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E-kick scooters are currently among the most popular emerging electric-powered Personal
micro–Mobility Vehicles (e-PMVs) and have recently been equated to e-bikes. However,
even if the dynamic behaviour of e-bikes is well studied, much less has been done to under-
stand the behaviour of e-kick scooters. Furthermore, comparisons between the two vehi-
cles have rarely been investigated and only based on mechanical models.
This study covers this gap by proposing a novel framework that evaluates the vibrational

behaviours of both vehicles when driven by different users and exposed to the pavement
irregularities, using both real and simulated data. The experimental data are collected
equipping an e-kick scooter and an e-bike with Inertial Measurement Units, and then pro-
cessed by ISO 2631–1 method to obtain an objective evaluation of the comfort. Next, the
experimental data are expanded to include uncertainty applying a Monte Carlo
Simulation based on a two-layer feed-forward Artificial Neural Network. Afterwards, sev-
eral statistical analyses are performed to understand the key factors affecting the vibra-
tional magnitude (and their extent) for each vehicle. This framework was tested in an
Italian city (Brescia) along urban paths with five different pavement surfaces.
The results showed that the e-kick scooter appears to be globally more solicited than the

e-bike in terms of vibrational magnitude. Moreover, pavement surface, sensor position,
user gender, user height, and travel speed are identified as crucial factors explaining the
vibrational magnitude for both vehicles.
The overall findings challenge the recent European regulations that equated e-kick scoot-

ers with bikes. These findings may help public administrations in planning the circulation
of e-bikes and e-kick scooters in cities and recommend that manufacturers improve the
e-kick scooter design by including shock absorbers to increase comfort.
� 2023 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, electric-powered Personal Mobility Vehicles (e-PMVs) are an emerging technology for which a growing inter-
est is observed. These are soft mobility vehicles that generally include e-bikes, e-kick scooters, and self-balancing devices, i.e.,
all vehicles characterized by small size and compactness (Carrara et al., 2021). They are usually equipped with electric
motors powered by a rechargeable battery and are cost-effective if used for covering short distances within a city
es: Evi-
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(Boglietti et al., 2021). The diffusion of e-PMVs can be traced back to 2017 in the USA, and a few years later in many of Eur-
ope’s largest cities (e.g., Barcelona, Milan, and Paris), where e-scooter sharing services have grown exponentially, mainly
with the goal to serve as first/last mile connections to transit services (Tzouras et al., 2022; Azimi et al., 2021). Afterwards,
the extensive measures taken bymany developed nations for the promotion of cycling, e-scootering, and walking in response
to the COVID-19 pandemic crisis further propelled the popularity of e-PMVs (Abdullah et al., 2022; Wang et al., 2021). How-
ever, this diffusion has led to relevant issues. At the metropolitan scale, issues concern the impact of these devices on the
environment and public transport management. At the city level, related issues regard the impact of e-PMVs on mobility,
urban planning, and road safety (Boglietti et al., 2021).

Specifically, in cities where e-PMVs are most used, there is a growing number of crashes involving these vehicles, raising
several concerns about the lack of specific regulations (Bloom et al., 2020). Therefore, several corrective actions have been
taken in some European countries, issuing regulations for allowing the circulation of e-PMVs (e.g., Danish: Executive order
n.40 of 14 January 2019; French: Decree n. 2019–1082 of 23 October 2019, German: Regulation n.21 of 14 June 2019; Italian:
Decree 30 December 2019, n.162). Some of them, including the Italian Decree, equated e-kick scooters with e-bikes and
introduced specific indications regarding their circulation in urban areas both on cycling paths and traditional roads. Specif-
ically, in Italy, until 2019, the Traffic Code did not explicitly regulate the circulation of e-kick scooters (Repubblica Italiana,
2015). Consequently, such vehicles could not run on public roads but exclusively in private areas (Maternini, 2020). At the
end of 2019, Italian Law No. 162/2019 regulated the circulation of e-kick scooters for the first time, equating those with an
electric motor not exceeding 0.50 kW with bicycles (Repubblica Italiana, 2019). Subsequently, other pieces of legislation fol-
lowed (Repubblica Italiana, 2021; Repubblica Italiana, 2022). Nowadays, according to current Italian legislation, riding e-kick
scooters is allowed only for users who are at least 14 years old: 1) On urban roads characterised by a speed limit of 50 km/h,
only if bikes are allowed, and with a maximum speed of 20 km/h; 2) On rural roads, only if there is a bike lane, and exclu-
sively on the latter; 3) Within pedestrian areas with a maximum speed of 6 km/h.1

However, all these regulations were suddenly introduced owing to the uncontrolled invasion of e-kick scooters, without
mature studies to support them. Moreover, e-kick scooters and bikes (or e-bikes) differ with respect to the trip patterns and
from a technical viewpoint.

