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Abstract. In today’s agri-food 4.0 supply chains, food traceability is
crucial for enhancing transparency, safeguarding consumer health, and
fostering trust in the food ecosystem. Blockchain Technology (BCT) is
proposed as a solution, offering immutable, transparent, and decentral-
ized data persistence capabilities. The complexity increases in scenarios
with intertwined supply chains, where actors engage with various BCTs,
each having its own technological infrastructure, programming language
for Smart Contracts, and strategies for handling large volumes of on-
chain data storage, to save costs and ensure scalability. In this paper,
we propose to treat traceability data exchanged among supply chain
actors as resources, enabling standardized interactions with BCTs, rather
than focusing on specific storage technologies. Our approach: (i) lever-
ages a base model to create tailored views for modeling data resources in
traceability for the agri-food supply chain, aligning data persistence with
the Access Level requirements of the supply chain actors; (ii) defines a
Resource-Oriented approach for integrating BCTs in intertwined supply
chains, guided by these views, in order to develop BCT-based Web Appli-
cations. Experiments with a real case study demonstrate the benefits of
our approach in addressing BCTs integration issues. In particular, in this
paper we focus on how this approach supports enhancing agri-food 4.0
supply chains consumers trust and transparency.

Keywords: Blockchain Integration · Blockchain in Supply Chains ·
Web Applications · Smart Contracts · Resource-Oriented Architecture

1 Introduction

In recent years, blockchain technology (BCT) has been widely considered for
food supply chains to address the increasing demands for transparency, security,
and traceability, thereby protecting consumers’ health and enhancing trust in
the entire food ecosystem [11]. BCT can help establish “credibility attributes”
for consumers, such as preventing fraud, counterfeiting, the use of harmful treat-
ment products, and the presence of contaminants. However, the complexity rises
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as actors may participate in intertwined supply chains, each utilizing its own
BCT [12]. Consequently, these actors need to engage with various technologi-
cal infrastructures and programming languages for Smart Contracts, along with
different data storage solutions to minimize costs and tackle scalability chal-
lenges [21], especially when handling large volumes of data.

A data-centric strategy has facilitated the adoption of resource-oriented
methodologies, employing the widely recognized REpresentational State Trans-
fer (REST) architecture to model the interactions between actors and BCTs. By
treating traceability data to be exchanged among actors as resources, rather than
focusing on the specific storage technologies, it is possible to enable standardized
interactions of actors with different BCTs through lightweight APIs. However,
existing approaches [7,20] propose ad-hoc solutions based on a specific BCT,
they do not specifically address food traceability using RESTful APIs and they
do not delve into details concerning on-chain data storage costs. Requirements
like trustworthiness, transparency, costs control, usage of the blockchain storage,
privacy implementation have to be leveraged to decide whether to persist data
on-chain or off-chain [3,6].

Motivating Scenario. Consider a scenario in the agri-food domain with three
interconnected supply chains (Fig. 1), utilizing heterogeneous BCTs: (i) the
DOP1 Wine Supply Chain, which leverages the Ethereum BCT and involves a
variety of actors (grape growers, wine producers, bulk distributors, transit cellars,
fillers/packers, and wine retailers); (ii) the DOCG Wine Supply Chain, which
uses the Hyperledger Fabric BCT; (iii) the Balsamic Vinegar Supply Chain, also
employing the Ethereum BCT. Some actors may participate in multiple supply
chains. For example, the bulk distributor, focused on a specific regional wine
market, is involved in the DOP Wine Supply Chain but may also collaborate
with other wine producers in different categories, such as in the DOCG Wine
Supply Chain. Moreover, the traceability process, and data supporting it, can
serve different perspectives of involved actors. For example, product origin, iden-
tity and quality, as well as provenance and authenticity of purchased goods are of
interest for consumers, while a food certification organisation can look for trace-
ability data aimed at the certification purposes and only partially overlapping
with data provided to consumers.

