−
∫ s
t rududs

]
+EQ

t

[
V (T, Tx) e

−
∫ T
t rudu

]
is equal to V (t, Tx) then we can write the following vector of derivatives of V (t, Tx) with

respect to the state variables that drives yv (t, Tx):
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∂V (t, Tx)

∂Lt

=−
∫ Tx

t

δ
(
e−(yv(t,Tx))(s−t) (s− t)

)
ds− (VTx) e

−(yv(t,Tx))(Tx−t) (Tx − t) ,

∂V (t, Tx)

∂St

=−
(
1− e−λ1(Tx−t)

λ1 (Tx − t)

)∫ Tx

t

δ
(
e−(yv(t,Tx))(s−t) (s− t)

)
ds

− (VTx)

(
1− e−λ1(Tx−t)

λ1 (Tx − t)

)
e−(yv(t,Tx))(Tx−t) (Tx − t)

∂V (t, Tx)

∂C1
t

=−
(
1− e−λ1(Tx−t)

λ1 (Tx − t)
− e−λ1(Tx−t)

)∫ Tx

t

δ
(
e−(yv(t,Tx))(s−t) (s− t)

)
ds

− (VTx)

(
1− e−λ1(Tx−t)

λ1 (Tx − t)
− e−λ1(Tx−t)

)
e−(yv(t,Tx))(Tx−t) (Tx − t) ,

∂V (t, Tx)

∂C2
t

=−
(
1− e−λ2(Tx−t)

λ2 (Tx − t)
− e−λ2(Tx−t)

)∫ Tx

t

δ
(
e−(yv(t,Tx))(s−t) (s− t)

)
ds

− (VTx)

(
1− e−λ2(Tx−t)

λ2 (Tx − t)
− e−λ2(Tx−t)

)
e−(yv(t,Tx))(Tx−t) (Tx − t) .(3.3.10)

Now, we still have to compute

∂EQ
t

[
γe−

∫ T
t rudu

]
∂z

,

that can be written and computed as

EQ
t

[
γe−

∫ T
t rudu

]
=γB (t, T ) = e−yv(t,T )(T−t)

∂γB (t, T )

∂Lt

=− γe−(yv(t,T ))(T−t) (T − t) ,

∂γB (t, T )

∂St

=− γ

(
1− e−λ1(T−t)

λ1 (T − t)

)
e−(yv(t,T ))(T−t) (T − t)

∂γB (t, T )

∂C1
t

=− γ

(
1− e−λ1(T−t)

λ1 (T − t)
− e−λ1(T−t)

)
e−(yv(t,T ))(T−t) (T − t) ,

∂γB (t, T )

∂C2
t

=− γ

(
1− e−λ2(T−t)

λ2 (T − t)
− e−λ2(T−t)

)
e−(yv(t,T ))(T−t) (T − t) .

Finally, we can write ∂H(t,zt)
∂zt

as the sum of the two vector derivatives ∂V (t,Tx)
∂zt

and
∂γB(t,T )

∂zt
.

3.3.6. Computation of Fz. In order to compute Fz , under the assumption of con-

stant MPR, we have to rewrite the dynamics of zr (·) = 2r (·) under the new probability

Q2. But first we note, from 3.2.10, that the short rate rt is the limit of yv for infinitely
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short maturity

rt = lim
T→t

yv = Lt + St.

Thereby, the dynamics of the short rate are given by the limits of T → t of 3.2.11:

(3.3.11) lim
T→t

dyv = drt =

(
λ1

2

(
St − C1

t

)
− λ2

2
C2

t

)
dt+ dLt + dSt,

where we set the limit of the instantaneous roll-down equal to zero:

lim
T→t

∂yv (t, T )

∂t
=

(
λ1

2

(
St − C1

t

)
− λ2

2
C2

t

)
= 0.

