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Abstract: We introduce a compact core model for double-gate (DGFET) and surrounding-gate
(SGFET) MOSFETs designed for circuit simulations. Despite its high precision, the model is crafted
to retain the same analytic formulation of the industry standard Pennsylvania State and Philips
(PSP). Instead of linearizing the drain current as in the PSP model, we employ a quadratic symmetric
polynomial interpolation of the charge in the channel. This eliminates the need for cumbersome
derivatives, simplifications, and intricate coding when integrating into a circuit simulator, thereby
preventing singularities during numerical iterations. Moreover, thanks to its mathematical formula-
tion equivalent to PSP, this model simplifies the coding of terminal charges, capacitances, potentials,
and electric fields in the channel within circuit simulators. We validate the accuracy of the model
through comparisons with numerical solutions and experiments from the literature.
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1. Introduction

Multiple gate MOSFETs (MGFETs), including FINFETs and nano sheets, have gained
widespread adoption in the electronics industry as replacements for conventional planar
transistors [1]. This is due to their enhanced gate control, nearly ideal subthreshold slope,
and mitigated short-channel effects (SCE). In theory, MGFETs hold the potential to scale
down the MOSFETs as technology advances to the end of the roadmap. Consequently,
there is a significant interest in the development of compact CAD models of MGFETs
for circuit simulation [2–12]. A compact CAD model for circuit simulations comprises a
core model of an ideal long-channel transistor, wherein SCE and quantum effects (QE) are
subsequently introduced as appropriate approximations. In the literature, various excellent
closed-form equations for the drain current of symmetric DGFETs and SGFETs have been
developed [2–12]. Nevertheless, the exact closed-form expressions of the terminal charges
prove to be somewhat more cumbersome compared to compact models for planar transis-
tors, requiring simplifications. Furthermore, the complexity of existing core models does
not easily allow for the inclusion of short-channel and quantum effects. The objective of this
work is to introduce a new compact model of MGFETs without resorting to the charge-sheet
approximation. A quadratic symmetric polynomial interpolation is employed to compute
the transistor current. In [11], we demonstrated that this approach is particularly suited
to accurately model DGFETs and SGFETs. Here, the model from [11] is reformulated to
be entirely equivalent to the widely recognized PSP current equation. Then, the terminal
charges, capacitances, surface potential and electric field in the channel are worked out
to hold the same expression of the PSP but with higher precision. The midpoint charge
of PSP is replaced with an equivalent midpoint charge. The equivalent midpoint charge
accommodates nonlinearities in the channel, maintaining high accuracy even when the
surface potential exhibits strong nonlinearity. The model retains all the appealing character-
istics of the traditional compact models of planar MOSFETs. These include computational
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efficiency, symmetry, and straightforward polynomial expressions of current, terminal
charges, potentials, and electric fields in the channel. Furthermore, despite its compactness
and ease of integration into circuit simulators, it attains a remarkable level of accuracy. The
largest error of the drain current, compared to the numerical solution, is so minimal that
the model can be assumed to be equivalent to the exact solution. Finally, this core model,
thanks to its high accuracy, numeric stability, versatility, and ease of implementation in
circuit simulations, can be exploited as a core model in a variety of recent technologies,
for example, junctionless, dual-material, dual-metal cylindrical gate-all-around MOSFETs,
heterojunction tunneling transistors, nanotubes, etc. [13–17].

2. DGFET Drain Current

In the DGFET, the channel is typically undoped (or lightly doped) to mitigate threshold
voltage fluctuations. Here, the device geometry and all the symbols are exactly the same as
in the well-known paper of Taur [2] (Figure 1) and, for the sake of brevity, are summarized
in Table 1. Assuming the current flows in the y-direction, in order to compute the surface
potential, Poisson’s equation must be solved. Poisson’s equation is solved following the
same approach as Taur [2]. The solution, without introducing any approximations, reads

q(V GS − ∆ψ−V)