Contributions and Paper Organisation. The approach presented in this
paper extends the preliminary effort made in [4], where we discussed about the
challenges of blockchain integration in intertwined supply chains, presenting an
agri-food motivating scenario. With respect to [4], this paper proposes an orga-
nized and step-by-step methodological approach to design a resource-oriented
architecture for the integration of BCT-based applications in intertwined sup-
ply chains. In particular, we aim to demonstrate that the approach is generally
scalable and cost-effective, while on the application side, we focus on how it
can contribute to consumer trust and transparency. A base data model ensures

1 The DOP and DOCG labels are designed to protect the quality of Italian wines,
similar to their counterparts within the European Union.
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Fig. 1. Example of intertwined supply chains in agri-food (arrows indicate the flows of
intermediate and final goods exchanged between actors).

consistent representation of wine product information across different blockchain
technologies. Consumers benefit from a uniform way of accessing and interpreting
product data, regardless of the underlying blockchain used by different Supply
Chain actors. The approach is organised over: (i) BCT-independent steps, where
resources within the supply chain and corresponding RESTful Services to share
resources between actors are modelled, disregarding any specific BCT for persis-
tence; (ii) BCT-dependent steps, where RESTful services are mapped to Smart
Contracts of specific BCTs, handling on-chain/off-chain storage requirements
to address cost containment. In this way, the complexity of various BCTs in
developing BCT-based Web Applications is concealed behind REST APIs. We
performed experiments regarding on-chain storage costs in the agri-food sector,
as illustrated in Fig. 1, using two widely adopted BCTs. The results demon-
strate the benefits of a resource-oriented approach compared to a direct use of
Smart Contracts for integrating these BCTs. The paper outline is the following:
in Sect. 2, related work are discussed; in Sect. 3 the methodological approach is
detailed; implementation and experimental evaluation are described in Sect. 4;
a discussion on the broader implications of adopting this approach from a con-
sumer perspective is given in Sect. 5, finally, Sect. 6 closes the paper.

2 Related Work

In recent years, the proliferation of different BCTs has led to two main research
areas: (i) blockchain integration, focusing on integration of BCT with existing
software systems at the application level; and (ii) blockchain interoperability,
aimed at enabling the transfer/exchange of data between technologically distinct
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BCTs. This paper contributes to the second domain, by introducing a resource-
oriented approach to BCT integration in interconnected supply chains.

Resource-oriented approaches to BCT integration emphasize the information
exchanged (e.g., products and documents in a supply chain) rather than on the
interactions between actors, which are more in the focus of WSDL-like service-
oriented interfaces over BCTs [7,20]. Current solutions promote a lightweight
interface for managing read/write operations on specific BCTs. For example,
the work in [18] establishes a REST API layer to invoke the chaincode of a
Hyperledger Fabric implementation within a coffee supply chain. In [9], a per-
missioned blockchain is utilized in an agricultural supply chain, employing REST
APIs for interaction with the BCT regarding registration, transaction manage-
ment, and querying. The work [10] discusses a use case in a textile supply chain,
illustrating the coexistence of BCT and Big Data. These proposals typically do
not deal with on-chain data storage costs or provide a comprehensive methodol-
ogy for blockchain integration, instead emphasizing privacy and authentication
mechanisms and patterns.

Blockchain integration in agri-food supply chains mainly focuses on food dis-
tribution, food origin and sourcing, and food safety and quality [13,15,16]. For
example, the TE-FOOD system combines public and private BCTs with data
from IoT sensors, employing Smart Contracts to gather data at each stage of
the farm-to-table pork supply chain. The Certified Origins EVOO Oils project
utilizes Oracle’s private BCT to improve transparency in the production chain
of extra virgin olive oil. These strategies emphasize the specific, ad-hoc applica-
tion of particular BCTs but do not explicitly address food traceability through
RESTful API.

3 The Model-Based Integration Approach

In this section, we describe a model-based approach for designing resource-
oriented architectures for blockchain integration. The approach consists of two
distinct phases, each comprising a set of steps.

– BCT-independent steps (Sect. 3.1) are carried out irrespective of the target
BCT. Specifically: (i) resource modelling utilizes a conceptual data model of
the supply chain data, which will be stored on the blockchain as resources;
(ii) service modelling focuses on creating Resource-Oriented Services, which
are made accessible via REST APIs, while hiding the complexity of managing
resource persistence.