As for trip patterns, studies showed that the average travel speed of e-kick scooters is lower than that of e-bikes
(i.e., 7 � 10 km/h vs 10 � 12 km/h); moreover, e-kick scooters are typically used to travel shorter distances than e-bikes
(i.e., 0.5 � 5 km vs 0.5 � 15 km) (Almannaa et al., 2021; Zagorskas and Burinskienė, 2020).

As for the design features, e-bikes have large wheels and tyres, which could generate a stabilising gyroscopic effect and
dissipate the shocks induced by the surface irregularities. Contrarywise, e-kick scooters are generally equipped with small
diameter wheels, which may not be able to induce significant stabilising and dissipative effects. Other differences concern
the subsistence of divergent vehicle-rider system schemes, with the different position of the mass centre during the ride:
higher in e-kick scooters than in e-bikes. All these factors could easily lead to different behaviours to be investigated,
depending on the physical characteristics of the urban environment and the road surface.

The behaviour of bikes and motorbikes is a well-known research topic on vehicle dynamics (e.g., Sharp, 1971; Cossalter
et al., 2006; Meijaard et al., 2007; Chen et al., 2009). For instance, the relationship between pavement quality and perceived
comfort, through the assessment of vibrational behaviour, is a well-studied topic, usually in relation to the vehicle speed
(e.g., Feizi et al., 2020; Gao et al., 2018).

Conversely, much less evidence is reported for e-kick scooters’ dynamics. Only a handful of studies explored the influence
of e-kick scooters’ vibrations on human health and comfort (Cano-Moreno et al., 2019; Cano-Moreno et al., 2021), the risk
factors affecting safety while riding (Lee et al., 2021), the dynamics of e-kick scooters and users during a ride (Vetturi et al.,
2023; Garman et al., 2020) and the longitudinal, lateral, and vertical motion of a benchmark e-kick scooter (García-Vallejo
et al., 2020).

Nevertheless, according to the retrieved literature, no experimental prior attempt has been made to investigate the rela-
tionship between pavement and user characteristics and vibrational behaviour of e-kick scooters and e-bikes by a compar-
ative study. This study covers the former gap. Specifically, this study builds on Boglietti et al. (2022) by proposing a novel
framework to compare the vibrational behaviour of these vehicles. This comparison is aimed at performing an objective eval-
uation of the user comfort while riding, by ISO 2631–1 evaluation method. This framework integrates Artificial Neural Net-
work (ANN), Monte Carlo Simulation (MCS) and Multiple Linear Regression (MLR) models together. First, the magnitude of
the vibrational behaviour is analysed through experimental accelerometric data. Next, unlike Boglietti et al. (2022), the pro-
posed framework enables extending a sample of experimental data by applying MCS technique for accounting the statistical
uncertainty. MCS technique is applied on a two-layer feed-forward ANN previously trained on the data acquired during the
experimental trials. The use of an ANN tool responds to the need for fitting a computational model with a high predictive
performance to be exploited for the generation of new simulated data. Finally, simulated data are analysed using MLR mod-
els to understand which factors affect this vibrational magnitude (and their extent) for each vehicle.

This framework is tested in the city of Brescia (Italy) and considered 168 experimental and 100000 simulated trials, on
several rides of e-kick scooters and e-bikes along urban paths characterised by different pavement surfaces.
1 At the time this article was revised (July 2023), the Italian government was passing a new measure (not yet officially published) that would require
mandatory license plates, the use of helmets and insurance, and a ban on parking on sidewalks starting January 1, 2024.
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This study aims to contribute to both theory and practice.
From a theoretical viewpoint, although the proposed framework integrates widely known analysis tools, it covers a

research area that has remained unaddressed, so far, advancing the knowledge related to the dynamic vibrational behaviour
of e-kick scooters and e-bikes according to a comparative analysis. Thus, an explicit indication of key determinants affecting
the vibrational magnitude acting on e-kick scooters and e-bikes is provided. Since the vibrational response of a vehicle is
strictly related to the comfortability perceived by drivers and to their safety, this knowledge is fundamental to understand-
ing, e.g.: 1) the different behaviour adopted by several user categories when choosing the first/last mile transport mode (e.g.,
Azimi et al., 2021); 2) The different crash risk observed for several user categories when driving e-PMVs on different surfaces
(e.g., Tian et al., 2022; Stigson et al., 2021).