2kT
− ln

[
2
tsi

√
2εsikT
q2ni

]
= ln β− ln[cos β ] +

2εsitox

εoxtsi
βtan β (1)

where β is a parameter that is computed by solving transcendental Equation (1), q is the
electron charge, k is the Boltzmann constant, T is the lattice temperature, ∆ψ is the work
function difference between the gate electrode and the intrinsic silicon, V is the channel
potential, ni is the intrinsic concentration, εox is the insulator dielectric constant, εs is the
silicon dielectric constant, tox is the insulator thickness, tsi is the semiconductor thickness,
and VGS is the voltage applied to the gate. Once β is computed, the electrostatic potential
normal to the channel (x-direction) in the semiconductor reads [2,11]

ψ(x) = V − 2kT
q

ln

 tsi
2β

√
q2ni

2εsikT
cos
(

2βx
tsi

) (2)

and the inversion charge in the channel [2] reads

Qi = Cox(VGS − ∆ψ− ψs) = 2εsi
2kT

q
2β

tsi
tan β (3)

where ψs = ψ(±tsi/2) and Cox = εox/tox. To develop a surface potential formulation
for the drain current, it is important to note that the charge sheet approximation (CSM),
commonly employed in planar MOSFET modeling, is not applicable to DGFETs. Specifically,
for DGFETs, the exact solution of the Pao–Sah equation becomes necessary to precisely
model the volume inversion in the subthreshold region [2,9–11]. Following the approach
of [9], in [11], the Pao–Sah double integral is worked out using a second-order symmetric
polynomial centered at the midpoint of the surface potential, ψM = (ψ sS + ψsD)/2, without
the charge sheet simplification. This method yields a precise and considerably simplified
representation of drain current and terminal charges compared to the current core models of
DGFETs, all while maintaining a clear physical interpretation. The drain current reads [11]

ID = 2
W
L

µ

 4
∼
QiM +

∼
QiD +

∼
QiS

6
+ Cox vT

φ (4)

where ∼
Qi = Qi

[
1 +

γ

4
g(β)

]
(5)

g(β) =
sin (2β)− 2βcos(2β)

βtan (β) [2β+ sin(2β)]
, γ =

εoxtsi
εsitox

(6)
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and vT = kT/q;
∼
QiS,

∼
QiD, and

∼
QiM are the “perturbed charges” of Equation (5), computed

at the source, drain, and surface potential midpoint, and φ = ψsD − ψsS [11]. It is important

to highlight that φ,
∼
QiS,

∼
QiD, and

∼
QiM are explicit functions of βS, βD, and βM. In turn, β is

computed through numerical iteration using Equation (1) at the source drain and midpoint.
Nonetheless, numerous highly accurate explicit approximations for β are reported in the
literature [18], and the numeric iteration is not required. Equation (4) represents an accurate
and considerably simplified version of the drain current compared to existing core models
of DGFETs, while maintaining a clear physical interpretation [11]. The linear and concise
mathematical expression of Equation (4), its high accuracy, and the availability of precise
explicit approximations for β make this model particularly well suited for integration into
circuit simulation programs. Furthermore, Equation (4), despite its similarity to the well-
known PSP model, removes the requirement to calculate derivatives at the midpoint [7–10].
The derivative is cumbersome and requires careful coding during integration into a circuit
simulator to prevent issues like division by zero or imaginary solutions during numer-
ical iterations. Now, taking into account that the DGFET has two gates and that both
Equation (4) and the PSP model are linear functions of charges and potentials, Equation (4)
can be reformulated to be fully equivalent to the PSP current equation [IDS ]PSP as follows:

[IDS ]PSP = 2
W
L

µ (QM − vTα)φ ≡ [IDS ]eq.(4) = 2
W
L

µ
(
QMeq − vTαeq

)
φ (7)

where

QMeq =

(
4
∼
QiM +

∼
QiD +

∼
QiS

)
6

, αeq = −Cox

and the midpoint charge QM of the PSP here is replaced by an equivalent midpoint charge
QMeq as well as the charge derivative αeq = dQi/dψs. It is noteworthy that Equation (7), as it
stands, is the same as Equation (4) but presented in a different form and seemingly does not
introduce anything new compared to [11]. However, its utility lies in efficiently computing
the terminal charges, capacitances, surface potential, and electric field in the channel, as
shown below. Equation (7) is a matter of efficiency when implemented in a circuit simulator.
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Table 1. Physical and geometrical parameters.