– BCT-dependent steps (Sect. 3.2) are tightly-coupled with the target BCT. In
particular: (i) software components definition involves the deployment of soft-
ware components that manage the invocations of the REST API for publish-
ing and reading resources, as well as executing any actions on those resources;
(ii) mapping of storage methods implements the connection between software
components and the blockchain (e.g., for accessing Smart Contract function-
alities) as well as with other data persistence providers (e.g., decentralized
external file systems).
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Fig. 2. Base data model for traceability in agri-food supply chains.

3.1 BCT-Independent Steps

In agri-food supply chains, which commonly operate according to a batch manu-
facturing model, traceability focuses on monitoring flows and transformations of
product batches. These batches may consist of packaged products, traded items
(such as cases or cartons), or logistic units (e.g., bins or containers). In this land-
scape, traceability can assume various perspectives. For example, product origin,
identity and quality, as well as provenance and authenticity of purchased goods
are of interest for consumers, while a food certification organisation searches for
traceability data aimed at the certification purposes and only partially overlap-
ping with data provided to consumers [17]. Each perspective leads to distinct
use cases. In the scope of each use case, our approach aims at abstracting trace-
ability data by means of resources upon which RESTful services are in charge of
implementing read/write operations to/from the blockchain or other persistence
providers.

1) Resource modelling. Resource modelling consists of three sub-steps, which
are described in the following paragraphs.

1.1) Selection of a base data model. To showcase our approach, we present
a base data model for describing traceability data within an agri-food supply
chain, inspired by the analysis of well-known literature on agri-food traceability
(e.g., [17]). Noteworthy, the approach described in this paper remains neutral
with respect to the selection of the base data model, which can be chosen, for
example, from the literature. We propose here a (simplified) example of base
model that is depicted in Fig. 2 as UML class diagram. This model encapsulates
the essential data for tracing batches in the agri-food sector regardless of the
target use case.
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Example. The model in Fig. 2 focuses on the concept of TRACEABLE ELEMENT,
which is specialised into the concepts of BATCH, PRODUCT TYPE, RESPONSIBLE
ACTOR, and that can have some ATTACHMENTs. The auto-association on BATCH
permits to track relationships between batches of product at different transfor-
mation and distribution steps of the supply chain.
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Only attachments having Type in
{"Quality certificate", "Chemical treatments",
"Information on vineyard", "Storage and ageing
procedures", "Storage parameters"}

{
 Batch ID: "BARREL0003",
Actor: "WINEPRODUCER01",
Step: "WINEPRODUCTION001",
Prod Name: "Malvasia DOC",
Prod Category: "Malvasia",
TimeStamp: "2022-10-28 10:45 UTC",
Processing Type:

"fermentation, stabilization",
parent_resources:[
"GRAPEGROWER03_GRAPES0004"

],
attachments:[
attachment:{

URL: "/home/user/ATT_1.pdf",
Raw Content: "01011100...",
Type: "Storage parameters",
Description: "Barrel storage

 temperature and humidity level"
 },
attachment:{

URL: "/home/user/ATT_2.pdf",
Raw Content: "1001000...",
Type: ""Information on vineyard",
Description: "Grapevines planting

information"
 },

]
}

(a) (b)

Fig. 3. (a) Consumer-oriented View in the DOP Wine Supply Chain, and (b) resource
representation for a batch (JSON notation).

1.2) Creation of views on the base data model. The base data model
is leveraged to create customised views, modelling the resources for a specific
use case. Each view, derived from the base model, contains: (i) relevant classes
of resources, (ii) attributes and their possibly renaming, (iii) constraints, with
respect to the base data model. Formally, this can be obtained by applying a
combination of standard relational algebra operators, as well as by adding con-
straints, over the base model. Figure 3(a) illustrates a view obtained from the
base model for a consumer-oriented perspective over traceability data, where
the information to be exposed to final consumers essentially regards the timeline
of production and distribution steps, and information meant to certificate both
product origin and quality. In the view, DOP WINE BATCH CONS models a generic
batch over the DOP Wine Supply Chain, whereas ATTACHMENT CONS models
complementary batch documentation, providing the consumer with origin and
quality details (e.g., wine quality certificates, or descriptions of storage and age-
ing procedures of the batch). These classes represent resources, which serve as
containers for traceabiity data that a supply chain actor intends to publish on
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the blockchain during the execution of a specific step. Creating views for spe-
cific use cases, leveraging the same base model, ensures inherent homogeneity of
views, coherency across different views over the same supply chain and a faster
modelling process. In addition, views can be easily maintained also in the case
of evolution of the traceability data model (e.g., new classes or attributes).

