

Pathways for N₂ and N₂O Formation during the Reduction of NO_x over $Pt-Ba/Al_2O_3$ LNT Catalysts Investigated by Labeling Isotopic Experiments

L. Lietti,* N. Artioli, L. Righini, L. Castoldi, and P. Forzatti

Dipartimento di Energia, Laboratory of Catalysis and Catalytic Processes and NEMAS, Centre of Excellence, Politecnico di Milano, P.zza L. da Vinci 32, Milano, Italy

ABSTRACT: Mechanistic aspects involved in the formation of N_2 and of N_2O during the reduction of gas-phase NO and of NO_x stored over a model PtBa/Al₂O₃ NSR catalyst are investigated using unlabeled ammonia and labeled NO. The reduction of the stored NO_x species (labeled nitrites and nitrates) with NH₃ leads to the selective formation of N_2 as a major product and of small amounts of nitrous oxide. Based on the nitrogen isotopic distribution, it appears that N_2 formation occurs primarily through the statistical coupling of N-atoms formed by dissociation of NO_x - and NH_3 -related surface intermediates, although an SCR-pathway (involving the coupling of NH₃- and NO-derived ad-species) is also likely to occur. It appears as well that the formation of nitrous oxide involves either the coupling of two adsorbed NO molecules or the recombination of an adsorbed NO molecule with an adsorbed NH_x fragment.

INTRODUCTION

Both diesel- and lean burn gasoline-powered vehicles are spreading in the transportation sector due to higher efficiency and lower fuel consumption if compared to the traditional stoichiometric engines.^{1–3} The three-way-catalytic (TWC) converters, currently used for stoichiometric gasoline engines, are not effective in the reduction of NO_x for lean burn engines, which operate in the presence of excess oxygen. Viable solutions for the control of NO_x are in these cases the urea-SCR technique and the NO_x storage reduction (NSR) or lean NO_x trap (LNT) system.^{4–6} To date, the urea-SCR technology is preferred for heavy-duty vehicles and minivans, whereas LNTs are preferred for small engines.⁷ Besides, hybrid LNT/SCR systems have also been proposed.^{1,8}

In the NSR technology long lean phases, typically lasting 60–90 s, during which NO_x are stored on the catalyst, are alternated with short rich periods, in the order of few seconds, where the exhaust is deliberately made rich. The trapped NO_x are reduced to N₂ although other byproduct may be released (NO, N₂O, NH₃). NSR catalysts are composed of a high surface area support material (often γ -alumina or stabilized alumina), precious metals (usually a combination of Pt and Rh), and basic components, such as Ba or K, which act as NO_x storage material.^{9,10}

Mechanistic aspects of the reduction of NO_x stored over NSR catalytic systems have been investigated by several groups.^{11–15} It has been shown that the reduction of stored nitrates by hydrogen under nearly isothermal conditions (i.e., in the absence of significant thermal effects upon the lean/rich switch) does not involve the thermal decomposition of the adsorbed NO_x species as a preliminary step,^{11,16} but instead occurs via a Pt-catalyzed route already active at low temperatures. Besides, it has been suggested that N₂ is formed through a two-steps process in series molecular pathway involving the fast reaction of nitrates with hydrogen to give ammonia, followed by the slower reaction of the so-formed NH₃ with residual stored nitrates to

give N₂.^{13,14,17,18,21} Owing to the high reactivity of H₂ toward nitrates, and to the integral nature of the reactor, an hydrogen front develops in the reactor so that NH₃ reacts with nitrates stored downstream from the H₂ front to give nitrogen. This has been clearly demonstrated by spaciMS measurements¹⁹ showing the intracatalyst spatiotemporal species distributions during regeneration with H₂ of a Pt-Ba/Al₂O₃ LNT trap. As also pointed out by a dedicated kinetic analysis,²⁰ the development of an H₂ front traveling in the reactor, along with the occurrence of the above two-steps in series pathway, is able to account for the temporal sequence of products observed at the reactor exit during the regeneration of NSR catalysts.^{15,14,21}

On the basis of these findings, it appears that N₂ formation during the regeneration of NSR catalysts occurs via the reaction of ammonia with stored NO_x. Mechanistic aspects of this reaction are still largely unclear: this has motivated the present study where the possible routes leading to the formation of N_2 during the reaction of NH_3 with the stored NO_r have been investigated. For this purpose, isotopic labeling experiments have been carried out using unlabeled NH₃ and ¹⁵NO as a source for the stored ¹⁵NO_r. Since nitrites and nitrates can be formed on the catalyst surface upon NO adsorption in the presence of O₂ at low and high temperature, respectively,^{25,26} the reactivity of these adsorbed species with gaseous NH₃ has been investigated. The reactivity of NH₃ and ¹⁵NO in the gas phase has also been studied for comparison purposes. This allowed better clarification of the mechanistic aspects involved in the formation of N₂ during regeneration of the NSR catalysts, as detailed below.

Special Issue: Russo Issue

Received:	September 26, 2011
Revised:	January 23, 2012
Accepted:	January 25, 2012
Published:	January 25, 2012

ACS Publications © 2012 American Chemical Society

MATERIALS AND METHODS

Catalysts Preparation and Characterization. A homemade $Pt-Ba/Al_2O_3$ (1/20/100 w/w) catalyst was used in this study. The catalytic system was prepared by incipient wetness impregnation of a commercial alumina sample (Versal 250 from UOP) with an aqueous solution of dinitro-diammine platinum (Strem Chemicals, 5% Pt in ammonium hydroxide) and subsequently with a solution of Ba acetate (Aldrich, 99%). The powder was dried at 80 °C and calcined in air at 500 °C for 5 h after each impregnation step.²² The impregnation order (first Pt and then Ba) was chosen in order to ensure a good dispersion and stability of the noble metal and of the alkaline component on the alumina support, in line with recipes of Toyota patents.²³

The specific surface area of the sample, determined by N_2 adsorption–desorption using a Micromeritics TriStar 3000 instrument, is 160 m² g⁻¹ (BET method). The Pt dispersion was also estimated by hydrogen chemisorption at 0 °C (TPD/R/O 1100 Thermo Fischer instrument); a value of 52% was obtained.