DGFET SGFET

L [µm] 1 1
tS i [nm] 5 —
R [nm] — 2.5

tOX [nm] 1.5 1.5
µ [cm2/Vs] 300 300

∆ψ [V] 0 0
εSi 11.7 11.7
εOX 3.9 3.9

Physical and geometrical device parameters for both the DGFET and SGFET [2,4].

To assess the accuracy of Equation (7), in Figure 2, it is juxtaposed with the exact numer-
ical solution of the Pao–Sah double integral [2]. In Figure 2, the percentage error, defined as
100×|(∆IDS)/IDS| , is shown. All device parameters and terminal voltages are identical
to those in [2,11]. Furthermore, in [2], the analytic solution is further verified through
validation against numerical simulations and experimental data. Equation (7) provides
a continuous and very accurate expression of the current with smoot derivatives [11,12].
Additionally, Equation (7) successfully passes the Gummel symmetry tests [11,12]. These
characteristics are crucial for achieving rapid and seamless convergence in circuit sim-
ulations and for implementing short-channel effects (SCE). Equation (7) reproduces the
numerical solution with a larger percentage error of approximately 0.1% (Figure 2). Notably,
the error is about one order of magnitude smaller compared to the compact models in [9,10],
as shown in Figures 2 and 3.
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Figure 2. DGFET output currents and percentage error (% err = 100×|(∆IDS)/IDS|) at VGS = 2 V (blue),
1.5 V (orange), and 1 V (green); lines indicate numerical solutions, and dots indicate Equation (7).
The largest percentage error is about 0.2% (dashed lines). The simulation parameters are reported in
Table 1. Both the numerical solution and Equation (7) accurately fit the experiments in [2].
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3. SGFET Drain Current

An equivalent formulation can be developed for the cylindrical n-type SGFET of
radius R in Figure 1. The geometry and symbols are the same as in [4]. Assuming that
transport is in the y-direction (0 < r < R is the direction normal to the current), the integral
of Poisson’s equation reads [4]:

q(V GS − ∆ψ−V)

kT
− ln

(
8

δR2

)
= ln(1− β)− ln β2 + η

(
1− β

β

)
(8)

where η = 4εsi/(CoxR), and δ = q2ni/(kTεsi). All other parameters carry the same
meaning as in the DGFET. Once β is known after solving transcendental Equation (8), the
potential in the semiconductor as a function of r can be readily calculated [4]:

ψ(r) = V +
kT
q

ln

 −8 B

δ
(

1 + Br2
)2

 (9)

as well as the charge in the channel

Qi = Cox(VGS − ∆ψ− ψs) = 2εsi
2kT

q
1

βR
(1− β) (10)

where Cox = εox/[Rln (1 + tox/R)) ], ψs = ψ(R), and β = 1 + BR2. Pao–Sah’s double
integral for a cylindrical SGFET reads [11]

ID =
2πR

L

 4
∼
QiM +

∼
QiD +

∼
QiS

6
+ CoxvT

φ (11)

where ∼
Qi = Qi g(β) (12)

g(β) = 1 +
1

βS
− 1

βD
+ ln

(
βS
βD

)
γ

(
1

β2
S
− 1

β2
D
+ 2

βD
− 2

βS

) (13)

and

γ =
2εsi
εox

ln
(

1 +
tox

R

)
(14)

where
∼
QiM,

∼
QiS,

∼
QiD, QiS, and QiD are calculated by means of Equations (10)–(14). Equation (11)

depends on the terminal voltages through ψsS and ψsD and, in turn, on β, as is the case for
the DGFET.

