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Abstract—This paper explains how to describe any finite-
energy signal through a unique representation consisting of an
ordered set of positions and a sparse set of signals. This is
obtained by designing an iterative decomposition through a series
of mirror operations around those positions. The purpose is to
find at any step of the decomposition the location that provides for
the maximum decoupling between the even and odd components
of the signal with respect to it. By limiting such even and odd
components on three separate information bearing support, the
algorithm can be iterated at infinity determining a sequence of
positions. The per location information determines the optimal
energy decoupling strategy at each stage providing remarkable
sparsity in the representation. The resulting transformation
leads to a 1-to-1 mapping. The approach is easily extended
to finite-energy sequences, and in particular for sequences of
finite length N , at most N iterations of the decomposition are
required. Thanks to the sparsity of the resulting representation,
experimental simulations demonstrate superior approximation
capabilities of this proposed non-linear Mirror Transform with
potential application in many domains such as approximation and
coding. Its implementation has been made publicly available.

Index Terms—Transforms, non-linear approximation, signal
decomposition, sparsity.

I. INTRODUCTION

FOR analysis or communication tasks such as classifica-
tion, machine learning, detection, estimation, and coding,

signal decomposition is fundamental for the representation
of information [1], [2], [3]. In 1822, Joseph Fourier first
established that a periodic wave can be represented as a
linear combination of harmonic components of its fundamental
frequency [4]. In addition, the representation completeness
converges at infinity, in the mean square error sense, to the
representation of discontinuous waveforms. About a hundred
years later in 1909, Alfred Haar showed the converse result
that a continuous waveform in L2(R) can be represented as an
infinite series of discontinuous functions [5]. More generally,
any separable Hilbert space of infinite dimensionality H can
be represented using some infinite set of functions forming one
of its bases. With the concept of frames, the decomposition
may be overcomplete and the representation becomes non-
unique. Consequently, Fourier decomposition and/or multires-
olution representations [6] are at the foundation of waveform
description and enable new forms of signal classification, data
recovery, denoising, etc.

Lately, more emphasis has been devoted to the study of
alternative linear expansions for representing any vector x∈H:

x =
∑
i∈I

αiϕi
, ∀x ∈ H, (1)
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learning different dictionaries that would generate sparse rep-
resentations while considering the typical statistical distri-
butions of real phenomena leading to particular classes of
signals (such as natural images, individual ratings, population
health, etc.). This has given us the possibility to construct
effective alternative sparse expansions of waveforms [6], [7],
with further advancements for compressive sensing, denoising,
super-resolution, data recovery, and many more applications.

When the size of such dictionaries is larger than the signal
dimensionality, there is an infinite number of solutions to
decompose x. The problem to find the sparsest solution to
Eq. (1), that is the solution with the fewest number of atoms
ϕ
i
, is generally non convex and NP-hard. Thus, only approx-

imate solutions can be found for the general case. Among
these, greedy algorithms and relaxing the non convex sparsity
cost by its tight convex surrogate have been proposed (see,
e.g., the recently proposed atomic norm minimization [8]).

In a broader perspective, there have been attempts to model
signal families as lying on manifolds. These approaches try to
follow signal geometrical features [9]. This can be framed in
the general context of dimensionality reduction, where signals
laying in high dimensional spaces are approximated as a set
of lower dimensional subspaces. Instead of a representation
through a series of projections on a (possibly overcomplete)
set or through a sparse expansion on an accurately designed
dictionary, dimensionality reduction does not usually achieve
completeness, since the signal can only be approximated
with no guarantee on the representation error convergence. In
addition, there is no general solution to the inverse problem of
generating a signal given a manifold, so such problems usually
need a regularization approach (see, e.g., [10]).

Another attempt of sharing an approximate signal represen-
tation paradigm is based on the use of contractive transfor-
mations. Iterative Function Systems (IFS) try to describe a
signal through a set of base signals and a pool of contrac-
tive transformations, so that their iteration converges to an
approximate fixed point. Where IFS are quite attractive from a
signal generation perspective, when the set of transformations
is estimated for signal analysis purposes, the solution to the
inverse problem is difficult, and there exist only bounds on the
approximation error to the original signal [11].

Another approach worth mentioning in the family of data-
adaptive iterative methods is the Empirical Mode Decomposi-
tion (EMD) [12], which is a multi-resolution technique which
decomposes a signal into physically meaningful components,
known as Intrinsic Mode Functions (IMFs), which are signals
at the same time scale as the original signal. While this
peculiarity makes such components easier to analyze from an
empirical perspective, such decomposition lacks sparsity prop-
erties, since the representation is given by a certain number of
signals with the same size of the original one, thus leading
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to an increase of the overall temporal information bearing
support. Furthermore, the IMFs do not form an orthogonal set,
thus there is no simple way to assess the introduced distortion
when considering only a subset of the IMFs for reconstruction.

In this paper, we want to preserve the idea of a converging
representation where any signal x may be exactly recovered.
Differently with respect to most traditional approaches, this
representation will not come from a projection on the space
(or subspaces) spanned by predefined set(s) of vectors. Instead,
each signal is described through an iterative decomposition
into a possibly infinite and unique set of orthogonal compo-
nents, that can be recombined through a chain of summations
and mirroring operations. In contrast with IFS or dimension-
ality reduction methods, the proposed approach is generative,
which means that the signal is exactly represented, and an
iterative transformation applied at each step is not found by
solving an inverse problem, but rather it is constructively gen-
erated from intrinsic characteristics of the considered signal.

To achieve energy compaction a mirroring location is se-
lected at each stage of the proposed iterative transform so
as to provide maximal energy concentration into one of two
components of an additive decomposition. By iterating the
decomposition, an excellent approximation of the original
signal can be extracted by using just a few components, thus
becoming intrinsically sparse. By truncating the decomposition
at some level, or by recombining only the constituent compo-
nents with the highest energy, the reconstructed signal will be
very close to the original one. In this paper, it is shown that a
much more sparse representation can be generated if compared
to any linear expansion, thus leading to a better approximation
(in the L2 sense) of the original waveform.

The peculiar nature of the proposed transform also allows
the display of a number of useful and distinctive properties
besides sparsity, which could turn out beneficial to address
many signal processing problems. For example, since the
iterative decomposition process at the core of the transform is
signal dependent, the transform structure itself represents an
alternative representation that is tied to the generating signal
through a one-way function.

The rest of the paper is organized as follows. Sec. II reviews
some background while the basic even-odd decomposition is
generalized. Then, the Mirror Transform (MT) is formally
introduced in Sec. III, as the even-odd decomposition is gener-
alized to achieve maximum energy decoupling and the process
is iterated to form a decomposition tree. A few transform
properties that can be derived from this novel representation
paradigm are given in Sec. IV. The extension of the MT to
the discrete-time domain is discussed in Sec. V. Then, Sec. VI
provides more insights on the peculiar characteristics of the
MT through a series of experiments, mainly allowing to verify
its sparsity and one-wayness properties in the case of discrete-
time sequences. Conclusions are finally drawn in Sec. VII. In
addition, an implementation of the proposed transform and the
relevant code to run experiments are publicly available [13].

II. BACKGROUND

The objective of this section is to provide some background
on the processing steps that are used throughout the rest of the

paper. We start by briefly recalling the well-known even-odd
decomposition for continuous-time signals (Sec. II-A). It is
widely recognised that a signal exhibiting either an odd or even
symmetry around its origin optimally decouples the energy
between the two components. In order to exploit this property
more generally, the decomposition process is redefined in
Sec. II-B, so as to identify an arbitrary mirroring position.

A. Even-odd decomposition

The even-odd (or parity) decomposition of a finite-energy
signal, denoted as x(t) ∈ L2(R), states that x(t) can be
expressed as the sum of its even and odd parts, respectively
xe(t) and xo(t), given by:

xe(t) =
x(t) + x(−t)

2
; xo(t) =

x(t)− x(−t)
2

, (2)

and x(t) = xe(t)+xo(t). For the even signal xe(t) = xe(−t);
for the odd signal xo(t) = −xo(−t). Since L2(R) is a Hilbert
space, with inner product <x(t), y(t)>=

∫
R x(t)y

∗(t)dt, such
decomposition is possible ∀x(t). Therefore, since the inner
product <xe(t), xo(t)> is 0, x(t) can be expressed as the sum
of 2 orthogonal vectors. Defining the energy E as the squared
Euclidean norm of the signal x(t), and sincexe(t)⊥xo(t)with
respective energy Ee and Eo, it is easy to verify that:

E =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|xe(t) + xo(t)|2dt = (3)

=

∫ ∞
−∞
|xe(t)|2dt+

∫ ∞
−∞
|xo(t)|2dt = Ee + Eo.

Let us assume without loss of generality that the original
signal has finite temporal support, say [−T, T ] (which falls
under the general formulation if one admits to zero-pad the
signal). An example of an even-odd decomposition of a real
signal is shown in Fig. 1 for T = 1. The pair of signals
xe(t) and xo(t) obtained through the above decomposition
step constitutes an alternative representation of x(t), since the
decomposition is unique and both signals are needed to recon-
struct x(t). The intuitive importance of such representation
stems from the fact that whenever x(t) has an approximate
even/odd character (even when it is not perfectly symmetric),
most of its energy will be carried by one of the constituent
components. As such, the even-odd decomposition carries the
possible symmetric nature of x(t) around t=0. As a matter
of fact, when performed on a limited support, it can be used
to track local reflective symmetries, as shown in [14].

Following Eq. (2), both signals xe(t) and xo(t) have the
same support [−T, T ] of the original signal. However, even if
two signals are needed to represent x(t), the new representa-
tion does not double the information necessary to reconstruct
the original signal. In fact, the parity property of the even and
odd parts implies that only either their causal part (respectively
x
(c)
e (t) = xe(t) ·1(t ≥ 0) and x(c)o (t) = xo(t) ·1(t ≥ 0), both

with support [0, T ]) or anticausal part (respectively x(ac)e (t) =

xe(t) − x
(c)
e (t) and x

(ac)
o (t) = xo(t) − x

(c)
o (t), both with

support [−T, 0]) is informative and thus sufficient to describe
the entire signal. In other words, given only, e.g., the causal
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Figure 1: The original signal x(t) (black) is decomposed into
xe(t) (blue) and xo(t) (red), according to Eq. (2).

part of both signals, the anticausal part can be readily obtained
by mirroring the causal one:

xe(t) = x(c)e (t)+x(c)e (−t); xo(t) = x(c)o (t)−x(c)o (−t). (4)

Note that, to keep Eq. (4) simple, we ignore the fact that the
isolated value in t=0 needs to be handled separately, which
is not an actual concern for well-behaved signals.

The original signal x(t) is then reconstructed summing
xe(t) and xo(t) as in Eq. (2). By retaining just the causal part
of the even and odd parts, their energy is halved, respectively
Ee/2 and Eo/2, and their sum gives E/2.

B. Generalized even-odd decomposition

It can be noted that there are some cases where the parity
decomposition as defined in Eq. (2) has not the intended effect
of separating the underlying symmetric signal, even if the
original signal has simple parity characteristics, only because
its center of symmetry is not in the time origin. Consider for
example a rectangular impulse x(t) = 1(4< t < 5). Though
the indicator function 1(·) applied on an interval, like the given
x(t), is a perfectly even signal with respect to its midpoint,
if x(t) is decomposed along the lines of Eq. (2), its support
would be [−5, 5], and therefore the decomposition would lead
to the signals xe(t) = (1(4 < t < 5) + 1(−5 < t < −4)) /2
and xo(t) = (1(4 < t < 5)− 1(−5 < t < −4)) /2. Since
xe(t) and xo(t) have the same energy, there is no indication
of parity by inspecting their energies.

The reason for this result is that the even-odd decomposition
only considers the parity with respect to the decomposi-
tion support midpoint (namely, the time origin for centered
supports). The even-odd decomposition with respect to an
arbitrary flipping point t= tf can be chosen instead, provided
that we slightly extend Eq. (2), which becomes:

xe(t; tf )=
x(t)+x(2tf−t)

2
; xo(t; tf )=

x(t)−x(2tf−t)
2

, (5)

with x(t) = xe(t; tf ) + xo(t; tf ). Eq. (5) turns into Eq. (2)
when tf = 0. In general, tf is not the signal support midpoint.