Example. Figure 3(b) is an example of a JSON serialization of a resource from
the DOP Wine Supply Chain, compliant with the view presented in Fig. 3(a).
This resource contains information about a barrel (i.e., the considered batch) in
the Wine Producer step, identified by the WINEPRODUCER01 BARREL0003 ID. The
properties of the resource include the product name (Malvasia DOC), product
category (Malvasia), timestamp, and processing type (fermentation, stabiliza-
tion). Additionally, the resource is further detailed through attachments (two
PDF files). It is to noted that the resource with ID GRAPEGROWER03 GRAPES0004
mentioned in the figure is the batch received as input by the Wine Producer
(i.e., it is the parent resource) from the actor Grape Grower GRAPEGROWER03
(who assigned the ID GRAPES0004 to the product batch in its step). This parent
resource is associated with the current resource for permitting traceability.

Table 1. Access level and large data specification for a step S of the Wine Supply
Chain example.

Class (from V ) Attribute Set (D) Access Level (AL) Large Data (LD)

DOP WINE BATCH CONS Batch ID SupplyChain False

Prod Name, All False

Prod Category,

TimeStamp,

Location

Processing Type Private False

ATTACHMENT CONS URL, All True

Description,

Type,

Raw Content

1.3) Specification of additional user requirements on the views. Trace-
ability of products involves recording and monitoring their origins, transitions,
and destinations along the supply chain. This is accomplished by leveraging
recorded identifiers for the batches throughout the supply chain [11]. In this
respect, each actor involved in a step, whether it be food gathering, transporta-
tion, or distribution, is responsible for providing information (either manually or
through sensors), regarding batches and processing details specific to the actor’s
steps. Actors define the desired visibility of their traceability data by specify-
ing access level requirements. Additionally, they provide an indication of the
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data size. Access level specification, along with data size, are used to implement
resource persistence both correctly and efficiently, and may suggest storing spe-
cific data either on-chain or off-chain [6], as discussed in Sect. 3.2.

Let V be a view, D a set of one or more attributes of a class in V and
S a step of the supply chain. An Access Level specification (in brief, AL)
defines who has access to an instance of D and is denoted as: AL(V,D, S) →
{All, Private, SupplyChain}, where All stands for public visibility, Private for
attributes accessible only by the responsible actor for S, and SupplyChain
to limit the visibility scope to the supply chain actors (excluding consumers).
Instead, a Large Data specification (in brief, LD) is apt to specify whether the
size of D is either large or not and is denoted as: LD(V,D, S) → {True, False},
where True means that instances of D include large data objects (e.g., docu-
ments, images).

Example. Table 1 presents the desired specifications for a step S of the DOP
Wine Supply Chain. The choices of access levels are typically guided by desired
requirements such as relevance, trustworthiness, and transparency of data.

2) Service modelling. Serialized resources can be submitted to (or retrieved
from) the data persistence system by supply chain actors via their front-end
applications, which trigger the invocation of what are known as Resource-
Oriented Services (abbreviated as ROS), made available through a REST API
(Table 2). Each ROS operates on a resource as defined earlier. A ROS is char-
acterized by its URL, an HTTP verb (indicating the read/write operation to be
conducted on the resource, such as GET or POST), and a binding that specifies
how the resource should be serialized (e.g., in JSON format).

Table 2. Services of the DOP Wine Supply Chain REST API.

Service Description HTTP Verb End point Path

Register a new batch POST /{step}/batches
Retrieve a batch GET /{step}/batches/{batch id}
Register a new parent batch POST /{step}/batches/{batch id}/parents
Retrieve parent batches GET /{step}/batches/{batch id}/parents
Retrieve a parent batch GET /{step}/batches/{batch id}/parents/{par batch id}

Example. To publish the resource depicted in Fig. 3(b), the Wine Producer
WINEPRODUCER01 will use their front-end application to invoke the “Register
a new batch” service as shown in Table 2. The resource’s JSON serves as
the payload for the HTTP request sent to the REST API, with the step
parameter being replaced by WINEPRODUCTION001 (i.e., the request will be POST
/WINEPRODUCTION001/batches)
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3.2 BCT-Dependent Steps