Under the assumptions of equal speed of mean reversion, θl = θs, the sum of two

Vasicek processes is still a Vasicek process so we can obtain the dynamics of rt

(3.3.12) dr (t) = κr (θr − r (t)) dt+ σrdWr (t) ,

where κr = κl + κs, θr = θl = θs, and σr = [(σ2
l + σ2

s)]
1
2 . We define also

Wr (t) =

∫ t

0

σl

σr

dWl (u) +

∫ t

0

σs

σr

dWs (u) .

We can notice that Wr (t) is a local martingale with

(dWr (t))
2 =

(∫ t

0

σl

σr

dWl (u) +

∫ t

0

σs

σr

dWl (u)

)2

=

(
(σ2

l + σ2
s)

σ2
r

dt

)
= dt.

Hence, we can see that Wr (t) is a Brownian motion in the sense of the following

theorem.

Theorem 5. Lévy Theorem.

Let M (t), t ≥ 0, be a martingale relative to a filtration Ft, t ≥ 0. Assume that M (0) =

0, M (t) has continuous paths, and [M,M ] (t) = t for all t ≥ 0. Then M (t) is a Brownian

motion.

Given the SDE 3.3.11 the price of a zero-coupon bond can be written as

(3.3.13) B (t, T ) = ef(t,T )−g(t,T )rt ,

where

f (t, T ) =

(
1− eκr(T−t)

κr

− (T − t)

)(
θr −

σrξr
κr

− 1

2

σ2
r

κ2
r

)
− σ2

r

4κ3
r

(
1− eκr(T−t)

)2
,

g (t, T ) =
1− eκr(T−t)

κr

.

The dynamic of zr can be written as
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dzr (t) =2κr

(
θr −

1

2
zr (t)

)
dt+ 2σrdWr (t)

=2κr

(
θr −

1

2
zr (t)

)
dt+ 2σr

(
dWQ2 (t)− 2ξrdt

)
=κr

(
2θr − 4

ξrσr

κr

− zr (t)

)
dt+ 2σrdW

Q2 (t) ,

and finally we obtain

F (t, zt) = eξ
⊺ξEQ2

t

[
e−

∫ T
t zr(u)du

]
= eξ

⊺ξef2(t,T )−2g(t,T )r(t),

F (t, zt) =eξ
⊺ξEQ2

t

[
e−

∫ T
t zr(u)du

]
= eξ

⊺ξef2(t,T )−2g(t,T )Lt+St

∂F (t, zt)

∂Lt

=− 2g (t, T ) eξ
⊺ξef2(t,T )−2g(t,T )(Lt+St)

∂F (t, zt)

∂St

=− 2g (t, T ) eξ
⊺ξef2(t,T )−2g(t,T )(Lt+St)

and then
∂F (t,zt)
∂LtF

= −2g (t, T )
∂F (t,zt)
∂StF

= −2g (t, T )
∂F (t,zt)

∂C1
t F

= 0
∂F (t,zt)

∂C2
t F

= 0

3.4. Incomplete market: martingale method

In this section, we work in an incomplete market where we have 4 state variables

that drives the value of the bonds and one state variable, the liquidity spread, for each

bonds. Since there are n bonds and n + 4 risk factors there is no arbitrage but market

incompleteness. We solve this problem by using the martingale approach in order to find

the optimal wealth. Because of the incompleteness, we will minimize the mean square

distance between the diffusion terms of the optimal wealth and of the wealth of the

portfolio instead of replicating the optimal wealth. First, we solve the following problem

(3.4.1) min
ω

J (wt)
.
= E0

[
1

2
(RT − (XT + γ))2

]
,

under the constraint

(3.4.2) R0 = EQ
0

[∫ T

0

ce−
∫ s
0 rududs+RT e

−
∫ T
0 rudu

]
.
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The Lagrangian function of 3.4.1 is

L = E0

[
1

2
(RT − (XT + γ))2

]
− ϕ

(
R0 − EQ

t

[∫ T

0

ce−
∫ s
0 rududs+RT e

−
∫ T
0 rudu

])
,

where ϕ is the (constant) Lagrangian multiplier. This Lagrangian function cannot be

directly simplified since the two expected values are written under two different probabil-

ities. Thus, we can rewrite the second expected value E under the historical probability

as follows:

L = E0

[
1

2
(RT − (XT + γ))2 + ϕRT e

−
∫ T
0 rudum (0, T )

]
− ϕ

(
R0 − E0

[∫ T

0

m (0, s) ce−
∫ s
0 rududs+m (0, T )RT e

−
∫ T
0 rudu

])
where e−

∫ T
0 rudum (0, T ) is the stochastic discount factor. The derivative of L with respect

to R (T ) must be set to zero for each state of the world, i.e.