Catalytic Tests. Catalytic tests were performed in a quartz tube microreactor (7 mm I.D.) loaded with 60 mg of catalyst powder (70–100 μ m). A total flow of 100 cm³/min (at 1 atm and 0 °C) was used in the experiments, resulting in a GHSV of 10⁵ h⁻¹, the density of the catalyst bed being very close to 1 g/cm³. The reactor outlet was directly connected to a mass spectrometer (Thermostar 200, Pfeiffer), a UV-NO_x analyzer (LIMAS 11HW, ABB) and a microgas chromatograph (Agilent 3000A) for online analysis of the reaction products.^{16,22,24}

Prior to the catalytic activity runs, the catalyst sample was conditioned by performing a few storage/regeneration cycles. For this purpose NO_x was adsorbed at 350 °C by imposing a rectangular step feed of NO (1000 ppm) in flowing He + 3% v/v O₂ until catalyst saturation. Then the NO and O₂ concentrations were stepwise decreased to zero, followed by a He purge at the same temperature (350 °C). This leads to the desorption of weakly adsorbed NO_x species. After the He purge, catalyst regeneration (rich phase) was carried out with H₂ (2000 ppm in He). Conditioning lasted until a reproducible behavior was obtained; this typically required 3–4 adsorption/reduction cycles. The conditioning procedure terminated with a reducing step; accordingly before the subsequent experiments the catalyst surface was free of any adsorbed NO_x species.

After the catalyst was conditioned at 350 °C, the temperature-programmed reaction (TPR) of NH₃ + ¹⁵NO, and temperature programmed surface reaction (TPSR)/isothermal step concentration (ISC) experiments of nitrites and nitrates with ammonia were performed. In a typical TPR experiment, the catalyst was exposed under temperature programming from room temperature (RT) to 400 °C (10 °C/min) to a flow of 660 ppm of NH₃ and 1000 ppm ¹⁵NO in He (i.e., according to the stoichiometry of the slow SCR reaction: 6NO + 4NH₃ \rightarrow SN₂ + 6H₂O).

Before TPSR and ISC experiments, labeled nitrites and nitrates have been adsorbed on the catalyst surface. On the basis of previous NO_x adsorption studies under in situ and operando conditions, nitrite and nitrate ad-species are formed on the catalyst surface upon NO/O₂ adsorption at low (150 °C) and high (350 °C) temperature, respectively.^{25–27} Accordingly labeled nitrites and nitrates were accumulated by contacting the catalyst with a flow of 1000 ppm ¹⁵NO in He + 3% v/v O₂ at 150 and 350 °C, respectively.

In the case of TPSR experiments, after ${}^{15}NO_x$ adsorption followed by a He purge at the same temperature, the catalyst

was cooled down to RT under He flow. Then a rectangular step feed of NH₃ (1000 ppm in He) was admitted to the reactor at RT and the catalyst temperature was linearly increased to 400 °C (heating rate 10 °C/min, hold 1 h), while monitoring the concentration of the products exiting the reactor. This procedure led to complete removal of the stored ¹⁵NO_x, as confirmed by nitrogen balance.

In the case of the isothermal step concentration experiments (ISC), after ¹⁵NO_x adsorption and He purge at 150 or 350 °C, the reduction of the stored ¹⁵NO_x species was carried out at the same temperature by imposing a rectangular step feed of NH₃ (1000 ppm in He).

At the end of the regeneration procedure, the catalyst was heated up to 350 °C under He flow and eventually hydrogen was added to the reactor to complete the reduction of residual stored ¹⁵NO_x, if any. This procedure allowed the quantification of the residual ¹⁵NO_x species left after reduction.

The following mass-to-charge ratios (m/e) have been used to follow the reaction products: H₂ (m/e = 2), N₂ (m/e = 28), ¹⁵NN (m/e = 29), ¹⁵N₂ (m/e = 30), NO (m/e = 30), ¹⁵NO (m/e = 31), N₂O (m/e = 44), ¹⁵NNO (m/e = 45), ¹⁵N₂O (m/e = 46), H₂O (m/e = 18), NH₃ (m/e = 15), NO₂ (m/e = 46), ¹⁵NO₂ (m/e = 47), and ¹⁵NH₃ (m/e = 16). Because of the large overlapping of the cracking patterns of the reaction products, quantitative analysis has been accomplished by simultaneous mass spectrometry, gas-chromatography, and UV–vis analysis.

Calibration factors and cracking patterns of the unlabeled species have been experimentally determined from calibrated gas cylinders; those of several labeled species have been obtained from cylinders (^{15}NO) or by dedicated experiments (e.g., lean rich cycles with ^{15}NO leading to the formation of $^{15}NO_2$, $^{15}N_2$, and $^{15}NH_3$). This procedure revealed that the calibration factors of $^{15}N_2$ and N_2 were almost identical; accordingly that of ^{15}NN was assumed to be the same. Along similar lines the calibration factors of $^{15}N_2O$ and ^{15}NNO were assumed to be identical to that of N_2O . These results have also been confirmed by GC measurements.

The analytical setup used in this work allowed the identification and quantification of species which overlap each other. For example the ¹⁵N₂ concentration was obtained from the MS m/e = 30 signal after "cleaning" the NO and NH₃ contributions provided by simultaneous UV-vis analysis; the ¹⁵NH₃ concentration was estimated by subtracting from the total amount of ammonia $(NH_3 + {}^{15}NH_3)$ obtained from the UV analyzer the concentration of ¹⁴NH₃ obtained from the MS signal at m/e =15 (taking into account the overlapping of ¹⁵N). Besides, GC analysis allowed the quantification of the overall nitrogen (N_2 + 15 NN + 15 N₂) and nitrous oxide (N₂O + 15 NNO + 15 N₂O) concentrations at different instants of the runs. These total concentration values were compared to those calculated by the sum of the different isotopic species $({}^{15}N_2 + N_2 + {}^{15}NN \text{ and } {}^{15}N_2O +$ $N_2O + {}^{15}NNO$) measured with the mass spectrometer to verify the accuracy of the analysis method.

N-balances, calculated from the amounts of NO_x adsorbed and those of N-containing products, are generally within an experimental error of 10%.

All the experiments carried out with ¹⁵NO (TPSR and ISC) have been performed with ¹⁴NO as well to check for differences in the reactivity of the labeled and unlabeled molecules: differences have always been found to be negligible.

Industrial & Engineering Chemistry Research

RESULTS

Adsorption of Nitrites and Nitrates. On the basis of previous NO_x adsorption studies accomplished under in situ and operando conditions^{25–27} nitrite and nitrate ad-species are formed on the Pt–Ba/Al₂O₃ catalyst surface upon NO/O₂ adsorption at low (150 °C) and high (350 °C) temperature, respectively. The results of ¹⁵NO/O₂ storage are shown in Figure 1 panels A and B. In Figure 1A (T = 150 °C) the ¹⁵NO

Figure 1. Adsorption of labeled NO at (A) 150 and (B) 350 °C by imposing a rectangular step feed of 15 NO (1000 ppm) in flowing He + 3% v/v O₂ on Pt-Ba/Al₂O₃ catalyst.

breakthrough is immediately observed upon admission (t = 0 s), along with very small amounts of ¹⁵NO₂ which are seen after 500 s. After steady-state conditions are attained, the ¹⁵NO inlet concentration is switched to zero; a tail is observed in the NO_x outlet concentration (with a small "puff" in the NO₂ concentration) due to the desorption of weakly adsorbed species. At the end of the adsorption process (2750 s), nearly 0.26 mmol/g_{cat} of ¹⁵NO_x have been stored on the catalyst surface.