1) Software components definition. Service invocation requests issued to the
REST API, as defined in the service modelling step, are dispatched to different
typologies of software components providing implementation to ROS actions,
namely POST component and GET component. In particular, requests for pub-
lishing resources on the storage system are routed to a POST component, whilst
requests to read resources are routed to a GET component. These components
deal with invoking lower level storage methods, performing ROS payload trans-
formations and corollary operations (e.g., data encryption, checking integrity
constraints). In order to store resources permanently, as the effect of POST
requests, a general issue in the design of components is to choose a suitable stor-
age mechanism based on the need of fulfilling the user’s non-functional require-
ments on the views as discussed in Sect. 3.1. Figure 4 describes a decision chart
to assist with the design aspects of persistence in POST components of a ROS.
Based on a specification, like the one given in Table 1, the chart suggests among
several possible types of storage strategies (coloured blocks) for data regarding
an Attribute Set D, and produced in the context of a step S: (a) non blockchain-
based persistence, to store the data into either a private or a decentralised storage,
or (b) blockchain-based persistence, when the data (or a hash fingerprint of it,
depending whether it is a large data item or not) is stored on-chain.

In particular, for large data (i.e., when the LD property is True) or private
data, it is advisable to use non-blockchain-based persistence. This approach typ-
ically involves storing the data on decentralized storage systems like IPFS (Inter-
Planetary File System) and then publishing its hash on the blockchain to ensure
data immutability. However, it is important to note that BCTs are generally
not optimized for handling large data objects. For data that needs to be shared,
blockchain-based persistence is advisable. Additionally, certain BCTs offer alter-
native storage mechanisms, such as the Ethereum event logs, which can exploited
to reduce storage costs (please refer to Sect. 4 for examples).

2) Mapping of storage methods. In the context of a POST/GET request,
depending on the required resource persistence, the associated POST/GET com-
ponent utilizes: (i) methods of Smart Contracts, identified by their blockchain
address, which are designed to store (or retrieve) data on the blockchain; (ii)
methods of External File Storage, used to upload (in the case of POST) or
retrieve (in the case of GET) raw files from a decentralized external storage
system (e.g., IPFS). It is worth noting that the storage methods enabling inter-
action with BCTs and decentralized external file storage providers are typically
incorporated into technology-specific libraries, which are utilized by the above
mentioned software components.

4 Architecture for BCT Integration

The approach described in the previous section has been applied in a real-world
scenario, involving two wine supply chains from the motivating example pre-
sented in Sect. 1: the DOP Wine Supply Chain, which leverages the Ethereum
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Fig. 4. Decision support chart for resource persistence in the design of POST compo-
nents.

BCT (abbreviated as ETH), and the DOCG Wine Supply Chain, which utilizes
the Hyperledger Fabric BCT (abbreviated as HL Fabric). Figure 5 showcases
the resource-oriented architecture, wherein two integration layers are responsi-
ble for handling read/write operations on resources from/to: (i) the two BCTs;
(ii) other persistence providers, such as IPFS, which has been employed as an
external decentralised storage system to store resources data off-chain. Software
components enable the interaction with the respective BCTs by invoking Smart
Contract methods, while interactions with the distributed external file storage
are managed through IPFS storage methods. In Fig. 5, two different data flows
have been highlighted, one regarding the registration of a batch on the DOP
Wine Supply Chain, the other for registering a new batch on the DOCG Wine
Supply Chain. Both requests are triggered by an actor, participating in both
the supply chains, through the Front-end Web application of the actor, and dis-
patched by the REST APIs of the two supply chains to the respective POST
software components for on-chain/off-chain resource data persistence. As shown
in Fig. 5, adopting a resource-oriented architecture allows for hiding the hetero-
geneous technologies behind the REST APIs. The specification of the REST
APIs (complying with the OpenAPI standard) along with the source code of the
Web application (implemented in React.js) are available at [1].