R∗
T = (XT + γ)− ϕe−

∫ T
0 rudum (0, T ) .(3.4.3)

Now, the optimal final wealth can be plugged into the budged constraint 3.4.2

ϕ =
(XT + γ)B (0, T ) +

∫ T

t
+cB (0, s) ds−R0

E0

[
e−2

∫ T
0 rudum2 (0, T )

] ,

and the final weal can be rewritten as

R∗
T = (XT + γ)− (XT + γ − χT )B (0, T )

E0 [e2Φ(0,T )]
eΦ(0,T ),(3.4.4)

with Φ (t, T ) = −
∫ T

t
rudu− 1

2

∫ T

t
ξ⊺uξudu−

∫ T

t
ξ⊺udWu and χT =

R0−
∫ T
t +cB(0,s)ds

B(0,T )
.

In the optimal solution, the constraint 3.4.2 must hold at any instant in time:

R∗
t = Et

[∫ T

t

m (t, s) ce−
∫ s
t rududs+R∗

T e
−

∫ T
t rudum (t, T )

]
and if the optimal final wealth 3.4.3 is plugged into this equation we have:
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R∗
t = Et

[∫ T

t

m (t, s) ce−
∫ s
t rududs+

(
(XT + γ)− ϕe−

∫ T
0 rudum (0, T )

)
e−

∫ T
t rudum (t, T )

]
= EQ

t

[∫ T

t

ce−
∫ s
t rududs+ (XT + γ) e−

∫ T
t rudu

]
− Et

[
ϕe−

∫ T
0 rudum (0, T ) e−

∫ T
t rudum (t, T )

]
= EQ

t

[∫ T

t

ce−
∫ s
t rududs+ (XT + γ) e−

∫ T
t rudu

]
− ϕm (0, t) e−

∫ t
0 ruduEt

[
e2Φ(t,T )

]
.

Now we can define the following two functions

(3.4.5) H (t, zt) = EQ
t

[∫ T

t

+ce−
∫ s
t rududs

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

]
,

(3.4.6) F (t, zt) = EQ2
t

[
e−

∫ T
t (2ru−ξ⊺uξu)du

]
,

where the new probability Q2 is defined using the following Girsanov’s kernel

dWQ2 (t) = 2ξdt+ dW (t) .

Then, the optimal wealth becomes

R∗
t = H (t, zt)− ϕm (0, t) e−

∫ t
0 ruduF (t, zt) .

Now we can compute the dR∗
t through Ito’s lemma differentiating with respect to m (0, t)

and the state variables 3.3.1 and since we are interested in replicating it we just need to

compute the diffusion term.

R∗
t = (...) dt+

∂R∗
t

∂zt
Ω⊺ (t, z) dW (t)− ∂R∗

t

∂m (0, t)
m (0, t) ξ⊺dW (t)

= (...) dt+

(
∂H (t, zt)

⊺

∂zt
− ϕm (0, t) e−

∫ t
0 rudu

(
∂F (t, zt)

⊺

∂zt

))
Ω⊺ (t, z) dW (t)

+ ϕe−
∫ t
0 ruduF (t, zt)m (0, t) ξ⊺dW (t) .

