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A B S T R A C T

This work focuses on dynamic continualization of multifield multilayered metamaterials in order to obtain
energetically-consistent models able to provide an accurate description of the dispersive behavior of the
corresponding discrete system. Continuum models, characterized by constitutive and inertial non-localities,
have been identified through a recently proposed enhanced continualization scheme. They are identified
by governing equations both of the integro-differential and higher-order gradient-type, whose regularization
kernel or pseudo-differential functions accounting for shift operators are formally expanded in Taylor series.
The adopted regularization kernel exhibits polar singularities at the edge of the first Brillouin zone, thus
assuring the convergence of the frequency spectrum to the one of the Lagrangian system in the entire wave
vector domain. The validity of the proposed approach is assessed through the investigation of multilayered
discrete lattices with an antitetrachiral topology, where local resonators act as rigid links among the layers.
The convergence of dispersion curves of the continuum model to the ones of the Lagrangian model is proved in
the whole first Brillouin zone as the adopted continualization order increases, both considering the propagation
and the spatial attenuation of Bloch waves inside the metamaterial. A low frequency continualization is also
provided, leading to the identification of a first-order medium.
1. Introduction

Unique combinations of physical and mechanical properties, seldom
observable in nature, can be obtained by micro-architected materi-
als (Schaedler and Carter, 2016; Pham et al., 2019; Xia et al., 2019;
Jia et al., 2019; Greer and Deshpande, 2019). Compared to fully
dense solids, the introduction of new microstructures has allowed to
expand the material property space in terms of, among others, strength,
stiffness, and fracture toughness (Deshpande et al., 2001; Wadley et al.,
2003; Romijn and Fleck, 2007; Fleck et al., 2010; Liu et al., 2012).
The present work focuses on the dynamical multifield continualization
of regular discrete media with lumped masses as the nodes, modeled
as multilayered discrete periodic Lagrangian systems characterized by
proper periodicity vectors. The term multifield refers to the presence
of different displacement fields inside the periodic cell. It is known
that scale effects arise from the periodic microstructure of these ma-
terials (Schraad and Triantafyllidis, 1997a,b; Aifantis and Willis, 2006;
Bacigalupo and Gambarotta, 2021; Casolo, 2021), whereby processes
at lower scales of observation influence the ones at higher scales and
viceversa. Even if an accurate description of these lattice-like materials,
representative of beam-lattice or block-lattice systems, can be achieved
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through discrete Lagrangian models (Colquitt et al., 2011; Vigliotti
et al., 2014; Nannapaneni et al., 2021; Ostoja-Starzewski, 2002), the
identification of continuum models can reveal extremely useful in
capturing both the static and dynamic behavior of such periodic sys-
tems in a precise and, at the same time, concise way (Trovalusci and
Masiani, 1999; Beex et al., 2014; Madeo et al., 2015; Bacigalupo and
Gambarotta, 2017a), thus replacing the inhomogenities at lower scales
by a continuum representation at higher scales. When a discrete system
is identified with an homogeneous continuum the term continualization
seems to be more appropriate than the term homogenization, which,
instead, refers to the translation of an heterogeneous continuum into
an equivalent homogeneous one (Rubin et al., 1995; Chang and Gao,
1995; Mühlhaus and Oka, 1996; Askes and Metrikine, 2005). A first-
order continualization applied to a periodic discrete medium identifies
the constitutive properties of the equivalent first-order (Cauchy) con-
tinuum, for which the standard stresses are algebraically related to
the standard strains. Nevertheless, it is known from more than fifty
years that the size effects arising from the underlying microstructure
cannot be accurately captured by a classical local continuum (Mindlin,
1964) and, from this perspective, an enhanced continuum description
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at a higher scale represents one of the possibilities to replace the
heterogeneities at the lower scales. The inability of classical contin-
uum theories to catch these size effects, which become increasingly
relevant as the size of the component decreases, is due to the lack
in the constitutive equations of an internal length, distinctive of the
microstructure at hand (Forest and Sab, 1998). In a dynamic context,
in order to accurately capture the physical phenomenon of wave disper-
sion occurring in discrete periodic materials, non-local continualization
schemes can be adopted (Liu et al., 1999; Zhang et al., 2014; Challamel
et al., 2015; Hache et al., 2017; Challamel et al., 2018), thus obtaining
the so-called higher-order continua. Continuum governing equations
can be determined from the minimization of a Lagrangian functional
in which the kinetic and the potential energies are obtained in terms
of a truncated Taylor series expansion of the continuum displacement
field at the higher scale, this last adopted in order to approximate the
displacement differences of adjacent nodes of the Lagrangian system.
Nevertheless, it has been proved that such a continualization technique
could lead to energetic inconsistencies for the continuum model, which
results characterized by non positive defined potential energy density,
although the discrete model is not affected by the same pathology (Baci-
galupo and Gambarotta, 2017b; Kumar and McDowell, 2004; Rosenau,
2003). As a consequence, instabilities can arise in dynamics manifesting
themselves by, among others, an unbounded growth of the response in
time in the absence of external work, infinite group velocities in the
short-wave limit, and the appearance of imaginary frequencies in the
elastic field (Askes et al., 2002). The loss of ellipticity is also related to
the loss of uniqueness in the static boundary value problem (Askes and
Aifantis, 2011).

Alternatively, a continualization technique can directly operate on
the discrete governing equations, where the continuous displacement
field expanded in truncated series or the pseudo-differential operators
expanded in truncated series are exploited in order to approximate
the displacement differences among neighboring nodes in the discrete
equations of motion (Bacigalupo and Gambarotta, 2017b; Askes and
Metrikine, 2005; Askes et al., 2002). Pseudo-differential equations
resulting from the use of shift operators can then be approximated by
means of Padè approximants. This leads to the appearance of inertial
non-localities in the governing equations of the equivalent non-local
continuum, in the wake of non-local continua proposed by Mindlin
(1964) that are characterized by constitutive and inertial characteristic
lengths. Also in this case, though, the potential energy density can
result non positive defined, thus causing the same issues described
above.

A different continualization technique is based on the discrete
Fourier transform or, equivalently, bilateral -transform in space of the
discrete governing equations, yielding to integro-differential equations
of motion for the corresponding continuum model (Bacigalupo and
Gambarotta, 2021, 2019; Andrianov et al., 2012; Charlotte and Truski-
novsky, 2012; Kunin, 2012). If the integral kernels are expanded in
power series or through a Padè approximant, higher-order differential
equations are obtained for the continuum model, which, once again,
could be characterized by inconsistencies from the energetic point of
view. To overcome the problem, a so-called enhanced continualization
procedure has been recently provided in Bacigalupo and Gambarotta
(2019) for one-dimensional discrete models. The proposed continuum
model reveals extremely accurate in approximating both the static and
the dynamic response of the corresponding Lagrangian model. The
continuum model is characterized by governing differential equations
with both constitutive and inertial non-localities corresponding to
a thermodynamic consistent Lagrangian functional. This last is ob-
tained by means of the pseudo-differential equations defined at the
macroscale formally expanded in power series, retrieving the shift
operators concept.

In this work, the enhanced continualization technique proposed

in Bacigalupo and Gambarotta (2021, 2019) is extended to multifield

2 
multilayered metamaterials with a complex topology. It is worth stress-
ing that the presented high frequency continualization technique has
been carried out in a completely general and rigorous mathematical
framework that allows to capture the fundamental aspects of the phys-
ical problem at hand. Multifield continuum models can be identified
by governing equations both of the integro-differential type and of the
gradient-type, these lasts characterized by local or non-local inertial
terms, depending on the choice made for the regularization kernel
appearing in the down-scaling laws. In particular, the presence of iner-
tial non-localities allows the identification of gradient-type multifield
continuum models that are thermodynamically consistent. Dynamic
instabilities in the short-wave limit are thus avoided, contrary to what
happens, as previously mentioned, in the standard-like continualization
obtained by means of a unitary regularization kernel, which is therefore
analytic everywhere. The introduction of a proper regularization kernel
showing polar singularities at the boundary of the first Brillouin zone in
correspondence of the lattice coordination directions allows defining a
convergence radius for its Taylor series approximation centered at the
origin of the wave vector space. This guarantees the approximation of
the frequency spectrum throughout the entire Brillouin zone, proving
the convergence of the approximate spectrum to the actual one of the
discrete lattice. The presented high frequency multifield continualiza-
tion technique is amenable to be applied to discrete systems having any
number of degrees of freedom. In the particular case of a monoatomic
cell having three degrees of freedom in plane, the continualization
scheme allows the identification of a non local generalized continuum
of the integral type or of the gradient type, namely a generalized
micropolar continuum. In the case of low approximation, a micropolar
continuum with non local inertial terms can be identified, which results
to be consistent from the thermodynamic point of view (Diana et al.,
2023). By further imposing the symmetry of the stress tensor, the
constitutive law can be condensed in order to obtain a local first-order
continuum. In this work, a low frequency continualization scheme is
also presented, leading to the identification of a first-order equivalent
medium, whose frequency spectrum approximates the low frequency
one of the discrete system in the long wavelength regime.

The work is organized as follows: in Section 2 the equations gov-
erning the dynamics of the discrete periodic Lagrangian systems are
described. Particular attention is put on the derivation of the frequency
spectrum of the lattice materials considering both homogeneous and
non homogeneous waves, taking into account their propagation and
spatial attenuation features. In the case of non homogeneous waves,
the characteristic equation is an exponential polynomial in terms of
the wave vector components. In Section 3 it is shown how the integral-
type or gradient-type continuum model can be identified through the
proposed dynamic high-frequency continualization technique. It is also
shown how first-order models can be identified by employing spectral
approximation techniques at low frequencies. An illustrative example
is shown in Section 4, where the multifield continualization procedure
is particularized for a single-layer lattice material with an antitetra-
chiral topology and for a bi-layered antitetrachiral discrete lattice
having local resonators that serve as rigid links between the layers.
Dispersive features of the discrete model are compared with the ones
obtained through the continualization technique both in the standard-
like case with unitary regularization kernel and in the enhanced case,
confirming the validity of the proposed approach. It is also shown
how the dispersion curves of the continuum model converge to the
discrete ones by increasing the continualization order of the enhanced
model. The performances of the low-frequency continualization are
also investigated. Finally, the forced wave propagation is analyzed,
demonstrating the capabilities of the continuum models to approximate

the system response. Final remarks are reported in Section 5.



F. Fantoni et al. International Journal of Solids and Structures 304 (2024 ) 113015 
Fig. 1. Sketch of a generic lattice-like metamaterial containing in the periodic cell, highlighted in blue, a generic number of nodes with three degrees of freedom each. The periodic
cell is connected to the adjacent ones by means of elastic links along the 2 or 3 coordination lines. In the physical space it is shown the lattice associated to the metamaterial
characterized by two independent periodicity vectors 𝐯1 and 𝐯2 (figures (a) and (c)). In the wave vectors space it is shown the reciprocal lattice characterized by two independent
periodicity vectors 𝐩1 and 𝐩2 and the corresponding periodic cell (not in scale), highlighted in red, or first Brillouin zone (figures (b) and (d)).
𝑞

𝑞

2. Dynamics of discrete periodic Lagrangian systems

One considers a two-dimensional periodic lattice-like material based
on the spatial repetition of a cellular topology along 𝑛∕2 lattice co-
ordination lines, with 𝑛 the lattice coordination number depending
upon the specific planar topology under consideration (see Fig. 1). If
the lattice-like material is representative of a beam-lattice system, one
considers each periodic cell as characterized by a certain number of stiff
rings with mass 𝑀𝑠 and rotational inertia 𝐽𝑠, modeled as rigid bodies.
Stiff rings are connected by light and flexible massless ligaments with
length 𝐿, height 𝑤 and unitary out-of-plane thickness, all modeled as
unshearable Euler–Bernoulli beams with Young modulus 𝐸. A perfect
rigid joint is assumed to exist between the rings and the beams. Each
stiff ring is enhanced with a co-centered local resonator, which is
a stiff disk with mass 𝑀𝑟 and rotational inertia 𝐽𝑟, considered as a
rigid body. Relative ring-resonator translational stiffness is denoted
as 𝑘𝑑 , while relative ring-resonator rotational one as 𝑘𝜃 . The set of
Lagrangian coordinates for each periodic cell is constituted by vector
𝐮(𝓁) (𝑡), collecting the translational and rotational degrees of freedom for
the stiff rings, and by vector 𝐯(𝓁) (𝑡) gathering the degrees of freedom
of the resonators. Apex (𝓁) indicates that the cellular microstructure
belongs to the 𝓁-th layer, while subscript  = (𝑖1,… , 𝑖𝑛∕2) denotes that
quantities are referred to the  -th periodic cell. If 𝐟 (𝓁)𝑠 (𝑡) is the external
force vector acting on the rings, and 𝐟 (𝓁)𝑟 (𝑡) the vector describing the
interactions between the oscillators and the 𝓁-th layer, the dynamics
of the undamped lattice material is governed by the following system
of ordinary differential equations

𝐌(𝓁)
𝑠 �̈�(𝓁) (𝑡) +𝐊(𝓁)

𝑠𝑠 𝐮(𝓁) (𝑡) +𝐊(𝓁)
𝑠𝑟 𝐯(𝓁) (𝑡)

+
∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

𝐮(𝓁)
 +
[𝑗]
(𝑡) +𝐊−(𝓁)

𝑠𝑠𝑗
𝐮(𝓁) −

[𝑗]
(𝑡)
]

= 𝐟 (𝓁)𝑠
(𝑡),

𝐌(𝓁)
𝑟 �̈�(𝓁) (𝑡) +𝐊(𝓁)

𝑟𝑠 𝐮(𝓁) (𝑡) +𝐊(𝓁)
𝑟𝑟 𝐯(𝓁) (𝑡) = 𝐟 (𝓁)𝑟

(𝑡), (1)

where [𝑗] = {𝑗 ∶ 𝑗 ∈ N≤𝑛∕2
≥1 } gathers the 𝑗-values identifying the 𝑗th

coordination line. This last is represented in the physical space by the
vector 𝐧𝑗 . The sets  ±

[𝑗] = (𝑖1,… , 𝑖𝑗 ± 1,… , 𝑖𝑛∕2), instead, identifies the
adjacent cells along the 𝑗th coordination line, as depicted in Fig. 1.
The components of mass matrices 𝐌(𝓁)

𝑠 and 𝐌(𝓁)
𝑟 and of the stiffness-

like matrices 𝐊(𝓁)
𝑠𝑠 , 𝐊(𝓁)

𝑠𝑟 = 𝐊(𝓁)
𝑟𝑠 , 𝐊𝑟𝑟, 𝐊

+(𝓁)
𝑠𝑠𝑗 and 𝐊−(𝓁)

𝑠𝑠𝑗 need to be detailed
for the metamaterial topology at hand in terms of the geometrical and
constitutive parameters.