Let us consider again that the original signal x(t) has
finite support [−T, T ]. After the even-odd decomposition with
respect to tf with |tf |<T , the support of both xe(t; tf ) and
xo(t; tf ) is extended to 2T +2|tf |. This evidence is shown in
Fig. 2a, with T =1. In the figure, we have fixed an arbitrarily
chosen tf = 0.3. If tf sits to the right of the signal support

(i.e., tf > 0), when the signal x(t) is mirrored around it,
obtaining x(2tf − t), it can be observed that the latter signal
now has support [−T+2tf , T+2tf ] (in the figure [−0.4, 1.6]).
Thus, when x(2tf − t) is added or subtracted to x(t) as in
Eq. (5) the resulting signals have support which is (at most)
the union of [−T+2tf , T+2tf ] and [−T, T ]. If the symmetry
point is to the right of the support center as in this example,
the resulting support is [−T, T + 2tf ], whereas it would be
[−T + 2tf , T ] if tf < 0. Its extent is therefore 2T + 2|tf |.

Nevertheless, the information-bearing support remains 2T
since the added support on one side simply mirrors the other
end of the signal confined in such informative support. In
particular, in both the even and odd parts, the 2|tf | long tails
correspond to the last or first part of the original signal, where
one of them has the sign reversed for the odd part, depending
respectively on whether tf < 0 or tf > 0. Looking again at
Fig. 2a, the leftmost parts of xe(t; tf ) and xo(t; tf ), i.e., in the
interval [−T,−T+2tf ], solely correspond to x(t)/2, while for
the rightmost part, i.e., in the interval [T, T + 2tf ], the even
signal is a mirrored copy of the former (which corresponds
also to x(2tf − t)/2), while the odd signal is its sign-reversed
mirrored copy. Clearly, just one of these is actually enough
to reconstruct x(t). Moreover, each signal in the intervals
[−T + 2tf , tf ] and [tf , T ] enjoys the usual mirror symmetry,
ensuring that only one of the supports is informative.

In conclusion, the representation still uses the same support
2T as the original signal, when only the informative parts are
kept. Therefore, when the decomposition is implemented by
Eq. (5), and the informative supports are separated during the
decomposition along the lines discussed above, three signals
can be considered. First, removing the tail from the even and
odd signals xe(t) and xo(t) output of Eq. (5) (henceforth
dropping the tf parameter for convenience) produces a trun-
cated even signal xe(t) (the overline here indicates truncation
by removing the tail), the (truncated) odd signal xo(t) and
what is referred to as the tail part, xt(t). The tail part, which
is chosen as the even signal in the [−T,−T + 2tf ] and
[T, T + 2tf ] intervals in Fig. 2a, is just a double copy of that
2|tf | long part of the original signal which is not involved
in the decomposition, that is the rightmost one if tf < 0 or
the leftmost if tf > 0, and thus leads to a cumulative support
extent of 4|tf |. For convenience we chose the causal part to
retain the even signals and the anticausal part for the odd
ones, to ensure that the informative even signal x(c)e (t) and
informative odd signal x(ac)o (t) each have support T − |tf |.
Thus, the informative (causal) support for the even part is the
[tf , T + 2tf ] interval for tf < 0 or the [tf , T ] interval for
tf > 0, and the converse is true for the odd part. The tail
x
(c)
t (t) is x(t)/2 in the [T + 2tf , T ] interval if tf < 0 or it

is x(2tf − t)/2 in the [T, T + 2tf ] interval if tf > 0, i.e., a
2|tf | support. The informative signals total support is thus 2T .
Fig. 2b depicts the result of such a ternary decomposition.

Eq. (3) for the computation of the energy distribution still
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(a) The original, real signal x(t)
(black) is decomposed around the
mirroring point tf = 0.3 into the
even and odd signals, xe(t) (blue)
and xo(t) (red), according to Eq. (5).
The signal x(2tf−t) is also depicted
(dashed black) for convenience.

−T+2tf tf T T+2tf
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(b) The results of the decomposi-
tion: the causal part of the (truncated)
even signal is x(c)e (t), the anticausal
part of the (truncated) odd signal is
x
(ac)
o (t), and the causal part of the

tail signal is x(c)t (t).

Figure 2: Ternary even-odd decomposition process of a signal.

applies. In particular, for the signal in Fig. 2a, it becomes:

E =

∫ ∞
−∞
|x(t)|2dt =

∫ T+2tf

−T
|xe(t) + xo(t)|2dt =

=

∫ T

−T+2tf

|xe(t) + xo(t)|2dt+ 2

∫ −T+2tf

−T
|xt(t)|2dt =

=

∫ T

−T+2tf

|xe(t)|2dt+
∫ T

−T+2tf

|xo(t)|2dt+ . . . =

= Ee + Eo = Ee + Eo + Et,
(6)

since xe(t) and xo(t) are still orthogonal, and xt(t) is on a
distinct support. From the definition we have given above, it
is clear that (the same) part of the energy of the even/odd
signals moves from all truncated signal energies to the tail
signal energy. This means that Et ≤ min{Ee, Eo} ≤ E/2.
In addition, Et < max{Ee, Eo}, implying that most of the
energy is carried by one of the truncated signals.

III. THE MIRROR TRANSFORM (MT)

To optimize the parity decomposition just discussed on the
informative part of the produced signals, it is advisable to
suitably choose tf to allow for the best tracking of symmetries
that might be present in the original signal: this is discussed
in Sec. III-A. When iterated, a tree may be constructed
by repeating the even-odd decomposition process for every
component. The tree thus becomes ternary, since three signals
remain as presented in Sec. II, that is, the decomposition must
be repeated for each even, odd, and tail component. This tree
represents what we refer to as the Mirror Transform (MT) of
the signal, that we formally define in Sec. III-B.

A. Finding the optimal symmetry point

In Sec. II-B we have shown how to perform the even-
odd decomposition around an arbitrary mirroring point tf
which is not the support midpoint, and divide the resulting
signals according to their informative support. Our objective
is now to determine whether an optimal symmetry point t0
can be identified. If a signal is symmetric (or antisymmetric)

with respect to a certain point t0, performing the even-odd
decomposition using tf = t0 as mirroring point would output
the even and odd signals, xe(t) and xo(t), whose energies are
in great disproportion. Therefore, it is natural to search for all
tf for which there is a maximum decoupling of the energies
Ee and Eo associated to the even and odd parts, as expressed
from Eq. (6) when tf varies (see also [15]).

Since the energies Ee and Eo depend on tf , to sum up to E
both possess the same extreme points. The optimal symmetry
point t0 corresponds to the maximum of either Eo or Ee (i.e.,
respectively the minimum of Ee or Eo). The search for t0 is
meaningless when applied to zero-energy signals.

To find t0, let us therefore concentrate on the extrema of
the energy of the even part. For a complex x(t), we have:

Ee(tf )=

∫ +∞

−∞
|xe(t; tf )|2dt=

∫ +∞

−∞

∣∣∣∣x(t)+x(2tf−t)2

∣∣∣∣2dt =
=

1

4

∫ +∞

−∞

[
|x(t)|2+|x(2tf − t)|2+2Re{x(t)x∗(2tf − t)}

]
dt,

(7)

where we can safely extend the integral on the whole real axis
without affecting the result for finite-support signals. The first
two terms in the last integral give E as a result, since reversing
the time axis and shifting the origin do not influence the energy
value, thus they are both independent from tf . Hence:

Ee(tf ) =
1

2
E +

1

2

∫ +∞

−∞
Re{x(t)x∗(2tf − t)}dt. (8)

For energy signals, the linear convolution being defined as:

(x ∗ y)(t) =
∫ +∞

−∞
x(τ)y(t− τ)dτ, (9)

we can simply write:

Ee(tf )=
1

2
E +

1

2
Re{(x ∗ x∗)}(2tf ). (10)

The energy of the even part is a function of tf dictated by the
convolution of the original signal with its complex conjugate
– a “conjugate self-convolution” (which is equivalent to the
cross-correlation between the signal and its mirrored version).
Ee admits at least one maximum, since a maximum exists

for the convolution. This can be readily seen since it must be
limited for finite energy signals, as implied by the Cauchy-
Schwarz inequality, and on the other hand that the energy of
the even part cannot be greater than that of the original signal.
Furthermore, since the auto-convolution is an integral function
it must be continuous, so Ee admits at least one extreme point.

Thus, the derivative of Ee(tf ) with respect to tf exists and
it can be studied to find the position of its extreme points:

dEe

dtf
=

d

dtf

1

2
Re{(x ∗ x∗)}(2tf ) =

=
d

dtf
Re

{∫ +∞

−∞
x(t)x∗(2tf − t)dt

}
.

(11)

Under mild assumptions on the continuity of the signal x(t)
and its derivative, we can exchange the order of derivation and
integration, and therefore we obtain:

dEe

dtf
= Re{x ∗ (dx∗/dt)}(2tf ) = −

dEo

dtf
. (12)
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−T t0 0 T

0

1
Ee(tf)
Eo(tf)

(a) The normalized energies of the
even and odd parts of x(t) of Fig. 1,
function of the mirroring point tf .

−T t0 0 T

−1

0

1
xe(t; tf)
xo(t; tf)
x(t)

(b) The result of the optimal parity
decomposition of x(t), using the op-
timal point t0 as the mirroring point.

Figure 3: Revisited previous example using a variable mirror-
ing point, showing how the energies of the even and odd parts
vary as the point moves. The optimal decomposition point t0
leads to a maximal energy of its associated odd part, which in
this example is larger than the maximal energy with respect
to any other decomposition location for the even part.

So, for continuous-time signals, candidate extreme points of
the auto-convolution can be determined by convolving the
signal with the derivative of its complex conjugate, finding its
zero-crossing points, and dividing by 2 the found locations.
A local minimum for Ee corresponds to a complementary
local maximum for Eo and vice-versa. To find the global
minimum between Ee and Eo we must consider both the
global maximum for Ee as well as its global minimum (i.e.,
associated to the global maximum of Eo). t0 then corresponds
to the location that leads to the largest value between them.

Fig. 3 shows the evolution of Ee(tf ) and Eo(tf ) (nor-
malized by E) for the (real) signal shown in Fig. 1. In this
case, t0≈−0.13 yields the maximum value for Eo, which is
larger than the maximum value of Ee. Accordingly this one is
selected as the optimal symmetry point t0. The prevalent odd
nature of x(t), even around t=0, is somewhat evident, but the
optimization of tf proves how considering a negative offset for
the mirroring point guarantees further energy decoupling: in
fact, Eo increases from around 85% of E for tf =0 to more
than 95% for tf = t0. Observe also how the two local maxima
of Ee are able to capture the two milder even symmetries.

For arbitrary signals with no analytical expression there
is no closed-form formula to identify the optimal locations.
We need to resort to numerical computation. For each local
maximum, we need to find which one leads to the absolute
maximum of the auto-convolution (recall that the optimal
symmetry location is found by dividing by 2 the location of
the auto-convolution). Note that the maximum may not be
unique. For a simple example, consider x(t) = 1(−1 < t <
1)+1(9 < t < 10)−1(10 < t < 11) whose auto-convolution
(x ∗ x)(t′) has two maxima in t′ = 0 and t′ = 9 and two
minima in t′ = 11 and t′ = 20 with the same absolute value.
Of course, the two (respectively even and odd) symmetries
of x(t) centered at t = 0 and t = 10 are equivalent energy-
wise. If such ties occur (rarely enough for real-world signals),
we define by convention the optimal location: for example,
we could arbitrarily choose the leftmost maximum, or the one
nearest to the center of the signal support (in this toy example

the latter solution would lead either to t′ = 9 or t′ = 11
whereas the former one would select t′ = 0, but either strategy
leads to the same optimal energy decoupling).

B. The Mirror Transform: optimal ternary decomposition tree

In order to construct a full energy-compacting decomposi-
tion of the original signal, we are going to iterate the optimal
energy decoupling process on the relevant information bearing
even and odd components, obtained through the previously de-
scribed optimal decoupling step. The objective is thus to build
a decomposition tree by iterating the optimal decomposition,
so that an increasing portion of the signal energy is carried by
an ever smaller temporal support at each step.

First, let us assume as usual that the original signal x(t)
has a [−T, T ] finite support. To recap what happens during
a single decomposition step, the process previously explained
allows us to find t0 ∈ [−T, T ] that optimally decouples the
energy of the even and odd part, which have total support
2T + 2|t0|. Once the optimal symmetry point t0 has been
found according to the procedure detailed in Sec. III-A, three
total information bearing signals which all together cover the
same original support may be defined. The causal part of the
even signal is composed by a T − |t0| interval extent which
is the result of the actual “even” computation (half the sum
of the original signal and the mirrored version with respect to
t0) followed by a 2|t0| interval extent signal which is simply
the tail of the original signal divided by 2. This also applies
to the anticausal part of the odd signal (except that in this
case the tail precedes it), thus the tail can be considered once.
Therefore, a single energy decoupling stage leads to a ternary
decomposition, if the tail part is treated as a separate signal.
The rationale behind this consists in the fact that the tail part
has undergone no modifications and thus can be meaningfully
handled separately. In addition, it has at most half the energy
of the least significant part of the decomposition whether it is
the even or the odd part. The total informative support remains
of 2T extent, the same of the original signal, divided into three
intervals of extents T − |t0| for the generated even and odd
components, and 2|t0| for the tail signal (see Fig. 2b).