We can substitute ϕm (0, t) e−
∫ t
0 ruduF (t, zt) = H (t, zt)−R∗

t and we obtain

R∗
t = (...) dt+

∂R∗
t

∂zt
Ω⊺ (t, z) dW (t)− ∂R∗

t

∂m (0, t)
m (0, t) ξ⊺dW (t)

= (...) dt+

(
∂H (t, zt)

⊺

∂zt
−
(
H (t, zt)−R∗

t

F (t, zt)

)(
∂F (t, zt)

⊺

∂zt

))
Ω⊺ (t, z) dW (t)

+ (H (t, zt)−R∗
t ) ξ

⊺dW (t) .(3.4.7)
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3.4.1. The case of an incomplete market. If market is complete the diffusion

term of 3.4.7 is set equal to the diffusion term of 3.3.4 and we find the portfolio which

replicates the optimal wealth that coincides with the portfolio 3.3.8 found via the dynamic

programming.

However, we are interested in the case of the incomplete market generated by liquidity

spreads. Also, for practical reasons, it is possible for the market maker to use only one or

two bonds to hedge its position on V (t, Tx), and in this case, even without the liquidity

spreads, the market would be incomplete. In this two cases of market incompleteness, the

matrix Σ (t, z)⊺ cannot be inverted and then the replicating portfolio cannot be found.

Nevertheless, we can find the portfolio that minimizes the square of the distance between

the diffusion terms of the optimal wealth and of the wealth in 3.3.4, where the diffusion

term of the optimal wealth is

Σ∗ (t, z) = (H (t, zt)−R∗
t ) ξ

⊺ +

(
∂H (t, zt)

⊺

∂zt
−
(
H (t, zt)−R∗

t

F (t, zt)

)(
∂F (t, zt)

⊺

∂zt

))
Ω⊺ (t, z) .

We can write the problem as

min
ωt

(ω⊺
tΣ (t, z)⊺ − Σ∗ (t, z)) (ωtΣ (t, z)− Σ∗ (t, z)⊺)

whose solution is

ω∗∗
t = (Σ (t, z)⊺Σ (t, z))

−1
Σ (t, z)⊺Σ∗ (t, z)⊺ .

The optimal portfolio in case of market incompleteness can thus be written as

ω∗∗
t =

(
EQ

t

[∫ T

t

+ce−
∫ s
t rudu

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

]
−Rt

)
Σ∗∗ξ

(3.4.8)

+Σ∗∗Ω

(
EQ

t

[∫ T

t
+ce−

∫ s
t rudu

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

])
∂z (t)

− Σ∗∗Ω

(
EQ

t

[∫ T

t
+ce−

∫ s
t rudu

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

]
−Rt

)
EQ2

t

[
e−

∫ T
t (2ru−ξ⊺uξu)du

] ∂EQ2
t

[
e−

∫ T
t (2ru−ξ⊺uξu)du

]
∂z

with Σ∗∗ = (Σ (t, z)⊺Σ (t, z))
−1

Σ (t, z)⊺ n× k matrix.
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3.5. Numerical Application

In this section, we show a numerical application of the model presented. First, we

calibrate the various parameters and then we will show the dynamics of the optimal

portfolio.

The yield curve is calibrated by using the Dynamic Nelson-Siegel-Svensson model with

only three parameters. Actually, the fourth parameter generates instability in the optimal

portfolio since hedging bonds are too correlated among themselves, as we will show in

details later. We have used daily data, from 04/October/2019 to 04/Oct/2021, on all the

Italian Government bond curve .

We set λ1 equal to 0.3587 which is the value that maximizes the curvature factor at

the 5 year pillar. The details of this procedure can be found in Diebold and Rudebusch

(2013).

The evolution of the parameters can be seen in figure 3.6.1, while figure 3.6.2 shows

an example of calibration of the Yield Curve.

By using these time series we have calibrated a VAR model of order one in order to

obtain the continuous time parameters for the equation 3.2.14 without the C2
t random

variable. The Tables 3.6.3 and 3.6.4 show the results of the econometric estimation while

table 3.6.1 show the continuous time parameters.