Spatial periodicity of the lattice material makes it possible to effi-
ciently investigate the propagation of elastic Bloch waves by applying a
bilateral Laplace transform in time and a bilateral -transform in space
to the equations of motion (1). In this way, dispersion properties of the
metamaterial can be studied in the frequency domain in terms of a con-
tinuous complex function of space. Bilateral Laplace transform of a real-
valued function 𝑞(𝑡) is defined as [𝑞(𝑡)] ≐ ∫ 𝑞(𝑡)exp(−𝑠𝑡)d𝑡 = 𝑞(𝑠) with
R
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̂(𝑠) ∶ C → C, while bilateral -transform of function 𝑞 ∶ Z𝑛∕2 → C is
expressed as [𝑞 ] = [𝑞(𝑖1 ,…,𝑖𝑛∕2)] =

∑

∈Z𝑛∕2 𝑞(𝑖1 ,…,𝑖𝑛∕2)𝑧
−𝑖1
1 ...𝑧

−𝑖𝑛∕2
𝑛∕2 =

̌(𝑧1,… , 𝑧𝑛∕2) = 𝑞(𝐳) with 𝐳 = (𝑧1 … 𝑧𝑛∕2 )𝑇 ∈ C𝑛∕2 and 𝑞(𝐳) a
complex-valued function. Making use of the Laplace transform property
[ 𝜕

𝑛𝑞(𝑡)
𝜕𝑡𝑛 ] ≐ 𝑠𝑛[𝑞(𝑡)] and of the -transform property

[𝑞(𝑖1±𝑚1 ,…,𝑖𝑛∕2±𝑚𝑛∕2)] ≐ 𝑧±𝑚1
1 ...𝑧

±𝑚𝑛∕2
𝑛∕2 [𝑞(𝑖1 ,…,𝑖𝑛∕2)], Eqs. (1) are trans-

formed into

𝑠2 𝐌(𝓁)
𝑠 �̊�(𝓁)(𝐳, 𝑠) +𝐊(𝓁)

𝑠𝑠 �̊�(𝓁)(𝐳, 𝑠) +𝐊(𝓁)
𝑠𝑟 �̊�(𝓁)(𝐳, 𝑠)

+
∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

𝑧𝑗 +𝐊−(𝓁)
𝑠𝑠𝑗

𝑧−1𝑗
]

�̊�(𝓁)(𝐳, 𝑠) = 𝐟 (𝓁)𝑠 (𝐳, 𝑠),

𝑠2 𝐌(𝓁)
𝑟 �̊�(𝓁)(𝐳, 𝑠) +𝐊(𝓁)

𝑟𝑠 �̊�(𝓁)(𝐳, 𝑠) +𝐊(𝓁)
𝑟𝑟 �̊�(𝓁)(𝐳, 𝑠) = 𝐟 (𝓁)𝑟 (𝐳, 𝑠), (2)

where symbol �̊�(𝐳, 𝑠) ≐ [𝑞 (𝑠)] = [[𝑞 (𝑡)]] is used to denote
the doubly-transformed quantity 𝑞 (𝑡). In the case of a multilayered
structure, the resonators constitute a rigid joint between layers. In this
sense, governing Eqs. (2) pertaining to each layer need to be combined
through proper kinematic and dynamic relations. One supposes to have
two different layers: a front one (𝓁 = 𝑓 ) and a back one (𝓁 = 𝑏).
Inter-layer constraints in the transformed space read

�̊�(𝑓 )(𝐳, 𝑠) = �̊�(𝑏)(𝐳, 𝑠) = �̊�(𝐳, 𝑠),

𝐟 (𝑓 )𝑟 (𝐳, 𝑠) = −𝐟 (𝑏)𝑟 (𝐳, 𝑠) = 𝐟𝑟(𝐳, 𝑠). (3)

After specifying system (2) for each layer and imposing constraints (3),
simple algebraic manipulations lead to the following system

𝑠2 𝐌(𝑓 )
𝑠 �̊�(𝑓 )(𝐳, 𝑠) +𝐊(𝑓 )

𝑠𝑠 �̊�(𝑓 )(𝐳, 𝑠) +𝐊(𝑓 )
𝑠𝑟 �̊�(𝐳, 𝑠)

+
∑

[𝑗]

[

𝐊+(𝑓 )
𝑠𝑠𝑗

𝑧𝑗 +𝐊−(𝑓 )
𝑠𝑠𝑗

𝑧−1𝑗
]

�̊�(𝑓 )(𝐳, 𝑠) = 𝐟 (𝑓 )𝑠 (𝐳, 𝑠),

𝑠2 𝐌(𝑏)
𝑠 �̊�(𝑏)(𝐳, 𝑠) +𝐊(𝑏)

𝑠𝑠 �̊�(𝑏)(𝐳, 𝑠) +𝐊(𝑏)
𝑠𝑟 �̊�(𝐳, 𝑠)

+
∑

[𝑗]

[

𝐊+(𝑏)
𝑠𝑠𝑗

𝑧𝑗 +𝐊−(𝑏)
𝑠𝑠𝑗

𝑧−1𝑗
]

�̊�(𝑏)(𝐳, 𝑠) = 𝐟 (𝑏)𝑠 (𝐳, 𝑠),

𝑠2
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

�̊�(𝐳, 𝑠) +𝐊(𝑓 )
𝑟𝑠 �̊�(𝑓 )(𝐳, 𝑠) +𝐊(𝑏)

𝑟𝑠 �̊�(𝑏)(𝐳, 𝑠)

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
)

�̊�(𝐳, 𝑠) = 𝟎. (4)

Imposing the quasi-periodicity Floquet–Bloch conditions is equivalent
to mapping the complex variable 𝑧𝑗 in the reciprocal 𝐤-space through
the relation 𝑧𝑗 = exp(𝜄𝐱𝑗 ⋅ 𝐤), with 𝜄 the imaginary unit, 𝐱𝑗 = 𝑑𝑗𝐧𝑗
the position vector of the reference cell centroid, 𝑑𝑗 the characteristic
size of the periodic cell along direction 𝑗, and 𝐤 = 𝑘𝑖𝐞𝑖 ∈ C2 the
complex wave vector written in terms of the plane canonical base
{𝐞1, 𝐞2}. Eqs. (4) can be concisely rephrased as

̊ ̊
𝐂(𝐤, 𝑠)𝐪(𝐤, 𝑠) = 𝐟 (𝐤, 𝑠), (5)



F. Fantoni et al.

I
n
t
i
t
p
F
p

𝐧

a
s
t
h
m
e
r

B

A
f
s
c
n

t
t
b
d

𝐌

a
b
o
r
[

w

𝐃

A
h

3

d
u
t
d
i

3

t

𝐪

International Journal of Solids and Structures 304 (2024 ) 113015 
with �̊�(𝐤, 𝑠) =
(

�̊�(𝑓 )(𝐤, 𝑠) �̊�(𝑏)(𝐤, 𝑠) �̊�(𝐤, 𝑠)
)𝑇 , 𝐟 (𝐤, 𝑠) =

(

𝐟 (𝑓 )(𝐤, 𝑠) 𝐟 (𝑏)(𝐤, 𝑠) 𝟎
)𝑇

and

𝐂(𝐤, 𝑠) =
⎡

⎢

⎢

⎢

⎣

𝑠2 𝐌(𝑓 )
𝑠 + 𝐃(𝑓 )(𝐤) 𝟎 𝐊(𝑓 )

𝑠𝑟

𝟎 𝑠2 𝐌(𝑏)
𝑠 + 𝐃(𝑏)(𝐤) 𝐊(𝑏)

𝑠𝑟

𝐊(𝑓 )
𝑟𝑠 𝐊(𝑏)

𝑟𝑠 𝑠2
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟

)

+𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟

⎤

⎥

⎥

⎥

⎦

,

(6)

where 𝐃(𝓁)(𝐤) = 𝐊(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗 exp(𝜄𝐱𝑗 ⋅ 𝐤) +𝐊−(𝓁)

𝑠𝑠𝑗 exp(𝜄𝐱𝑗 ⋅ 𝐤)−1
]

with
𝓁 = 𝑓, 𝑏. From the third of Eqs. (4) it is possible to express the vector
�̊�(𝐤, 𝑠) collecting the degrees of freedom of the resonators in terms of
the ones of the lattices �̊�(𝓁)(𝐤, 𝑠). In this way, the system (4) can be
condensed into the form
[

𝑠2𝐌(𝑓 )
𝑠 −𝐊(𝑓 )

𝑠𝑟 𝐁−1(𝑠)𝐊(𝑓 )
𝑟𝑠 + 𝐃(𝑓 )(𝐤)

]

�̊�(𝑓 )(𝐤, 𝑠) −
[

𝐊(𝑓 )
𝑠𝑟 𝐁−1(𝑠)𝐊(𝑏)

𝑟𝑠
]

�̊�(𝑏)(𝐤, 𝑠)
= 𝐟 (𝑓 )𝑠 (𝐤, 𝑠),

[

𝑠2𝐌(𝑏)
𝑠 −𝐊(𝑏)

𝑠𝑟 𝐁
−1(𝑠)𝐊(𝑏)

𝑟𝑠 + 𝐃(𝑏)(𝐤)
]

�̊�(𝑏)(𝐤, 𝑠) −
[

𝐊(𝑏)
𝑠𝑟 𝐁

−1(𝑠)𝐊(𝑓 )
𝑟𝑠

]

�̊�(𝑓 )(𝐤, 𝑠)

= 𝐟 (𝑏)𝑠 (𝐤, 𝑠) (7)

with

𝐁(𝑠) = 𝑠2
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

+𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟 . (8)

The nonnull components of the matrix 𝐁−1(𝑠) = adj (𝐁) ∕det [𝐁], with
symbol adj(⋅) denoting the adjugate of a matrix, are characterized by
poles at infinity in correspondence of the zeros of the denominator (if
they do not overlap to the zeros of the numerator) associated to the
presence of the resonators. Such frequencies, as shown in the following,
approximate the central frequencies of the band gaps which appear in
the frequency spectrum of the metamaterial.

In order to investigate the propagation and the spatial attenuation
of Bloch waves inside the metamaterial, one imposes that 𝑠 = 𝜄 𝜔, with
𝜔 ∈ R the circular frequency, and the wave vector 𝐤 is expressed in
terms of its real and imaginary components 𝐤𝑅 ∈ R2 and 𝐤𝐼 ∈ R2 as
𝐤 = 𝐤𝑅 + 𝜄𝐤𝐼 =

(

𝑘1𝑅 + 𝜄 𝑘1𝐼
)

𝐞1 +
(

𝑘2𝑅 + 𝜄 𝑘2𝐼
)

𝐞2. The real component
𝐤𝑅 is directed perpendicularly to planes of constant phase, while imag-
inary component 𝐤𝐼 is normal to planes with constant amplitude, thus
allowing the definition of two unit vectors

𝐧𝑅 =
𝐤𝑅

‖𝐤𝑅‖2
= cos𝜃𝑅𝐞1 + sin𝜃𝑅𝐞2, 𝐧𝐼 =

𝐤𝐼
‖𝐤𝐼‖2

= cos𝜃𝐼𝐞1 + sin𝜃𝐼𝐞2,

(9)

which represent the direction of propagation and spatial attenuation,
respectively, of the Bloch wave. Furthermore, real and imaginary carte-
sian components of the wave vector can be explicited in terms of 𝜃𝑅
and 𝜃𝐼 as 𝑘1𝑅 = 𝑘𝑅 𝐧𝑅 ⋅ 𝐞𝟏 = 𝑘𝑅 cos𝜃𝑅, 𝑘2𝑅 = 𝑘𝑅 𝐧𝑅 ⋅ 𝐞𝟐 = 𝑘𝑅 sin𝜃𝑅,
𝑘1𝐼 = 𝑘𝐼 𝐧𝐼 ⋅ 𝐞𝟏 = 𝑘𝐼 cos𝜃𝐼 and 𝑘2𝐼 = 𝑘𝐼 𝐧𝐼 ⋅ 𝐞𝟐 = 𝑘𝐼 sin𝜃𝐼 . When
𝐧𝑅 ≠ 𝐧𝐼 the wave is denoted as non homogeneous and the matrix
𝐂(𝐤, 𝜔) of Eq. (6) is an exponential polynomial in 𝐤 with matricial coef-
ficients. As a consequence of this, the associated characteristic equation
det [𝐂(𝐤, 𝜔)] = 0 is an exponential polynomial in 𝐤. Denoting with
(𝐤, 𝜔) = det [𝐂(𝐤, 𝜔)] = 𝑅(𝐤, 𝜔) + 𝜄𝐼 (𝐤, 𝜔) the complex characteristic
polynomial, the metamaterial frequency spectrum is obtained from the
intersection of two hypersurfaces immersed in R5, derived by imposing
the vanishing of the real and imaginary parts of  , namely
{

𝑅(𝑘𝑅, 𝑘𝐼 , 𝜃𝑅, 𝜃𝐼 , 𝜔) = 0
𝐼 (𝑘𝑅, 𝑘𝐼 , 𝜃𝑅, 𝜃𝐼 , 𝜔) = 0

(10)

n particular, if directions of propagation and attenuation are fixed,
amely 𝜃𝑅 and 𝜃𝐼 are known, the frequency spectrum is obtained
hrough the intersection of two surfaces immersed in R3. In Appendix A
t is shown how the matrix 𝐃(𝓁)(𝐤) can be expressed in terms of
he Floquet multipliers and, consequently, how Eq. (5) for the free
ropagation case becomes a polynomial eigenproblem in the complex
loquet multipliers with, in general, non integer exponents. When the
ropagation direction 𝐧 coincides with the attenuation one 𝐧 , namely
𝑅 𝐼
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𝑅 = 𝐧𝐼 = 𝐧, or 𝜃𝑅 = 𝜃𝐼 = 𝜃, the wave is denoted as homogeneous and
the wave vector can be written as 𝐤 =

(

𝑘𝑅 + 𝜄 𝑘𝐼
)

𝐧 = 𝑘𝐧 ∈ C2, with
𝑘 the complex wave number. In this case, the complex characteristic
polynomial is (𝑘,𝐧, 𝜔) and the frequency spectrum is obtained, once
gain, through the intersection of two hypersurfaces immersed in R5

howing difficulties analogous to the ones previously described for
he non homogeneous waves. Once again, in Appendix A it is shown
ow, once the matrix 𝐃(𝓁)(𝐤) is expressed in terms of a single Floquet
ultiplier, it results in an exponential polynomial with non integer

xponents unless the propagation direction 𝐧 coincides with one of the
eciprocal lattice’s periodicity directions.

Finally, in the simpler case in which only the propagation of the
loch wave is investigated, the wave vector 𝐤 is such that 𝐤 ∈ R2, and,

since 𝑠 = 𝜄𝜔, Eq. (5) under the free propagation condition, becomes a
quadratic eigenproblem parameterized in 𝐤, where 𝜔 is the eigenvalue,
namely
(

𝐊(𝐤) − 𝜔2𝐌
)

�̊�(𝐤, 𝜔2) = 𝟎, (11)

with

𝐊(𝐤) =
⎡

⎢

⎢

⎢

⎣

𝐃(𝑓 )(𝐤) 𝟎 𝐊(𝑓 )
𝑠𝑟

𝟎 𝐃(𝑏) 𝐊(𝑏)
𝑠𝑟

𝐊(𝑓 )
𝑟𝑠 𝐊(𝑏)

𝑟𝑠 𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟

⎤

⎥

⎥

⎥

⎦

, 𝐌 =

⎡

⎢

⎢

⎢

⎣

𝐌(𝑓 )
𝑠 𝟎 𝟎
𝟎 𝐌(𝑏)

𝑠 𝟎
𝟎 𝟎 𝐌(𝑓 )

𝑟 +𝐌(𝑏)
𝑟

⎤

⎥

⎥

⎥

⎦

.