Smart Contracts for On-Chain Resource Data Persistence. Considering
the consumer-oriented view over traceability data for the DOP Wine Supply
Chain (detailed in Sect. 3.1), to register resource data items on the Ethereum
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BCT a unique Smart Contract has been generated2 starting from the classes of
the view in Fig. 3 (named StepContract, source code in Solidity programming
language available at [1]). The StepContract contains methods to store on-chain
batch information (publishBatch method) as well as IPFS-generated hashes of
attachments (storeHash method). Noteworthy, the code of the StepContract
has been deployed multiple times, one for each step of the DOP Wine Supply
Chain. An analogous procedure has been conducted for generating the code of
the Smart Contract for the HL Fabric BCT of the DOCG Wine Supply Chain
(written in Go programming language and available at [1]).

HL Fabric network
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Fig. 5. REST-based architecture for two supply chains.

4.1 Experimental Evaluation

The primary focus of the experimental evaluation is the control and limitation of
on-chain storage for the Ethereum BCT, as the so-called gas mechanism incurs
significant economic costs for data storage transactions. In contrast, HL Fab-
ric does not have a similar concept of storage cost; however, efficiency metrics
(such as transaction rate, latency, and throughput) can be evaluated by creating
benchmarks, as we outlined in [1]. In the Ethereum BCT, the costs associated
with a Smart Contract primarily depend on the size of the deployed code (in
bytes) and the actual invocations of Smart Contract methods (e.g., to modify
the contract’s state variables).

Regarding the first cost factor, resource modeling contributes to simplifying
the business logic of Smart Contracts associated with Resource-Oriented Ser-
vices. The second factor is impacted by the complexity of the resources, specif-
ically: (a) the primitive data types and data structures used to store resource

2 Using techniques for semi-automatic code generation from conceptual models (pro-
cess not detailed here, as it is out of the scope of this paper).



338 D. Bianchini et al.

data; and (b) the type of memory allocated for these data types and structures,
which in the Ethereum BCT can encompass both contract state storage and
events/logs. To provide the average price in Euros (e), the following reference
values were applied (observed at the time of the tests): (a) a gas price of 25 Gwei
(a sub-unit of Ether equal to 10−9 Ether); and (b) an Ether value of 1599.40 e.
The gas price and the gas limit (i.e., the maximum amount of gas a user is willing
to pay for a successful transaction) determine the total cost of the transaction.

Table 3. Cost comparison: (a) saving variables and IPFS Multihashes as strings (con-
tract state storage), (b) saving variables as bytes32 (using events and logs)

Variable type Gas used (avg) e (avg)

Single string 112,506 4.50

Array of strings (1 string) 78,356 3.134

Entire structure of the batch 230,817 9.23

Single Multihash 114,007 4.56

Array of M.hashes (1 M.hash) 79,871 3.194

(a)

Variable type Gas used (avg) e (avg)

Single Multihash 29,425 1.18

Array of M.hash (1 M.hash) 10,056 0.402

Entire structure of the batch 30,257 1.21

(b)

Contract State Storage and Logs. The tests outlined below aim to evaluate
not only the type of memory (i.e., either contract storage or events/logs) but
also the various data types and structures provided by Solidity for storing text
data. This focus is important because, as shown in the example in Fig. 3(b),
the resource information primarily has a textual representation. The first test
was conducted using string-type variables stored in the contract state storage.
Table 3(a) displays the costs associated with writing the so-called Multihash
(32 bytes in length) as a string in the contract state storage, which points to
a resource attachment stored in IPFS. The earlier tests were replicated using
event logs for registering batches, employing the publish-Batch method of
the Step-Contract, which emits the event emitBatch during batch registra-
tion. Furthermore, assuming that 32 characters are sufficient for the attributes
listed in Table 1, the data type bytes32 was utilized for the variables in the
Step-Contract as well as for the MultiHashes related to the attachments. This
choice is based on the fact that fixed-length byte variables are more efficiently
managed than strings. As reported in Table 3(b), utilizing events/logs consider-
ably lowers storage costs.

Regarding the effectiveness of introducing IPFS alongside traditional
blockchains, studies, such as [2], demonstrate that combining IPFS with
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blockchain can enhance data storage efficiency, in terms of time and space, thus
providing a more flexible architecture for decentralized applications.