In Figure 1B (T = 350 °C) the ¹⁵NO breakthrough is observed at 200 s, and the evolution of significant amounts of ¹⁵NO₂ are observed starting from 260 s. The outlet concentrations of both ¹⁵NO and ¹⁵NO₂ increase with time and tend to constant levels which are consistent with the constraints of the equilibrium of ¹⁵NO oxidation to ¹⁵NO₂ in the presence of 3% v/v O₂ (¹⁵NO = 590 ppm vs ¹⁵NO_{eq} = 445 ppm and ¹⁵NO₂ = 410 ppm vs ¹⁵NO_{2eq} = 555 ppm, at 350 °C). After roughly 2000 s, the ¹⁵NO feed is switched off, and also in this case a tail is observed in the ¹⁵NO_x concentration profile, due to the desorption of the weakly adsorbed ¹⁵NO_x species. At the end of the storage phase, nearly 0.34 mmol/g_{cat} of ¹⁵NO_x have been stored on the catalyst surface.

Reactivity of Stored Nitrites and Nitrates with Gas-Phase NH₃. Figures 2 and 3 show the results of NH₃-TPSR and NH₃-ISC experiments carried out after ¹⁵NO_x storage at 150 °C (labeled nitrites).

Figure 2. TPSR run with NH₃ (1000 ppm) after $^{15}NO_x$ adsorption at 150 °C (1000 ppm $^{15}NO + O_2$ 3% v/v in He) over Pt–Ba/Al₂O₃ catalyst.

Figure 3. ISC-rich phase with NH₃ (1000 ppm) at 150 °C after $^{15}NO_{\star}$ adsorption at 150 °C (1000 ppm ^{15}NO + O₂ 3% v/v in He) over Pt– Ba/Al₂O₃ catalyst.

In the case of the TPSR experiment (Figure 2), the desorption of ammonia is observed at first; indeed ammonia is being stored on the catalyst upon admission at the beginning of the experiment, not shown in the Figure (t < 30500 s). From nearly 120 °C a net consumption of ammonia is seen together with the formation of N_2O and N_2 due to the reaction of NH_3 with stored ¹⁵NO_x. Nitrogen is by far the most abundant product, with different isotopic composition. The single-labeled isotope (i.e., ${}^{15}N{}^{14}N$, m/z = 29) is initially observed in greater amounts, whereas the unlabeled $({}^{14}N_2, m/z = 28)$ and double-labeled $(^{15}N_2, m/z = 30)$ species are seen with a short delay. The single-labeled ¹⁵N¹⁴N molecule is the most abundant dinitrogen species evolved during the experiment (49% of the total N2 products), but the unlabeled $({}^{14}N_2)$ and double-labeled $({}^{15}N_2)$ dinitrogen are also observed in significant amounts (35% and 16%, respectively). The evolution of very small amounts of singlelabeled nitrous oxide (${}^{15}N{}^{14}NO, m/z = 47$) is also observed at the onset of the reaction around 100 °C (note that the concentration trace of ¹⁵N¹⁴NO is multiplied by a factor of 10).

Notably, the NH₃ consumption (0.3 mmol/ g_{cat} , as estimated from the NH₃ uptake in Figure 2 in the temperature range

Industrial & Engineering Chemistry Research

120–300 °C) and the N_2 formation (0.29 mmol/g_{cat}) roughly obey the stoichiometry of reaction 1:

$$Ba(NO_2)_2 + 2NH_3 \rightarrow 2N_2 + BaO + 3H_2O \tag{1}$$

Indeed nitrites are formed upon storage of NO/O₂ at 150 $^{\circ}$ C, and N₂ represents the major reaction product of NH₃-TPSR.^{25,26} Above 300 $^{\circ}$ C, ammonia is decomposed to a small extent into N₂ and H₂ (these species can be hardly detected due to the low concentrations).

Figure 3 shows the results obtained upon reduction of the stored nitrites at 150 $^{\circ}$ C (NH₃-ISC). Upon admission, ammonia is completely consumed and nitrogen is formed as the major reaction product along with nitrous oxide in small amounts (its concentration trace is multiplied by a factor of 10). The NH₃ consumption is slightly higher than that expected from the stoichiometry of reaction 1 due to ammonia adsorption onto the catalyst surface.

The temporal sequence and the distribution of products resemble those seen during the TPSR run (Figure 2). The single-labeled $^{15}N^{14}N$ molecule represents the main dinitrogen isotopic product (53%) and is seen before the other isotopes; $^{14}N_2$ and $^{15}N_2$ account for 23% and 24% of total N₂, respectively. Concerning N₂O, the single-labeled molecule ($^{15}N^{14}NO$) is formed in significant amounts, along with traces (few ppm) of the double-labeled isotope ($^{15}N_2O$). The unlabeled molecule $^{14}N_2O$ is not observed.

The results obtained upon the reaction of ammonia with the stored nitrates are shown in Figures 4 and 5. In the case of the

Figure 4. TPSR run with NH₃ (1000 ppm) after ¹⁵NO_x adsorption at 350 °C (1000 ppm ¹⁵NO + O_2 3% v/v in He) over Pt–Ba/Al₂O₃ catalyst.

 NH_3 -TPSR experiment (Figure 4), the ammonia consumption is observed from near 150 °C, and is accompanied by the evolution of N₂. The consumption of ammonia (0.6 mmol/g_{cat}) and the formation of N₂ (0.5 mmol/g_{cat}) are in line with the stoichiometry of reaction 2:

$$3Ba(NO_3)_2 + 10NH_3 \rightarrow 8N_2 + 3BaO + 15H_2O$$
 (2)

Indeed nitrates are formed upon storage of NO/O_2 at 350 °C and N_2 represents the only reaction product in Figure 4. N_2O is not observed in this case, at variance with the NH_3 -TPSR of nitrites (Figure 2) and in line with previous literature reports showing that the reduction of nitrates with ammonia is very selective toward N_2 .^{13,14,17,18} The dynamics of the evolution of the three dinitrogen isotopes is the same; the unlabeled

Figure 5. ISC-rich phase with NH₃ (1000 ppm) at 350 °C after ¹⁵NO_x adsorption at 350 °C (1000 ppm ¹⁵NO + O₂ 3% v/v in He) over Pt– Ba/Al₂O₃ catalyst.