(12)

nalogously to what was previously done, expressing the degrees of
reedom of the resonators in terms of the ones of the lattices, the
ystem (11) can be condensed and characterized by a matrix whose
omponents show singularities in correspondence of the resonators
atural frequencies.

It is worth noting that the procedure detailed in the present Section
o investigate the dispersion properties of the metamaterial can be par-
icularized and simplified for the case of a discrete lattice constituted
y a single layer without resonators. In this case, in fact, the Eqs. (1)
escribing the dynamics of the system reduce to

𝑠 �̈� (𝑡) +𝐊𝑠𝑠 𝐮 (𝑡) +
∑

[𝑗]

[

𝐊+
𝑠𝑠𝑗

𝐮 +
[𝑗]
(𝑡) +𝐊−

𝑠𝑠𝑗
𝐮 −

[𝑗]
(𝑡)
]

= 𝐟𝑠 (𝑡), (13)

nd, after the application of a bilateral Laplace transform in time and a
ilateral -transform in space, with 𝑧𝑗 = exp(𝜄 𝐱𝑗 ⋅𝐤), spectral properties
f the Lagrangian system can be studied in the (𝐤, 𝑠)-space from the
esolution of the following eigenproblem

𝑠2 𝐌𝑠 + 𝐃(𝐤)
]

�̊�(𝐤, 𝑠) = 𝟎 (14)

ith

(𝐤) = 𝐊𝑠𝑠 +
∑

[𝑗]

[

𝐊+
𝑠𝑠𝑗

exp(𝜄𝐱𝑗 ⋅ 𝐤) +𝐊−
𝑠𝑠𝑗

exp(𝜄𝐱𝑗 ⋅ 𝐤)−1
]

.

ll the considerations previously made for non homogeneous and
omogeneous waves are obviously still valid for this simpler case.

. Continualization schemes

In the following, Section 3.1 is dedicated to the presentation of the
ynamic high frequency continualization technique. It leads to contin-
um models characterized by integral-type or higher-order gradient-
ype governing equations. The low frequency continualization proce-
ure is successively described in Section 3.2, this last providing the
dentification of a first-order continuum.

.1. High frequency continualization

One defines the continuous field �̃�(𝐤, 𝑡) =
(

�̃�(𝑓 )(𝐤, 𝑡) �̃�(𝑏)(𝐤, 𝑡) �̃�(𝐤, 𝑡)
)𝑇

hrough the following definition

̃ (𝐤, 𝑡) = 
[

𝐪(𝐱, 𝑡)
]

≐ 
[

𝐪 (𝑡)
]

|

| , (15)

|𝑧𝑗=exp(𝜄𝐱𝑗 ⋅𝐤)
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where  is the space Fourier transform with complex argument, defined
for a generic vector function 𝐲(𝐱, 𝑡) as  [𝐲(𝐱, 𝑡)] = ∫R2 𝐲(𝐱, 𝑡)exp(−𝜄𝐤 ⋅
𝐱)d𝐱 ≐ �̃�(𝐤, 𝑡). The introduction of the 𝐤-dependent regularization
kernel 𝐹−1(𝐤), defined as

𝐹−1(𝐤) ≐
∏

[𝑗]

exp(𝜄𝐱𝑗 ⋅ 𝐤) − exp(−𝜄𝐱𝑗 ⋅ 𝐤)
2𝜄𝐱𝑗 ⋅ 𝐤

=
∏

[𝑗]

sinh(𝜄𝐱𝑗 ⋅ 𝐤)
𝜄𝐱𝑗 ⋅ 𝐤

=
∏

[𝑗]

sin(𝐱𝑗 ⋅ 𝐤)
𝐱𝑗 ⋅ 𝐤

=
∏

[𝑗]

sinc(𝐱𝑗 ⋅ 𝐤) (16)

allows defining the non-local upscaling relation in the 𝐤-space

�̃�𝑅(𝐤, 𝑡) ≐ 𝐹−1(𝐤)�̃�(𝐤, 𝑡) = 𝐹−1(𝐤)
[

𝐪 (𝑡)
]

|

|

|𝑧𝑗=exp(𝜄𝐱𝑗 ⋅𝐤)
. (17)

The regularization kernel (16) is the one characterizing the enhanced
continualization procedure (see Fig. 2), which differs from the standard-
like continualization scheme for which the regularization kernel is
unitary. Using the inverse Fourier transform with complex argument
−1[�̃�(𝐤, 𝑡)] = 1

(2𝜋𝑖)2 ∫C2
𝜁
�̃�(𝐤, 𝑡)exp(𝜄𝐤 ⋅ 𝐱)d𝐤 ≐ 𝐲(𝐱, 𝑡) where subgroup

C2
𝜁 =

{

𝐤 = 𝑘𝑗𝐞𝑗 ∶ 𝑘𝑗 ∈ lim𝜌𝑗→∞
(

𝜁𝑗 − 𝜄𝜌𝑗 ; 𝜁𝑗 + 𝜄𝜌𝑗
)

}

, with 𝜁𝑗 a suitably
selected real constant within the domain of holomorphy of function
�̃�(𝐤, 𝑡), the field �̃�𝑅(𝐤, 𝑡) can be transformed into a continuous field of
physical space and time as

𝐪𝑅(𝐱, 𝑡) = −1 [𝐹−1(𝐤)�̃�(𝐤, 𝑡)
]

= −1 [𝐹−1(𝐤)
]

∗ −1 [�̃�(𝐤, 𝑡)
]

= −1 [𝐹−1(𝐤)
]

∗ 𝐪(𝐱, 𝑡), (18)

where symbol ∗ denotes the convolution product with respect to the
spatial variable. If the inverse Fourier transform of the kernel 𝐹−1(𝐤) is
made explicit, the regularized continuous field 𝐪𝑅(𝐱, 𝑡) becomes

𝐪𝑅(𝐱, 𝑡) = 𝜋
2 ∫R2

2
∏

𝑛=1
rect

(

𝑥𝑛 − 𝜉𝑛
2

)

𝐪(𝝃, 𝑡)𝑑𝝃

= 𝜋
2 ∫

2
∏

𝑛=1
rect

(

𝑥𝑛 − 𝜉𝑛
2

)

𝐪(𝝃, 𝑡)𝑑𝝃, (19)

with  denoting the periodic cell in the continuum model and rect(∙)
the rectangular function with compact support of size .1 By means of
definition (15), system (4) becomes

𝐌(𝓁)
𝑠

̈̃𝐮(𝓁)(𝐤, 𝑡) +𝐊(𝓁)
𝑠𝑟 �̃�(𝐤, 𝑡) + 𝐃(𝓁)(𝐤) �̃�(𝓁)(𝐤, 𝑡) = 𝐟 (𝓁)𝑠 (𝐤, 𝑡),

(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
) ̈̃𝐯(𝐤, 𝑡) +𝐊(𝑓 )

𝑟𝑠 �̃�(𝑓 )(𝐤, 𝑡) +𝐊(𝑏)
𝑟𝑠 �̃�(𝑏)(𝐤, 𝑡)

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
)

�̃�(𝐤, 𝑡) = 𝟎. (21)

where 𝓁 = 𝑓, 𝑏 and 𝐟 (𝓁)𝑠 (𝐤, 𝑡) is the Fourier transform of the corre-
sponding continuous field in 𝐱 and 𝑡. Through (17), system (21) can

1 In the framework of pseudo-differential operators, as introduced in for-
ula (24), it is worth stressing that from the inverse Fourier transform of the
apping (17) and taking into account the definition (15) in the physical space,

he relation between the directional derivative of the regularized continuum
ield and the effective nodal displacement in the discrete model is given in the
orm

⎛

⎜

⎜

⎝

∏

[𝑗]

𝐧𝑗 ⋅ 𝐃𝐪𝑅(𝐱, 𝑡)
⎞

⎟

⎟

⎠

|

|

|

|

|

|

|𝐱

≐
∏

[𝑗]

exp(𝑑𝑗𝐧𝑗 ⋅ 𝐃) − exp(−𝑑𝑗𝐧𝑗 ⋅ 𝐃)
2𝑑𝑗

𝐪 (𝑡), (20)

with 𝐧𝑗 the unit vector identifying the 𝑗th coordination line, 𝐃 = [𝐷1 𝐷2]𝑇 , and
0 the position of the generic reference cell centroid. The term exp(𝑑𝑗𝐧𝑗 ⋅ 𝐃)
lays the role of a shift operator according to Jordán (1965) and Rota (1964).
n the one-dimensional case, Eq. (20) becomes the definition of the first
erivative obtained using the finite difference method with a second-order
ccuracy. In the two-dimensional case it has a similar meaning in the sense
hat the product of the directional first derivatives of the macrofield along
he lattice coordination lines is set equal to the product of the associated
irectional first derivatives of the discrete field described as a finite difference

ith a second order accuracy.
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be written as a set of ordinary differential equations in �̃�𝑅(𝐤, 𝑡). It reads

𝐌(𝓁)
𝑠 𝐹 (𝐤) ̈̃𝐮(𝓁)𝑅(𝐤, 𝑡) +𝐊(𝓁)

𝑠𝑟 𝐹 (𝐤)�̃�𝑅(𝐤, 𝑡)
+𝐃(𝓁)(𝐤)𝐹 (𝐤)�̃�(𝓁)𝑅(𝐤, 𝑡) = 𝐟 (𝓁)𝑠 (𝐤, 𝑡),

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

𝐹 (𝐤) ̈̃𝐯𝑅(𝐤, 𝑡) +𝐊(𝑓 )
𝑟𝑠 𝐹 (𝐤)�̃�(𝑓 )𝑅(𝐤, 𝑡) +𝐊(𝑏)

𝑟𝑠 𝐹 (𝐤)�̃�(𝑏)𝑅(𝐤, 𝑡) +

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
)

𝐹 (𝐤)�̃�𝑅(𝐤, 𝑡) = 𝟎. (22)

The set of integro-differential equations governing the dynamics of the
system in the physical 𝐱-space and time is finally obtained by an inverse
Fourier transform of (22), namely

−1 [𝐌(𝓁)
𝑠 𝐹 (𝐤)

[

�̈�(𝓁)𝑅(𝐱, 𝑡)
]

+ 𝐊(𝓁)
𝑠𝑟 𝐹 (𝐤)

[

𝐯𝑅(𝐱, 𝑡)
]

+ 𝐃(𝓁)(𝐤)𝐹 (𝐤)
[

𝐮(𝓁)𝑅(𝐱, 𝑡)
]]

= −1 [𝐟 (𝓁)𝑠 (𝐤, 𝑡)
]

,

−1 [(𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

𝐹 (𝐤) [�̈�𝑅(𝐱, 𝑡)] +𝐊(𝑓 )
𝑟𝑠 𝐹 (𝐤)

[

𝐮(𝑓 )𝑅(𝐱, 𝑡)
]

+ 𝐊(𝑏)
𝑟𝑠 𝐹 (𝐤)

[

𝐮(𝑏)𝑅(𝐱, 𝑡)
]

+

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
)

𝐹 (𝐤)
[

𝐯𝑅(𝐱, 𝑡)
]]

= 𝟎. (23)

It is worth noting that 𝐤-dependent terms in (23) are actually dependent
on variable 𝜄𝐤 and hence, they can be renamed as 𝐹 (𝐤) = 𝐹▵(𝜄𝐤),
𝐃(𝓁)(𝐤) = 𝐃(𝓁)

▵ (𝜄𝐤). Following Hörmander (2007), Kohn (1973), Baci-
galupo and Gambarotta (2019), it is possible to define the following
pseudo-differential operators uniquely

−1 [𝐌(𝓁)
𝑠 𝐹▵(𝜄𝐤)

[

�̈�(𝓁)𝑅(𝐱, 𝑡)
]]

≐ 𝐌(𝓁)
𝑠 𝐹▵

[

𝐷1, 𝐷2
]

�̈�(𝓁)𝑅(𝐱, 𝑡),

−1 [𝐊(𝓁)
𝑠𝑟 𝐹▵(𝜄𝐤)

[

𝐯𝑅(𝐱, 𝑡)
]]

≐ 𝐊(𝓁)
𝑠𝑟 𝐹▵

[

𝐷1, 𝐷2
]

𝐯𝑅(𝐱, 𝑡),

−1
[

𝐃(𝓁)
▵ (𝜄𝐤)𝐹▵(𝜄𝐤)

[

𝐮(𝓁)𝑅(𝐱, 𝑡)
]

]

≐ 𝐃(𝓁)
▵

[

𝐷1, 𝐷2
]

𝐹▵

[

𝐷1, 𝐷2
]

𝐮(𝓁)𝑅(𝐱, 𝑡),

−1 [(𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟

)

𝐹▵(𝜄𝐤) [�̈�𝑅(𝐱, 𝑡)]
]

≐
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟

)

𝐹▵

[

𝐷1, 𝐷2
]

�̈�𝑅(𝐱, 𝑡),

−1 [𝐊(𝑓 )
𝑟𝑠 𝐹▵(𝜄𝐤)

[

𝐮(𝑓 )𝑅(𝐱, 𝑡)
]]

≐ 𝐊(𝑓 )
𝑟𝑠 𝐹▵

[

𝐷1, 𝐷2
]

𝐮(𝑓 )𝑅(𝐱, 𝑡),

−1 [𝐊(𝑏)
𝑟𝑠 𝐹▵(𝜄𝐤)

[

𝐮(𝑏)𝑅(𝐱, 𝑡)
]]

≐ 𝐊(𝑏)
𝑟𝑠 𝐹▵

[

𝐷1, 𝐷2
]

𝐮(𝑏)𝑅(𝐱, 𝑡),

−1 [(𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟

)

𝐹▵(𝜄𝐤)
[

𝐯𝑅(𝐱, 𝑡)
]]

≐
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟

)

𝐹▵ [𝐷1, 𝐷2] 𝐯𝑅(𝐱, 𝑡), (24)

where 𝐷𝑘𝐲(𝐱, 𝑡) = 𝜕𝐲(𝐱, 𝑡)∕𝜕𝑥𝑘, with 𝐲(𝐱, 𝑡) a generic vector-valued
continuous field of 𝐱 and 𝑡 and 𝑘 = 1, 2. The pseudo-differential operator
𝐹▵(𝐷1, 𝐷2) is plotted in terms of the pseudo-variables 𝐷1 and 𝐷2 in
Fig. 2. In the light of definition (24), the system (23) can equivalently
be written as

𝐌(𝓁)
𝑠 𝐹▵

[

𝐷1, 𝐷2
]

�̈�(𝓁)𝑅(𝐱, 𝑡) +𝐊(𝓁)
𝑠𝑟 𝐹▵

[

𝐷1, 𝐷2
]

𝐯𝑅(𝐱, 𝑡)

+𝐃(𝓁)
▵

[

𝐷1, 𝐷2
]

𝐹▵
[

𝐷1, 𝐷2
]

𝐮(𝓁)𝑅(𝐱, 𝑡) = 𝐟 (𝓁)𝑠 (𝐱, 𝑡),
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

𝐹▵
[

𝐷1, 𝐷2
]

�̈�𝑅(𝐱, 𝑡) +𝐊(𝑓 )
𝑟𝑠 𝐹▵

[

𝐷1, 𝐷2
]

𝐮(𝑓 )𝑅(𝐱, 𝑡)
+𝐊(𝑏)

𝑟𝑠 𝐹▵
[

𝐷1, 𝐷2
]

𝐮(𝑏)𝑅(𝐱, 𝑡) +

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
)

𝐹▵
[

𝐷1, 𝐷2
]

𝐯𝑅(𝐱, 𝑡) = 𝟎. (25)

The integral-type non-local continuum field Eqs. (23), or, equivalently,
their pseudo-differential form (25), once transformed in the (𝐤, 𝑠)-space
by means of a Fourier transform with complex argument in space and a
bilateral Laplace transform in time, define a frequency band structure
that is identical to the one of the corresponding discrete lattice material.
The spectrum identity follows from definition (15) and it subsists within
the regularization kernel’s domain of holomorphy.