We have computed the optimal portfolio evolution by using 3, 7, and 50 year bonds

in order to hedge a 10 year bond position over a period of 1 year with target equal to

1%. In particular, we have used BTP EUR 2.500 01-Dec-2024, BTP EUR 2.800 01-Dec-

2028, BTP EUR 1.700 01-Sep-2051 as hedge for a short position on BTP EUR 0.950

01-Dec-2031.

For each time step we have simulated 5000 path of the state variables and then we

have computed ω∗
t . In figures 3.6.5, 3.6.6, and 3.6.7 we show the results for the total

portfolio, for the speculative component and for the hedging component, calculated as

the median of the portfolio weight given the paths of the state variables. Moreover, we

have fixed R0 = V (0, T10).

As we can see, the weights of the hedging portfolio are much more stable than the

speculative one. In fact, we see that the speculative portfolio has significant variations in

the initial period and is extremely related to the mean reversion of the state variables.

Once the state variables converge to the long-term mean, the speculative component

also becomes more stable. Finally, we show the evolution of the total gain of the trader

R∗
t −V (t, T10) in figure 3.6.8 where we have also calculated the upper and lower percentile

evolution.

The gain process converges quite fast to the target, as expected. We have seen that the

convergence of the gain to the target is highly dependent on the mean reversion of the state
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Table 1. Continuous Time Parameters: This table reports the continuous

time parameters estimation of the state variables calibrated between 04/Octo-

ber/2019 to 04/Oct/2021.

State Variable Kappa Theta Sigma C

L 3.723 0.024 0.007 1.000 0.000 0.000

S 3.252 -0.028 0.008 -0.628 0.778 0.000

C 9.625 -0.026 0.022 0.430 0.308 0.849

variables. Changing the time horizon of the problem could lead to a slower convergence.

In fact, in figure 3.6.9 we show the same gain process, computed by changing the initial

calibration period from 04/October/2019 to 05/October/2018, that doesn’t reach the

target during the period. In particular, as shown in Table 2, varying the calibration

horizon yields to similar values for theta and sigma but to a significantly lower mean-

reversion speed.

3.6. Conclusion

This study propose a new Dynamic Term Structure model that describes the bond

market using the YTMs instead of the affine short rates framework. We find that the

model can archive a good fit and stability over time and also the parameters have a clear

economic interpretation. Moreover, in this framework we have used the target based

approach to solve a mean-variance problem . Once a closed-form solution of the problem

is found, we calibrate our model to market data and we find the portfolio weights for the

complete market case. We have seen that the portfolio reaches the target and the stability

of the speculative part is highly dependent on the speed of mean reversion of the state

variables. Future research will focus on studying the portfolio problem in a incomplete

market adding the liquidity spread to better describe the bond market and the valuation

of the delivery option embedded in the bond futures contract.
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Figure 3.6.1. Dynamic Nelson-Siegel parameters evolution, calibrated on the

BTPs Curve (between 04/October/2019 to 04/Oct/2021).

Table 2. Continuous Time Parameters: This table reports the con-

tinuous time parameters estimation calibrated between 04/October/2019 to

04/Oct/2021.

State Variable Kappa Theta Sigma C

L 1.246 0.024 0.008 1.000 0.000 0.000

S 0.953 -0.028 0.008 -0.722 0.692 0.000

C 3.887 -0.025 0.026 0.296 0.332 0.896
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Figure 3.6.2. Nelson-Siegel Curve calibration as 01-Dec-2020.
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Figure 3.6.3. Vector Autoregressive estimation results (between 04/Octo-

ber/2019 to 04/Oct/2021).

Figure 3.6.4. Variance Covariance Matrix and Correlation Matrix.
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Figure 3.6.5. Total Portfolio Weights evolution over one year.
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Figure 3.6.6. Speculative Portfolio Weights evolution over one year.
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Figure 3.6.7. Hedging Portfolio Weights evolution over one year.
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Figure 3.6.8. Gain Process median and percentiles using state variables cali-

brated between 04/October/2019 to 04/Oct/2021.
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Figure 3.6.9. Gain Process median and percentiles using state variables cali-

brated between 04/October/2019 to 04/Oct/2021.
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.1. Integrals of duration and convexity