 $^{14}N_2$ and the single-labeled $^{15}N^{14}N$ species are most abundant (respectively 44% and 37%), while $^{15}N_2$ accounts for 19% of total N_2 .

Similar results have been obtained in the case of NH₃-ISC carried out over the stored nitrates at 350 °C (Figure 5). Ammonia is completely consumed upon admission and N₂ represents the only reaction product. At 350 °C the adsorption of ammonia is negligible, so that the consumption of ammonia and the formation of N₂ obey the stoichiometry of reaction 2, as opposite to what was observed in the case of nitrites where the NH₃-ISC experiment was carried out at much lower temperature (150 °C, Figure 3). Unlabeled ¹⁴N₂ and single-labeled ¹⁵N¹⁴N species represent the main products (50% and 35%, respectively), while lower amounts of ¹⁵N₂ are observed (15%). As in the case of NH₃-TPSR of nitrates (Figure 4), N₂O is not observed, and the reaction is fully selective toward nitrogen.

Reactivity of Gas-Phase NO and NH₃. The results of TPR of NH₃ with gas-phase ¹⁵NO are shown in Figure 6. The

Figure 6. TPR run with NH₃ (660 ppm) and 15 NO (1000 ppm) in He over Pt–Ba/Al₂O₃ catalyst.

onset of the reaction with formation of N_2O and N_2 in comparable amounts is observed at 100 °C. Up to 180 °C only labeled molecules are detected, that is, ${}^{15}N_2O$ and ${}^{15}N^{14}NO$ for nitrous oxide and ${}^{15}N^{14}N$ for dinitrogen. Above 180 °C, where

complete NO consumption is observed, the concentration of nitrous oxide species drops to zero and the formation of double-labeled $^{15}\mathrm{N}_2$ and of unlabeled $^{14}\mathrm{N}_2$ is observed. Hence above 180 °C the reaction is very selective toward $\mathrm{N}_2.$

DISCUSSION

Mechanism of N₂ Formation. The results show that the NO_x species stored onto PtBa/Al₂O₃ LNT catalyst, i.e. nitrites and nitrates, are selectively reduced by NH₃ to N₂, since no other products are observed if one neglects the formation of very small amounts of nitrous oxide in the reduction of nitrites. All dinitrogen isotopes are formed but the abundance of the single-labeled ¹⁵N¹⁴N isotope is greater than those of the unlabeled ¹⁴N₂ and double-labeled ¹⁵N₂ isotopes. Only in the case of nitrites the dinitrogen isotopes show different temporal evolution; indeed the single-labeled ¹⁵N¹⁴N isotope prevails at the beginning of both NH₃-TPSR and NH₃-ISC runs. Concerning nitrous oxide, only labeled species (¹⁵N¹⁴NO and ¹⁵N₂O) are formed upon reaction of the stored NO_x with ammonia.

A different picture is apparent in the reaction of ammonia with gaseous ¹⁵NO. In this case comparable amounts of N₂O and of N₂ are observed at low temperature (100–180 °C), but the selectivity to dinitrogen is complete above 180–200 °C where NO is completely consumed. Like during NH₃-TPSR and NH₃-ISC runs of both nitrites and nitrates, only labeled species are observed in the case of nitrous oxide (¹⁵N¹⁴NO and ¹⁵N₂O). On the other hand all types of dinitrogen isotopes are observed among the products, but only the single-labeled ¹⁵N¹⁴N isotope is detected at 100–180 °C.

Mechanistic aspects involved in the formation of dinitrogen during the reduction of NO_x by NH_3 have been the object of long debate in the scientific literature. In the case of the NH_3 – SCR reaction over vanadia-based catalysts and transition metal exchanged zeolites

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$
 (3)

it has been shown that the reaction between unlabeled ammonia (¹⁴NH₂) and labeled NO (¹⁵NO) leads to the selective formation of the single-labeled nitrogen molecule (¹⁵N¹⁴N),²⁸⁻³⁰ indicating that one N-atom comes from ammonia and the other from NO. Accordingly the formation of N2 has been suggested to occur through the intermediacy of surface species like nitro-samide or ammonium nitrite^{29,31,32,29} formed via coupling of NH₃- with NO-derived species. In this pathway (SCR pathway) the self-coupling of N-species that originated from ammonia and NO is ruled out because of the lack of significant amounts of ${\rm ^{15}N_2}$ and ${\rm ^{14}N_2}$ isotopes in the product mixture. The same conclusions have been reached in our laboratories where the reaction of stored ¹⁴NH₃ with ¹⁵NO in the presence of excess O2 has been accomplished over V2O5/TiO2 and Fe-ZSM5 catalyst samples. In fact the very selective formation of ¹⁴N¹⁵N was observed (data not reported for the sake of brevity), in line with previous literature reports and with the mechanistic indications discussed above.^{28,30}

A different picture is apparent in the reduction of NO_x with ammonia in the case of the PtBa/Al₂O₃ catalyst sample investigated in this work. In the reduction of stored labeled nitrites by ¹⁴NH₃ (Figures 2 and 3) the formation of all dinitrogen isotopes was observed. The single-labeled ¹⁴N¹⁵N species dominates (roughly 50% of total N₂), but relevant amounts of double-labeled (¹⁵N₂) and unlabeled (¹⁴N₂) dinitrogen are also observed.

It is worth noting that the stoichiometry of the reduction of stored nitrites with ammonia (reaction 1) involves, like the NH₃–SCR reaction 3, a 1/1 molar ratio between ¹⁴NH₃ and the nitrite group ¹⁵NO₂⁻. Accordingly in this case the selective formation of only the single-labeled ¹⁴N¹⁵N molecule (via coupling of ¹⁴N- and ¹⁵N-containing species, as in the case of the SCR pathway) is possible. However the production of ¹⁵N₂ and unlabeled ¹⁴N₂ has also been observed, in addition to ¹⁴N¹⁵N, and this indicates that a SCR-like pathway does not represent the unique route of N₂ formation in the case of LNT catalysts.