In order to obtain the field equations of generalized gradient-type
higher-order continuum models, the 𝐤-dependent integral kernels ap-
pearing in the equations system (22) can be formally expanded in
Taylor series as

𝐹 (𝐤) ∽
∑

𝑟∈N

∑

|𝛼|=𝑟

1
𝑟!

(

𝑟
𝑝1 + 𝑝2

)

𝐹,𝛼
|

|𝐤=𝟎 𝐤
𝛼 =

=
∑

𝑟∈N

∑

|𝛼|=𝑟

1
𝑝1!𝑝2!

𝜕|𝛼|𝐹
𝜕𝑘𝛼1𝜕𝑘𝛼2 ...𝜕𝑘𝛼𝑟

|

|

|

|

|𝐤=𝟎
𝑘𝛼1𝑘𝛼2 ...𝑘𝛼𝑟

∑

𝑝1 ,𝑝2∈N

1
𝑝1!𝑝2!

𝜕𝑝1+𝑝2𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝑘𝑝11 𝑘𝑝22 ,

𝐃(𝓁)(𝐤)𝐹 (𝐤) ∽
∑ ∑ 1

𝑟!

(

𝑟
𝑝 + 𝑝

)

(𝐃(𝓁)𝐹 ),𝛼
|

|

|𝐤=𝟎
𝐤𝛼 =
𝑟∈N |𝛼|=𝑟 1 2
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Fig. 2. (a) 𝐹▵ in terms of 𝐷1 and 𝐷2. (b) Magnitude of 𝐹 vs |𝑘1𝑑1| and arg(𝑘1𝑑1) (blue) and its Taylor series expansion of order 𝑟 = 64 (red). (c) Argument of 𝐹 vs |𝑘1𝑑1| and
arg(𝑘1𝑑1) (blue) and its Taylor series expansion of order 𝑟 = 64 (red). (d) Zoom of the argument of 𝐹 vs |𝑘1𝑑1| and arg(𝑘1𝑑1) (blue) and its Taylor series expansion of order 𝑟 = 64
(red).
=
∑

𝑟∈N

∑

|𝛼|=𝑟

1
𝑝1!𝑝2!

𝜕|𝛼|𝐃(𝓁)𝐹
𝜕𝑘𝛼1𝜕𝑘𝛼2 ...𝜕𝑘𝛼𝑟

|

|

|

|

|𝐤=𝟎
𝑘𝛼1𝑘𝛼2 ...𝑘𝛼𝑟

=
∑

𝑝1 ,𝑝2∈N

1
𝑝1!𝑝2!

𝜕𝑝1+𝑝2𝐃(𝓁)𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝑘𝑝11 𝑘𝑝22 , (26)

where 𝛼 is a multi-index of length |𝛼| = 𝑟 and such that 𝛼1, 𝛼2,… , 𝛼𝑟 =
1, 2, while 𝑝1 and 𝑝2 are integer numbers which measure the repetitions
of 𝑘1 and 𝑘2 occurring in the differential operator of order |𝛼| = 𝑝1+𝑝2 =

𝑟 and
(

𝑟
𝑝1 + 𝑝2

)

is the multinomial coefficient. Since (𝜄𝐤)𝛼 = 𝜄|𝛼|𝐤𝛼 =

𝜄𝑟 𝑘𝑝11 𝑘𝑝22 , the system (22) becomes

∑

𝑝1 ,𝑝2∈N

1
𝜄𝑟𝑝1!𝑝2!

(

𝜄𝑟 𝑘𝑝11 𝑘𝑝22
)

{

𝐌(𝓁)
𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

̈̃𝐮(𝓁)𝑅(𝐤, 𝑡)

+ 𝐊(𝓁)
𝑠𝑟

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̃�𝑅(𝐤, 𝑡)+

+ 𝜕𝑟𝐃(𝓁)𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̃�(𝓁)𝑅(𝐤, 𝑡)
}

= 𝐟 (𝓁)𝑠 (𝐤, 𝑡),

∑

𝑝1 ,𝑝2∈N

1
𝜄𝑟𝑝1!𝑝2!

(

𝜄𝑟 𝑘𝑝11 𝑘𝑝22
)

{

(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
) 𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

̈̃𝐯𝑅(𝐤, 𝑡)

+ 𝐊(𝑓 )
𝑟𝑠

𝜕𝑟𝐹
𝑝1 𝑝2

|

|

|

|

�̃�(𝑓 )𝑅(𝐤, 𝑡)+

𝜕𝑘1 𝜕𝑘2 |

|𝐤=𝟎

6 
+𝐊(𝑏)
𝑟𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̃�(𝑏)𝑅(𝐤, 𝑡)

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
) 𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̃�𝑅(𝐤, 𝑡)
}

= 𝟎. (27)

Recalling the inverse Fourier transform property

−1 [(𝜄𝑟 𝑘𝑝11 𝑘𝑝22 )
[

𝐲𝑅(𝐱, 𝑡)
]]

= −1 [(𝜄𝑟 𝑘𝑝11 𝑘𝑝22 )�̃�𝑅(𝐤, 𝑡)
]

=
𝜕𝑟𝐲𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

(28)

the system (27), after some simple manipulations, can be written in the
(𝐱, 𝑡)-space as

∑

𝑝1 ,𝑝2∈N

1
𝜄𝑟+2𝑝1!𝑝2!

{

𝐊(𝓁)
𝑠𝑟

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐯𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

+ 𝜕𝑟𝐃(𝓁)𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐮(𝓁)𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

}

+

+ 𝐟 (𝓁)𝑠 (𝐱, 𝑡) = 𝐌(𝓁)
𝑠

∑

𝑝1 ,𝑝2∈N

1
𝜄𝑟𝑝1!𝑝2!

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟�̈�(𝓁)𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

,

∑

𝑝1 ,𝑝2∈N

1
𝜄𝑟+2𝑝1!𝑝2!

{

𝐊(𝑓 )
𝑟𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐮(𝑓 )𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

+ 𝐊(𝑏)
𝑟𝑠

𝜕𝑟𝐹
𝑝1 𝑝2

|

|

|

|

𝜕𝑟𝐮(𝑏)𝑅(𝐱, 𝑡)
𝑝1 𝑝2

+

𝜕𝑘1 𝜕𝑘2 |

|𝐤=𝟎
𝜕𝑥1 𝜕𝑥2



F. Fantoni et al.

E
t
d
o
w
w
c
n
c
t
T
w

𝐂

w

𝐂

𝐂

𝐂

a
c

𝐯

T
[

−
[

−

T

z
r
b
t
b
a
g
b

International Journal of Solids and Structures 304 (2024 ) 113015 
+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
) 𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐯𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

}

=
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

∑

𝑝1 ,𝑝2∈N

1
𝜄𝑟𝑝1!𝑝2!

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟�̈�𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

. (29)

qs. (29) represent the infinite-order field equations of a gradient-
ype continuum model expressed in the (𝐱, 𝑡)-space and, because of
efinition (15), they are characterized by the same frequency spectrum
f the corresponding Lagrangian system. This happens, once again,
ithin the domain of holomorphy of the integral kernel 𝐹 (𝐤). It is
orth observing that the obtained field equations for the gradient-type

ontinuum model are characterized by both constitutive and inertial
on-localities, these last disappearing in the case of a standard-like
ontinualization with a unitary regularization kernel. In order to obtain
he differential field equations of a continuum model of order 𝑁 , the
aylor series expansions (26) need to be truncated at the order 𝑟 = 2𝑁 ,
hich is denoted as continualization order. System (29) thus becomes

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝜄𝑟+2𝑝1!𝑝2!

{

𝐊(𝓁)
𝑠𝑟

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐯𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

+ 𝜕𝑟𝐃(𝓁)𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐮(𝓁)𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

}

+

+ 𝐟 (𝓁)𝑠 (𝐱, 𝑡) = 𝐌(𝓁)
𝑠

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝜄𝑟𝑝1!𝑝2!

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟�̈�(𝓁)𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

,

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝜄𝑟+2𝑝1!𝑝2!

{

𝐊(𝑓 )
𝑟𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐮(𝑓 )𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

+ 𝐊(𝑏)
𝑟𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐮(𝑏)𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

+

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
) 𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝜕𝑟𝐯𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

}

=
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝜄𝑟𝑝1!𝑝2!

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

⋅

⋅
𝜕𝑟�̈�𝑅(𝐱, 𝑡)
𝜕𝑥𝑝11 𝜕𝑥𝑝22

. (30)

By means of a Fourier transform in space with complex argument and
a Laplace transform in time, Eqs. (30) are written in the (𝐤, 𝑠)-space as

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22

{

𝐊(𝓁)
𝑠𝑟

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̊�𝑅(𝐤, 𝑠)

+ 𝜕𝑟𝐃(𝓁)𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̊�(𝓁)𝑅(𝐤, 𝑠)+

+𝐌(𝓁)
𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝑠2�̊�(𝓁)𝑅(𝐤, 𝑠)
}

= 𝐟 (𝓁)𝑠 (𝐤, 𝑠),

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22

{

𝐊(𝑓 )
𝑟𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̊�(𝑓 )𝑅(𝐤, 𝑠)

+ 𝐊(𝑏)
𝑟𝑠

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̊�(𝑏)𝑅(𝐤, 𝑠)+

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
) 𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̊�𝑅(𝐤, 𝑠)

+
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
) 𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝑠2�̊�𝑅(𝐤, 𝑠)
}

= 𝟎, (31)

which allows the investigation of the spectral response of the N-order

gradient-type continuum model. Analogously to what is done in the

7 
discrete case, the equations system (31) can be briefly written as

𝐂ℎ(𝐤, 𝑠)�̊�𝑅(𝐤, 𝑠) = 𝐟 (𝐤, 𝑠), (32)

with �̊�𝑅(𝐤, 𝑠) =
(

�̊�(𝑓 )𝑅(𝐤, 𝑠) �̊�(𝑏)𝑅(𝐤, 𝑠) �̊�𝑅(𝐤, 𝑠)
)𝑇 and 𝐟 (𝐤, 𝑠) =

(

𝐟 (𝑓 )(𝐤, 𝑠)

𝐟 (𝑏)(𝐤, 𝑠) 𝟎
)𝑇

. The matrix 𝐂ℎ(𝐤, 𝑠) reads

ℎ(𝐤, 𝑠) =
⎡

⎢

⎢

⎢

⎣

𝐂ℎ
𝐮(𝑓 )𝐮(𝑓 )

(𝐤, 𝑠) 𝟎 𝐂ℎ
𝐮(𝑓 )𝐯

(𝐤)
𝟎 𝐂ℎ

𝐮(𝑏)𝐮(𝑏)
(𝐤, 𝑠) 𝐂ℎ

𝐮(𝑏)𝐯
(𝐤)

𝐂ℎ
𝐯𝐮(𝑓 )

(𝐤) 𝐂ℎ
𝐯𝐮(𝑏)

(𝐤) 𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

⎤

⎥

⎥

⎥

⎦

(33)

ith

ℎ
𝐮(𝓁)𝐮(𝓁) (𝐤, 𝑠) =

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22

(

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝑠2𝐌(𝓁)
𝑠

+ 𝜕𝑟𝐃(𝓁)𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

)

,

𝐂ℎ
𝐮(𝓁)𝐯(𝐤) =

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22
𝜕𝑟𝐹

𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝐊(𝓁)
𝑠𝑟 ,

ℎ
𝐯𝐮(𝓁) (𝐤) =

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22
𝜕𝑟𝐹

𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝐊(𝓁)
𝑟𝑠 ,

ℎ
𝐯𝐯(𝐤, 𝑠) =

2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22
𝜕𝑟𝐹

𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

×
[

𝑠2
(

𝐌(𝑓 )
𝑟 +𝐌(𝑏)

𝑟
)

+
(

𝐊(𝑓 )
𝑟𝑟 +𝐊(𝑏)

𝑟𝑟
)]

. (34)

nd 𝓁 = 𝑓, 𝑏. Also for the continuum model at hand, the system (32)
an be condensed since �̊�𝑅(𝐤, 𝑠) results

̊𝑅(𝐤, 𝑠) = −
(

𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

)−1 [𝐂ℎ
𝐯𝐮(𝐟 ) (𝐤)�̊�

(𝑓 )(𝐤, 𝑠) + 𝐂ℎ
𝐯𝐮(𝐛) (𝐤)�̊�

(𝑏)(𝐤, 𝑠)
]

. (35)

he system (32) thus becomes

𝐂ℎ
𝐮(𝑓 )𝐮(𝑓 ) (𝐤, 𝑠) − 𝐂ℎ

𝐮(𝑓 )𝐯(𝐤)
(

𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

)−1 𝐂ℎ
𝐯𝐮(𝑓 ) (𝐤, 𝑠)

]

�̊�(𝑓 )𝑅(𝐤, 𝑠) +
[

𝐂ℎ
𝐮(𝑓 )𝐯(𝐤)

(

𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

)−1 𝐂ℎ
𝐯𝐮(𝑏) (𝐤, 𝑠)

]

�̊�(𝑏)𝑅(𝐤, 𝑠) = 𝐟 (𝑓 )(𝐤, 𝑠),

𝐂ℎ
𝐮(𝑏)𝐮(𝑏) (𝐤, 𝑠) − 𝐂ℎ

𝐮(𝑏)𝐯(𝐤)
(

𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

)−1 𝐂ℎ
𝐯𝐮(𝑏) (𝐤, 𝑠)

]

�̊�(𝑏)𝑅(𝐤, 𝑠) +
[

𝐂ℎ
𝐮(𝑏)𝐯(𝐤)

(

𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

)−1 𝐂ℎ
𝐯𝐮(𝑓 ) (𝐤, 𝑠)

]