On the practical perspective, recognising different vibrational behaviours (if any) may challenge recent European regula-
tions that equated e-kick scooters with e-bikes and provide useful information for planning. For instance, some paths
designed according to e-bikes’ technical characteristics could be revised to improve the safety and the comfortability of
the users, if intended for e-kick scooters. In addition, different dynamic behaviours can suggest some technical improve-
ments to the design of vehicles in terms of e.g., shock absorbers.

The remainder of this paper is as follows. Section 2 reviews key literature about vibration behaviour of e-bikes and e-kick
scooters. Section 3 illustrates the overall framework for the comparison of vibration behaviour of both vehicles. Section 4
reports the experiments and findings of this framework on a real case study and provides some recommendations. Finally,
Section 5 provides conclusions and future perspectives.
2. Literature review

The dynamic behaviour of two-wheeled vehicles is a well-known research topic. In most cases, the aim is to evaluate
comfort and safety through the response of the vehicle to the roughness of the road surface, usually assessed by a measure-
ment of the vibrations absorbed by the vehicle or user (Bíl et al., 2015; Chou et al., 2015; Gao et al., 2018; Feizi et al., 2020).
On the one hand, the most studied two-wheeled vehicles were motorcycles, for which the relationship among vehicles’
design characteristics, surface type, and riding performance is currently well known. For instance, past research showed that
vibrational behaviour mainly depends on suspension and tyre characteristics (Frendo et al., 2002; Cossalter et al., 2006),
motor power supply (Mulla et al., 2019), usage, unevenness of the road surface and the riding speed (Chen et al., 2009).
On other hand, the dynamic behaviour of e-bikes and e-kick scooters is much less studied. To trace a complete background
of it, studies have been summarised in Table 1, which is commented in what follows for the main points.

First, analytical research includes studies in which the outcomes derive purely through mechanical modelling and often
the model itself is the output of the research. Conversely, empirical research covers studies where the outcomes derive from
the processing of collected experimental data.

Second, in analytical studies each datum is simulated through the proposed mechanical model; experimental data are
eventually collected only to validate the model. By contrast, in empirical studies inertial Measurement Unit (IMU) sensors
were used to collect real acceleration data from on-site riding tests, usually combining Global Positioning System (GPS)
to tracking path, and tachometer Revolutions Per Minute (RPM) sensors, to record the riding speed.

Third, different analysis tools were used. In analytical studies, motion analysis tools are used for the construction of the
mathematical model. In empirical studies, statistical tools were used for the understanding of the relationships between the
collected data and the related factors to discover the effects on safety and comfort. Because the proposed article starts from
empirical data, the analysis tools used in analytical studies will not be reported in depth. Specifically, as for empirical studies,
some processed vibrational acceleration data according to norms ISO 2631–1 and ISO 2631–5 to evaluate riding comfort
(e.g., Gao et al., 2018; Gao et al., 2019). ISO 2631–1 provided a general method to evaluate human exposure to whole-
body vibration. ISO 2631–5 proposed an additional method for the evaluation of the effect on health of vibration containing
multiple shocks, such as lumped obstacles like potholes, steps, and other significant irregularities in the road surface. When
ISO 2631 was not followed, a new evaluation index for comfort is proposed processing acceleration data through customised
mathematical procedures (Chou et al., 2015). In some cases, the acceleration data were processed through statistical tech-
niques (e.g., linear regression and ANOVA analysis) and returned the effect between the acceleration and several predictors
(Gao et al., 2019). In some cases, the analyses were supported using z-test or t-test to show if the average values of two pop-
ulations (e.g., e-kick scooters and bikes braking distances, or experienced and inexperienced users) are significantly different
(e.g., Feizi et al., 2020; Vetturi et al., 2023). Conversely, none of the previous studies had adopted the ANN tool for modelling
the dynamic behaviour of e-bikes and e-kick scooters, although it could be efficiently exploited to fit a computational model
with a high predictive performance. Nevertheless, the ANN is a well-known computational model extensively applied in
transportation engineering. For instance, it has been successfully exploited for determining engine performance and emis-
sion (Tuan Hoang et al., 2021); predicting road traffic accident severity (Shaik et al., 2021); optimising transportation infras-
tructure maintenance processes (Gharehbaghi, 2016); modelling the traffic flow at a road intersection (Olayode et al., 2021);
detecting road pavement defects (Yang et al., 2021). Similarly, there is no evidence on the use of MCS technique to extend the
experimental data adopted for the analysis of e-kick scooter and e-bike dynamic behaviour, though there are several appli-
cations of the MCS technique in transportation engineering, such as for the optimisation of traffic light cycles (Jiang et al.,
3



Table 1
E-kick scooter and bike studies related to comfort and safety.