The integral into the equation 3.2.7 can be solved in the following way. First we

rewrite, the integral as∫ T

t

δ
(
e−y(s−t) (s− t)

)
ds = δety

∫ T

t

(
e−ys (s− t)

)
ds

where the functional dependence of y (t, T ) with respect to time is omitted for the

sake of simplicity. We integrate by parts the integral noticing that ∂(s−t)
∂s

= 1 and the

primitive of e−ys is equal to −e−ys

y
. Then∫ T

t

(
e−ys (s− t)

)
ds =

− (s− t) e−ys

y
+

∫ T

t
e−ysds

y
=

− (s− t) e−ys

y
− e−ys

y2
.

By substituting the the solved integral we can write

δety
∫ T

t

(
e−ys (s− t)

)
ds = δ

(
− (s− t) e−y(s−t)

y
− e−y(s−t)

y2

)
|Tt ,

= δ

(
− (T − t) e−y(T−t)

y
− e−y(T−t)

y2
+

1

y2

)
δ

(
(− (T − t) y − 1) e−y(T−t) + 1

y2

)
.

Repeating the same steps, the integral into the convexity equation 3.2.8 can be solved as∫ T

t

δ
(
e−y(s−t) (s− t)2

)
ds = δ

(
2− ((t2 − 2Tt+ T 2) y2 + (2T − 2t) y + 2) e−y(T−t)

y3

)
.

Finally, the duration can be rewritten as

D (t, T ) = δ

(
(− (T − t) y − 1) e−y(T−t) + 1

y2P (t, T )

)
+

VT

P (t, T )
e−y(T−t) (T − t) ,

while the convexity becomes

C (t, T ) = δ

(
2−

(
(T − t)2 y2 + 2 (T − t) y + 2

)
e−y(T−t)

y3P (t, T )

)

+
VT

P (t, T )
e−y(T−t) (T − t)2 .
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.2. Proof of Theorem 3 3

Proof. We need to prove the second assertion given that the first one is a direct

consequence of the second one, as showed in Zhou and Li (2000). Let ω∗ (·) ∈ ΠPα . If

ω∗ (·) /∈ ΠA(µ,β̄), then there exist ω (·) and the corresponding R(·)−X(·) such that

(.2.1)

α
(
E0

[
(RT −XT )

2]− E0

[
(R∗

T −XT )
2])− β(E0 [(RT −XT )]− E0 [(R

∗
T −XT )]) < 0.

Set a function

π(x, y) = αx− αy2 − y.

It is a concave function in (x, y) and

π
(
E0

[
(RT −XT )

2] ,E0 [(RT −XT )]
)
= −E0 [(RT −XT )] + αV0 [RT −XT ]

which is exactly the objective function of problem Pα. Given the concavity of π we can

write, recalling that ∂π(x,y)
x

= α, ∂π(x,y)
y

= −(1 + 2αy),

(.2.2)
π
(
E0

[
(RT −XT )

2] ,E0 [(RT −XT )]
)
≤π
(
E0

[
(R∗

T −XT )
2] ,E0 [(R

∗
T −XT )]

)
+ α

(
E0

[
(RT −XT )

2]− E0

[
(R∗

T −XT )
2])

− (1 + 2αE0 [(R
∗
T −XT )])(E0 [(RT −XT )]− E0 [(R

∗
T −XT )])

<π
(
E0

[
(R∗

T −XT )
2] ,E0 [(R

∗
T −XT )]

)
,

where the last inequality is due to .2.1. By .2.2, ω∗ (·) is not optimal for problem Pα,

leading to a contradiction. □

.3. Proof of Proposition 4

We tackle the standard stochastic optimal control problem with the dynamic program-

ming approach. We define the value function as

max
{ωt}t∈[0,T ]