�̊�(𝑓 )𝑅(𝐤, 𝑠) = 𝐟 (𝑏)(𝐤, 𝑠). (36)

he nonnull components of
(

𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

)−1 = adj
(

𝐂ℎ
𝐯𝐯(𝐤, 𝑠)

)

∕det
[

𝐂ℎ
𝐯𝐯

(𝐤, 𝑠)], show poles at infinity in terms of 𝑠 in correspondence of the
eros of the denominator which are associated to the presence of the
esonators. Such frequencies approximate the central one of certain
and gaps in the material frequency spectrum. As shown in Section 4,
he continuum model can accurately capture the amplitude of all the
and gaps of the metamaterial accurately, and the accuracy increases
s the order of continualization increases. In the case of non homo-
eneous waves, since 𝑠 = 𝜄 𝜔, with 𝜔 ∈ R, the frequency spectrum can
e obtained from the intersection of two hypersurfaces immersed in R5,

these lasts derived by imposing the vanishing of the real and imaginary
components of the characteristic polynomial ℎ(𝐤, 𝜔) = det[𝐂ℎ(𝐤, 𝜔)] =
ℎ
𝑅(𝐤, 𝜔) + 𝜄ℎ

𝐼 (𝐤, 𝜔). Therefore
{

ℎ
𝑅(𝑘𝑅, 𝑘𝐼 , 𝜃𝑅, 𝜃𝐼 , 𝜔) = 0

ℎ
𝐼 (𝑘𝑅, 𝑘𝐼 , 𝜃𝑅, 𝜃𝐼 , 𝜔) = 0

(37)

If the Bloch wave is homogeneous (𝐧𝑅 = 𝐧𝐼 = 𝐧, or 𝜃𝑅 = 𝜃𝐼 = 𝜃), the
dispersion spectrum of the continuum model results from the intersec-
tion of two hypersurfaces immersed in R4. Furthermore, by fixing the
propagation direction 𝐧 (or, equivalently, 𝜃), these two hypersurfaces
result to be immersed in R3, namely
{

ℎ
𝑅(𝑘𝑅, 𝑘𝐼 , 𝜔) = 0
ℎ (38)
𝐼 (𝑘𝑅, 𝑘𝐼 , 𝜔) = 0
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Alternatively, in all these cases the dispersion properties of the contin-
uum model can be directly obtained from the resolution of the poly-
nomial eigenproblem in 𝐤 parameterized in 𝜔 expressed as 𝐂ℎ(𝐤, 𝜔)�̊�𝑅
𝐤, 𝜔) = 𝟎, since now 𝐂ℎ(𝐤, 𝜔) is a polynomial in 𝐤 of order 2𝑁 .
inally, when the spatial attenuation of the wave is not taken into
ccount, the wave vector 𝐤 is such that 𝐤 ∈ R2 and dispersion spectra
an be derived from the resolution of the quadratic eigenproblem
arameterized in 𝐤 in the form 𝐂ℎ(𝐤, 𝜔)�̊�𝑅(𝐤, 𝜔) = 𝟎, where 𝜔 is the
igenvalue and �̊�𝑅(𝐤, 𝜔) the eigenvector. Once again, if the Lagrangian
ystem is constituted by a single layer without resonators, the field
quations of the gradient-type continuum model in the (𝐤, 𝑠)-space (31)
implify to
2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22

{

𝜕𝑟𝐃𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

�̊�𝑅(𝐤, 𝑠)

+ 𝐌𝑠
𝜕𝑟𝐹

𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝑠2�̊�𝑅(𝐤, 𝑠)
}

= 𝐟𝑠(𝐤, 𝑠), (39)

and the propagation and spatial attenuation of Bloch waves inside the
discrete lattice for the non homogeneous and homogeneous waves cases
can be investigated from the resolution of the eigenproblem
2𝑁
∑

𝑟=0

∑

𝑝1+𝑝2=𝑟

1
𝑝1!𝑝2!

𝑘𝑝11 𝑘𝑝22

{

𝜕𝑟𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

𝑠2𝐌𝑠

+ 𝜕𝑟𝐃𝐹
𝜕𝑘𝑝11 𝜕𝑘𝑝22

|

|

|

|

|

|𝐤=𝟎

}

�̊�𝑅(𝐤, 𝑠) = 𝟎. (40)

.2. Low frequency continualization

The procedure described in the following to obtain a low frequency
ontinualization scheme departs from an asymptotic approximation of
he frequency spectrum of the Lagrangian system. If the wave vector
s expressed in polar coordinates as 𝐤 = 𝑘𝑖𝐞𝑖 = 𝑟𝐧, with 𝑟 = ‖𝐤‖2
he radial coordinate, and 𝐧 = 𝑛𝑖𝐞𝑖 = cos𝜙 𝐞1 + sin𝜙 𝐞2 the unit vector
ritten in terms of the angular coordinate 𝜙 = arg

(

𝐤 ⋅ 𝐞1 + 𝜄𝐤 ⋅ 𝐞2
)

, for
fixed value of 𝜙, namely for a fixed wave propagation direction, the

haracteristic equation of the system (5) can be written as 𝐹 (𝜔(𝑟), 𝑟) = 0,
ince 𝑠 = 𝜄𝜔. Furthermore, if only the propagation of the wave is taken
nto account, since the considered material is elastic, the wave vector
s such that 𝐤 ∈ R2. To find an explicit solution for the characteristic
quation, an asymptotic expansion of 𝜔(𝑟) in powers of 𝑟 is employed
round 𝑟 = 0, namely

(𝑟) =
∑

𝑛∈N
𝜔[𝑛]𝑟𝑛 = 𝜔[0] + 𝜔[1]𝑟 + 𝜔[2]𝑟2 +⋯ + 𝜔[𝑛]𝑟𝑛 +⋯ (41)

he expansion (41) locally approximates the solution 𝜔 of the char-
cteristic equation in the vicinity of 𝑟 = 0, assuming that 𝜔(𝑟) has
ufficient regularity. The implicit characteristic function 𝐹 (𝜔(𝑟), 𝑟) can
hen be regarded as a composite function 𝐺(𝑟) of a single variable,
hose Taylor series expansion in powers of 𝑟 reads

𝐺(𝑟) =
∑

𝑛∈N

𝐺[𝑛]

𝑛!
𝑟𝑛 = 𝐺[0] + 𝐺[1]𝑟 + 𝐺[2]

2
𝑟2 +⋯ + 𝐺[𝑛]

𝑛!
𝑟𝑛 +⋯ , (42)

with 𝐺[𝑛] the 𝑛th order derivative of 𝐺 with respect to 𝑟 evaluated
at 𝑟 = 0. The chain rule’s recursive implementation is mandatory to
differentiate the composite function 𝐺(𝑟). For example, evaluating the
partial derivatives of 𝐹 at 𝜔 = 𝜔[0] and 𝑟 = 0, coefficients 𝐺[1] and 𝐺[2]

read

𝑟1 ∶ 𝐺[1] = 𝜔[1] 𝜕𝐹 (𝜔, 𝑟)
𝜕𝜔

+
𝜕𝐹 (𝜔, 𝑟)

𝜕𝑟
,

𝑟2 ∶ 𝐺[2] = 2𝜔[2] 𝜕𝐹 (𝜔, 𝑟)
𝜕𝜔

+ 𝜔[1]2 𝜕2𝐹 (𝜔, 𝑟)
𝜕𝜔2

+ 2𝜔[1] 𝜕2𝐹 (𝜔, 𝑟)
𝜕𝜔𝜕𝑟

+
𝜕2𝐹 (𝜔, 𝑟)

𝜕𝑟2
. (43)

The approximate characteristic equation 𝐺(𝑟) = 0 is asymptotically
satisfied equating to zero each coefficient 𝐺[𝑛] at the order 𝑟𝑛 in
sequence, starting from the generating solution at the zeroth-order
8 
of 𝐺[0](0) = 0. The procedure leads to a sequence of perturbation
quations, namely 𝑛th order equations, each in a single unknown,
hich is one of the sensitivities 𝜔[𝑛]. Details about the evaluation of

coefficients 𝐺[𝑛] can be found in Bacigalupo and Lepidi (2016), Fantoni
and Bacigalupo (2020), where a recursive form for the 𝑛th sensitivity
is provided. It is worth mentioning that, when a sensitivity 𝜔[𝑛]

𝑖 has
a multiplicity 𝑚 > 1, the successive 𝑚 − 1 perturbation equations
result undetermined and one must resort to the next 𝑚th perturbation
problem to find 𝜔[𝑛+1]

𝑖 . Focusing the attention on the root 𝜔 = 0,
which is always, by definition, a solution for the generating problem
and is such that 𝐺[1] results identically zero, the solution obtained
for the characteristic equation 𝐺(𝑟) = 0 accomplishing a second-order
approximation has been identified with the characteristic equation of
a first-order (Cauchy) equivalent continuum, reading

det
[

̃(𝐤⊗ 𝐤) − 𝜗𝜔2𝐈
]

= det
[

𝑟2̃(𝐧⊗ 𝐧) − 𝜗𝜔2𝐈
]

= 0. (44)

In Eq. (44), ̃ = �̃�𝑖𝑝𝑞1𝑞2𝐞𝑖 ⊗ 𝐞𝑝 ⊗ 𝐞𝑞1 ⊗ 𝐞𝑞2 and �̃�𝑖𝑝𝑞1𝑞2 = 𝐶𝑖𝑞1𝑝𝑞2 with
𝐶𝑖𝑞1𝑝𝑞2 the components of the unknown fourth-order elastic tensor , 𝜗
is the overall mass density, which is simply the total mass of the system
divided by the volume, and 𝐈 is the second-order identity operator.
Equating the quadratic Eq. (44) with the one obtained through the
single-parameter perturbative technique just described for the discrete
lattice, a nonlinear system of algebraic equations is obtained for each
wave propagation direction considered. Taking care to select those
solutions leading to a positive defined tensor , the quadratic eigen-
problem (44), where the frequency 𝜔 is the eigenvalue, gives the low
frequency approximation of the Lagrangian system spectrum. As shown
in the following, the slope of the acoustic branches is accurately cap-
tured by the identification here described for all the considered systems.
It is worth observing that the low frequency continualization can be
performed by identifying the spectrum of the first-order equivalent
medium with the one deriving from the gradient-type continuum model
(32) truncated at the second-order.

4. Illustrative example: the case of a multilayered antitetrachiral
metamaterial

The continualization technique described above is here particular-
ized to multilayered metamaterials having an antitetrachiral topology.
As known, antitetrachiral materials are phenomenologically character-
ized by a marked auxetic macroscopic elastic response (Bacigalupo
and Lepidi, 2016). The auxeticity, mechanically described by negative
values of the Poisson’s ratio, manifests with the fascinating and counter-
intuitive behavior of expanding laterally when a longitudinal stretch
is applied and, conversely, contracting laterally when these materials
are compressed (Dirrenberger et al., 2013; Prawoto, 2012; Greaves
et al., 2011; Alderson and Alderson, 2007; Evans and Alderson, 2000;
Lakes, 1991). One considers the bi-layered lattice material depicted
in Fig. 3: each layer is characterized by an antitetrachiral topology
in which four equi-spaced rings of radius 𝑅 are connected by four
ligaments of length 𝐿, cross sectional area 𝐴 and moment of inertia
𝐽 . One layer is rotated with respect to the other one by an angle equal
to 𝜋∕2 and the lattice coordination number is equal to 𝑛 = 4 for each
stratum. In antitetrachiral systems, the same side of the ligaments is
connected to adjacent rings, so opposite chiralities characterize the
nearest neighboring rings.

Adopting the following dimensionless parameters describing the
geometry of each antitetrachiral layer

𝜒𝑠 =

√

𝐽𝑠
𝑀𝑠 𝐿2

= 1
9
, 𝜌 =

√

𝐽
𝐴𝐿2

= 1
10

, 𝛿 = 2𝑅
𝐿

= 1
10

, (45)

nd the following dimensionless quantities characterizing the res-
nators

𝑑 =
𝜅𝑑 = 2 , 𝜍𝜃 =

𝜅𝜃
2
= 2 , 𝜒𝑟 =

√

𝐽𝑟
2
= 1 , (46)
𝐸 𝐿 100 𝐸 𝐿 100 𝑀𝑟 𝐿 10
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Fig. 3. Multilayered lattice material with antitetrachiral topology: front layer (a), back layer (b), and periodic cell of the back layer (c).
since 𝑠 = 𝜄𝜔, with 𝜔 ∈ R, and 𝐊(𝑓 )
𝑠𝑟 = 𝐊(𝑏)

𝑠𝑟 = 𝐊(𝑓 )
𝑟𝑠 = 𝐊(𝑏)

𝑟𝑠 , the
nonnull components of the matrix 𝐀 = 𝐊𝑠𝑟𝐁−1(𝑠)𝐊𝑟𝑠 (see Eq. (7)),
are plotted in Fig. 4 in terms of nondimensional frequency 𝜔∕𝜔𝑐 , with
𝜔𝑐 =

√

𝐸𝐴∕(𝑀𝑠𝐿), and of the ratio 𝜂 = 𝑀𝑟∕𝑀𝑠 between the mass
of each resonator and the mass of each stiff ring. If the surfaces of
Figs. 4-(a) and 4-(c) are sectioned in correspondence of 𝜂 = 1∕10, 𝜂 = 1,
and 𝜂 = 10 one obtains the curves of Figs. 4-(b) and 4-(d). In the
following, the parameter 𝜂 is set equal to 1, value in correspondence of
which both the components 𝐴11 and 𝐴33 show vertical asymptotes for a
ratio 𝜔∕𝜔𝑐 = 141∕100, which is one of the resonator’s nondimensional
natural frequency

√

𝑘𝑑∕𝑀𝑟∕𝜔𝑐 . Relative ring-resonator translational
and rotational stiffness 𝜅𝑑 and 𝜅𝜃 could be calibrated using simple
procedures as the one described in Appendix A of Bacigalupo and Gam-
barotta (2016). The explicit expression of the components of the mass
matrices 𝐌(𝓁)

𝑠 , 𝐌(𝓁)
𝑟 and of the stiffness-like matrices 𝐊(𝓁)

𝑠𝑠 , 𝐊(𝓁)
𝑠𝑟 = 𝐊(𝓁)

𝑟𝑠 ,
𝐊𝑟𝑟, 𝐊

+(𝓁)
𝑠𝑠𝑗 , and 𝐊−(𝓁)

𝑠𝑠𝑗 are detailed in Appendix A for the antitetrachiral
topology at hand. The free wave propagation of Bloch waves inside
the metamaterial is investigated employing Eq. (5) with null source
terms (𝐟 = 𝟎) or, alternatively, using system (10), since 𝑠 = 𝜄 𝜔. As an
illustrative example, Fig. 5 plots the frequency spectrum obtained in the
case of a homogeneous wave propagating along directions 𝐧 = 𝐞1 and
𝐧 = −𝐞1∕