Yet again, Equation (11) reproduces the numerical solution of the drain current ID with
a percentage error smaller than 0.1%. In [18], an accurate explicit approximate solution
of β is worked out for the SGFET as well. It makes this model very suitable for circuit
simulators. In Figures 4 and 5, Equation (11) is compared to the numerical solution. Now,
Equation (11) can also be reformulated to be entirely equivalent to the widely recognized
PSP current equation:

ID =
2πR

L
µ
(
QMeq − vTαeq

)
φ. (15)

In (15), the charge at the midpoint of PSP is substituted by an equivalent charge

QMeq =

(
4
∼
QiM +

∼
QiD +

∼
QiS

)
/6 derived from (11), as well as αeq = −Cox.
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4. PSP-Equivalent Charge Model

Although the drain currents of the DGFET and SGFET in [2,4] are derived with no
simplifications, they are complex functions of β that cannot be used to calculate terminal
charges without introducing simplifications. In ref. [11], the terminal charges, derived from
Equations (4) and (11), are computed without simplification, exploiting the polynomial
equations of the charge in the channel. However, these calculations result in complex
polynomial functions. In contrast, here, thanks to Equations (7) and (15), which are fully
equivalent to Equations (4) and (11), the terminal charges are directly and easily computed,
akin to the PSP approach. The terminal charges will be derived for the DGFET, and similar
equations hold for the SGFET. The terminal charges are worked out by means of the
well-known Ward–Dutton charge partitioning [19] as follows:

QG
2W

=
∫ L

0
Qidy =

∫ φ/2

−φ/2
Qi

dy
dψs

dψs (16)
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QD
2W

=
∫ L

0

y
L

Qidy =
∫ φ/2

−φ/2

y
L

Qi
dy

dψs
dψs (17)

QS = QG −QD (18)

where QG, QS, and QD are the gate, source, and drain terminal charge densities per unit
area. The above integrals are worked out as in PSP [7,8], exploiting the equivalence
devised in Equation (7). To compute the terminal charges, first the expressions of y(ψs) and
dy/dψs must be derived. Since the current in the channel is solenoidal [7–11],

ID = 2Wµ

(∼
Qi

dψs

dy
− vT

dQi
dy

)
(19)

and, recalling that in (7), dQi/dψs = αeq = −Cox, Equation (19) can be rewritten as

ID = 2Wµ
(
QMeq + vTαeq

)dψs

dy
(20)

and in turn, dy/dψs reads

dψs

dy
=

ID

2Wµ
(
QMeq + vTαeq

) . (21)

Finally, after substituting the drain current of (7) into Equation (21) and following the
linear approach of PSP, dy/dψs reads [7,8]

dy
dψs

=
L
φ

(
1− ψs − ψM

Heq

)
(22)

where Heq = vT − QMeq/αeq = vT + QMeq/Cox. It is worth noting that Equation (22) is
related to the electric field parallel to the channel:

EY(ψs) = −
dψs

dy
=

φ

L
Heq

ψs − ψM − Heq
. (23)

Then, after integrating Equation (22), the analytical expression of the position in
channel y with respect to the surface potential reads [7,8]

y = yM +
L
φ

[
ψs − ψM −

(ψs − ψM)2

2Heq

]
(24)

where yM represents the “surface potential midpoint”, which is the y-coordinate corre-
sponding to ψM:

yM =
L
2

[
1− φ

4Heq

]
. (25)

Note that when φ > 0, yM > L/2, indicating that the potential midpoint shifts towards
the drain from the geometric midpoint (Figure 6).

Conversely, the dependence ψs(y ) can be derived by solving Equation (19) with respect
to ψs, yielding

ψs = ψM + Heq

[
1−

√
1− 2φ

HeqL
(y− yM)

]
. (26)

A close comparison between Equations (23)–(26) and the original model [11] reveals
that the significantly simplified expression in Equation (26), which is based on the PSP-like
approach, is nearly numerically identical to the exact expression presented in [11]. The
maximum error of the surface potential is always smaller than 2%.
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Figure 6. Position in the channel y(s) as a function of the surface potential at VGS = 3 V (blue),
VGS = 2 V (orange), VGS = 1 V (green), and VDS = 1 V. Dashed line, surface potential midpoint yM.