E0

[
1

2
(RT − (XT + γ))2

]
,

with the boundary condition

(.3.1) J (T,XT , RT ) =
(RT − (XT + γ))2

2
.
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If we define J (t, zt, Rt) the value function that solves this problem, it must satisfy the

following Hamilton-Jacobi-Bellman (HJB) equation

0 =
∂J

∂t
+

∂J

∂Rt

(Rtr − c) + µ⊺
z

∂J

∂zt
+

1

2
tr (Ω⊺ΩJzz)

+ max
ωt

{
∂J

∂Rt

ω⊺
t (µ− r1) +

1

2

∂2J

∂R2
t

ω⊺
tΣ

⊺Σωt + ω⊺
tΣ

⊺Ω
∂2J

∂Rt∂zt

}
,

The First Order Condition (FOC) on the portfolio is

ω∗
t = −

∂J
∂Rt

∂2J
∂R2

t

(Σ⊺Σ)−1 (µ− r1)− 1
∂2J
∂R2

t

(Σ⊺Σ)−1Σ⊺Ω
∂2J

∂Rt∂zt
,

and after substituting this optimal portfolio into the HJB equation we obtain

0 =
∂J

∂t
+

∂J

∂Rt

(Rtr − c) + µ⊺
z

∂J

∂zt
+

1

2
tr (Ω⊺ΩJzz)

− 1

2

(
∂J
∂Rt

)2
∂2J
∂R2

t

(µ− r1)⊺ (Σ⊺Σ)−1 (µ− r1)−
∂J
∂Rt

∂2J
∂R2

t

(µ− r1)⊺ (Σ⊺Σ)−1Σ⊺Ω
∂2J

∂Rt∂zt

− 1

2

1
∂2J
∂R2

t

(
∂2J

∂Rt∂zt

)⊺

Ω⊺Σ (Σ⊺Σ)−1Σ⊺Ω
∂2J

∂Rt∂zt
.

Given the boundary condition, a suitable guess function for solving the HJB equation

should have the following form

J (t, zt, Rt) =
(Rt −H (t, z))2

2F (t, zt)
,

in which the functions F (t, zt) and H (t, zt) must be computed in order to satisfy the HJB

equation. The boundary condition (.3.1) can then be split into two boundary conditions

F (T, zT ) = 1,

H (T, zT ) = XT + γ.

If we substitute this value function into the HJB we get

0 =Jt + JR (Rtr − c) + µ⊺
zJz +

1

2
tr (Ω⊺ΩJzz)

− 1

2

J2
R

JRR

(µ− r1)⊺ (Σ⊺Σ)−1 (µ− r1)− JR
JRR

(µ− r1)⊺ (Σ⊺Σ)−1Σ⊺ΩJRz

− 1

2

1

JRR

J⊺
RzΩ

⊺Σ (Σ⊺Σ)−1Σ⊺ΩJRz

The partial derivatives are

J =
(R−H)2

2F
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Jt = −(R−H)2 Ft

2F 2
− (R−H)Ht

F

JR =
(R−H)

F

JRR =
1

F

JRz = −(R−H)Fz

F 2
+−Hz

F

Jz = −(R−H)2

2F 2
Fz −

(R−H)Hz

F

Jzz = +
(R−H)2

F 3
FzF

⊺
z − (R−H)FzH

⊺
z

F 2
− (R−H)2

2F 2
Fzz

+
(R−H)HzF

⊺
z

F 2
+

HzH
⊺
z

F
− (R−H)Hzz

F

Substitute into the HJB

0 =− (R−H)2

2F 2
Ft +

(R−H)2 r

F
− (R−H)2

2F 2
µ⊺
zFz

+
(R−H)2

2F 3
F ⊺
z Ω

⊺ΩFz −
(R−H)2

4F 2
tr (Ω⊺ΩFzz)

− 1

2

(R−H)2

F
(µ− r1)⊺ (Σ⊺Σ)−1 (µ− r1) +

(R−H)2 (µ− r1)⊺ (Σ⊺Σ)−1Σ⊺ΩFz

F 2

− (R−H)2 F ⊺
z Ω

⊺Σ (Σ⊺Σ)−1Σ⊺ΩFz

2F 3

− (R−H)Ht

F
+

(R−H) (Hr − c)