This process defines the first level of the transform: the root
of the tree x(t) is decomposed into three first-level children
nodes, determined by the even causal part x(c)e (t), the odd
anticausal part x(ac)o (t), and the tail part xt(t). The first-
level nodes can then be further decomposed into their even,
odd, and tail parts. Thus, iterating the decomposition, keeping
the causal part for even components, the anticausal part for
odd components, and the tail, nine new children nodes are
obtained in this second level. In principle, the decomposition
can go on ad infinitum. The number of nodes on a given
level l increases exponentially with the level number, and the
support of the single nodes also tends to shrink accordingly.
The new representation in each level l of the tree, formed
by 3l components, as explained earlier, does not increase the
support, therefore the total support extent remains 2T .

We will now introduce the notation which will be considered
throughout the rest of the paper. At the root of the tree,
x(t) is decomposed into x

(c)
e (t), x

(ac)
o (t) and xt(t). We
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<latexit sha1_base64="1KR64lBeglxjGmQ5jGWVegAsCRI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkpSRF0W3LisYB/QhjCZTtuhk0mYmagl9lPcuFDErV/izr9x0mahrQcGDufcw71zgpgzpR3n2yqsrW9sbhW3Szu7e/sHdvmwraJEEtoiEY9kN8CKciZoSzPNaTeWFIcBp51gcp35nXsqFYvEnZ7G1AvxSLAhI1gbybfL/cjYWTp9nPm0qs98u+LUnDnQKnFzUoEcTd/+6g8ikoRUaMKxUj3XibWXYqkZ4XRW6ieKxphM8Ij2DBU4pMpL56fP0KlRBmgYSfOERnP1dyLFoVLTMDCTIdZjtexl4n9eL9HDKy9lIk40FWSxaJhwpCOU9YAGTFKi+dQQTCQztyIyxhITbdoqmRLc5S+vkna95l7U6rfnlUY9r6MIx3ACVXDhEhpwA01oAYEHeIZXeLOerBfr3fpYjBasPHMEf2B9/gBfHJQF</latexit>

xe(t)
<latexit sha1_base64="oHK7LhWZYYsiWKkWKA7rTFEb1+A=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkpSRF0W3LisYB/QhjCZTtuhk0yYmagl9lPcuFDErV/izr9x0mahrQcGDufcw71zgpgzpR3n2yqsrW9sbhW3Szu7e/sHdvmwrUQiCW0RwYXsBlhRziLa0kxz2o0lxWHAaSeYXGd+555KxUR0p6cx9UI8itiQEayN5NvlvjB2lk4fZ76o6jPfrjg1Zw60StycVCBH07e/+gNBkpBGmnCsVM91Yu2lWGpGOJ2V+omiMSYTPKI9QyMcUuWl89Nn6NQoAzQU0rxIo7n6O5HiUKlpGJjJEOuxWvYy8T+vl+jhlZeyKE40jchi0TDhSAuU9YAGTFKi+dQQTCQztyIyxhITbdoqmRLc5S+vkna95l7U6rfnlUY9r6MIx3ACVXDhEhpwA01oAYEHeIZXeLOerBfr3fpYjBasPHMEf2B9/gBuYpQP</latexit>

xo(t)
<latexit sha1_base64="MwtRrYOh+IsyPiIT2BacAVBHOqY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3iHoMePEYwTwgWcLsZDYZMzu7zPSKIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rUeujYjVPY4T7kd0oEQoGEUrNZ96WMbzXrHkVtw5yCrxMlKCDPVe8avbj1kacYVMUmM6npugP6EaBZN8WuimhieUjeiAdyxVNOLGn8yvnZIzq/RJGGtbCslc/T0xoZEx4yiwnRHFoVn2ZuJ/XifF8NqfCJWkyBVbLApTSTAms9dJX2jOUI4toUwLeythQ6opQxtQwYbgLb+8SprVindZqd5dlGrVLI48nMAplMGDK6jBLdShAQwe4Ble4c2JnRfn3flYtOacbOYY/sD5/AEMy469</latexit>

xt(t)
<latexit sha1_base64="dw7yUgPf7yZL61o995nWD651vP0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkpSRD0WvHisYFuhDWWz3bZLdzdhdyKW0L/gxYMiXv1D3vw3Jm0O2vpg4PHeDDPzgkgKi6777RTW1jc2t4rbpZ3dvf2D8uFR24axYbzFQhmah4BaLoXmLRQo+UNkOFWB5J1gcpP5nUdurAj1PU4j7is60mIoGMVMeqrieb9ccWvuHGSVeDmpQI5mv/zVG4QsVlwjk9TarudG6CfUoGCSz0q92PKIsgkd8W5KNVXc+sn81hk5S5UBGYYmLY1krv6eSKiydqqCtFNRHNtlLxP/87oxDq/9ROgoRq7ZYtEwlgRDkj1OBsJwhnKaEsqMSG8lbEwNZZjGU0pD8JZfXiXtes27rNXvLiqNeh5HEU7gFKrgwRU04Baa0AIGY3iGV3hzlPPivDsfi9aCk88cwx84nz9/Q43W</latexit>

x(t)

(a) A continuous-time signal x(t)
with support [ − T, T ] is optimally
decomposed around t(0)0 .
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<latexit sha1_base64="/GHu2s3NyaBe4xUdIsVgLWV3CKU=">AAACEXicbVDLSgMxFM3UV62vUZdugkWYbspMEXVZEMFlBfuAzjhk0rQNzTxIMmIJ8wtu/BU3LhRx686df2OmnYW2HggczrmH3HuChFEhbfvbKK2srq1vlDcrW9s7u3vm/kFHxCnHpI1jFvNegARhNCJtSSUjvYQTFAaMdIPJZe537wkXNI5u5TQhXohGER1SjKSWfNNyY23nafVwpyynlvnKVW6I5Bgjpq4yNyNZZsmab1btuj0DXCZOQaqgQMs3v9xBjNOQRBIzJETfsRPpKcQlxYxkFTcVJEF4gkakr2mEQiI8NbsogydaGcBhzPWLJJypvxMKhUJMw0BP5quKRS8X//P6qRxeeIpGSSpJhOcfDVMGZQzzeuCAcoIlm2qCMKd6V4jHiCMsdYkVXYKzePIy6TTqzlm9cXNabTaKOsrgCBwDCzjgHDTBNWiBNsDgETyDV/BmPBkvxrvxMR8tGUXmEPyB8fkDRb6d3g==</latexit>
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{E}e(t)

<latexit sha1_base64="j2+yMByNQHnNULBVWM2c2ZnFYxE=">AAACEXicbVDLSsNAFJ3UV62vqEs3wSKkm5IUUZcFEVxWsA9oYphMp+3QSSbMTMQy5Bfc+CtuXCji1p07/8ZJm4W2Hhg4nHMPc+8JE0qEdJxvo7Syura+Ud6sbG3v7O6Z+wcdwVKOcBsxyngvhAJTEuO2JJLiXsIxjEKKu+HkMve795gLwuJbOU2wH8FRTIYEQamlwLQ9pu08rR7ulO3WskB5yougHCNI1VXmZSzLbFkLzKpTd2awlolbkCoo0ArML2/AUBrhWCIKhei7TiJ9BbkkiOKs4qUCJxBN4Aj3NY1hhIWvZhdl1olWBtaQcf1iac3U3wkFIyGmUagn81XFopeL/3n9VA4vfEXiJJU4RvOPhim1JLPyeqwB4RhJOtUEIk70rhYaQw6R1CVWdAnu4snLpNOou2f1xs1ptdko6iiDI3AMbOCCc9AE16AF2gCBR/AMXsGb8WS8GO/Gx3y0ZBSZQ/AHxucPVRid6A==</latexit>
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{E}o(t)

<latexit sha1_base64="HWXsT4kDgx8f0SxoILbwaXmuVBU=">AAACBnicbVDLSsNAFJ34rPUVdSlCsAjtpiRF1GVBBJcV7AOaGCbTSTt08mDmRiwhKzf+ihsXirj1G9z5N07aLLT1wIXDOfdy7z1ezJkE0/zWlpZXVtfWSxvlza3tnV19b78jo0QQ2iYRj0TPw5JyFtI2MOC0FwuKA4/Trje+zP3uPRWSReEtTGLqBHgYMp8RDEpy9aOHu7Rq1TI3tVM7wDAimKdXmZ1BVoWaq1fMujmFsUisglRQgZarf9mDiCQBDYFwLGXfMmNwUiyAEU6zsp1IGmMyxkPaVzTEAZVOOn0jM06UMjD8SKgKwZiqvydSHEg5CTzVmV8q571c/M/rJ+BfOCkL4wRoSGaL/IQbEBl5JsaACUqATxTBRDB1q0FGWGACKrmyCsGaf3mRdBp166zeuDmtNBtFHCV0iI5RFVnoHDXRNWqhNiLoET2jV/SmPWkv2rv2MWtd0oqZA/QH2ucP/geYxw==</latexit>

x
(1)
{E}t(t)

<latexit sha1_base64="ire4du7xjS+jvE0XrO2xbI29qi0=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK0m5IUUZcFEVxWsA9oYphMJ+3QyYOZiViGbNz4K25cKOLWf3Dn3zhps9DWAxcO59zLvff4CaNCWta3sbS8srq2Xtoob25t7+yae/sdEacckzaOWcx7PhKE0Yi0JZWM9BJOUOgz0vXHl7nfvSdc0Di6lZOEuCEaRjSgGEkteebRw52q2rXMU45yQiRHGDF1lTlZVpU1z6xYdWsKuEjsglRAgZZnfjmDGKchiSRmSIi+bSXSVYhLihnJyk4qSILwGA1JX9MIhUS4avpFBk+0MoBBzHVFEk7V3xMKhUJMQl935oeKeS8X//P6qQwuXEWjJJUkwrNFQcqgjGEeCRxQTrBkE00Q5lTfCvEIcYSlDq6sQ7DnX14knUbdPqs3bk4rzUYRRwkcgmNQBTY4B01wDVqgDTB4BM/gFbwZT8aL8W58zFqXjGLmAPyB8fkDHeGYSQ==</latexit>

x
(1)
{E}(t)

(b) The first-level node x(1){E}(t) will
decompose further around its own
optimal symmetry point, t(1)0 {E}.
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<latexit sha1_base64="clacQkvDuMUVk1diO6G2rwuXlbE=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK0m5IUUZcFN+6sYB/QxDCZTtqhkwczE7EM2bjxV9y4UMSt/+DOv3HSZqGtBy4czrmXe+/xE0aFtKxvY2l5ZXVtvbRR3tza3tk19/Y7Ik45Jm0cs5j3fCQIoxFpSyoZ6SWcoNBnpOuPL3O/e0+4oHF0KycJcUM0jGhAMZJa8syjhztVtWuZpxzlhEiOMGLqOnOyrCprnlmx6tYUcJHYBamAAi3P/HIGMU5DEknMkBB920qkqxCXFDOSlZ1UkAThMRqSvqYRColw1fSLDJ5oZQCDmOuKJJyqvycUCoWYhL7uzA8V814u/uf1UxlcuIpGSSpJhGeLgpRBGcM8EjignGDJJpogzKm+FeIR4ghLHVxZh2DPv7xIOo26fVZv3JxWmo0ijhI4BMegCmxwDprgCrRAG2DwCJ7BK3gznowX4934mLUuGcXMAfgD4/MHLU+YUw==</latexit>

x
(1)
{O}(t)