Authors (Year) Location Vehicle Approach Data sources Analysis Tools Relevant Insights/outcomes

Vetturi et al., 2023 Brescia, Italy e-kick
scooter;
e-bike

Empirical Cameras Kinematic analysis, descriptive statistics,
and multiple regression

Comparing the kinematic performance of micro-mobility
vehicles during braking

Boglietti et al., 2022 Brescia, Italy e-kick
scooter;
e-bike

Empirical IMU ISO 2631 methods Comparing the vibrational behaviour of the two vehicles
consideration different users and road surfaces.

Asperti et al., 2021 Milan, Italy e-kick
scooter

Analytical Test bench (only for
model validation)

Single contact point model (for road) and
lumped parameter model (for e-scooter)

Planar model for the simulation of the vertical dynamics of an
e-scooter, validated for obstacles with experimental data

Cano-Moreno et al., 2021 Madrid,
Spain

e-kick
scooter

Analytical Simulated data Multiple regression Evaluation of vibration impact on health

Lee et al., 2021 South Korea e-kick
scooter

Empirical Direct survey Cluster analysis Danger level values (also related to surface type) and
frequency values

Feizi et al., 2020 Kalamazoo,
Michigan,
USA

Bike Empirical IMU, RPM, GPS,
LASER, cameras, and
survey

Fault tree analysis, z-test Assessment method of relationship between skill level and
riding performance

García-Vallejo et al., 2020 Spain e-kick
scooter

Analytical Design parameters of
an e-scooter

Multibody dynamic simulation E-scooter benchmark, compared with a bike benchmark
taken from literature.

Garman et al., 2020 Phoenix,
Arizona, USA

e-kick
scooter

Empirical IMU, RPM, GPS, and
cameras

Descriptive statistics Maximum values of manoeuvrability and braking distance on
different surfaces

Cano-Moreno et al., 2019 Madrid,
Spain

e-kick
scooter

Analytical n.a. Multibody dynamic simulation Assessment method of vibration impact on health and two
models with different vehicle rigidity

Gao et al., 2019 Xi’an, China Bike Empirical IMU, GPS and road
surfaces scanning

ISO 2631 methods and linear regression Correlation between cycling comfort and road surface
roughness

Gao et al., 2018 Xi’an, China Bike Empirical IMU, GPS and direct
survey

ISO 2631 methods Comfort evaluation combining vibration measurement and
users’ perceptions.

Bíl et al., 2015 Olomouc,
Czech
Republic

Bike Empirical IMU and GPS Comfort synthetic index and linear
regression

Dynamic Comfort Index and comfort map of an historical
centre

Chou et al., 2015 Taiwan Bike Analytical
and
empirical

IMU, GPS and Inertial
profiler

Multibody dynamic simulation and
descriptive statistics

Measuring riding smoothness on different surfaces from real
or simulated data
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2020), for the analysis of the road (Wach, 2014) and air traffic accidents (Stroeve et al., 2009), for traffic speed forecasting
(Jeon and Hong, 2016) and for the simulation of traffic loading on bridges (Enright and O’Brien, 2013).