Figure 7 sketches a possible pathway that can explain the formation of dinitrogen (and of nitrous oxide, see below)

Figure 7. Reaction pathway for ${\rm ^{15}NO}_x$ reduction over $\rm Pt-Ba/Al_2O_3$ catalyst.

during the reduction by NH₃ of ¹⁵NO_x adsorbed over Pt–Ba/ Al_2O_3 . Stored ¹⁵NO_x are located on Ba sites close to or far away from Pt; upon admission of ammonia the Pt sites are reduced and this drives the onset of the reduction process which involves the migration through surface diffusion of stored ¹⁵NO_x toward reduced Pt sites, as suggested in the literature.³³ The ¹⁵NO_x species are hence decomposed at the reduced Pt sites with formation of a pool of ¹⁵N- and O- ad-atoms. These adspecies react with NH₃-derived species or fragments adsorbed onto the Pt sites, as suggested in the case of the NO-NH₃ reaction over Pt-based catalysts.^{6,12,34–38} In such a case there is a general consensus that dinitrogen formation occurs via recombination of N-ad-atoms formed by dissociation of NO and NH₃ at the Pt site (s):

$$^{15}NO_{(g)} + s \rightarrow ^{15}NO_{(a)}$$
 (4)

$$^{15}NO_{(a)} + s \rightarrow {}^{15}N_{(a)} + O_{(a)}$$
 (5)

$$^{14}\text{NH}_{3(g)} + s \rightarrow {}^{14}\text{NH}_{3(a)}$$
 (6)

$$^{14}\text{NH}_{3(a)} + 3s \rightarrow {}^{14}\text{N}_{(a)} + 3\text{H}_{(a)}$$
 (7)

$${}^{15}N_{(a)} + {}^{15}N_{(a)} \to {}^{15}N_{2(g)} + 2s$$
 (8a)

$${}^{15}N_{(a)} + {}^{14}N_{(a)} \to {}^{15}N^{14}N_{(g)} + 2s$$
(8b)

$$^{14}N_{(a)} + {}^{14}N_{(a)} \rightarrow {}^{14}N_{2(g)} + 2s$$
 (8c)

$$2H_{(a)} + O_{(a)} \rightarrow H_2O_{(g)} + 3s$$
 (9)

In the scheme depicted above, NO is decomposed at reduced Pt sites to form N- and O-ad-atoms (reaction 5). Complete ammonia dehydrogenation (reaction 7) leads to the formation of N- and H-ad-atoms, which in turn keep clean the Pt surface from O-ad-atoms via reaction 9. Eventually nitrogen formation occurs through a recombination of N-ad-atoms (reactions 8a–8c), that produces all dinitrogen isotopes with a distribution which depends on the surface concentration of ¹⁴N- and ¹⁵N-adatoms and can be derived on a statistical basis. At variance with the SCR pathway, this route does not result in the selective formation of only single-labeled ¹⁴N¹⁵N species. The concentration of ¹⁴N¹⁵N is limited to a maximum of 50% of total dinitrogen species, and this occurs with equal coverage of ¹⁴N- and ¹⁵N-adspecies.

Figure 8 shows the concentration of the $^{14}N^{15}N$ isotope in the % of total N₂ as function of time during NH₃-TPSR and

Figure 8. ¹⁴N¹⁵N % concentration measured during TPSR (A) and ISC (B) experiments carried out after NO_x adsorption (1000 ppm ¹⁵NO + O_2 3% v/v in He) at 150 °C (solid lines) and at 350 °C (dashed lines).

NH₃-ISC experiments with nitrites and nitrates, calculated from the data of Figures 2–5. The abundance of the mixed ¹⁴N¹⁵N species is higher than 50% in the case of nitrites at the beginning of the experiments, up to 70% of total N₂ in the case of NH₃-TPSR (panel A) and up to 90% of total N₂ in the case of NH₃-ISC (panel B). This cannot be explained only with the statistical coupling of the N-ad-atoms formed upon adsorption/ decomposition of stored ¹⁵NO_x and of ¹⁴NH₃, but the occurrence of a SCR-like route involving the coupling of undissociated ¹⁵NO_x-derived species and of ammonia fragments (e.g., NH₂) must also be invoked (see Otto et al.³⁹):

$${}^{14}\mathrm{NH}_{2(a)} + {}^{15}\mathrm{NO}_{(a)} \to {}^{14}\mathrm{N}^{15}\mathrm{N}_{(g)} + \mathrm{H}_{2}\mathrm{O}_{(a)} + \mathrm{s} \quad \ (10)$$

The occurrence of the SCR-like route is more favored in the case of nitrites possibly in view of the corresponding formal oxidation number of N in ammonia and nitrites (-3 and +3, respectively) which favors the formation of the NH_x-NO surface intermediate.³¹

As pointed out by Kondratenko and Baerns,³⁷ in the formation of N_2 over Pt the statistical coupling of N-ad-atoms and the SCR-like pathway may coexist; the contribution of these routes in the formation of dinitrogen depends on the relative coverage by adsorbed NO and NH₃, and on temperature.⁴¹ Accordingly changes in the concentration of the ¹⁴N¹⁵N species with time in Figure 8 are likely associated to changes in the surface concentration of NH₃- and nitrite- or NO-derived surface species.

The results obtained in the reduction of the stored nitrates show some distinct features. First of all the selective formation of only mixed ¹⁴N¹⁵N species is not possible in the NH₃-TPSR and NH₃-ISC of nitrates. In fact the formation of the doublelabeled ¹⁴N₂ isotope is expected in view of the molar ratio $^{14}NH_3/^{15}NO_3^- = 10/6 > 1$ dictated by the stoichiometry of reaction 2. Figures 4 and 5 show that all the possible N₂ isotopes are formed in the reduction of nitrates with ammonia, and that the phase differences of the distribution of isotopic dinitrogen species is limited. Figure 8A,B also shows that the abundance of the ¹⁴N¹⁵N species is still high but less that 50% of the total N₂ so that it is not necessary to invoke a SCR-like pathway in the case of nitrates, although it cannot be excluded. On the other hand the formation of dinitrogen isotopes originating from the self-coupling of ¹⁵NO_x-derived species (i.e., $^{15}N_2$) provides evidence for the occurrence of statistical coupling of the N-ad-species.

Finally, in the reduction of the gas-phase 15 NO with NH₃ in the absence of oxygen according to reaction 11:

$$6^{15}NO + 4NH_3 \rightarrow 5N_2 + 6H_2O$$
 (11)

the following statistical isotope distribution is expected for the pathway based on the statistical recombination of N-ad-atoms formed by dissociation of NO and NH₃ at Pt sites for the feed of Figure 6: ¹⁴N¹⁵N/ ¹⁵N₂/¹⁴N₂ = 48/36/16. The isotope distribution calculated from Figure 6 at T > 200 °C where the N₂ selectivity is complete is ¹⁴N¹⁵N/ ¹⁵N₂/¹⁴N₂ \approx 52/31/17. This distribution compares well with that listed above and is fully consistent with the recombination pathway of N-ad-atoms formed by decomposition of gas phase NO and NH₃ at Pt sites. However the SCR route, that might be involved in the formation of single-labeled N₂, cannot be excluded.