<latexit sha1_base64="J+xywQl2sb0LCE/eYMIIAfVBLXo=">AAACBnicbVDLSsNAFJ34rPUVdSlCsAjtpiRF1GXBjTsr2Ac0MUymk3bo5MHMjVhCVm78FTcuFHHrN7jzb5y0WWjrgQuHc+7l3nu8mDMJpvmtLS2vrK6tlzbKm1vbO7v63n5HRokgtE0iHomehyXlLKRtYMBpLxYUBx6nXW98mfvdeyoki8JbmMTUCfAwZD4jGJTk6kcPd2nVqmVuaqd2gGFEME+vMzuDrAo1V6+YdXMKY5FYBamgAi1X/7IHEUkCGgLhWMq+ZcbgpFgAI5xmZTuRNMZkjIe0r2iIAyqddPpGZpwoZWD4kVAVgjFVf0+kOJByEniqM79Uznu5+J/XT8C/cFIWxgnQkMwW+Qk3IDLyTIwBE5QAnyiCiWDqVoOMsMAEVHJlFYI1//Ii6TTq1lm9cXNaaTaKOEroEB2jKrLQOWqiK9RCbUTQI3pGr+hNe9JetHftY9a6pBUzB+gPtM8fDY6Y0Q==</latexit>
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<latexit sha1_base64="TkGD9TiFVY7vsIjUzdIIHcDhxg4=">AAACEXicbVC7TsMwFHXKq5RXgJElokJKlyqpEDBWYmGjSPQhNSFyXLe16sSR7SAqK7/Awq+wMIAQKxsbf4PTZoCWI1k6Ouce+d4TJpQI6TjfRmlldW19o7xZ2dre2d0z9w86gqUc4TZilPFeCAWmJMZtSSTFvYRjGIUUd8PJZe537zEXhMW3cppgP4KjmAwJglJLgWl7TNt5Wj3cKdutZYHylBdBOUaQquvMy1iW2bIWmFWn7sxgLRO3IFVQoBWYX96AoTTCsUQUCtF3nUT6CnJJEMVZxUsFTiCawBHuaxrDCAtfzS7KrBOtDKwh4/rF0pqpvxMKRkJMo1BP5quKRS8X//P6qRxe+IrESSpxjOYfDVNqSWbl9VgDwjGSdKoJRJzoXS00hhwiqUus6BLcxZOXSadRd8/qjZvTarNR1FEGR+AY2MAF56AJrkALtAECj+AZvII348l4Md6Nj/loySgyh+APjM8fZJqd8g==</latexit>

x
(1)
{O}o(t)

<latexit sha1_base64="41GwZn4SMVCNOil9LGD6F3u6blg=">AAACEXicbVC7TsMwFHXKq5RXgJHFokJKlyqpEDBWYmGjSPQhNSFyXLe16jxkO4jKyi+w8CssDCDEysbG3+C0GaDlSJaOzrlHvvcECaNC2va3UVpZXVvfKG9WtrZ3dvfM/YOOiFOOSRvHLOa9AAnCaETakkpGegknKAwY6QaTy9zv3hMuaBzdymlCvBCNIjqkGEkt+ablxtrO0+rhTllOLfOVq9wQyTFGTF1nbkayzJI136zadXsGuEycglRBgZZvfrmDGKchiSRmSIi+YyfSU4hLihnJKm4qSILwBI1IX9MIhUR4anZRBk+0MoDDmOsXSThTfycUCoWYhoGezFcVi14u/uf1Uzm88BSNklSSCM8/GqYMyhjm9cAB5QRLNtUEYU71rhCPEUdY6hIrugRn8eRl0mnUnbN64+a02mwUdZTBETgGFnDAOWiCK9ACbYDBI3gGr+DNeDJejHfjYz5aMorMIfgD4/MHVUCd6A==</latexit>
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(c) The first-level node x(1){O}(t) will
decompose further around its own
optimal symmetry point, t(1)0 {O}.
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<latexit sha1_base64="kNDdYPTdxTPnMWiBG6GF/VvqGEc=">AAACEXicbVC7TsMwFHXKq5RXgJElokJKlyqpEDBWYmEsUl9SUyLHdVqrjhPZDqKy8gss/AoLAwixsrHxNzhtBmg5kqWjc+6R7z1BQomQjvNtlNbWNza3ytuVnd29/QPz8Kgr4pQj3EExjXk/gAJTwnBHEklxP+EYRgHFvWB6nfu9e8wFiVlbzhI8jOCYkZAgKLXkm7YXaztPq4c7Zbu1zFee8iIoJwhS1c68DGeZLWu+WXXqzhzWKnELUgUFWr755Y1ilEaYSUShEAPXSeRQQS4JojireKnACURTOMYDTRmMsBiq+UWZdaaVkRXGXD8mrbn6O6FgJMQsCvRkvqpY9nLxP2+QyvBqqAhLUokZWnwUptSSsZXXY40Ix0jSmSYQcaJ3tdAEcoikLrGiS3CXT14l3Ubdvag3bs+rzUZRRxmcgFNgAxdcgia4AS3QAQg8gmfwCt6MJ+PFeDc+FqMlo8gcgz8wPn8AXQGd7Q==</latexit>
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<latexit sha1_base64="qtCIjJ4wS4+U59mB5xtJSaZUH7M=">AAACEXicbVC7TsMwFHXKq5RXgJElokJKlyqpEDBWYmEsUl9SUyLHdVqrThzZDqKy8gss/AoLAwixsrHxNzhtBmg5kqWjc+6R7z1BQomQjvNtlNbWNza3ytuVnd29/QPz8KgrWMoR7iBGGe8HUGBKYtyRRFLcTziGUUBxL5he537vHnNBWNyWswQPIziOSUgQlFryTdtj2s7T6uFO2W4t85WnvAjKCYJUtTMvY1lmy5pvVp26M4e1StyCVEGBlm9+eSOG0gjHElEoxMB1EjlUkEuCKM4qXipwAtEUjvFA0xhGWAzV/KLMOtPKyAoZ1y+W1lz9nVAwEmIWBXoyX1Use7n4nzdIZXg1VCROUoljtPgoTKklmZXXY40Ix0jSmSYQcaJ3tdAEcoikLrGiS3CXT14l3Ubdvag3bs+rzUZRRxmcgFNgAxdcgia4AS3QAQg8gmfwCt6MJ+PFeDc+FqMlo8gcgz8wPn8AbFud9w==</latexit>

x
(1)
{T }o(t)

<latexit sha1_base64="guFV/QQxdnha9EQoENTJF62bqes=">AAACBnicbVDLSsNAFJ34rPUVdSlCsAjtpiRF1GXBjcsKfUETw2Q6aYdOHszciCVk5cZfceNCEbd+gzv/xkmbhbYeuHA4517uvceLOZNgmt/ayura+sZmaau8vbO7t68fHHZllAhCOyTikeh7WFLOQtoBBpz2Y0Fx4HHa8ybXud+7p0KyKGzDNKZOgEch8xnBoCRXP3m4S6tWLXNTO7UDDGOCedrO7AyyKtRcvWLWzRmMZWIVpIIKtFz9yx5GJAloCIRjKQeWGYOTYgGMcJqV7UTSGJMJHtGBoiEOqHTS2RuZcaaUoeFHQlUIxkz9PZHiQMpp4KnO/FK56OXif94gAf/KSVkYJ0BDMl/kJ9yAyMgzMYZMUAJ8qggmgqlbDTLGAhNQyZVVCNbiy8uk26hbF/XG7Xml2SjiKKFjdIqqyEKXqIluUAt1EEGP6Bm9ojftSXvR3rWPeeuKVswcoT/QPn8AFUqY1g==</latexit>
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<latexit sha1_base64="7SDDIfVh/axrvMqd4rWojWCXPh4=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK0m5IUUZcFNy4r9AVNDJPppB06mYSZiVhCNm78FTcuFHHrP7jzb5y0WWjrgQuHc+7l3nv8mFGpLOvbWFldW9/YLG2Vt3d29/bNg8OujBKBSQdHLBJ9H0nCKCcdRRUj/VgQFPqM9PzJde737omQNOJtNY2JG6IRpwHFSGnJM08e7tKqXcu81EmdEKkxRixtZ06WVVXNMytW3ZoBLhO7IBVQoOWZX84wwklIuMIMSTmwrVi5KRKKYkayspNIEiM8QSMy0JSjkEg3nX2RwTOtDGEQCV1cwZn6eyJFoZTT0Ned+aFy0cvF/7xBooIrN6U8ThTheL4oSBhUEcwjgUMqCFZsqgnCgupbIR4jgbDSwZV1CPbiy8uk26jbF/XG7Xml2SjiKIFjcAqqwAaXoAluQAt0AAaP4Bm8gjfjyXgx3o2PeeuKUcwcgT8wPn8ANQaYWA==</latexit>
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<latexit sha1_base64="waSJu2QWDd3E9ewfgjbwzuf4snE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xjw4jFiXpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBEwsaiqpuuruCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZn77CZXmsWyYSYJ+RIeSh5xRY6XHRv+qXyq7FXcOskq8nJQhR71f+uoNYpZGKA0TVOuu5ybGz6gynAmcFnupxoSyMR1i11JJI9R+Nj91Ss6tMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2hC85ZdXSata8a4r1YfLcq2ax1GAUziDC/DgBmpwD3VoAoMhPMMrvDnCeXHenY9F65qTz5zAHzifP9hTjXc=</latexit>
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<latexit sha1_base64="lOftomd3ro8Zb5tZADF8azljCV8=">AAACAXicbVBNS8NAEJ34WetX1IvgJViEeilJEfVY8OKxQr+giWGz3bZLN5uwuxFKiBf/ihcPinj1X3jz37hpc9DWBwOP92aYmRfEjEpl29/Gyura+sZmaau8vbO7t28eHHZklAhM2jhikegFSBJGOWkrqhjpxYKgMGCkG0xucr/7QISkEW+paUy8EI04HVKMlJZ881j59n1adc4zN3VDpMYYsbSVuZlvVuyaPYO1TJyCVKBA0ze/3EGEk5BwhRmSsu/YsfJSJBTFjGRlN5EkRniCRqSvKUchkV46+yCzzrQysIaR0MWVNVN/T6QolHIaBrozP1Iuern4n9dP1PDaSymPE0U4ni8aJsxSkZXHYQ2oIFixqSYIC6pvtfAYCYSVDq2sQ3AWX14mnXrNuazV7y4qjXoRRwlO4BSq4MAVNOAWmtAGDI/wDK/wZjwZL8a78TFvXTGKmSP4A+PzBxODlp8=</latexit>
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(d) The first-level node x(1){T }(t) will
decompose further around its own
optimal symmetry point, t(1)0 {T }.

Figure 4: First-level ternary decomposition of a sample signal
x(t). Temporal extents Ti are reported without further explana-
tion of their inter-relationships for simplicity. The even node
x
(1)
{E}(t) of Fig. 4b is the causal part of the blue signal of

Fig. 4a in the [t
(0)
0 , T + 2t

(0)
0 ] interval; the odd node x(1){O}(t)

of Fig. 4c is the anticausal part of the red signal of Fig. 4a in
the [−T, t(0)0 ] interval; the tail node x(1){T }(t) of Fig. 4d is the

magenta signal of Fig. 4a in the [T + 2t
(0)
0 , T ] interval.

refer to these latter signals as x(1){E}(t), x
(1)
{O}(t) and x(1){T }(t),

respectively. They constitute the first-level nodes of the ternary
decomposition tree. In general, the signal component found at
a node in the l level of the decomposition tree can be identified
as x(l){S1,...,Sl}(t), where each Si represents a label taking either
the value O, E , or T to relate to an odd, even, or tail portion
of the decomposition. By convention, when a node identifies
the even component its causal part is preserved, whereas the
anticausal part is retained for odd components. The sequence
{S1, . . . ,Sl} uniquely identifies the position of the node in the
ternary tree. We keep the redundant (l) apex to immediately
determine the tree depth for that node and avoid counting the
number of {Si} labels. Since the symbols {Si} are written
in increasing level-order, when expressing in natural language
what a particular node corresponds to, these symbols should
be read in reverse order. So for example x(3){O,O,E}(t) is the
signal found at the third-level node corresponding to the even
part of the odd part of the odd part of the original signal, with
respect to each preceding level optimal symmetry location.

As we did with the tree nodes, we introduce a suitable
notation for the optimal symmetry points for each node. Let
t
(0)
0 be the optimal symmetry point of the root signal x(t).

For each successive level l, we define t(l)0 {S1, . . . ,Sl} as the
optimal symmetry point of the corresponding decomposition
tree node, adopting the same convention as the one used to
identify the node signals. As such, t(2)0 {E , T } is the optimal
symmetry point of the second-level node associated with the
tail signal of the causal even component of the original signal.
To compute it, after a first decomposition step with t

(0)
0 , the

causal even node x(1){E}(t) is extracted. The next optimal sym-

metry point t(1)0 {E} is computed on it and the decomposition
is performed again. Finally, t(2)0 {E , T } corresponds to the
optimal symmetry location of the tail signal, x(2){E,T }(t). Fig. 4
provides an example of a 2-level optimal decomposition for
a sample signal (level 1 and level 2), defining nine signal
components, three associated to each of the three level-1
decomposition components.

It must be noted that the decomposition tree is actually
only approximately ternary. It is indeed possible that one or
two children nodes are zero-energy signals. This can happen
when: a) the tail may not be present, in the case that t0 for
the parent node falls exactly at the middle of its support, or
b) the parent node is perfectly symmetric or antisymmetric
(leading to a null odd or null even child node). When this
occurs, there is no need to extend the decomposition. In this
particular context, for tree coding purposes, an ad hoc symbol
may be used instead of t0 to indicate that the decomposition
is terminated for that node. This fact has no implication at this
stage, but it will be reconsidered later on in Sec. VI.