Furthermore, the expressions above are identical to those for bulk MOSFETs [7,8], with
the only difference being the value of H, which is Heq here. The position dependence of the
surface potential is shown in Figure 7.
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Then, substituting Equations (22) and (24) in Equation (16) and integrating, the gate
charge QG reads

QG = 2

(
QiM −

αeqφ2

12Heq

)
. (27)

Also, in turn, replacing Equations (22) and (24) with Equation (17), the drain charge
QD reads

QD = 2
[

QiM
2

+
αeq φ

12

(
1− φ

2Heq
− φ2

20Heq

)]
. (28)

In Figure 8, the terminal charges derived with the PSP-equivalent approach are com-
pared to both the numerical solution and the polynomial expressions of [11]. Again, the
percentage error, with respect to the numerical solution, is below 2%. As a further check of
Equations (27) and (28), the asymptotic behavior when VDS → 0 is also shown in Figure 8
(dashed lines). When VDS → 0 , the gate charge equals the inversion charge density and
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QD = QS = QG/2. In fact, if using the explicit expression of the charges when VDS → 0 ,

φ ∼= 0,
∼
QiS
∼=
∼
QiD
∼=
∼
QiM, then

lim
φ→0

Heq = lim
φ→0

(
vT −

QMeq

αeq

)
= lim

φ→0

vT −
4
∼
QiM +

∼
QiD +

∼
QiS

6 αeq

 ∼= vT +

∼
QiM
Cox

(29)

and, eventually, the terminal charges read

lim
φ→0

QG = lim
φ→0

2

 QiM −
Cox

12
(

vT +
∼
QiM
Cox

)φ2

 ∼= 2QiM (30)

lim
φ→0

QD = lim
φ→0

2
[

QiM
2

+
αeq φ

12

(
1− φ

2Heq
− φ2

20Heq

)]
∼= QiM (31)

QS ∼= QG −
QG
2
∼=

QG
2
∼= QiM. (32)
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Figure 8. Normalized terminal charges (27) and (28) vs. numerical solution (circles) and [11] at
Vs = 0 V and VD = 1 V: QG (blue), QS (green), and QD (orange). The numerical solution and [11]
perfectly overlap and are almost indistinguishable. Dot dashed lines indicate normalized charges at
low drain voltage: VD = 0.1 V. Dashed line: percentage error (% err = 100×|(∆Q)/Q|) .

Furthermore, Figure 9 also shows that the transcapacitances (Cij =
(
2δij − 1

)
∂Qi/∂Vj,

with i, j = G, S, D) essentially overlap with the exact numeric solution. Again, the larger
percentage error is on the order of 2%. The expressions in Equations (7), (27), and (28)
represent a new form of symmetric linearization, typical of PSP, for MGFETs. Unlike the
simpler formulation with respect to [11], the result is, of course, the same for the drain cur-
rent and, although simplified, very accurate for the terminal charges and transcapacitances
as well (Figure 9). An important feature of this formulation of QG, QS, and QD is that they
are extremely simple, with PSP [7,8] differing only with the expression of H. This means
that small-geometry effects can be worked out as they were in [7,8], and these effects were
previously shown to be accurate with respect to numeric simulations and experimental
data. Finally, the electric field in the channel, required to implement short-channel effects
(SCE), quantum effects (QE), and other advanced physical phenomena, is derived as it was
in [7,8]. E(y) is worked out by replacing Equation (27) with Equation (23). In Figure 10, the
electric field for different gate voltages, both in the saturation and linear regions, is shown.
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Figure 9. Normalized transcapacitances: lines are CGG (blue), CSG (green), and CDG (orange) vs. numerical
solution (circles) and [11] at Vs = 0 V and VD = 1 V. The numerical solution and [11] perfectly
overlap and are almost indistinguishable. Dashed lines indicate normalized capacitances at low drain
voltage: VD = 0.1 V.