Formation of N₂O. Small and almost negligible amounts of N₂O have been observed during NH₃-TPRS and NH₃-ISC of nitrites (Figures 2 and 3) and of nitrates (Figures 4 and 5), respectively, while relevant quantities of N₂O have been detected during the NH₃ + NO reaction (Figure 6). Notably only the formation of labeled nitrous oxide (i.e., ¹⁵N₂O and ¹⁴N¹⁵-NO) has been observed during these experiments.

For comparison purposes, Figure 9 shows the N_2O concentration during NH₃-TPSR of nitrites (panel A) and during TPR of NH₃ and NO (panel B). The results obtained during the TPR of NH₃ and NO in the presence of O₂ (not presented previously) are also shown (panel C).

Inspection of Figure 9 shows that N_2O formation is poor during the reaction of stored NO_x with ammonia (TPSR of nitrites, Figure 9A) but is noticeable when NO is present in the feed gas (NH₃ + NO reaction, Figure 9B): in this last case N_2O concentration is greater by 1 order of magnitude. A further increase in N_2O concentration is seen when oxygen is present in the feed gas (Figure 9C). These results and the fact that only labeled N_2O species are detected (if one neglects the small amounts of unlabeled N_2O observed at high temperature in Figure 9C), indicate that adsorbed ¹⁵NO takes part in the formation of nitrous oxide. This is in line with literature proposals^{37,40} where nitrous oxide is formed either by the coupling of two adsorbed NO molecules (reaction 12), or by

Figure 9. (A) TPSR run with NH₃ (1000 ppm) after ¹⁵NO_x adsorption at 150 °C (1000 ppm ¹⁵NO + O₂ 3% v/v in He), (B) TPR run with NH₃ (660 ppm) and ¹⁵NO (1000 ppm) in He, (C) TPR run with NH₃ (660 ppm), ¹⁵NO (1000 ppm), and O₂ (3% v/v) in He over Pt–Ba/Al₂O₃ catalyst.

recombination of an adsorbed NO molecule with an adsorbed NH_x fragment (reaction 13):

$$2^{15}NO_{(a)} \rightarrow {}^{15}N_2O_{(g)} + O_{(a)} + s$$
 (12)

$$^{14}\text{NH}_{x(a)} + {}^{15}\text{NO}_{(a)} \rightarrow {}^{14}\text{N}{}^{15}\text{NO}_{(g)} + xH_{(a)}$$
 (13)

These reactions are expected to occur during TPR of $^{15}NO + ^{14}NH_3$ (Figure 6 and Figure 9B), and result in the formation of only double- and single-labeled N₂O species; the formation of unlabeled N₂O is not possible. On the other hand, during the reduction of stored nitrites $^{15}NO_2^-$ (Figure 9A), the rate of nitrous oxide formation is limited by the low concentration of ^{15}NO -ad-species originated upon nitrite decomposition/ reduction at Pt sites. Accordingly the reduction is very selective to dinitrogen.

Notably, nitrous oxide formation is strongly affected by temperature: in fact above 180 °C the N_2O concentration is always negligible in the absence of oxygen (Figure 9A,B). It is suggested that at high temperature NO dissociation is favored because Pt is kept in a reduced state by ammonia, and this prevents N_2O formation due to the lack of molecularly adsorbed NO species. Along similar lines, the nitrous oxide concentration is markedly greater in the presence of oxygen in the feed stream (compare Figure 9B,C) because NO dissociation is prevented over the oxygen-covered Pt surface and this increases the concentration of NO ad-species.

However, under reducing conditions the possibility that N_2O is reduced to N_2 cannot be excluded. In this light the decrease in N_2O concentration which is seen upon increasing the temperature in the absence of oxygen (Figures 9, panels A and B) might be due to the reduction of N_2O to give N_2 .⁴¹ This route may contribute only to the formation of single and double-labeled N_2 molecules in the experiments of Figure 9 panel A (i.e., Figure 2) and panel B (i.e., Figure 6) but not in the formation of unlabeled N_2 because of the lack of ${}^{14}N_2O$ and because the reduction of N_2O does not involve the cleavage of the N-N bond.⁴¹

It is worth noting that the presence of oxygen in the feed changes the nitrous oxide isotopic distribution during the TPR of NH_3+NO (compare Figure 9B,C). In fact while in the absence of oxygen the double-labeled nitrous oxide isotope ($^{15}N_2O$) prevails over the single-labeled species ($^{14}N^{15}NO$)

(Figure 9B), in the presence of oxygen (Figure 9C) the formation of the double-labeled nitrous oxide molecule is negligible. Indeed the abundance of adsorbed oxygen drives reaction 12 from right to left so that the formation of ¹⁵N₂O is less favored. On the other hand, since the overall nitrous oxide concentration is greater in the presence of oxygen, it turns out that reaction 13 must be favored by O₂ concentration. As a matter of fact, it was also reported that the presence of adsorbed oxygen species favors ammonia activation yielding reactive NH_x adsorbed intermediates.³⁸ This may result in the presence of a pool of unlabeled NH_x fragments whose reaction with molecularly adsorbed ¹⁵NO results in the formation of single-labeled nitrous oxide molecules (reaction 13), as indeed observed. Notably, nitrous oxide formation due to ammonia oxidation

$$2^{14} \text{NH}_{x(a)} + (x+1)O_{(a)} \rightarrow {}^{14}N_2O_{(g)} + xH_2O$$
 (14)

is limited compared to reaction 13 during the TPR of NH_3 + NO in the presence of oxygen (Figure 9C) as pointed out by the relatively small amounts of unlabeled N_2O as compared to $^{15}N^{14}NO$.

Finally, it is noted that small amounts of N2O are detected at low temperature during the TPSR of stored nitrites (Figures 2 and 3), whereas the reaction is very selective to nitrogen in the case of nitrates (Figures 4 and 5). As shown by dedicated TPD and H2-TPSR experiments carried out over the stored nitrites and nitrates (not reported for the sake of brevity), the reduction/decomposition of nitrites onto the Pt sites occurs at lower temperatures than that of nitrates. This may lead, upon nitrite reduction, to the formation of NO-related intermediate ad-species that at low temperatures are involved in nitrous oxide formation. In fact these species are not readily decomposed to N- and O-ad-atoms due to the poor reducing capability of ammonia. At variance, the reduction/decomposition of nitrates is observed at slightly higher temperatures, and this would favor the decomposition of the NO-related adsorbed intermediates.

CONCLUSIONS

In this paper mechanistic aspects involved in the formation of N_2 and N_2O during the reduction of NO_x stored over a model PtBa/Al₂O₃ NSR catalyst have been investigated by means of isotopic labeling experiments. The combined use of MS,

Industrial & Engineering Chemistry Research

UV-vis, and GC analysis has been adopted to allow a complete quantitative analysis of the reaction products.