To stop the decomposition process different criteria may
be adopted. For example, the decomposition tree could be
interrupted at a certain level S. In this case, the Mirror
Transform contains at most 3S components (since it may
contain zero-energy nodes), namely x

(S)
{S1,...,SS}(t), for all

labels Si, i = 1, . . . , S combinations.
An alternative criterion to stop the decomposition of a

given node if its energy falls below a certain fraction of
the original signal energy. Another alternative is disregarding
nodes corresponding to low enough energy components hav-
ing too limited temporal support. Generally speaking when
the decomposition process is stopped, the associated node
always determines a leaf node. The Mirror Transform is
represented by the concatenation of the signals at the leaves,
at their designated level, scanned depth-first according to a
predefined label order, for example, even, odd, and tail. The
overall leaf signal concatenation, which exhibits the same
total support as x(t), is referred to as F. For example,
stopping the decomposition tree at the second level yields
F = {x(2){E,E}(t), x

(2)
{E,O}(t), x

(2)
{E,T }(t), x

(2)
{O,E}(t), x

(2)
{O,O}(t),

x
(2)
{O,T }(t), x

(2)
{T ,E}(t), x

(2)
{T ,O}(t), x

(2)
{T ,T }(t)}.

The signals in F are not enough to represent x(t) because
the mirroring points are also needed to invert the transfor-
mation. In fact, given the leaf signals in F, the reconstruc-
tion process iterates the inversion of a single decomposition
step. In detail, the reconstruction of a parent node at a
given level consists in first mirroring their even and odd
(causal/anticausal) components around their t0 (retaining and
changing the sign respectively), summing them up, and then
concatenating the result to the tail component. Depending on
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the value of t0, the tail signal should be appended before or
after, but this is just an implementation detail. As an example,
a level 3 decomposition would reconstruct the level 2 signal
x
(2)
{O,E}(t) from x

(3)
{O,E,E}(t), x

(3)
{O,E,O}(t), and x

(3)
{O,E,T }(t).

Once all level 2 parent nodes are reconstructed, the process
is repeated until the root is reached. If t(l)0 represent the op-
timal temporal locations extracted during the maximal energy
decoupling process, we call them the tree information G. In
the previous example of Fig. 4, for a tree stopped at level 2,
G = {t(0)0 , t

(1)
0 {E}, t

(1)
0 {O}, t

(1)
0 {T }}. Thus, the MT of x(t)

is fully described by the {F,G} pair.

IV. MIRROR TRANSFORM PROPERTIES

Here we further expound the significance of the Mirror
Transform by enumerating some of its properties. They are
recapped in Table I. Two additional empirical properties,
sparsity and one-wayness, are presented later in Sec. VI.

A. Basic signal transformations

First, we analyze what happens to the MT when some basic
signal manipulations are applied to the root signal x(t).

Since the optimal even/odd decomposition that is at the core
of the transform tracks the mirroring point where the even and
odd component energies are maximally decoupled, it clearly
derives that the MT of the shifted signal x(t − t1), ∀t1, is
essentially the same: F is unchanged, and the shifting term t1
is applied to each mirroring instant of G, obtaining Gt1 .

Next, multiplying x(t) with a real constant K has no effect
on G, since the energy distribution of Kx(t) among its even
and odd parts remains unchanged. Of course, the total energy
is now K2E, so the same scaling factor K affects each node
of the decomposition tree, so the leaves in F become KF.

Finally, the effect of time-scaling is still quite simple. The
signal x(at),∀a 6= 0, represents a time axis expansion or
contraction, plus time-reversal if a < 0, of x(t). The shape
of the signal, however, still has the same parity properties,
and therefore the auto-convolution only experiences the same
time-scaling by a. Thus, the optimal mirroring point at the
root of the tree is t(0)0 /a. Then, this fact cascades along the
decomposition tree, obtaining G/a: in essence, the distance
between the mirroring point of the children with respect to that
of the parent is scaled by a compared to the original tree. For
example, if for a given x(t) we have t(0)0 = 1 and t(1)0 {E} = 2,
for x(2t) we would have t(0)0 = 1/2 and t

(1)
0 {E} = 1. The

leaves of F are time-scaled by a, say Fa. Of course, the energy
is also scaled by a, as reflected by the shrinking support.

B. Nodes orthogonality and energy preservation

In Sec. II-B, we cited the fact that the generalized even-
odd decomposition produces the even and odd signals xe(t)
and xo(t), that are orthogonal when using the scalar product
defined in L2(R). By multiplying the two signals by the
indicator function to only take the causal and anticausal part,
even without detaching the tail signal, orthogonal components
are still obtained, because they have disjoint supports. In
the end, this decomposition step determines an orthogonal

projection on a subspace of the original signal. In such a
subspace, the even and odd parts are orthogonal to each other,
and they can be considered as new, “independent” signals. The
evenness and oddness nature of the considered signals enable
at reconstruction to revert the projection from their halved
causal or anticausal parts.

Moving on to the Mirror Transform of Sec. III-B, the
proposed framework also constructs a third signal, the tail
signal xt(t). Considering its disjoint support with respect to
both the truncated components of xe(t) and xo(t), it turns
out that it is orthogonal to both of them. Therefore, our
globally optimal decomposition separates the parent node into
three children nodes that are orthogonal to each other. In
Fig. 5, there is an approximate depiction of the effects of the
decomposition process adopting a vector space representation
(the approximate nature of the representation comes from the
inherent limitation conveyed by the used 3D plot). In the end,
the decomposition constructs three already orthogonal vectors,
and it is important to highlight that the resulting children
nodes x(1){E}(t), x

(1)
{O}(t), and x(1){T }(t) remain orthogonal, after

taking the causal/anticausal parts through the application of
the indicator function, and separating the tail.

Given the orthogonality property of the even/odd signals,
their energies can be summed as in Eq. (6). However, as a
consequence of keeping just the causal and anticausal parts to
form x

(1)
{E}(t) and x(1){O}(t), the sum of the energy of the first-

level children nodes is not E. To preserve the energy of the
original signal into its resulting children nodes, it is sufficient
to introduce a scale factor

√
2, to compensate for the discarded

mirrored parts of the even and odd children. Of course, this
can be done for any tree level, which leads to having the same
energy E when summing the energy of all nodes in each tree
level. It should be observed that this expedient does not alter
in any way the tree information G, since as we stated the tree
information is invariant to amplitude scaling. However, this
caveat is important for the sparsity experimental evaluation
which will be reported later on in Sec. VI.

C. Infinitely precise reconstruction of any L2(R) function
from its coded MT-decomposition

An interesting consequence of the preservation of the L2-
norm in the construction of a fully invertible representation is
the ability of the MT to approximate any finite-energy signal
x(t) using a peculiar algorithm. Let us suppose we know its
partial MT decomposition (i.e., not computed ad infinitum), so
{F,G} defines the optimal decomposition tree up to a certain
precision level. Consider an arbitrary truncation of such a
tree (e.g., by keeping only nodes with energy larger than a
threshold), and the nodes associated with the truncated tree.
We may keep the tree deep enough, to prevent introducing
errors by removing too many low energy nodes from the start.

We may now replace the node waveforms by approximating
pairs of even or odd functions (as a simple example, a
rectangular impulse and the difference between 2 rectangular
impulses, respectively), so as to be able to regenerate an
approximation of x(t), which crucially lies at a known distance
from it. This algorithm can be optimally driven by incremen-
tally adding nodes in a ranked fashion so that the rounded
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x
(1)
{T }(t)

x(c)
e (t)

x(c)
o (t)

xo(t)

x(ac)
o (t)

x(ac)
e (t)

xe(t)

x(t)

x

y

z

x
(1)
{O}(t)

x
(1)
{O}e(t)

x
(1)
{O}o(t)

x
(1)
{E}(t)

x
(1)
{E}e(t)

x
(1)
{E}o(t)

xt(t)

x
(1)
{T }o(t)

x
(1)
{T }e(t)

(c)

Figure 5: Even-odd ternary iterative decomposition presented
on a 3D plot. The original signal x(t) (black) is decomposed
into three orthogonal vectors, the truncated even signal xe(t)
(blue), the truncated odd signal xo(t) (red), and the tail signal
xt(t) (gray). We have decided to align the x-axis and the
z-axis along the direction of xe(t) and xo(t), respectively.
They are in turn split into their causal and anticausal parts
(we omitted this operation for the tail signal), which are again
orthogonal to each other. They represent the first-level nodes
of the decomposition tree, respectively x(1){E}(t), x

(1)
{O}(t), and

x
(1)
{T }(t). In the ovals, we only sketched the next iteration of

the decomposition applied to the children nodes, without tail
separation. Recall that for each decomposition a vector is split
by selecting the optimal t0 into the 2 orthogonal components
that have the associated maximal and minimal norms.

node waveforms introduce the least approximation error with
respect to their individual representation. The distance at
which the reconstructed signal lies simply corresponds to
the sum of the energy loss of the errors introduced in the
approximation of the nodes1.

Overall, since the MT leads to a very compact representa-
tion, a simple generative algorithm is constructed, obtained by
the inverse MT reconstruction of a limited set of approximated
nodes of F and the tree information G.

D. Single branch trees

When a node is a perfectly even(/odd) signal, the optimal
symmetry point is the midpoint, so there is no tail child node
and the odd(/even) child node is just a zero-energy signal.
Thus, the subtree associated to the latter stops, and so there is
a single child spawning from the symmetric parent node. The
resulting child may or, more likely, may not be symmetric: in
the latter case, it spawns a standard ternary subtree.

Consider now the decomposition of the constant signal
1(0, T ), which is illustrated in Fig. 6a until the fourth level.
Since it is an even signal, the first level of the decomposition

1Alternative strategies may be considered so as to limit the size of the tree
decomposition, for example, at any step, decomposing the node that introduces
the largest approximation error in its waveform with respect to all other nodes.
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(a) Constant decomposition.
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(b) Decomposition of 24 periods of
p(t). Level 4 converges to 4p(t).

Figure 6: Exemplification of the single branch tree property.
Just the first 4 levels are shown. Each level is represented by
concatenating the node signals at that level. The fourth level
in Fig. 6b converges to p(t) in Fig. 6a except for a constant.

consists in the single even node, which of course is again a
constant, with half the support of the original signal. In Fig. 6a,
each level is represented by concatenating the node signals at
that level, indeed the first level is formed by the constant (even
node) and the zero signal (odd node). This decomposition goes
on ad infinitum, forming a single branch tree with each level
having a single node with a constant signal and support shrunk
by half.

Employing the energy normalization discussed in Sec. IV-B,
to keep the energy contained in each level equal to that of
the root node (in this case T ), the magnitude of the constant
signal in the l-th level node is 2

l
2 . Note that the support of

the node as the decomposition level goes to infinity tends to
0, but the limit signal is in fact not a Dirac delta (that would
have occurred if we imposed constant area instead of constant
energy going from one level to the next).

This example can be generalized as follows. Divide the
initial support into 2k intervals of equal length, say Ij , j =
1, . . . , 2k. Then build the signal x(t) =

∑
j Hij(2

k) · 1(Ij),
where H(2k) is the Hadamard matrix and Hi(2

k) is its i-th
row. In essence, instead of just taking the constant signal (the
first row of the matrix), the signal x(t) is an alternating square
wave of either even or odd symmetry, such that bisecting it
(up to k times) the resulting signal is still either even or odd.
In this case the resulting decomposition tree is still a single
branch tree, but instead of the even node always surviving, a
combination of even and odd nodes do for the first k levels,
depending on the selected row of the Hadamard matrix. Then,
the surviving node becomes an even constant signal and the
previous case applies (see an example in Fig. 6b, where the
last row of the Hadamard matrix is considered).

There are other instances where single branch subtrees
emerge. Take a signal p(t) with support [0, T ], which is
either perfectly even or odd (t0 = T/2). Now consider
x(t) =

∑2N−1
n=0 p(t − nT ), that is, 2N repetitions of p(t),

with support [0, 2NT ]. This is of course a perfectly even
signal with midpoint in t0 = 2N−1T , so an even single
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child is built, consisting in 2N−1 repetitions of p(t), which
is again even and is decomposed into a single even child
with 2N−2 repetitions of p(t). Such single branch tree goes
on for the first log2(N) levels of the decomposition tree. In
l = log2(N), the even child is in fact p(t), and from this
point on the decomposition follows that of p(t): a last single
branch decomposition, usually followed by a ternary subtree.
Therefore, by repeating p(t) 2N times, we have added a single
branch tree log2(N) levels deep on top of the original MT of
p(t) (see again Fig. 6b). Note that single branches do not
occur when an odd number of repetitions of p(t) is instead
considered, unless p(t) is already symmetric.