E(y) = −dψs

dy
=

φ

L
√

1− 2φ
Heq L (y− yM)
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5. Symmetry and Derivatives

A common issue of surface potential-based models in bulk MOSFETs, and conse-
quently, MGFETs, involves resolving implicit transcendental Equations (1) and (8). Iterative
methods represent the most commonly employed approach for addressing implicit equa-
tions due to their potential for high accuracy. Nevertheless, they are accompanied by
several drawbacks, including computational inefficiency and occasional exceptions, such as
divergence. Hence, an explicit approximation of Equations (1) and (8) that offers sufficient
accuracy is always preferable to streamline applications for industry standards.

In ref. [18], an accurate explicit solution of Equations (1) and (8) is presented, utilizing
high-order mathematical corrections. This solution exhibits accuracy not only concerning
drain current but also with respect to its derivatives. The explicit expression of β is
very efficient: it requires the computation of two exponents, two square roots, and three
logarithms. Despite the compact form of β as described in [18], the algorithm yields a
β with a maximum error of 17 fV, which proves sufficient for computing current and its
derivatives with precision that is suitable for circuit simulation. A more stringent way to
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understand the accuracy of the solution is to compare the derivatives of the drain current
or the terminal charges.

Partial derivatives, such as drain conductance, transconductance, and transcapaci-
tance, play a crucial role in AC and transient circuit simulations. These derivatives are
particularly sensitive to the errors of intermediate parameters. Moreover, when design-
ing integrated circuits, such as passive RF mixers and transfer gates, it is essential for
a compact model to show symmetry with respect to the interchange of the source and
drain terminals. This property is frequently referred to as Gummel symmetry (GS). The
Gummel symmetry of Equations (7) and (11) is depicted as solid lines in Figures 11 and 12
for the DGFET and SGFET, respectively, indicating that this model successfully passes
this GS test. The GS is extremely important when the model is implemented in a circuit
simulator. When implementing a compact model in a circuit simulator, the condition
ID = f (VS, VD, VGS) = − f (−VS, −VD, VGS) is enforced, regardless of the internal sym-
metry of the model. If a compact MOSFET model inherently possesses symmetry, the
imposition of this symmetry condition by the circuit simulator has no effect. However, for
asymmetric models, enforcing this condition may lead to singularities that typically mani-
fest as the nonexistence of the second derivative. The results shown in Figures 11 and 12
demonstrate that the model not only passes the GS test but also accurately reproduces the
exact numerical solution (symbols).
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of device geometries, from the long-channel limit down to the shortest channels, with a 
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useful kernel for the future generation of SPICE models of FINFET and nano sheets, 
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1.5 V (orange), and 1 V (green). ID, left axis (solid line); dID/dVX (dashed line), right axis. Dots are
the exact numerical solution.
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6. Conclusions

This work presents a compact core model for MGFETs designed for advanced CAD
applications. It provides a remarkably accurate and considerably simplified expression
of the Pao–Sah equation while maintaining a clear physical interpretation. The largest
percentage error with respect to the numerical solution was on the order of 0.1%. Moreover,
the current equations of [11] were formulated to be fully equivalent to the Pennsylvania
State and Philips model, PSP. Due to its formulation, this model simplifies the coding of
terminal charges, capacitances, potentials, and electric fields in the channel within circuit
simulators. This is highly advantageous, given that the complexity of the exact DGFET and
SGFET core models makes it challenging to incorporate small-geometry effects and hinders
the direct application of experience (and code) gained in the development of advanced
bulk and SOI models. The model is fully scalable and is suitable for the full range of device
geometries, from the long-channel limit down to the shortest channels, with a single set of
parameters. We validated the accuracy of this core model through comparisons with exact
numerical solutions and experimental data from the literature [2,4]. It is a useful kernel for
the future generation of SPICE models of FINFET and nano sheets, maintaining the same
ease of implementation of today’s most advanced planar MOSFET models.
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