The reduction of stored labeled NO_x species (nitrites and nitrates) with unlabeled NH₃ leads to the selective formation of N₂, since only very small amounts of nitrous oxide have been observed in the reduction of nitrites only. The observed N₂ isotopic distribution includes all possible N2 isotopes, that is, $^{15}N_{2}$, $^{14}N_{2}$, and the mixed $^{15}N^{14}N$ species. On the basis of the pathway suggested for NO and NH₃ reaction on Pt-based catalysts, it has been found that the observed product distribution can be explained on the basis of the statistical coupling of ¹⁵N- and ¹⁴N-adatoms originated upon NH₃ and NO_x decomposition on Pt. However the simultaneous occurrence of a SCR-like pathway, involving the formation and decomposition of a NH_x-NO intermediate originating from ammonia and NO_{xy} and leading to the selective formation of the mixed ¹⁵N¹⁴N species is also likely. In fact at the early stages of the reduction of stored labeled nitrites with unlabeled ammonia the reduction process is selective toward the formation of the mixed ¹⁵N¹⁴N isotope, suggesting the occurrence of a SCR-like pathway.

Isotopic labeling experiments also provide indications on the pathways involved in the formation of N₂O. This species is formed in very limited amounts during the reduction by ammonia of stored NOx species (nitrites and nitrates); much higher quantities have been observed during the reduction of gaseous ¹⁵NO with NH₃. Since no formation of unlabeled nitrous oxide has been observed, the participation of ¹⁵NO is necessary for the formation of nitrous oxide. In line with literature proposals, it has been suggested that nitrous oxide formation involves (on the Pt sites) either the coupling of two adsorbed NO molecules or the recombination of an adsorbed NO molecule with an adsorbed NH_x fragment. Accordingly, N₂O formation is greatly enhanced in the presence of gas-phase NO.

Temperature also drives the selectivity to nitrous oxide. This product is favored at low temperature and is likely related to the oxidation state of Pt: at high temperatures Pt is kept in a reduced state by ammonia, and this would favor NO dissociation on the Pt sites thus preventing N₂O formation. Besides, N₂O could be reduced to N₂. The presence of oxygen in the feed stream favors N₂O formation, since it increases the concentration of molecularly adsorbed NO species and inhibits N₂O reduction. The route involving the coupling of NO-ad-species is however inhibited by the presence of oxygen, and hence nitrous oxide formation involves adsorbed NO and NH_x fragments.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +39 02 2399 3272. Fax: +39 02 7063 8173. E-mail: luca. lietti@polimi.it.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Johnson, T. V. Diesel emission review. SAE Int. J. Eng. 2011, 4, 143.

(2) Granger, P.; Parvulescu, V. I. Catalytic NO_x abatement systems for mobile sources: From three-way to lean burn after-treatment technologies. *Chem. Rev.* **2011**, *111*, 3155.

(3) Baiker, R. S. NO_x Storage-reduction catalysis: From mechanism and materials properties to storage-reduction performance. *Chem. Rev.* **2009**, *109*, 4054.

(4) Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tateishi, S.; Kasahara, K. The new concept 3-way catalyst for automotive lean-burn engine: NO_x storage and reduction catalyst. *Catal. Today* **1996**, *27*, *63*.

(5) Epling, W.; Campbell, L.; Yezerets, A.; Currier, N.; Parks, J. Overview of the fundamental reactions and degradation mechanism of NO_x storage/reduction catalysts. *Catal. Rev. Sci. Eng.* **2004**, *46*, 163.

(6) Miyoshi, N.; Matsumoto, S.; Katoh, K.; Tanaka, T.; Harada, J.; Takahashi, N.; Yokota, K.; Sugiura, M.; Kasahara, K. Development of new concept three-way catalyst for automotive lean-burn engines. *SAE Tech. Pap.* **1995**, 950809.

(7) Johnson, T. Diesel engine emissions and their control. *Platinum Metals Rev.* 2008, 52, 23.

(8) Castoldi, L.; Bonzi, R.; Lietti, L.; Forzatti, P. Catalytic behaviour of hybrid LNT/SCR systems: Reactivity and in situ FTIR study. *J. Catal.* **2011**, *1*, 128.

(9) Toops, T. J.; Smith, D. B; Partridge, W. P. NO_x adsorption on $Pt/K/Al_2O_3$. *Catal.Today* **2008**, *114*, 112.

(10) Konsolakis, M.; Yentekakis, I. V. Strong promotional effects of Li, K, Rb, and Cs on the Pt-catalysed reduction of NO by propene. *Appl. Catal. B, Environ.* **2001**, *29*, 103.

(11) Nova, I.; Lietti, L.; Castoldi, L.; Tronconi, E.; Forzatti, P. New insights in the NO_x reduction mechanism with H_2 over Pt-Ba/ γ -Al₂O₃ lean NO_x trap catalysts under near-isothermal conditions. *J. Catal.* **2006**, 239, 244.

(12) Breen, J. P.; Burch, R.; Fontaine-Gautrelet, C.; Hardacre, C.; Rioche, C. Insight into the key aspects of the regeneration process in the NO_x storage reduction (NSR) reaction probed using fast transient kinetics coupled with isotopically labelled ¹⁵NO over Pt and Rhcontaining Ba/Al₂O₃ catalysts. *Appl. Catal. B, Environ.* **2008**, *81*, 150. (13) Lietti, L.; Nova, I.; Forzatti, P. Role of ammonia in the reduction

by hydrogen of NO_x stored over $Pt-Ba/Al_2O_3$ lean NO_x trap catalysts. J. Catal. **2008**, 257, 270.

(14) Cumaranatunge, L.; Mulla, S. S.; Yezerets, A; Currier, N. W.; Delgass, W. N.; Ribeiro, F. H. Ammonia is a hydrogen carrier in the regeneration of $Pt/BaO/Al_2O_3$ NO_x traps with H₂. *J. Catal.* **2007**, 246, 29.

(15) Bhatia, D.; Harold, M. P.; Balakotaiah, V. Modeling the effect of Pt dispersion and temperature during anaerobic regeneration of a lean NO_x trap catalyst. *Catal. Today* **2010**, *151*, 314.

(16) Castoldi, L.; Nova, I.; Lietti, L.; Tronconi, E.; Forzatti, P. The NO_x reduction mechanism by H_2 under near isothermal conditions over Pt-Ba/Al₂O₃ lean NO_x trap systems. *Top. Catal.* **2007**, 42–43, 189.

(17) Nova, I.; Lietti, L.; Forzatti, P. Mechanistic aspects of the reduction of stored NO_x over Pt-Ba/Al₂O₃ lean NO_x trap systems. *Catal. Today* **2008**, *136*, 128.