√

2−𝐞2∕
√

2 where the spatial damping of the wave is not taken
into account (𝐤 ∈ R2). In particular, the nondimensional frequency
𝜔∕𝜔𝑐 is depicted in terms of the nondimensional curvilinear abscissa 𝜉.
As represented in Fig. 5-(b), this last runs from vertex A=(−𝜋,−𝜋) of the
first dimensionless Brillouin zone, to point B = (0, 0) till reaching the
point C = (𝜋, 0). Black curves refer to the discrete frequency spectrum
obtained by solving the quadratic eigenproblem (11) in 𝐤. The blue
curves refer to the fourth-order (2𝑁 = 4) standard-like continualization
case and plot the solution of the eigenproblem (32) with 𝐟 = 𝟎 and
unitary regularization kernel. Finally, red curves plot the frequency
spectrum of a second-order homogenized continuum obtained through
the enhanced technique and determined again by means of the eigen-
problem (32) with null source terms. The Figs. 5-(a),(c), and (d) refer
to the case of a single antitetrachiral layer without resonators, while
Figs. 5-(e), (g), and (h) refer to the case of a bi-layered antitetrachiral
lattice with resonators, as depicted in Fig. 3. As one can notice, both
the standard-like and the enhanced continualization techniques give
a perfect correspondence of spectrum with respect to the Lagrangian
case around 𝜉 = 0 and, as expected, they tend to move apart from
the discrete case as the curvilinear abscissa moves away from the
origin. Furthermore, it is evident that the standard-like continualization
brings to frequency spectra in which the curves are characterized by
a vertical tangent for 𝜉 = −

√

2𝜋 and 𝜉 = 𝜋, therefore infinite group
velocity. The enhanced continualization is not characterized by this
pathology, as stressed in the zooms of Figs. 5-(c),(d),(g), and (h). In
the case of a bi-layered antitetrachiral topology it is also possible to
note the opening of two low-frequency further band gaps with respect
to the single-layer case. Such band gaps have nondimensional central
frequencies equal to 𝜔∕𝜔𝑐 ≈ 118∕100 and 𝜔∕𝜔𝑐 ≈ 138∕100, this last
9 
approximately corresponding to one of the resonator’s nondimensional
natural frequency that, as already mentioned and showed in Fig. 4,
is equal to

√

𝑘𝑑∕𝑀𝑟∕𝜔𝑐 = 141∕100. The geometrical and material
parameters of the bilayered case could be subjected to an optimization
procedure to determine the parameters combination that maximizes,
for example, the amplitude of low-frequency band gaps (Fantoni et al.,
2023). This is, of course, out of the scope of the present work. Referring
to the enhanced continualization only, in Fig. 6 it is shown how,
increasing the continualization order, the frequency spectrum of the
continuum model converges more and more to the one of the discrete
model, this last represented by black curves. In particular, red curves
refer to a fourth-order continualization (2𝑁 = 4), green ones to an
eighth-order continualization (2𝑁 = 8), and magenta curves refer to
a sixteenth-order continualization (2𝑁 = 16). As is even more evident
from the zooms that have been made in the Figs. 6-(c),(d),(g), and (h),
the frequency spectrum of an eighth-order continuum model (magenta
curves) traces the discrete one almost throughout the entire range
of 𝜉. Figs. 6-(a),(c), and (d) correspond to the single-layer case with
antitetrachiral topology and no resonators, while Figs. 6-(e),(g), and
(h) plot the frequency spectrum for the bi-layered case with resonators.
Always referring to the homogeneous wave case, Fig. 7 plots the
absolute value of the phase velocity 𝑣𝐧𝑝 with respect the nondimen-
sional frequency 𝜔∕𝜔𝑐 for the discrete medium (black curves), and
the enhanced continuum model with continualization order 2𝑁 = 4
(red curves), 2𝑁 = 8 (green curves), and 2𝑁 = 16 (magenta curves).
Figs. 7-(a) and 7-(b) refer to the single-layer case, while Figs. 7-(c)
and 7-(d) to the bi-layered metamaterial. Figs. 7-(a) and 7-(c) plot the
phase velocity for 𝜉 ∈ [−

√

2𝜋, 0], while Figs. 7-(b) and 7-(d) plot the
phase velocity for 𝜉 ∈ [0, 𝜋]. It is confirmed, once again, the accuracy
reached by the continuum model in capturing the dynamic behavior of
the corresponding discrete medium. Furthermore, it is evident how the
amplitude of all the band gaps, here represented by gray rectangles, is
truthfully caught by the continuum models.

When spatial damping is taken into account, the wave vector has
complex components. Fig. 8 plots the frequency spectrum obtained
considering a wave propagation direction 𝐧 = 𝐞1. In particular, black
curves refer to the spectrum of the Lagrangian system, obtained by
solving a quadratic eigenproblem in the Floquet multiplier 𝜆𝐧 (see Ap-
pendix A Eq. (57)), and then recalling that the complex dimensionless
wave number is equal to 𝑙𝑟𝜅 = 𝑙𝑟(𝜅𝑅 + 𝜄 𝜅𝐼 ) = ln(𝜆𝐧)∕𝜄, where, from now
on, the reference length is defined as 𝑙𝑟 = 2𝐿. Red curves, instead, refer
to the fourth-order enhanced continualization scheme, for which the
frequency spectrum is obtained by solving the polynomial eigenprob-
lem (32) with null source terms. The Fig. 8 stresses again the very good
agreement obtained between the discrete and the homogenized model,
which can be further improved by increasing the continualization
order. Figs. 8-(a) and (b) refer to the single antitetrachiral layer, while
Figs. 8-(c) and (d) to the bi-layered case. Furthermore, Figs. 8-(b) and
(d) are planar representations in the plane (𝜅𝐼 , 𝜔) of the corresponding
three-dimensional spectra, inserted to make clear the frequency ranges
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Fig. 4. (a)–(c): nondimensional nonnull components of the matrix 𝐀 in terms of 𝜔∕𝜔𝑐 and the ratio 𝜂 = 𝑀𝑟∕𝑀𝑠. (b)–(d): sections of the corresponding 3D plots for 𝜂 = 1∕10 (cyan
curves), 𝜂 = 1 (blue curves), and 𝜂 = 10 (magenta curves).
in which there are band gaps, these lasts characterized by 𝜅𝐼 ≠ 0.
Finally, for the same wave propagation direction 𝐧 = 𝐞1, Fig. 9
represents the real and imaginary components of the Floquet multiplier
𝜆𝐧 = 𝜆𝐧𝑅 + 𝜄 𝜆𝐧𝐼 , obtained for the discrete model (black dots) by the
resolution of the quadratic eigenvalue problem 𝐂(𝜆𝐧, 𝜔)�̊�(𝜆𝑛, 𝜔) = 𝟎
and for the fourth-order enhanced continualization (red dots) by means
of the relation 𝜆𝐧 = exp(𝜄 𝜅 𝑙𝑟). Fig. 9-(a) refers to the single-layer
case, while Fig. 9-(b) to the bi-layered one. Both of them refer to a
dimensionless frequency 𝜔∕𝜔𝑐 ∈ [0, 1] and show that, when a curve
in the frequency spectrum belongs to the propagation plane (𝑘𝐼 = 0),
the components of the Floquet multiplier 𝜆𝐧 wrap around the unitary
cylinder, depicted in gray, while when 𝑘𝐼 ≠ 0 the components of 𝜆𝐧 do
not belong to the lateral surface of such cylinder.

The low frequency continualization described in Section 3.2 is here
employed to identify the equivalent first-order medium for the single-
layer case. Starting from the single-parameter perturbative technique
applied for the spectrum of the discrete system, the following asymp-
totic expansions for 𝜔±

𝑖 (𝑟), with 𝑖 = 1, 2, have been obtained in terms of
the parameters (45). They read

𝜔±
𝑖 = (−1)𝑖+1 𝑙𝑟 𝑟

(

𝛼(2,0)𝑛21 + 𝛼(0,2)𝑛22

±
(

𝛼(4,0)𝑛41 + 𝛼(2,2)𝑛21𝑛
2
2 + 𝛼(0,4)𝑛42

)1∕2)1∕2
, (47)

with

𝛼(2,0) = 𝛼(0,2) =
𝜔2
𝑐

16(𝛿2 + 4𝜌2)
((

12𝜌2 + 1
)

𝛿2 + 48𝜌4 + 8𝜌2
)

,

𝛼(2,2) =
18𝜔4

𝑐

(𝛿2 + 4𝜌2)2

(

1
16

(

𝜌2 − 1
12

)2
𝛿4 +

( 1
2
𝜌6 + 1

24
𝜌4 − 1

144
𝜌2
)

𝛿2

+ 𝜌8 + 1
3
𝜌6 − 1

36
𝜌4
)

,

𝛼(4,0) = 𝛼(0,4) =
9𝜔4

𝑐

(𝛿2 + 4𝜌2)2
((1

4
𝜌2 − 1

48

)

𝛿2 + 𝜌4 − 1
6
𝜌2
)2

. (48)

For the first-order medium, the solution of the characteristic Eq. (44)
leads to the frequencies 𝜔±

𝑖 , with 𝑖 = 1, 2, in terms of the components of
the overall elasticity tensor  and of the overall mass density 𝜗. They
have the following expression

𝜔±
𝑖 = (−1)𝑖+1 𝑟

(

𝐴(2,0)𝑛21 + 𝐴(0,2)𝑛22 ±
(

𝐴(4,0)𝑛41 + 𝐴(2,2)𝑛21𝑛
2
2 + 𝐴(0,4)𝑛42

)1∕2
)1∕2

,

(49)

with

𝐴(2,0) = 𝐴(0,2) =
𝜔2
𝑐

2𝜗2
(

𝐶1111 + 𝐶1212
)

,

𝐴(2,2) = −
𝜔4
𝑐

2𝜗4
(

𝐶2
1111 − 2𝐶2

1122 − 𝐶2
1212 +

(

−2𝐶1111 − 4𝐶1122
)

𝐶1212
)

,

𝐴(4,0) =
𝜔4
𝑐 (

𝐶 − 𝐶
)2 . (50)
4𝜗4 1111 1212
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The identification of Eqs. (47) and (49) allows attaining a nonlinear
system of three algebraic equations whose unknowns are, because of
the material constitutive cubic symmetry properties, the three indepen-
dent components of the overall elastic tensor . Four different sets of
solutions have been obtained and selecting the one that leads to the
unique positive defined overall elastic tensor, the obtained  in an
equivalent matrix form reads

 =

⎡

⎢

⎢

⎢

⎣

𝐶1111 𝐶1122
√

2𝐶1112

𝐶2211 𝐶2222
√

2𝐶2212
√

2𝐶1211
√

2𝐶1222 2𝐶1212

⎤

⎥

⎥

⎥

⎦

= 𝑙2𝑟𝜗𝜔
2
𝑐

⎡

⎢

⎢

⎢

⎢

⎣

1
8
𝛿2+8𝜌2

𝛿2+4𝜌2 − 1
8

𝛿2

𝛿2+4𝜌2 0

− 1
8

𝛿2

𝛿2+4𝜌2
1
8
𝛿2+8𝜌2

𝛿2+4𝜌2 0

0 0 2 3
2𝜌

2

⎤

⎥

⎥

⎥

⎥

⎦

. (51)

Since the overall density 𝜗 is known and defined as the total mass of
the system divided by its total volume, once the components of  are
known, the frequency spectrum of the Cauchy equivalent medium can
be obtained for all the wave propagation directions considered. Fig. 10-
(a) compares the spectrum previously obtained for the Lagrangian
system (black curves) and for the second-order enhanced continuum
model (red curves) with the one of the first-order medium. Magenta
curves are related to longitudinal waves, whereas blue ones are re-
lated to shear waves. Both of them accurately capture the slope of
the acoustic branches of the spectrum for the two wave propagation
directions considered, namely 𝐧 = −𝐞1∕

√

2 − 𝐞2∕
√

2 and 𝐧 = 𝐞1. The
equivalent first-order medium can thus accurately describe the low
frequency propagation of waves in the long wavelength regime. The
Fig. 10-(b) is a three-dimensional representation of the spectrum of the
Cauchy medium in the entire first Brillouin zone, with the indication of
the curves represented in the Fig. 10-(a) along the selected propagation
directions.

4.1. Forced wave propagation

The ability of the continualization scheme to capture the forced
response of the system is here investigated, without losing generality,
by applying a single punctual excitation to the first node of the  -
th periodic cell of the single antitetrachiral layer. Specifically, the
mono-harmonic component 𝐟𝑠 (𝑡) = 𝐅𝐻(𝑡)exp(𝑆𝑡) is considered, having
constant amplitude 𝐅, purely imaginary excitation frequency 𝑆 = 𝜄𝛺,
and 𝐻(𝑡) representing the Heaviside function. The vector 𝐅 is assumed
to have all the components with a null value except the first one,
which is equal to 𝐹 , with a value such that 𝐹∕(𝐸𝐴) = 4762. Because
of this choice, the application of a bilateral Laplace transform in time
and a bilateral -transform in space, the forcing term results to be
independent upon 𝐳 and reads 𝐟 (𝑠) = 𝐅∕(𝑠 − 𝑆). The forced response
𝑠
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Fig. 5. 𝜔∕𝜔𝑐 vs 𝜉 for the discrete model (black), the fourth-order standard-like continualization (blue), and the fourth-order enhanced continualization (red). Single-layer case (a);
first Brillouin zone and periodic cell (b); zoom for 𝜉 ∈ [−

√

2𝜋, 0] and 𝜔∕𝜔𝑐 ∈ [3.5, 4.4] (c); zoom for 𝜉 ∈ [0, 𝜋] and 𝜔∕𝜔𝑐 ∈ [0, 1] (d). Bi-layered case (e); first Brillouin zone and
periodic cell (f); zoom for 𝜉 ∈ [−

√

2𝜋, 0] and 𝜔∕𝜔𝑐 ∈ [3.5, 4.4] (g); zoom for 𝜉 ∈ [0, 𝜋] and 𝜔∕𝜔𝑐 ∈ [0, 1] (h).
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Fig. 6. 𝜔∕𝜔𝑐 vs 𝜉 for the discrete model (black), the enhanced continualization scheme with 2𝑁 = 4 (red), 2𝑁 = 8 (green), and 2𝑁 = 16 (magenta). Single-layer case (a); first
Brillouin zone and periodic cell (b); zoom for 𝜉 ∈ [−

√

2𝜋, 0] and 𝜔∕𝜔𝑐 ∈ [3.5, 4.4](c); zoom for 𝜉 ∈ [0, 𝜋] and 𝜔∕𝜔𝑐 ∈ [0, 1] (d). Bi-layered case (e); first Brillouin zone and periodic
cell (f); zoom for 𝜉 ∈ [−

√

2𝜋, 0] and 𝜔∕𝜔𝑐 ∈ [3.5, 4.4](g); zoom for 𝜉 ∈ [0, 𝜋] and 𝜔∕𝜔𝑐 ∈ [0, 1] (h).
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Fig. 7. Absolute value of the phase velocity 𝑣𝐧𝑝 vs 𝜔∕𝜔𝑐 for the discrete model (black), the enhanced continualization scheme of order 2𝑁 = 4 (red), 2𝑁 = 8 (green), and 2𝑁 = 16