E. Uniqueness

A signal x(t) is uniquely represented by the Mirror Trans-
form {F,G}, the leaves and the tree information, assuming that
the decomposition has stopped according to some criterion.
The transform {F,G} is generated by x(t) through a deter-
ministic process, and vice-versa, x(t) is uniquely reconstructed
starting from the leaves and the tree information. We ascertain
in what follows if any of the two components is enough to infer
x(t). The answer is no.

First, the leaves F alone are not sufficient to represent x(t):
an immediate proof is the decomposition tree nodes which are
unchanged when the root is shifted, as stated in Sec. IV-A.

Instead, it is more subtle that the tree G does not uniquely
identify x(t). Let us consider a node signal anywhere in the
tree, say, z(t), with energy EZ , and its associated optimal
mirroring point t0, found as usual by applying the procedure
described in Sec. III-B. The decomposition produces two
children nodes ze(t) and zo(t), with respective energy EE

and EO, satisfying EZ = EE + EO: we do not bother
with separating the tail because we want t0 to remain fixed,
therefore the tail plays no part in this discussion. It can be
assumed without loss of generality that t0 corresponds to the
maximum of the even part energy. Recall that t0 is found by
computing Ee(t0), the even part energy varying the mirroring
point, and then taking the maximum, so the maximum of
Ee(tf ) is EE at the t0 time instant. If ze(t) is multiplied by a
factor K > 1, the position of the maximum of Ee(tf ) is not
changed, since the entire function is simply multiplied by K2,
and EE is scaled by the same factor. It is easy to show that, to
keep the energy of the parent z(t) equal to EZ , the odd part
zo(t) must be multiplied by C with C2EO = EZ −K2EE .
As C < 1, the maximum of Eo(tf ) is still smaller than the
maximum of Ee(tf ), which is still located at t0. Therefore,
the signal reconstructed by Kze(t) and Czo(t) has the same
energy as z(t) and admits the same optimal mirroring point t0.
Furthermore, the entire successions of the optimal mirroring
points, generated starting from the nodes Kze(t) and Czo(t),
are not altered with respect to the ones associated with ze(t)
and zo(t), as remarked in Sec. IV-A. This shows that, by
applying this procedure to any node, it is possible to construct
infinite signals that all have the same tree G information. Of
course, the leaves are different because they have been scaled
in the process, so F is needed to uniquely reconstruct the root
signal.

Table I: MT Properties.

Homogeneity Kx(t)
MT−−−→ {KF,G}

Shift invariance x(t− t1)
MT−−−→ {F,Gt1}

Time scaling x(at)
MT−−−→ {Fa,G/a}

Orthogonality x
(l)
{...,E}(t) ⊥ x

(l)
{...,O}(t) ⊥ x

(l)
{...,T }(t)

Constant energy Energy of x(t) is E =⇒ For each level l,
the sum of energies of x(l){S1,...,Sl}

(t) is E

Controlled distortion Distortion δ in x(l){S1,...,Sl}
(t) =⇒

distortion δ in reconstructed x(t)

Single branch trees Infinite: (pseudo-)constant nodes
Finite: 2n repetitions of a symmetric wave

Uniqueness x(t)
MT←−→ {F,G}

V. THE DISCRETE MIRROR TRANSFORM

The Mirror Transform can be cast in the discrete domain as
well. The formal definition of what we refer to as the Discrete
Mirror Transform (DMT) is given in Sec. V-A. Furthermore,
the Mirror Transform, both for continuous- and discrete-time
signals, can be easily extended in multidimensional spaces.
For the sake of brevity, only the case for 2D finite energy
sequences is discussed in Sec. V-B, as it leads well to the
possibility to perform experimental evaluation on real data.

A. DMT definition in 1D domain

Let us consider a discrete-time, finite-energy sequence
x[n] ∈ `2(Z). Assuming that the support of x[n] is 1, . . . , L
with L finite, Eq. (5) becomes:

xe[n;nf ]=
x[n]+x[2nf−n]

2
; xo[n;nf ]=

x(n)−x[2nf−n]
2

,

(13)
where x[n]=xe[n;nf ]+xo[n;nf ]. Searching for the optimal
symmetry point nf = n0 still consists in choosing the one
that lets either Ee or Eo be the global maximum. As a
note, always choosing nf as the sequence midpoint (namely,
applying the standard even/odd decomposition) in place of
the optimal symmetry point provides approximately balanced
decomposition trees strictly related to the Walsh-Hadamard
Transform (WHT) of the sequence [16], the only difference
being the order with which the transformed coefficients may
be output by the standard WHT (see [17] for more details).

In the discrete case, it is better to directly evaluate the
energy of the even sequence rather than its derivative, since the
discrete domain is not suited for differential operands. Then:

Ee(nf )=

+∞∑
n=−∞

|xe[n;nf ]|2=
+∞∑

n=−∞

∣∣∣∣x[n] + x[2nf − n]
2

∣∣∣∣2=
=

1

4

+∞∑
n=−∞

|x[n]|2+|x[2nf−n]|2+2Re{x[n]x∗[2nf−n]}=

=
1

2
E +

1

2

L∑
n=1

Re{x[n]x∗[2nf − n]}.

(14)
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Using the linear convolution for energy sequences yields:

Ee(nf ) =
1

2
E +Re{(x ∗ x∗)}[2nf ], (15)

so in the end:

2n0 = arg max
m

|Re{(x ∗ x∗)}[m]|. (16)

The optimal symmetry point n0, found through Eq. (16),
cannot be arbitrary, but it must either be an integer or a half-
integer position. For x[n], n = 1, . . . , L, n0 can then take
values in the 2L−1 cardinality set {1, 32 , 2, . . . , L−1, L−1

2 , L}.
In the integer case, by definition xe[n0;n0] = x[n0] whereas
xo[n0;n0] = 0, which is non informative.

Note that again the decomposition does not increase the
support needed for the original signal reconstruction, as it
was for the continuous-time case. In addition, Eq. (3) still
holds, provided the integration operator is substituted by the
summation one:

E =

L∑
n=−1

|x[n]|2 =
∑
n

|xe[n] + xo[n]|2 = (17)

=
∑
n

|xe[n]|2 +
∑
n

|xo[n]|2 = Ee + Eo,

where the summation limits for the even and odd sequences
may extend beyond [1, L], depending on n0. Again, we retain
the causal part of the even subsequence x(c)e [n], and the anti-
causal part of the odd subsequence x(ac)o [n], whose support is
one sample shorter with respect to x(c)e [n] for an integer valued
n0. These two subsequences define non-redundant informative
parts. The tail subsequence xt[n] can then be separated as
before, and it corresponds to the part of x[n] not involved
in any computation. Additional details on this single step
of the decomposition process in the discrete case, complete
with graphical depictions, can be found in the accompanying
documentation of the publicly available code [13].

The decomposition process then repeats the single decom-
position step in an iterative fashion. Given the discrete, finite
support nature of the signal domain, the iteration is bound
to stop when single-sample sequences are encountered, which
are thus necessarily decomposition tree leaves as they cannot
be further decomposed: a situation not found for continuous-
time signals. Therefore, decomposition trees for discrete-time,
finite support sequences are always finite. Of course, zero-
energy sequences in any node can still occur as it was for
continuous-time signals, so the corresponding subtree could
also be trimmed.

The notation introduced in Sec. III-B for continuous-time
decomposition trees can be used for discrete-time sequences,
allowing all the nodes to be specified by x

(l)
{S1,...,Sl}[n], as l

varies, with all the symbols sharing the meaning as for the
continuous-time case, in particular Si which is still either E ,
O, or T . Likewise, the optimal symmetry point of a given
node can be defined by n

(l)
0 {S1, . . . ,Sl}, as l varies. In the

end, the Discrete Mirror Transform (DMT) of x[n] is fully
described by the {F,G} pair, where F identifies the set of the
tree leaves and G the set of optimal symmetry locations.

Algorithm 1 1D DMT algorithm.

Require: Original sequence x[n], n = 1, . . . , L
Ensure: {F,G}

1: Level l = 0, find n(0)0 ⇐ Eq. (16)
2: Encode n(0)0 in G
3: Build children nodes:

x
(1)
{E}[n]

x
(1)
{O}[n]

a ⇐ Single step

x
(1)
{T }[n]

b

4: repeat
5: l = l + 1
6: for non-empty nodes at level l, x(l){S1,...,Sl}[n] do

7: L⇐ length
(
x
(l)
{S1,...,Sl}[n]

)
8: if L > 1 then
9: if Pruning condition c then

10: Encode symbol 0 in G
11: continue
12: end if
13: Find n(l)0 {S1, . . . ,Sl} ⇐ Eq. (16)
14: Encode n(l)0 {S1, . . . ,Sl} in G
15: Build children nodes:

x
(l+1)
{S1,...,Sl,E}[n]

x
(l+1)
{S1,...,Sl,O}[n]

a ⇐ Single step

x
(l+1)
{S1,...,Sl,T }[n]

b

16: else if L = 1 (this node is a leaf) then
17: Encode single-valued x(l){S1,...,Sl}[n] in F
18: end if
19: end for
20: until there are no nodes at level l with L > 1
a The odd child node may not exist if n0 is integer and L = 2.

In that case, only the even and tail leaves are created.
b The tail child node may not exist if n0 is the midpoint.
c This condition applies if tree pruning is employed. See

Sec. VI-A and Fig. 7c. Zero-energy nodes are always pruned.

Algorithm: The complete algorithm expressed as pseudo-
code is given in Alg. 1. Therein, the single step decomposition
that we have just described is referred to as “Single step”. This
operation outputs the three even, odd, and tail children nodes
(or sometimes only two of them, see footnotes a and b).

After finding the n0 for the input sequence (line 1), encod-
ing it in G (line 2), and completing the first decomposition step
(line 3), the decomposition process continues in ever deeper
levels until all the nodes in a given level are leaves (nodes with
length 1) which no longer require to be decomposed (line 20).
In fact, when the node is a leaf it is encoded in F and no
further decomposition takes place (lines 16-17). In a given
level l, not every combination {S1, . . . ,Sl} corresponds to a
tree node, since the tree could have stopped at a previous level
because a leaf was obtained (or a pruning condition applied,
see footnote c). For example, in Fig. 7, for l = 3 only 4
label combinations are non-empty nodes (and in this case, all
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of them correspond to leaves, so the decomposition does not
proceed to l = 4).

A non-leaf node, instead, undergoes the single step de-
composition process as before (lines 11-13), building children
nodes in the next level. As mentioned, when tree pruning is
employed (see Sec. VI-A), prior to the decomposition process
each non-leaf node is considered for pruning (line 9). If the
pruning condition is met (i.e., zero or negligible energy node),
the appropriate symbol 0 is encoded in the tree information G
(line 10) and the decomposition for this node stops.

Remarks: Using the ternary decomposition process on
discrete sequences may lead to the construction of a very
unbalanced tree. In fact, the decomposition generates three
sequences: the even and odd sequences support does not
differ by more than one sample, but the tail signal may be
much longer or much shorter. The total support remains that
of the parent node. Thus, when considering the complete
decomposition of a length L sequence, its L single-valued
leaves may be all over the tree levels, depending on the
particular n0 associated with each node.

The number of decomposition levels is minimized when-
ever symmetry points are found near the midpoints since
the maximum length of the children even/odd sequences is
limited by approximately half the one of the parent sequence
and the tail node in such case remains very short. On the
other hand, whenever symmetry points occur near the end
points of the original sequence, this generates very short
even/odd sequences and a very long tail, almost as long as the
parent sequence. If this latter case happens frequently in the
decomposition process, the number of decomposition levels is
bound to increase. In the extreme cases, if the global symmetry
is always found in the midpoint of any given node the number
of decomposition levels is dlog2 Le, while if it is always put
on the first or last sample the number of levels tends to L.

Nevertheless, there are always at most L − 1 values in G.
In fact, a length 2 sequence has a single n0 that generates
two leaves, stopping the decomposition. A length 3 sequence
can be decomposed either into three leaves or a leaf and a
length 2 sequence, thus it needs at most two n0. The preceding
statement can thus be inferred by induction.

The computational complexity of the decomposition pro-
cess, as expected, depends on the shape of the original
sequence. Assuming a real-valued input sequence of length
N power of 2, and assuming to employ radix-2 algorithms to
compute the convolution, a single step of the decomposition
involves N/4·log2(N) complex multiplications. Following the
just expounded considerations on the number of levels, in the
best case scenario, where the optimal symmetry point is always
in the midpoint, the overall complexity is O

(
N · (log2N)2

)
,

whereas in the worst case scenario, where the optimal sym-
metry point is always on the edge, the overall complexity is
O
(
N2 · log2N

)
.

Furthermore, the decomposition of a length N sequence
requires 2N additions and a flipping operation. Therefore,
O (N · log2N) additions, for the best case scenario, or
O
(
N2
)

additions, for the worst case scenario, are also needed.
The flipping operations are at most N − 1, depending on the
tree shape.