(18) Forzatti, P.; Lietti, L.; Nova, I. On board catalytic NO_x control: Mechanistic aspects of the regeneration of lean NO_x traps with H_2 . *Energy. Environ. Sci.* **2008**, *1*, 236.

(19) Partridge, W. P.; Choi, J. S. NH₃ formation and utilization in regeneration of $Pt/Ba/Al_2O_3 NO_x$ storage-reduction catalyst with H₂. *Appl. Catal. B Environ.* **2009**, *91*, 144.

(20) Forzatti, P; Lietti, L.; Gabrielli, N. A kinetic study of the reduction of NO_x stored on Pt-Ba/Al₂O₃ catalyst. *Appl. Catal. B, Environ.* **2010**, *99*, 145.

(21) Mulla, S. S.; Chaugule, S. S.; Yezerets, A.; Currier, N. W.; Delgass, W. N.; Ribeiro, F. H. Regeneration mechanism of Pt/BaO/ Al_2O_3 lean NO_x trap catalyst with H₂. *Catal. Today.* **2008**, *136*, 136.

(22) Castoldi, L.; Nova, I.; Lietti, L.; Forzatti, P. Study of the effect of Ba loading for catalytic activity of Pt-Ba/Al₂O₃ model catalysts. *Catal. Today* **2004**, *96*, 43.

(23) Miyoshi, N.; Tanizawa, T.; Kasahara, K.; Tateishi, S. European Patent application 0 669 157 A1, 1995. (24) Nova, I.; Castoldi, L.; Prinetto, F.; Dal Santo, V.; Lietti, L.; Tronconi, E.; Forzatti, P.; Ghiotti, G.; Psaro, R.; Recchia, S. NO_x adsorption study over Pt–Ba/alumina catalysts: FT–IR and reactivity study. *Top. Catal.* **2004**, *30/31*, 181.

(25) Prinetto, F.; Ghiotti, G.; Nova, I.; Castoldi, L.; Lietti, L.; tronconi, E.; Forzatti, P. In situ Ft–IR and reactivity study of NO_x storage over Pt–Ba/ γ -Al₂O₃ catalysts. *Phys. Chem. Chem. Phys.* **2003**, *5*, 4428.

(26) Nova, I.; Castoldi, L.; Lietti, L.; Tronconi, E.; Forzatti, P.; Prinetto, F.; Ghiotti, G. NO_x adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments. *J. Catal.* **2004**, *222*, 377.

(27) Lietti, L.; Daturi, M.; Blasin-Aubé, V.; Ghiotti, G.; Prinetto, F.; Forzatti, P. Relevance of nitrite route in the NO_x adsorption mechanism over Pt-Ba/Al₂O₃, NSR catalysts investigated by FT-IR operando spectroscopy. *Chem Catal. Chem.* **2012**, *4*, 55.

(28) Ozkan, U. S; Cai, Y.; Kumthehkar, M. W. Investigation of the reaction pathways in selective catalytic reduction of NO with NH₃ over V_2O_5 catalysts: Isotopic labeling studies using ${}^{18}O_2$, ${}^{15}NH_3$, ${}^{15}NO$, and ${}^{15}N{}^{18}O$. J. Catal. **1994**, 149, 390.

(29) Chen, H.; Sun, Q.; Wen, B.; Yeom, Y.; Weiz, E.; Sachtler, W. M. Reduction over zeolite-based catalysts of nitrogen oxides in emissions containing excess oxygen: Unraveling the reaction mechanism. *Catal. Today* **2004**, *96*, 1.

(30) Janssen, F. J. J. G.; Van Den Kerkhof, F. M. G.; Bosh, H.; Ross, J. R. H. Mechanism of the reaction of nitric oxide, ammonia and oxygen over vanadia catalysts 1. The role of oxygen studied by way of isotopic transient under dilute conditions. *J. Phys. Chem.* **1987**, *91*, 6633.

(31) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: A review. *Appl. Catal. B. Environ.* **1998**, *18*, 1.

(32) Yeom, Y.; Li, M; Savara, A.; Sachtler, W; Weitz, E. An overview of the mechanisms of NO_x reduction with oxygenates over zeolite and γ -Al₂O₃ catalysts. *Catal. Today* **2008**, *136*, 55.

(33) Kumar, A.; Harold, M. P.; Balakotaiah, V. Isotopic studies of NO_x storage and reduction on Pt/BaO/Al₂O₃ catalyst using temporal analysis of products. *J. Catal.* **2010**, *270*, 214.

(34) Kondraratenko, V. A.; Baerns, M. Mechanistic insights into the formation of N_2O and N_2 in NO reduction by NH_3 over a polycrystalline platinum catalyst. *Appl. Catal. B. Environ.* **2007**, *70*, 111.

(35) Van Tol, M. F. H.; Siera, J.; Cobden, P. D.; Nieuwenhuys, B. E. Oscillatory behavior of the reduction of NO by H_2 over Rh. *Surf. Sci.* **1992**, 274, 63.

(36) Nova, I.; Castoldi, L.; Lietti, L.; Tronconi, E.; Forzatti, P.; Prinetto, F.; Ghiotti, G. The Pt–Ba interaction in lean NO_x trap systems. *SAE Tech. Pap.* **2005**, 1085.

(37) Nova, I.; Castoldi, L.; Lietti, L.; Tronconi, E.; Forzatti, P. A low temperature pathway operating the reduction of stored nitrates in Pt-Ba/Al₂O₃ lean NO_x trap systems. *SAE Tech. Pap.* **2006**, 1368.

(38) Perez-Ramirez, J.; Kondratenko, E. V.; Kondratenko, V. A.; Baerns, M. Selectivity-directing factors of ammonia oxidation over PGM gauzes in the temporal analysis of products reactor: Secondary interactions of NH₃ and NO. J. Catal. **2005**, 229, 303.

(39) Otto, K.; Shelef, M.; Kummer, J. T. Studies of surface reactions of nitric oxide by nitrogen-15 isotope labeling. I. Reaction between nitric oxide and ammonia over supported platinum at 200–250°. *J. Phys. Chem.* **1970**, *74*, 2690.

(40) Burch, R.; Shestov, A. A.; Sullivan, J. A. A steady-state isotopic transient kinetic analysis of the $NO/O_2/H_2$ reaction over Pt/SiO_2 catalysts. J. Catal. **1999**, 188, 69.

(41) Cant, N. W; Chambers, D. C.; Liu, I. O. Y. The reduction of $^{15}N^{14}NO$ by CO and by H₂ over Rh/SiO₂: A test of a mechanistic proposal. *J. Catal.* **2011**, 278, 162.