(magenta). Single-layer case (a)–(b), and bi-layered case (c)–(d). 𝜉 ∈ [−
√

2𝜋, 0] (a)–(c), 𝜉 ∈ [0, 𝜋] (b)–(d). Gray rectangles represent the band gaps.
for the Lagrangian system is obtained by solving system (5) simplified
for the single-layer case. Assuming that spatial damping is present, that
𝐧 = 𝐞1, and that both the excitation frequency and the fixed system
frequency 𝑠 fall within the first pass band of the material spectrum with
𝛺∕𝜔𝑐 = 1.8 and 𝜔∕𝜔𝑐 = 1, Fig. 11-(b) plots the system response in
terms of the nondimensional imaginary and real components of 𝑘1. In
particular, the dimensionless magnitude |�̊�1|∕𝐿 of the first component
of vector �̊� is plotted. All the singularity points associated with the poles
at infinity are identified by black points in Fig. 11-(a), representing
the zeros of the denominator of |�̊�1|, which are the intersections of
the real (continuous blue curves) and imaginary (dashed blue curves)
parts of the denominator itself. The intersections of the red curves in
Fig. 11-(a), instead, correspond to the zeros of the real (continuous
lines) and imaginary (dashed lines) components of the numerator of
|�̊�1|. Such intersections do not overlap to the zeros of the denominator.
It is evident how the forced response of the enhanced continuum
model approximates the one of the Lagrangian system and how the
accuracy of the approximation, as expected, increases as the order of
continualization increases. Figs. 11-(c)–(d) correspond to the enhanced
continualization model with 2𝑁 = 4, while Fig. 11-(e)–(f) to the case
2𝑁 = 16. Finally, Fig. 12 compares the responses of the Lagrangian
system (black curves), and the ones of the enhanced continuum model
with 2𝑁 = 4 (red curves), and 2𝑁 = 16 (magenta curves) for
three different values of 𝑘1𝑅 𝑙𝑟, namely 𝜋∕4, 𝜋∕2, and 7∕10𝜋. While the
second-order continuum model well captures the system’s behavior far
away from the poles at infinity, the eighth-order continuum model can
very well approximate the forced response along all the range of 𝑘1𝑅.
Finally, by means of an inverse bilateral Laplace transform, the time-
dependent response 𝑞1(𝐤, 𝑡) = −1 [�̊�1(𝐤, 𝑠)

]

is determined for a fixed
value of the wave vector. The Fig. 13 plots the response attained at
13 
𝐤 = 𝟎 for the discrete system and the two continuum models with
2𝑁 = 4 and 2𝑁 = 16. The curves perfectly overlap over the entire time
range considered. It is worth observing that, for a fixed continualization
order, the accuracy deteriorates as the components of 𝐤 increase, but
the response of the continuum model converges to the Lagrangian’s
one as 2𝑁 increases. The response of the integro-differential continuum
model, instead, coincides with the one of the discrete system for each
value of 𝐤 by definition.

5. Conclusions

The present work focuses on the dynamic continualization of mul-
tifield multilayered discrete systems with lumped masses in order to
provide continuum models able to achieve an accurate characterization
of the frequency spectrum of the corresponding lattice material. The
adopted continualization scheme is based on a general mathematical
framework grounded on integral transforms or pseudo-differential op-
erators which allow to capture the essential aspects of the physical
problem under investigation. Obtained continuum models are described
by both integral-type and higher-order gradient-type governing equa-
tions obtained through an enhanced continualization of the equations
of motion of the Lagrangian model. The enhanced continualization
procedure proves to be energetically consistent in the definition of the
overall non-local constitutive and inertial terms and obtained Floquet–
Bloch spectra are not affected by the pathologies characterizing the
standard-like continualization. This last is defined using a unitary
regularization kernel and provides the identification of gradient-type
continuum models with local inertial terms which, in general, show
dynamical instabilities in the short-wave limit, both for the acoustic

and the optical branches of the spectrum. Dispersion curves determined
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Fig. 8. Imaginary and real components of the dimensionless wave vector 𝜅𝐼 𝑙𝑟 and 𝜅𝑅𝑙𝑟 vs 𝜔∕𝜔𝑐 for the discrete model (black) and the fourth-order enhanced continualization
(red). Three-dimensional representation for the single-layer case (a) and its planar projection onto the plane (𝑘𝐼 𝑙𝑟 , 𝜔∕𝜔𝑐 ) (b). Three-dimensional representation for the bi-layered
case (c) and its planar projection onto the plane (𝑘𝐼 𝑙𝑟 , 𝜔∕𝜔𝑐 ) (d).
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Fig. 9. Imaginary and real components 𝜆𝐧𝐼 and 𝜆𝐧𝑅 of the Floquet multiplier vs 𝜔∕𝜔𝑐 ∈ [0, 1] for the discrete model (black) and the fourth-order enhanced continualization (red).
Single-layer case (a), and bi-layered one (b).
Fig. 10. (a) 𝜔∕𝜔𝑐 vs curvilinear abscissa 𝜉 for the discrete single-layer case (blue curves), the second order enhanced continuum model (red curves), and the first-order homogenized
medium (magenta curves associated to longitudinal waves and blue curves to shear ones). (b) Three-dimensional frequency spectrum for the equivalent Cauchy medium.
by the enhanced continualization, instead, do not show infinite group
velocities at the boundaries of the first Brillouin zone. A unitary regu-
larization kernel is analytic everywhere in the complex space, while
the regularization kernel adopted in the enhanced model has been
conceived in order to show polar singularities at the boundary of
the first Brillouin zone in correspondence of the lattice coordination
directions. Consequently, the kernel results to be analytic only in a
subdomain of the complex space, whose characteristic dimension is
governed by the distance between the point around which its Taylor
series approximation is centered and the polar singularities at the
boundary of the Brillouin zone. Then, since the frequency spectrum is
periodic along the real component of the wave vector, the spectrum
obtained in the first Brillouin zone can be extended along the entire real
domain of the wave numbers. Continuum models of increasing orders
are formulated through a formal Taylor series expansion of the integral
kernels or the corresponding pseudo-differential functions accounting
for shift operators. The frequency spectrum converges to the one of the
discrete system as the truncation order along the lattice coordination
directions increases. An excellent quantitative agreement between the
15 
frequency spectrum of the continuum model and the one of the discrete
lattice material has been shown by taking into account two different
cases: an antitetrachiral lattice topology with four lumped masses at
the nodes and two antitetrachiral layers placed one on top of the other
connected by local resonators. Propagation and spatial attenuation
of Bloch waves have been investigated by solving the corresponding
eigenproblem either in terms of frequency, or in terms of wave vector,
or, alternatively, in terms of the corresponding Floquet multiplier.
A low frequency continualization is also presented. Starting from an
asymptotic approximation of the frequency spectrum of the lattice ma-
terial, the components of the elastic tensor of a first-order, energetically
consistent, equivalent medium have been provided by means of the
identification of the relative characteristic equations. As expected, the
spectrum of the Cauchy equivalent medium accurately approximates
the slope of the acoustic branches of the discrete system’s frequency
spectrum, Finally, the high-frequency continualization scheme has been
employed in order to approximate the forced response of the mate-
rials, confirming the capabilities of the enhanced continualization to
accurately represent the dynamic behavior of the lattice material.
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Fig. 11. Singularity points of the response �̊�1 and dimensionless magnitude of �̊�1 in terms of 𝑘1𝑅 𝑙𝑟 and 𝑘1𝐼 𝑙𝑟 for the Lagrangian system (a)–(b), and the enhanced continuum models
with 2𝑁 = 4 (c)–(d), and 2𝑁 = 16 (e)–(f).
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Fig. 12. Dimensionless magnitude of �̊�1 vs 𝑘1𝐼 𝑙𝑟 at 𝑘1𝑅 𝑙𝑟 = 𝜋∕4 (a), 𝑘1𝑅 𝑙𝑟 = 𝜋∕2 (b), 𝑘1𝑅 𝑙𝑟 = 7∕10𝜋 (c) for the Lagrangian system (black curves), and the enhanced continuum models
with 2𝑁 = 4 (red curves), and 2𝑁 = 16 (magenta curves).
Fig. 13. (a) Dimensionless real part of the response 𝑞1(𝐤, 𝑡) as a function of nondimensional time 𝑡𝜔𝑐 at 𝐤 = 𝟎 for the discrete system (black curves), and the continuum models
with 2𝑁 = 4 (red curves) and 2𝑁 = 16 (magenta curves). The curves are perfectly overlapped. (b) Zoom for 𝑡𝜔𝑐 ∈ [0, 10].
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Appendix A. Metamaterial frequency spectrum in terms of Floquet
multipliers

In the present Section it is shown how the propagation and the
spatial attenuation of waves inside the metamaterial can be tackled
in terms of the Floquet multipliers. In the case of non homogeneous
waves, namely when the direction of propagation 𝐧𝑅 differs from the
direction of attenuation 𝐧𝐼 , recalling that the matrix 𝐃(𝓁)(𝐤) of the 𝓁-th
layer has the form 𝐃(𝓁)(𝐤) = 𝐊(𝓁)

𝑠𝑠 +
∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗 exp(𝜄𝐱𝑗 ⋅ 𝐤) +𝐊−(𝓁)

𝑠𝑠𝑗 exp
(𝜄𝐱𝑗 ⋅ 𝐤)−1

]

, expressing the vector 𝐱𝑗 in terms of the two lattice’s inde-
pendent periodicity vectors 𝐯𝑝, as 𝐱𝑗 = 𝑎𝑗𝑝 𝐯𝑝 = 𝑎𝑗𝑝 𝑣

𝑝
𝑞𝐞𝑞 with 𝑝, 𝑞 = 1, 2

and 𝑎𝑗𝑝 ∈ Z≤1
≥−1, the matrix 𝐃(𝓁)(𝐤) can be written as

𝐃(𝓁)(𝐤) = 𝐊(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

exp
[

𝜄 𝑎𝑗𝑝𝐯𝑝 ⋅ 𝐤
]

+𝐊−(𝓁)
𝑠𝑠𝑗

exp
[

−𝜄 𝑎𝑗𝑝𝐯𝑝 ⋅ 𝐤
]]

=

= 𝐊(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

exp
[

𝜄 𝑎𝑗𝑝
(

𝑣𝑝1 𝑘1 + 𝑣𝑝2 𝑘2
)

]

+ 𝐊−(𝓁)
𝑠𝑠𝑗

exp
[

−𝜄 𝑎𝑗𝑝
(

𝑣𝑝1 𝑘1 + 𝑣𝑝2 𝑘2
)

]]

. (52)

Introducing the mapping 𝜆𝑞 = exp(𝜄 𝑙𝑗𝑟 𝑘𝑞), where 𝜆𝑞 plays the role of
a Floquet multiplier with 𝑞 = 1, 2 and 𝑙𝑗𝑟 is a reference length for the
lattice at hand, from Eq. (52) the matrix 𝐃(𝓁)(𝐤) becomes 𝐃(𝓁)(𝜆1, 𝜆2)
with the following expression

𝐃(𝓁)(𝜆1, 𝜆2) = 𝐊(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

𝜆
𝑎𝑗𝑝 𝑣

𝑝
1∕𝑙

𝑗
𝑟

1 𝜆
𝑎𝑗𝑝 𝑣

𝑝
2∕𝑙

𝑗
𝑟

2 +𝐊−(𝓁)
𝑠𝑠𝑗

𝜆
−𝑎𝑗𝑝 𝑣

𝑝
1∕𝑙

𝑗
𝑟

1 𝜆
−𝑎𝑗𝑝 𝑣

𝑝
2∕𝑙

𝑗
𝑟

2

]

,

(53)

and Eq. (5) for the free propagation case (with 𝐟 (𝐤, 𝑠) = 𝟎) becomes
𝐂(𝜆1, 𝜆2, 𝜔)�̊�(𝜆1, 𝜆2, 𝜔) = 𝟎, with 𝐂(𝜆1, 𝜆2, 𝜔) a polynomial matrix in the
complex Floquet multipliers 𝜆1 and 𝜆2 with, in general, non integer ex-
ponents. Expressing the characteristic polynomial in terms of 𝜆1, 𝜆2, and
𝜔, the frequency spectrum is again obtained through the intersection

5
of two hypersurfaces immersed in R . Once the Floquet multipliers are
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known, in fact, the wave vectors components are simply computed as
𝑘𝑞 = ln(𝜆𝑞)∕(𝜄 𝑙

𝑗
𝑟 ). Particular cases can be obtained by fixing one of the

loquet multipliers, namely 𝜆𝛽 = exp(𝜄 𝑙𝑗𝑟 𝑘𝛽 ) = �̄�𝛽 ∈ C, with 𝛽 = 1 or 2,
rom which

(𝓁)(𝜆𝛼) = 𝐊(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

𝜆
𝑎𝑗𝑝 𝑣

𝑝
𝛼∕𝑙

𝑗
𝑟

𝛼 �̄�
𝑎𝑗𝑝 𝑣

𝑝
𝛽∕𝑙

𝑗
𝑟

𝛽 +𝐊−(𝓁)
𝑠𝑠𝑗

𝜆
−𝑎𝑗𝑝 𝑣

𝑝
𝛼∕𝑙

𝑗
𝑟

𝛼 �̄�
−𝑎𝑗𝑝 𝑣

𝑝
𝛽∕𝑙

𝑗
𝑟

𝛽

]

,

(54)

and the associated eigenproblem simplifies in the form

𝐂(𝜆𝛼 , 𝜔)�̊�(𝜆𝛼 , 𝜔) = 𝟎, (55)

with 𝛼 = 1 or 2 and 𝛼 ≠ 𝛽. The corresponding frequency spectrum
is thus obtained from the intersection of two hypersurfaces immersed
in R3. If the exponent 𝑎𝑗𝑝𝑣

𝑝
𝑞∕𝑙

𝑗
𝑟 ∈ Z, the matrix 𝐂(𝜆𝛼 , 𝜔) becomes a

polynomial matrix in 𝜆𝛼 with integer exponents and Eq. (55) becomes
a polynomial eigenproblem where 𝜆𝛼 is the eigenvalue and �̊�(𝜆𝛼 , 𝜔) the
eigenvector.