5 Consumer-Centric Implications of the Resource-
Oriented Approach

Section 4 presented quantitative results demonstrating the technical feasibility
and cost-efficiency of implementing a resource-oriented blockchain integration
approach in wine supply chains. Building on these empirical findings, this section
examines the broader implications of this approach, with a focus on consumer-
centric aspects. The effectiveness of supply chain innovations is ultimately mea-
sured by their ability to deliver value to end consumers. Therefore, this dis-
cussion analyzes how the resource-oriented approach may influence consumer
interactions with wine product information. The resource-oriented methodol-
ogy, utilizing a base data model with specific views, offers potential advan-
tages for standardizing information access across diverse blockchain technologies.
This standardization could enable consistent consumer interaction with product
data, irrespective of the underlying blockchain infrastructure used by different
wine producers. However, the implementation of this approach may face several
challenges. These include ensuring data integrity across multiple supply chains,
addressing producers privacy concerns, and striking a balance between informa-
tion depth and user interface simplicity.

Standardization and Customization of Information. The base data
model with specific views facilitates the creation of customized information
presentations tailored to diverse consumer needs. This flexibility enables the
development of user interfaces that can cater to various consumer segments,
from casual wine consumers to connoisseurs. The ability to present relevant
information while obscuring complex supply chain details may enhance user
engagement and comprehension.
Traceability and Trust. The resource-oriented approach potentially
enhances product traceability, allowing consumers to access detailed informa-
tion about a wine’s journey from production to point of sale. This increased
transparency may contribute to building consumer trust and confidence in
product authenticity and quality claims.
Privacy and Information Control. The view mechanism allows for gran-
ular control over shared information, potentially addressing privacy concerns
while still providing valuable data to end-users. This balance between trans-
parency and privacy protection is crucial for consumer acceptance and regu-
latory compliance.
Extensibility and Future Adaptability. The extensibility of this app-
roach is noteworthy. As consumer needs evolve, new views can be created from
the base model without necessitating changes to the underlying blockchain
structure. This flexibility facilitates the rapid introduction of new features or
information types that consumers may find valuable.
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Integration with Third-Party Applications. The resource-oriented app-
roach may simplify integration with third-party consumer applications, such
as wine rating platforms or food pairing services. This integration potential
could further enrich the consumer experience and expand the utility of the
blockchain-based information.
Challenges and Limitations. Despite these potential benefits, there are
challenges to be considered. For example, ensuring data accuracy and con-
sistency across multiple supply chains presents a significant technical and
operational challenge, as it does determining the appropriate depth of infor-
mation to provide.

6 Concluding Remarks

In this paper, a methodological approach to design a resource-oriented archi-
tecture for BCT integration on top of intertwined supply chains has been pro-
posed. The approach is organised into BCT-independent steps, where resources
within the supply chain and RESTful Services to share them are modelled, and
BCT-dependent steps, where RESTful services are mapped to Smart Contracts
of specific BCTs. Resource modelling promotes a homogeneous representation
of supply chain data in BCT-based Web Applications for traceability and bet-
ter coherency across different use cases. Experiments demonstrated that the
resource-oriented approach simplifies the business logic of Smart Contracts, pos-
itively affecting storage costs.

The resource-oriented architecture design offers an alternative to the service-
oriented vision on blockchains and Smart Contracts [5,8,14]. The latter typically
involves a broader set of Smart Contracts and thus higher development costs,
being suitable for modelling complex workflows requiring complex business logic.
However, for scenarios like supply chains in the agri-food domain the resource-
oriented perspective brings the aforementioned advantages. Furthermore, our
approach aims at enhancing consumer engagement and trust in the wine indus-
try. By providing a standardized method for accessing and interpreting product
data across different blockchain technologies, it offers consumers a consistent and
transparent view of wine supply chains through Web applications, potentially
facilitating more informed decision-making. However, successful implementation
will require addressing challenges such as ensuring data accuracy across multiple
supply chains and balancing information depth with user interface simplicity.

Our upcoming research will focus on exploring the integration of alternative
blockchain technologies, particularly IOTA [19], which has been specifically engi-
neered for Internet of Things (IoT) data management—a critical component in
Agriculture 4.0 and modern food industry applications. We also plan to extend
our approach to other application domains and conduct empirical studies on
consumer interaction with BCT-based Web applications, including strategies for
overcoming adoption barriers within the wine industry. Finally, building upon
the work of [7], we plan to develop software component design patterns and
establish a decentralized component registry.
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