A further observation concerns the synthesis, or reconstruc-
tion, process of the DMT. We want to highlight that the
knowledge of the {F,G} pair is sufficient to reconstruct the
original signal. This may not appear clear at first glance, since
the position of the leaves, which is a necessary information
to reconstruct the original signal, is not directly present in G.
However, note that the position of the leaves can be extracted
from G by reading the optimal positions n0 in increasing level
order as these values allow to determine the sequence length
of the children nodes. The tree leaf values, i.e., the transform
coefficients in F, that are located all over the tree in different
levels, can be identified by those nodes with length 1, ordered
in the same fashion. The example that follows in the next
paragraph helps to clarify this point.

As a last remark on the reconstruction process, we note
that it has a computational complexity much lower than the
decomposition stage. To reconstruct a length N node, at most
2 mirroring operations (that is, creating a copy of the even
and odd children to build back the even and odd sequences)
and N additions, with no multiplications besides some sign
reversing, are needed. To reconstruct the perfectly balanced
tree, the number of required additions is N · log2N , whereas
for the perfectly unbalanced tree O

(
N2
)

additions are needed.
Example: As an instructive example, consider Fig. 7.

A length-11 sequence x[n], with support n = 1, 2, . . . , 11 is
decomposed in Fig. 7a. The optimal symmetry point of x[n] is
n
(0)
0 =3.5. Therefore, in the first level, the even child x(1){E}[n]

(left branch) is 1/2 · {42+34, 16+24, 0+4}, the odd child
x
(1)
{O}[n] (center branch) is 1/2 · {4−0, 24−16, 34−42} (recall

the we retain the anti-causal part of the odd sequence), and
the tail child x(1){T }[n] is 1/2 · {4, 4, 3, 3,−2}.

Regarding the second level, for x(1){E}[n], which is a length 3

sequence, n(1)0 {E}=1.5, so it is decomposed into three leaves:
x
(2)
{E,E}[n] is 1/2 · {20+38}, x(2){E,O}[n] is 1/2 · {38−20}, and

x
(2)
{E,T }[n] is 1/2 · {2}. For x(1){O}[n], which is also a length

3 sequence, n(1)0 {O} = 2.5, so it is decomposed into three
leaves as well: x(2){O,E}[n] is 1/2 · {−4+4}, x(2){O,O}[n] is 1/2 ·
{4−(−4)}, and x

(2)
{O,T }[n] is 1/2 · {2}. Then, n(1)0 {T }=2.5

for the length 5 x
(1)
{T }[n] generates the length 2 even child

x
(2)
{T ,E}[n] = 1/2 · {1.5+2, 1.5+2}, the length 2 odd child

x
(2)
{T ,O}[n]=1/2·{2−1.5, 2−1.5}, and the tail leaf x(2){T ,T }[n]=

1/2 · {−1}.
Finally, in the third level, only 4 leaves are present:

x
(3)
{T ,E,E}[n], x

(3)
{T ,E,O}[n], x

(3)
{T ,O,E}[n], and x

(3)
{T ,O,O}[n], re-

sulting from the decomposition of x(2){T ,E}[n] and x
(2)
{T ,O}[n],

with n
(2)
0 {T , E} and n

(2)
0 {T ,O} both equal to 1.5 (so the

leaves are the semi-sum and semi-difference of the parent node
values).

In the end, the DMT of x[n] is given by the {F,G} pair,
where F is the set of 11 leaves. Their positions in the tree
are not explicitly specified in F, but are encoded through
G = {3.5, 1.5, 2.5, 2.5, 1.5, 1.5}, which is the succession of
n0 obtained above.

Therefore, there is indeed no need to include the length of
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[38 | 20  2] [2  2 | 1.5  1.5  -1][2  4 | -4]

[1.75 | 1.75] [0.75 | 0.75]

[4  24  34 | 42  16  0  4  4  3  3  -2]

29 9 1 0 4 1 -0.5

1.75 0 0.75 0

n0 = 3.5

n0 = 1.5 n0 = 2.5 n0 = 2.5

n0 = 1.5 n0 = 1.5

(a) Decomposition tree of a length-11 sequence. The vertical bar
represents the position of the corresponding n0 (in this case, n0 is
by chance always haf-integer).

n0 = 1.5 n0 = 2.5

L = 3 L = 5L = 3

L = 1 L = 1 L = 1

n0 = 2.5

L = 1 L = 1 L = 1 L = 2 L = 2 L = 1

n0 = 1.5 n0 = 1.5

L = 1 L = 1L = 1 L = 1

n0 = 3.5

(b) The same tree, highlighting the relation between nodes length and
symmetry points.

n0 = 1.5

n0 = 3.5

0

L = 3 L = 5L = 3

L = 1 L = 1 L = 1

n0 = 2.5

L = 1 L = 1 L = 1

(c) Tree pruning example, in this case the first-level tail is removed.

Figure 7: An example of ternary tree for a sample length-11
sequence x[n]. In (a), the decomposition tree of an example
length 11 sequence is depicted. In (b), the optimal decompo-
sition points of G inside the black rectangles allow to infer
the children node lengths generated from a parent node, and
thus the transform coefficient positions (red circles). In (c),
the same ternary tree pruned after zeroing the coefficients
derived from the node representing x(1){T }[n]. The entire subtree
originated from that node can be removed (dashed lines), and
the associated n(1){O} is replaced with the symbol 0. The
cardinality of G is thus reduced by the resulting pruning.

the nodes in the tree information, as shown in Fig. 7b. Since
the first value of G is n(0)0 =3.5, as a consequence of how the
decomposition works and knowing L, the lengths of x(1){E}[n],

x
(1)
{O}[n], and x(1){T }[n] are deduced as 3, 3, and 5, respectively.

The next values in G are associated with the second level,
thus n

(1)
0 {E} = 1.5, n(1)0 {O} = 2.5, and n

(1)
0 {T } = 2.5.

All the children nodes descending from the even and odd
nodes are length-1 nodes, as well as the tail of the tail node:
these correspond to the first seven transform coefficients in F.
Instead, x(2){T ,E}[n] and x

(2)
{T ,O}[n] are length-2 nodes, which

generate the final four leaves in the third and last level. The
complete tree structure, including the leaf positions, is thus
obtained, and the original sequence can then be reconstructed
starting from {F,G}.

B. Extension to 2D domain

Considering a 2D sequence x[m,n], in this case real-valued
for simplicity, and having finite support D with M rows and
N columns. Then, a generic point reflection even/odd decom-
position may be defined around an arbitrary point [mf , nf ].
Formally, we can write:

xe[m,n;mf , nf ] =
x[m,n] + x[2mf −m, 2nf − n]

2
;

xo[m,n;mf , nf ] =
x[m,n]− x[2mf −m, 2nf − n]

2
.

(18)

In order to find the optimal symmetry point [m0, n0], the
main steps in Sec. V-A for the 1D domain can be properly
adjusted to the 2D domain. In the end, the energy of the even
part, as the point [mf , nf ] varies, can be written as:

Ee(mf , nf )=
1

2
E +

1

2

∑
(m,n)∈D

x[m,n]·x[2mf−m, 2nf−n]︸ ︷︷ ︸
(:=x∗∗x)[2mf ,2nf ]

,

(19)
where the last term is the 2D discrete linear convolution,
using the symbol ∗∗. Then, the optimal [m0, n0] point that
maximally splits the energy of xe and xo is computed as:

[2m0, 2n0] = arg max
(h,k)

|(x ∗ ∗x)[h, k]| . (20)

In the 2D domain we can also examine symmetries with
respect to an arbitrarily oriented line, instead of a generic
point. For example, by considering n = nf as the vertical
reflection line, the even/odd components of x[m,n] with
respect to it are expressed as:

xe[m,n;nf ] =
x[m,n] + x[m, 2nf − n]

2
;

xo[m,n;nf ] =
x[m,n]− x[m, 2nf − n]

2
.

(21)

In this case, searching for the optimal n0 still uses the 1D
convolution instead:

Ee(nf ) =
1

2
E +

1

2

∑
(m,n)∈D

x[m,n] · x[m, 2nf − n]︸ ︷︷ ︸
(x∗x)[2nf ]

;

2n0 = arg max
h

|(x ∗ x)[h]| .

(22)

Of course, when considering the reflection with respect
to m = mf , that is using a horizontal reflection line, the
same result is obtained by just applying the mirroring in the
orthogonal direction.

All considerations made previously for the DMT can also
be extended to 2D sequences, regardless of the considered
reflection. It must be highlighted that by iterating the optimal
even/odd decomposition with respect to a horizontal or vertical
line, it will converge to a number of 1D sequences. For
example, for the decomposition using the vertical reflection
plane the support (namely, the number of columns) of the node
sequences decreases with the tree depth. In the end the original
2D sequence x[m,n] is decomposed into N sequences of
length M . For those sequences, the 1D DMT can be employed
in turn to lead to a full 2D transformed representation.
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Variations to this process may be considered [18], e.g., by
alternating horizontal and vertical mirroring decomposition
steps, or by changing arbitrarily the direction of mirroring
from one step to the next. With no regard to the adopted
scheme and with the right attention, the concepts can be easily
extended from the 1D case, so as to preserve the constant
nature of the informative support from one decomposition
stage to following one. We refer the interested reader to
the publicly available code for further details on the 2D
implementation of the DMT.

VI. EXPERIMENTAL USE OF THE DMT - PRELIMINARY
RESULTS

In this section, more specific peculiarities of the Mirror
Transform are examined. In contrast with the properties previ-
ously described in Sec. IV, they are not a direct consequence of
the transform definition. As a matter of fact, they are shown to
be valid through a series of experimental tests. They could also
hint at potential application for signal processing tasks, though
at this stage they should be considered strictly as proof-of-
concept trials. The associated code and the examined datasets
are publicly available at [13].

We ran two sets of experiments. In the first, discussed in
Sec. VI-A, we delve into the sparsity properties of the MT,
by studying its ability to concentrate the signal energy in a
small set of transform coefficients. Then, in Sec. VI-B we
inspect what we call the one-wayness property, namely, the
one-way relation between the original signal and its associated
decomposition tree structure.

Of course, the scope of the tests is limited for practical
reasons to finite-support signals in the discrete domain. In
those cases, we recall that the decomposition tree has a finite
number of levels and, for a L samples original signal, if the
process is carried on until all the single-valued leaves are
reached, there are up to L coefficients stored in F. They
are distributed all over the tree, depending on the optimal
symmetry points in G found in the decomposition process.

A. Sparsity

Through a single step of the optimal ternary decomposition,
a relevant part of the signal energy is bound to move into a
support smaller than the starting one, and consequently this
intrinsically leads to a new, sparser representation of the signal.

We prove this statement through a series of experimental
tests. In particular, we investigated the ability of the DMT
to concentrate more signal energy into a small transform
coefficient set when opposed to the ability of other transforms,
which are known to be efficient to approximate several classes
of signals.

The comparison has been performed on various test se-
quences, by studying the energy preservation associated with
a variable number of the transform coefficients sorted from
largest to smallest value (in modulus). Specifically, for the
DMT the whole decomposition tree is first generated, then
the energy of the representation is computed using a certain
number of the most significant coefficients in terms of energy.
The same process is performed for the competitive transforms,
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Figure 8: A sample of the investigated test sequences. The first
two columns display the signal with its associated DMT. The
third column reports the DMT, DCT and DWT energy curves.

by retaining the most significant coefficients in the transform
domain, according to their magnitude.

First, Fig. 8 illustrates the performance comparison be-
tween the proposed transform and two classical transforms,
namely, the Discrete Cosine Transform (DCT) and the Dis-
crete Wavelet Transform (DWT) implemented using the ’db4’
wavelet with the maximum decomposition level, for some test
sequences. In the first rows, three 1D sequences are examined,
namely, a Gaussian impulse, a sinc impulse, and one instance
of a Gaussian random noise sequence. The fourth row ad-
dresses the popular Baboon image, and the 2D DMT described
in Sec. V-B has been applied. In this case, the decomposition
is first performed using the vertical reflection plane, namely,
along the image columns, and then the 1D DMT is performed
on the resulting sequences. The energy curves show that the
DCT and DWT performance is consistently worse than the one
given by the DMT for all test sequences. We recall that the
DMT significantly goes beyond the concept of representing
a vector through a linear expansion. Instead, it provides a
non-linear representation, which can describe the nature of
the signal more effectively.