When the wave is homogeneous (𝐧𝑅 = 𝐧𝐼 = 𝐧), fixing the direction
𝐧, the matrix 𝐃(𝓁) can be expressed in terms of the Floquet multiplier
𝜆𝐧 = exp(𝜄 𝑘 𝑙𝑟), with 𝑙𝑟 a reference length for the lattice, as

𝐃(𝓁)(𝜆𝐧) = 𝐊(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

𝜆
𝑎𝑗𝑝 𝑣

𝑝
𝑞 𝑛𝑞∕𝑙𝑟

𝐧 +𝐊−(𝓁)
𝑠𝑠𝑗

𝜆
−𝑎𝑗𝑝 𝑣

𝑝
𝑞 𝑛𝑞∕𝑙𝑟

𝐧

]

. (56)

It still results to be an exponential polynomial in 𝜆𝐧 with, generally,
non integer exponents, and the frequency spectrum is obtained through
the intersection of two hypersurfaces immersed in R3. In the particular
case in which the wave propagation occurs along one of the reciprocal
lattice’s periodicity directions, the matrix 𝐃(𝓁)(𝜆𝐧) can become an ex-
ponential polynomial in 𝜆𝐧 with integer exponents and the frequency
spectrum can be obtained through the resolution of a polynomial
eigenproblem where the Floquet multiplier is the eigenvalue. In fact,
denoting with 𝐩ℎ, with ℎ = 1, 2 the independent periodicity vectors of
the reciprocal lattice, they are such that 𝐯𝑝 ⋅ 𝐩ℎ = 2𝜋𝛿𝑝ℎ, with 𝛿𝑝ℎ the
Kronecker delta (see Fig. 1). When 𝐧 = 𝐩𝐡

∥𝐩ℎ∥2
, with ℎ a non summed

index, if 𝑙𝑟 =
2𝜋

∥𝐩ℎ∥2
the matrix 𝐃(𝓁)(𝜆𝐧⇒𝐩ℎ ) simplifies into

𝐃(𝓁)(𝜆𝐧⇒𝐩ℎ ) = 𝐊(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

𝜆
𝑎𝑗ℎ
𝐧⇒𝐩ℎ +𝐊−(𝓁)

𝑠𝑠𝑗
𝜆
−𝑎𝑗ℎ
𝐧⇒𝐩ℎ

]

. (57)

If the two independent periodicity vectors 𝐯𝑝 are orthogonal to each
other, since 𝑎𝑗ℎ ∈ Z≤1

≥−1, the eigenproblem 𝐂(𝜆𝐧⇒𝐩ℎ , 𝜔)�̊�(𝜆𝐧⇒𝐩ℎ , 𝜔) = 𝟎
becomes a quadratic eigenproblem in 𝜆𝐧⇒𝐩ℎ . In fact

𝜆𝐧⇒𝐩ℎ𝐃
(𝓁)(𝜆𝐧⇒𝐩ℎ ) = 𝜆𝐧⇒𝐩ℎ𝐊

(𝓁)
𝑠𝑠 +

∑

[𝑗]

[

𝐊+(𝓁)
𝑠𝑠𝑗

𝜆2𝐧⇒𝐩ℎ
+𝐊−(𝓁)

𝑠𝑠𝑗

]

. (58)

ppendix B. Mass and stiffness matrices components for the an-
itetrachiral topology

In the present Appendix, the non-null components of mass matrices
nd stiffness-like matrices involved in the dynamics of the undamped
ntitetrachiral material, as expressed in Eqs. (1), where ligaments have
xial stiffness 𝐸𝐴∕𝐿 and flexural one 𝐸𝐽∕𝐿3, are detailed in terms of
he geometrical and constitutive parameters. If 𝑢𝑖(𝓁)1

and 𝑢𝑖(𝓁)2
represent

he in-plane translational degrees of freedom of the stiff ring 𝑖 belonging
o the  th cell of the 𝓁th layer, and 𝜃𝑖(𝓁) is its rotation with respect to
he ring centroid, the twelve by one vector 𝐮(𝓁) is expressed as

(𝓁)
 =

(

𝑢1(𝓁)1
𝑢1(𝓁)2

𝜃1(𝓁) 𝑢2(𝓁)1
𝑢2(𝓁)2

𝜃2(𝓁) 𝑢3(𝓁)1
𝑢3(𝓁)2

𝜃3(𝓁) 𝑢4(𝓁)1
𝑢4(𝓁)2

𝜃4(𝓁)

)𝑇
. (59)

nalogously, the twelve by one vector 𝐯(𝓁) reads

(𝓁)
 =

(

𝑣1(𝓁)1
𝑣1(𝓁)2

𝜙1(𝓁)
 𝑣2(𝓁)1

𝑣2(𝓁)2
𝜙2(𝓁)
 𝑣3(𝓁)1

𝑣3(𝓁)2
𝜙3(𝓁)
 𝑣4(𝓁)1

𝑣4(𝓁)2
𝜙4(𝓁)


)𝑇
,

(60) 𝑀
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here 𝑣𝑖(𝓁)1
and 𝑣𝑖(𝓁)2

are the in-plane displacements of resonator 𝑖
elonging to the  th cell of the 𝓁th layer, while 𝜙𝑖(𝓁)

 is its rotation with
espect to the disk centroid. The components of the twelve by twelve
tiffness-like matrices involved in the system (1) are denoted as
[

𝐊(𝓁)
𝑠𝑠

]

𝑖 ℎ = 𝐾𝑠𝑠
𝑖ℎ ,

[

𝐊+(𝓁)
𝑠𝑠𝑗

]

𝑖 ℎ
= 𝐾

+𝑠𝑠𝑗
𝑖 ℎ ,

[

𝐊−(𝓁)
𝑠𝑠𝑗

]

𝑖 ℎ
= 𝐾

−𝑠𝑠𝑗
𝑖 ℎ ,

[

𝐊(𝓁)
𝑠𝑟

]

𝑖 ℎ =
[

𝐊(𝓁)
𝑟𝑠

]

𝑖 ℎ = 𝐾𝑟𝑠
𝑖 ℎ,

[

𝐊(𝓁)
𝑟𝑟

]

𝑖 ℎ = 𝐾𝑟𝑟
𝑖 ℎ. (61)

ithout losing generality, their non-null components are made explicit
or 𝓁 = 𝑓 and, for 𝐊(𝓁)

𝑠𝑠 they read
𝑠𝑠
1 1 = 𝐾𝑠𝑠

2 2 = 𝐾𝑠𝑠
4 4 = 𝐾𝑠𝑠

5 5 = 𝐾𝑠𝑠
7 7 = 𝐾𝑠𝑠

8 8 = 𝐾𝑠𝑠
10 10 = 𝐾𝑠𝑠

11 11 = 2𝐸 𝐴∕𝐿

+24𝐸 𝐽∕𝐿3,
𝑠𝑠
3 3 = 𝐾𝑠𝑠

6 6 = 𝐾𝑠𝑠
9 9 = 𝐾𝑠𝑠

12 12 = 16𝐸 𝐽∕𝐿 + 4𝐸 𝐴∕𝐿𝑅2,
𝑠𝑠
1 4 = 𝐾𝑠𝑠

4 1 = 𝐾𝑠𝑠
2 8 = 𝐾𝑠𝑠

8 2 = 𝐾𝑠𝑠
5 11 = 𝐾𝑠𝑠

11 5 = 𝐾𝑠𝑠
7 10 = 𝐾𝑠𝑠

10 7 = −𝐸 𝐴∕𝐿,

𝐾𝑠𝑠
1 7 = 𝐾𝑠𝑠

7 1 = 𝐾𝑠𝑠
2 5 = 𝐾𝑠𝑠

5 2 = 𝐾𝑠𝑠
4 10 = 𝐾𝑠𝑠

10 4 = 𝐾𝑠𝑠
8 11 = 𝐾𝑠𝑠

11 8 = −12𝐸 𝐽∕𝐿3,

𝐾𝑠𝑠
1 9 = 𝐾𝑠𝑠

9 1 = 𝐾𝑠𝑠
3 5 = 𝐾𝑠𝑠

5 3 = 𝐾𝑠𝑠
4 12 = 𝐾𝑠𝑠

12 4 = 𝐾𝑠𝑠
9 11

= 𝐾𝑠𝑠
11 9 = −𝐾𝑠𝑠

6 2 = −𝐾𝑠𝑠
2 6 = −𝐾𝑠𝑠

3 7 = −𝐾𝑠𝑠
7 3 = −𝐾𝑠𝑠

6 10 =

= −𝐾𝑠𝑠
10 6 = −𝐾𝑠𝑠

8 12 = −𝐾𝑠𝑠
12 8 = −6𝐸 𝐽∕𝐿2,

𝐾𝑠𝑠
1 6 = 𝐾𝑠𝑠

6 1 = 𝐾𝑠𝑠
2 9 = 𝐾𝑠𝑠

9 2 = 𝐾𝑠𝑠
3 4 = 𝐾𝑠𝑠

4 3 = 𝐾𝑠𝑠
3 8

𝐾𝑠𝑠
8 3 = −𝐾𝑠𝑠

5 12 = −𝐾𝑠𝑠
12 5 = −𝐾𝑠𝑠

6 11 = −𝐾𝑠𝑠
11 6 = −𝐾𝑠𝑠

9 10 =

−𝐾𝑠𝑠
10 9 = −𝐾𝑠𝑠

12 7 = −𝐾𝑠𝑠
7 12 = 𝐸 𝐴∕𝐿𝑅,

𝑠𝑠
3 6 = 𝐾𝑠𝑠

6 3 = 𝐾𝑠𝑠
3 9 = 𝐾𝑠𝑠

9 3 = 𝐾𝑠𝑠
6 12

𝐾𝑠𝑠
12 6 = 𝐾𝑠𝑠

9 12 = 𝐾𝑠𝑠
12 9 = 2𝐸 𝐽∕𝐿 − 𝐸 𝐴∕𝐿𝑅2. (62)

he nonnull components of matrices 𝐊+(𝓁)
𝑠𝑠𝑗 and 𝐊−(𝓁)

𝑠𝑠𝑗 are
+𝑠𝑠1
4 1 = 𝐾+𝑠𝑠1

10 7 = 𝐾+𝑠𝑠2
8 2 = 𝐾+𝑠𝑠2

11 5

𝐾−𝑠𝑠1
1 4 = 𝐾−𝑠𝑠1

7 10 = 𝐾−𝑠𝑠2
2 8 = 𝐾−𝑠𝑠2

5 11 = −𝐸 𝐴∕𝐿,
+𝑠𝑠1
4 3 = 𝐾+𝑠𝑠1

6 1 = −𝐾+𝑠𝑠1
10 9 = −𝐾+𝑠𝑠1

12 7

𝐾+𝑠𝑠2
8 3 = 𝐾+𝑠𝑠2

9 2 = −𝐾+𝑠𝑠2
11 6 = −𝐾+𝑠𝑠2

12 5 = 𝐾−𝑠𝑠1
1 6 = 𝐾−𝑠𝑠1

3 4 =

−𝐾−𝑠𝑠1
7 12 = −𝐾−𝑠𝑠1

9 10 = 𝐾−𝑠𝑠2
2 9 = 𝐾−𝑠𝑠2

3 8 = −𝐾−𝑠𝑠2
5 12 = −𝐾−𝑠𝑠2

6 11 = −𝐸 𝐴∕𝐿𝑅,
+𝑠𝑠1
5 2 = 𝐾+𝑠𝑠1

11 8 = 𝐾+𝑠𝑠2
7 1 = 𝐾+𝑠𝑠2

10 4

𝐾−𝑠𝑠1
2 5 = 𝐾−𝑠𝑠1

8 11 = 𝐾−𝑠𝑠2
1 7 = 𝐾−𝑠𝑠2

4 10 = −12𝐸 𝐽∕𝐿3,
+𝑠𝑠1
5 3 = 𝐾+𝑠𝑠1

11 9 = −𝐾+𝑠𝑠1
6 2 = −𝐾+𝑠𝑠1

12 8

−𝐾+𝑠𝑠2
7 3 = 𝐾+𝑠𝑠2

9 1 = −𝐾+𝑠𝑠2
10 6 = 𝐾+𝑠𝑠2

12 4 = 𝐾−𝑠𝑠1
3 5 = 𝐾−𝑠𝑠1

9 11 =

−𝐾−𝑠𝑠1
2 6 = −𝐾−𝑠𝑠1

8 12 = 𝐾−𝑠𝑠2
1 9 = 𝐾−𝑠𝑠2

4 12 = −𝐾−𝑠𝑠2
3 7 = −𝐾−𝑠𝑠2

6 10 = 6𝐸 𝐽∕𝐿2,
+𝑠𝑠1
6 3 = 𝐾

+𝑠𝑠𝑗
12 8 = 𝐾+𝑠𝑠2

9 3 = 𝐾
+𝑠𝑠𝑗
12 6

𝐾−𝑠𝑠1
3 6 = 𝐾−𝑠𝑠1

9 12 = 𝐾−𝑠𝑠2
3 9 = 𝐾−𝑠𝑠2

6 12 = 2𝐸 𝐽∕𝐿 − 𝐸 𝐴∕𝐿𝑅2. (63)

he matrices 𝐊𝑟𝑟 and 𝐊𝑟𝑠 have the following non null components
𝑟𝑟
1 1 = 𝐾𝑟𝑟

2 2 = 𝐾𝑟𝑟
4 4 = 𝐾𝑟𝑟

5 5 = 𝐾𝑟𝑟
7 7

𝐾𝑟𝑟
8 8 = 𝐾𝑟𝑟

10 10 = 𝐾𝑟𝑟
11 11 = −𝐾𝑟𝑠

1 1 = −𝐾𝑟𝑠
2 2 = −𝐾𝑟𝑠

4 4 = −𝐾𝑟𝑠
5 5 =

−𝐾𝑟𝑠
7 7 = −𝐾𝑟𝑠

8 8 = −𝐾𝑟𝑠
10 10 = −𝐾𝑟𝑠

11 11 = 𝜅𝑑 ,
𝑟𝑟
3 3 = 𝐾𝑟𝑟

6 6 = 𝐾𝑟𝑟
9 9 = 𝐾𝑟𝑟

12 12 = −𝐾𝑟𝑠
3 3 = −𝐾𝑟𝑠

6 6 = −𝐾𝑟𝑠
9 9 = −𝐾𝑟𝑠

12 12 = 𝜅𝜃 , (64)

here, if the resonator is conceived as a rigid mass immersed in a soft
atrix inside a rigid ring, the relative ring-resonator translational and

otational stiffnesses 𝜅𝑑 and 𝜅𝜃 could be simply calibrated as shown,
or example, in the Appendix A of Bacigalupo and Gambarotta (2016).
nalogously, the components of the twelve by twelve mass matrices of
qs. (1) are

𝐌(𝓁)
𝑠

]

𝑖 ℎ = 𝑀𝑠
𝑖 ℎ,

[

𝐌(𝓁)
𝑟

]

𝑖 ℎ = 𝑀𝑟
𝑖 ℎ. (65)

he non null components for 𝐌(𝓁)
𝑠 read

𝑠
1 1 = 𝑀𝑠

2 2 = 𝑀𝑠
4 4 = 𝑀𝑠

5 5 = 𝑀𝑠
7 7 = 𝑀𝑠

8 8 = 𝑀𝑠
10 10 = 𝑀𝑠

11 11 = 𝑀𝑠,
𝑠 𝑠 𝑠 𝑠

3 3 = 𝑀6 6 = 𝑀9 9 = 𝑀12 12 = 𝐽𝑠, (66)
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while for 𝐌(𝓁)
𝑟 they are

𝑟
1 1 = 𝑀𝑟

2 2 = 𝑀𝑟
4 4 = 𝑀𝑟

5 5 = 𝑀𝑟
7 7 = 𝑀𝑟

8 8 = 𝑀𝑟
10 10 = 𝑀𝑟

11 11 = 𝑀𝑟,

𝑀𝑟
3 3 = 𝑀𝑟

6 6 = 𝑀𝑟
9 9 = 𝑀𝑟

12 12 = 𝐽𝑟. (67)
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