F
− (R−H)µ⊺

zHz

F

+
1

2

(R−H)H⊺
zΩ

⊺ΩFz

F 2
+

1

2

(R−H)F ⊺
z Ω

⊺ΩHz

F 2

− 1

2

(R−H) tr (Ω⊺ΩHzz)

F
+

(R−H) (µ− r1)⊺ (Σ⊺Σ)−1Σ⊺ΩHz

F

− (R−H)F ⊺
z Ω

⊺Σ (Σ⊺Σ)−1Σ⊺ΩHz

F 2

+
1

2

H⊺
zΩ

⊺ΩHz

F

− 1

2

H⊺
zΩ

⊺Σ (Σ⊺Σ)−1Σ⊺ΩHz

F
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where we have three terms, one containing (R−H)2, one containing (R−H), and

one that do not contain (R−H). The last terms disappear only if he market is complete.

In this case, in fact,

Σ (Σ⊺Σ)−1Σ⊺ = I

and so

+
1

2

H⊺
zΩ

⊺ΩHz

F
− 1

2

H⊺
zΩ

⊺Σ (Σ⊺Σ)−1Σ⊺ΩHz

F
= 0.

The HJB becomes

0 =Ft +
(
µ⊺
z − 2 (µ− r1)⊺ (Σ⊺Σ)−1Σ⊺Ω

)
Fz +

1

2
tr (Ω⊺ΩFzz)

− F
(
2r − (µ− r1)⊺ (Σ⊺Σ)−1 (µ− r1)

)

0 =Ht +
(
µ⊺
z − (µ− r1)⊺ (Σ⊺Σ)−1Σ⊺Ω

)
Hz +

1

2
tr (Ω⊺ΩHzz)−Hr − c

that can be rewritten using 3.3.3

0 =Ft + (µ⊺
z − 2ξ⊺Ω)Fz +

1

2
tr (Ω⊺ΩFzz)− F (2r − ξ⊺ξ)(.3.2)

0 =Ht + (µ⊺
z − ξ⊺Ω)Hz +

1

2
tr (Ω⊺ΩHzz)−Hr − c.(.3.3)

Remark 6. If Ito’s lemma is applied to H (t, zt) , it’s differential can be written as

dH =

(
Ht + (µ⊺

z − ξ⊺Ω)Hz +
1

2
tr (Ω⊺ΩHzz)

)
dt+H⊺

zΩ
⊺dWQ,

and because of .3.3 , we get

dH =(Hr − c) dt+H⊺
zΩ

⊺dWQ (t)

= (Hr − c+H⊺
zΩ

⊺ξ) dt+H⊺
zΩ

⊺dW (t) .(.3.4)

We can express the solutions of both PDEs .3.2 and .3.3 through the Feynman Kac

representation theorem, but under two different probability. WhileH (t, zt) can be written

as an expected value under Q, the function F (t, zt) can be expressed under a probability

such that the drift of the state variable 3.3.1 is µ⊺
z − 2ξ⊺Ω. Then, this new probability Q2

is defined as following:

µz (t, z) dt+ Ω(t, z) dW (t) = (µ⊺
z − 2ξ⊺Ω) dt+ Ω(t, z) dWQ2 (t)

dWQ2 (t) = 2ξdt+ dW (t) .

Thus, the two function F (t, zt) and H (t, zt) can be written as the following expected

values



.3. PROOF OF PROPOSITION ?? 78

(.3.5) H (t, zt) = EQ
t

[∫ T

t

+ce−
∫ s
t rududs

]
+ EQ

t

[
(XT + γ) e−

∫ T
t rudu

]
,

(.3.6) F (t, zt) = EQ2
t

[
e−

∫ T
t (2ru−ξ⊺uξu)du

]
.

Once the guess function is substituted into the optimal portfolio, we get

ω∗
t = (H −Rt) (Σ

⊺Σ)−1 (µ− r1) + (Σ)−1Ω.

(
Hz −

(H −Rt)Fz

F

)
.