The superior sparsity properties of the DMT with respect
to DCT and DWT can be explained in terms of coefficients
energy decay rate. For the DCT, it is known to be polynomial,
while for DWT is exponential only in the case of piece-wise
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linear functions. The DMT, instead, always enjoys exponential
energy decay rate, provided that at each step of the decompo-
sition most the energy is concentrated in at most half of the
previous support. This occurrence is highly likely, namely, it
is verified if the energy decoupling between the even and odd
parts is effective. Since the decomposition is pursued exactly
to maximize the energy concentration in just one of the parts,
the considered decomposition is optimal in this respect.

To reinforce the reliability of the results, we have expanded
our experiments to more datasets, composed by:

• Short audio sequences, extracted from mixed music genre
songs and vocal sound effects [13] (Fig. 9a);

• Seismic waves, part of the IRIS database [19] (Fig. 9b);
• Electrocardiogram (ECG) sequences, taken from the Phy-

sioNet database [20] (Fig. 9c);
• Different types of images, from natural to textures, with

various resolutions [13] (Fig. 9d).

Furthermore, to evidence more effectively the sparsity property
of the DMT, we have included two data-driven transforms in
the comparison: the Karhunen-Love Transform (KLT) and the
Sparse Orthonormal Transform (SOT).

We recall that the KLT is the matrix of orthonormal
eigenvectors of the covariance matrix of a stochastic process.
Assuming that the columns of the KLT are ordered so that the
associated eigenvalues are in decreasing order, then it is well-
known that the KLT optimizes n-term linear approximation
performance, where the optimality is expressed as the expected
mean square error when a signal is projected on the first
n vectors. However, the sparsity property of a transform is
examined by applying n-term non-linear approximation, where
the expected mean square error is computed by projecting a
signal on the n vectors associated to the most representative
transform coefficients, i.e., the ones corresponding to the
highest energy. For this reason, we have also considered the
SOT in our experimental comparison, since it is a data-driven
orthonormal transform designed to achieve the minimum dis-
tortion possible when keeping the least number of non-zero
transform coefficients. More details on the SOT derivation can
be found in [21].

To compute the KLT and SOT bases for each class of
signals, each dataset has been first randomly split in a training
and in a test set. Then, each data of the training set has
been divided in sub-sequences, which have been finally used
to construct the KLT and the SOT matrices. Specifically,
512-length sub-sequences have been considered for the audio
dataset, while the seismic and ECG data have been both
separated into 400-length sub-sequences; finally, the images
have been partitioned into 8× 8 blocks.

Fig. 9 reports the average performance in terms of MSE and
PSNR for each test set. It confirms the superior sparsity ability
of the DMT with respect to all the competitive transforms for
all the considered datasets. As expected, the SOT outperforms
the KLT, since a non-linear approximation of the signals is
considered. However, the DMT performs consistently better
than the SOT, proving that the iteration of the optimal sym-
metry decomposition is able to efficiently describe a signal,
independently of its different nature.
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(a) Audio sequences dataset.
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(b) Seismic waves dataset.
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(c) ECG signals dataset.

5 10 15

% non-zero coefficients

28

30

32

34

36

38

P
S

N
R

DWT

DCT

KLT

SOT

DMT

(d) Images dataset (using PSNR).

Figure 9: Performance comparison between the competing
transforms when applied to the considered datasets, given in
terms of average performance.

In particular, the comparison results with DCT and DWT
are quite remarkable, since these transforms are key elements
in practical coding standards, given their ability to efficiently
represent various signal classes. However, it is also important
to state that the sparsity properties of a transform are not
generally sufficient to ensure that it would perform well
in a coding algorithm. Indeed, in addition to the non-zero
coefficient values, their positions must be specified too in order
to reconstruct the original image. Encoding the positions of the
non-zero coefficients usually requires a thorough investigation,
which is specific for each given transform and application
context, e.g., for image compression, zig-zag scanning for the
DCT in JPEG and H.26x, or the EZ of wavelet transforms in
JPEG2000.

Thus, in a coding framework, in order to take advantage of
the previously shown sparsity properties of the coefficients in
F, an efficient representation of the tree information is needed.
While proposing the MT for coding applications is beyond the
scope of this paper, we include here some observations hinting
at how an application like this could be designed.

As we previously mentioned, after zeroing some of the
leaves in a controlled way, for example, following a quan-
tization of the coefficient values, as it happens for traditional
image/video compression standards, more tree information
compaction can be achieved. In fact, if the leaves associated
to a same subtree have all been zeroed, that subtree can be
entirely removed without losing any information, which would
allow for the pruning of a potentially large number of nodes,
thus reducing the size of G. A possible way to exploit this
fact is to signal that the decomposition process must stop for
that zeroed subtree. In other words, an ad-hoc symbol, for
example 0, can be included in G to indicate a node that would
not generate any non-zero coefficients. In Fig. 7c an example



15

of pruning the tree in Fig. 7 is shown. In this example, 5
coefficients have been zeroed, all of them deriving from the
x
(1)
{T } node. Then, the entire subtree which originated from that

node can be removed, and the associated n(1){T } is replaced with
0. This process leads to a more compact representation of the
tree G.

In the next section, the compact description G of pruned
trees is exploited in a different direction, by showing another
distinctive experimental property of the Mirror Transform.

B. One-wayness

The one-wayness property is akin to what typically charac-
terizes hash functions. It is stated here for the Discrete Mirror
Transform of finite support sequences, but it is also easy to
show its validity for the standard Mirror Transform.

Assuming that a given sequence x[n] is decomposed through
Eq. (13) into xe[n;n0] and xo[n;n0] around the optimal
symmetry point n0, with respective energy Ee and Eo, it is
of course possible to define another sequence ye[n;n0], with
energy still Ee, and then obtain the reconstructed sequence
y[n] = ye[n;n0] + xo[n;n0]. As shown in Sec. IV-E, it is
still possible for the alternative parent node to have the same
optimal mirroring point (in that case, both the new children
nodes are changed and are strictly scaled versions of the
original ones). In general, however, the optimal symmetry
point for y[n] is not the same as for x[n].

This means that, given the tree G, it is not possible to assign
arbitrary sequences to the nodes (even with the correct support,
as inferred by the tree information). In fact, if the root is first
reconstructed from these arbitrary nodes and then decomposed
again, the decomposition tree is likely going to be different (a
possible exception being the new nodes which are all scaled
versions of the previous ones, as stated earlier). Therefore,
while it is always possible, with a given G, to reconstruct
a root sequence using an arbitrary F, such decomposition is
almost certainly incorrect, that is to say the decomposition
steps are not optimal in each and every node.

In this sense, the root sequence x[n] and the tree G enjoy a
one-way relation, which means that G can be easily obtained
from x[n], but the opposite is very difficult, and it becomes
increasingly harder the longer the length of the root sequence.
This also holds for the continuous-time MT with a sufficient
number of levels. In other words, given just the complete
tree information G, it is difficult to guess the right values
to be assigned to the leaves in F to keep the decomposition of
the reconstructed sequence which is still consistent with the
given G. Using a term typical of hashing applications, such
a very rare occurrence constitutes a collision. Thus, the tree
information can be thought of as a hash of the root signal.

However, the complete tree information of even moder-
ately short sequences can be very cumbersome. Of course,
zeroing or quantizing the coefficients in F, as we suggested
in Sec. VI-A, compacts the tree by pruning zeroed subtrees,
making it more manageable. Since we expect the collision
probability to be very low, we have run some experiments
using this last configuration, as the collision probability is
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(b) Tree analysis after adding
noise to one coefficient.
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(c) Tree analysis after adding noise to the original signal.

Figure 10: Experiments on one-wayness property.

bound to increase if more root sequences correspond to the
same pruned tree associated with the considered one.

Fig. 10 shows the experiments performed to highlight the
one-wayness property. The results are averaged over 5 000,
length 64 sequences (quite short for practical purposes, but
able to show noticeable collisions), obtained at random: in par-
ticular, they are a combination of pixel values taken from rows
and columns of the images of the aforementioned datasets,
supplemented by white Gaussian noise sequences.

In Fig. 10a, the collision probability across different input
sequences is estimated. The sequences are first decomposed,
and then only the number shown on the x-axis of the most
significant coefficients are kept, exactly in the same way as for
the previous sparsity experiments. Each tree is then pruned and
compared to every other one. A collision is declared if any
two pruned trees are identical, namely, two root sequences
decompose into the same G. The collision probability drops
under 1% already at 1/8 rate (keeping 8 coefficients out
of 64). For longer sequences, the same collision probability
is expected to be met with even lower rates. Keeping 12
coefficients, the collision probability becomes negligible.

Differently from hash functions, it can be expected that
the tree information is invariant to slight modifications of the
root sequence, which is a very unique property for a one-
way function. In fact, if the original sequence values are just
barely modified, besides the already mentioned nodes scaling,
the optimal decomposition points may be unchanged all the
way to the leaves. Of course, the introduced modifications
are still reflected by the nodes (and final leaves) values. The
low collision probability that we have just shown implies that
the introduced non-scaling modification, i.e., the added noise
power, must be very slight. The tolerance of the tree to noise
addition is amplified by coefficient quantization followed by
zeroed subtree pruning, because fewer decomposition opera-
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tions influence the definition of the final tree structure.
To show this interesting facet of the one-wayness, we have

run two different experiments. First, we have reported in
Fig. 10b the effect of modifying the most significant coefficient
after the decomposition is performed, while keeping the whole
tree (without pruning). The modification is computed as the
SNR on the single affected leaf. In more than 50% of the cases,
a 10% change on the most significant leaf value is sufficient
to generate the tree structure of the (modified) reconstructed
sequence that is different to the original tree. Therefore, the
complete tree is quite fragile to changes in coefficient values,
as expected, although slight, individual changes are sometimes
tolerated.

In the next experiment, depicted in Fig. 10c, white Gaussian
noise is added to the input sequences for various SNR. The
decomposition tree is computed and successively pruned in
the usual way, keeping the most significant coefficients. The
number of unchanged trees, i.e., that are not modified by
the noise addition, are then counted. The fewer coefficients
are kept, the more the trees are pruned. Thus, in this case
the tree of the noisy sequence may be the same as the one
of the original sequence. As expected, even moderate noise
modifies a large percentage of the tree structures, unless very
few coefficients are kept.

In conclusion, the decomposition tree can be used as a
particular kind of hashing function of the original sequence.
Given G alone, without knowing the original sequence, it
is difficult to guess the nodes that would imply the same
tree structure. However, it is possible to slightly modify the
original sequence and still preserve the decomposition tree,
either in a deterministic way by nodes scaling or through
random noise addition (however, no methods exist to find a
colliding sequence with a predetermined shape). Therefore,
the decomposition process is one-way, but it does not strictly
possess weak collision resistance.

VII. CONCLUSIONS

In this paper, we presented the Mirror Transform (MT), which
is a new signal transform based on the iterative application of
the even/odd decomposition around optimal (in a decoupling
energy sense) mirroring points, valid for both continuous
and discrete time domains. In the former case, in principle
the ternary decomposition tree constituting the transform is
infinitely deep, even for finite support signals, while a finite
number of levels is ensured for finite-length sequences.

We listed several properties of the proposed transform,
including the fact that each decomposition level preserves the
energy of the original signal by distributing it across a set of
orthogonal tree nodes. This allows the reconstruction of finite
energy signals through a constructive algorithm by approxi-
mating leaf nodes while introducing controllable distortion.

We employed the MT in several experiments. The first set
aimed at analyzing its sparsity properties, limiting our scope to
finite trees obtained from 1D and 2D signals of various origin.
Of course, the compactness of the alternative representation is
affected by the amount of information concerning the symme-
try point employed in each decomposition step. Nevertheless,

it is possible to prune the decomposition tree after a given
subtree is zeroed through coefficients quantization.

Further experiments investigated the one-way relation be-
tween a signal and its associated tree information. Akin to
hashing, we have shown that it is indeed very rare to incur
into a collision. An interesting feature is that mild modifica-
tions to the original signal, when combined with coefficient
quantization and tree pruning, is likely to produce the same
hash, which is a very peculiar property for a hashing algorithm.

The nature of this work remains very foundational. Through
its experimentation, it is hoped that many signal processing
applications may benefit from its use, in particular domains.
It emphasizes how intrinsic characteristics in the data can be
captured to cope with desirable features or robustness to noise.
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[4] J. Fourier, Théorie analytique de la chaleur, par M. Fourier. Chez
Firmin Didot, père et fils, 1822.

[5] A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Mathema-
tische Annalen, vol. 69, no. 3, pp. 331–371, 1910.

[6] S. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation.” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[7] D. Donoho, “Wedgelets: Nearly minimax estimation of edges,” The
Annals of Statistics, vol. 27, no. 3, pp. 859–897, 1999.

[8] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The con-
vex geometry of linear inverse problems,” Foundations of Computational
Mathematics, vol. 12, no. 6, pp. 805–849, oct 2012.

[9] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural computation, vol. 15, no. 6,
pp. 1373–1396, 2003.
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