Finally, relevant insights and/or outcomes were considered. These may be both practical results, mainly concerning vehi-
cle comfort, safety, and riding smoothness. Specifically, as for bikes, several studies showed that vibrations increase at
increasing speed (e.g., Bíl et al., 2015; Gao et al., 2018). In addition, the macrostructure and properties of the road surface
are crucial for vibrations on bikes (Chou et al., 2015). Particularly, uneven old stone pavements and damaged roads are
the most uncomfortable surfaces (Bíl et al., 2015). Much less can be said for e-kick scooters’ dynamics. For instance, assessing
the influence of e-kick scooters’ vibrations on human health, pavement type and speed has been identified as the main vari-
ables affecting the vibration level, like for bikes (Cano-Moreno et al., 2019; Cano-Moreno et al., 2021). Furthermore, others
investigated the dynamics behaviour of e-kick scooters against an e-bike, although only at analytical level (García-Vallejo
et al., 2020). The results showed that, unlike the e-bike, the e-kick scooter was unstable at any speed, hence, it could never
be ridden without the use of hands. Moreover, someone developed a method to help define suspension geometries and insu-
lation layers between the frame and the rider to enhance the riding comfort level, but it has not yet been applied (Asperti
et al., 2021). Only Boglietti et al. (2022) compared the vibrational response (which can affect users’ comfort and safety during
a ride) of e-kick scooters and e-bikes at the pavement irregularities, using a small sample of real data. Preliminary results
showed that e-kick scooters are globally less comfortable than the e-bikes. Lastly, empirical studies are still occasional
and mainly focused on manoeuvrability, braking distance, and riding environment hazard levels (Garman et al., 2020;
Yang et al., 2021; Vetturi et al., 2023).

Undoubtedly, all these studies have contributed to the analysis of vibrational behaviour on separate vehicles and pro-
vided valuable results. However, some gaps persist. First, no empirical study has been made to compare the dynamic beha-
viour of e-bikes and e-kick scooters in terms of vibrational acceleration, or rather in terms of comfort. Although Boglietti
et al. (2022) provided a first attempt for this evaluation, they adopted only a limited sample of real data without a data
expansion to account for statistical uncertainty. Moreover, they did not investigate the effect that user characteristics
(i.e., gender, age, height, and mass) could have on vibrational magnitude. Second, there is no research that compares e-
kick scooters and e-bikes to identify the key factors that may affect the magnitude of vibrations.

This paper aims to cover the former gaps applying the MCS and the ANN to extend the experimental data adopted for the
analysis of e-kick scooter and e-bike vibrational behaviour. In addition, MLR will show the effect of significant variables on
the vibrational behaviour.
3. Framework

The framework for the comparison of the e-kick scooter and e-bike vibrational behaviour is synthetised in the flowchart
shown in Fig. 1, that adopts the symbols provided by the American National Standards Institute (ANSI). The procedure is
summarised in several steps, which are individuated with a dashed line and are described and formulated in what follows.

STEP 1: Raw data acquisition from experimental trials
According to STEP 1, the framework starts with the acquisition of experimental raw data related to the accelerations act-

ing on the e-kick scooter and e-bike during several trials, by Inertial Measurement Units (IMUs) sensors. More precisely, let:

� I be the set of experimental trials and i 2 I be the generic trial.
� J be the set of Cartesian axes (x; y; z) and j 2 J be the generic axis.
� M be the set of trial explanatory variable indices and m 2 M the generic index.
� em be the mth explanatory variable and eim be the value of the mth explanatory variable observed in trial i 2 I.

� Eobs ¼ ei1; ei2 � � � ; eim � � � ; ei Mj j
� � 2 R Ij j; Mj j 8i 2 I;8m 2 Mð Þ be the matrix of the explanatory variable’s values

eim 8i 2 I;8m 2 Mð Þ observed in set I.
� aij tð Þ m=s2

� �
be the acceleration acting along the IMU’s reference axis j 2 J as a function of time t, during trial i 2 I.

� f s Hz½ � be the IMU’s sampling frequency.
� Ti s½ � be the time duration of the trial i 2 I.
� Ui be the set of the time sampling index of the trial i 2 I and u 2 Ui be the generic time sampling index.
� tiu s½ � be the uth sampling time of the trial i 2 I (8u 2 UiÞ:
� Ai ¼ aix tiuð Þaiy tiuð Þaiz tiuð Þ� � 2 R Uij j;3 8u 2 Uið Þ be the matrix of the accelerations data measured during the trial i 2 I.

First, for the characterisation of the vibrational dynamic behaviour, a set of experimental trials (I) should be performed.
Kinematic measurements should be carried by IMUs equipped with accelerometers and firmly fixed to the vehicular frames.
Research tests should involve users selected to ensure a good variability in terms of age, mass, height, and level of experience
with e-kick scooters and e-bikes. They should be asked to ride the two vehicles along different paths, characterised by sur-
faces with different levels of irregularity. The path length should be representative of typical journeys made by e-kick scooter
and e-bike users. The users should be instructed to move along the paths at predetermined speeds to ensure consistency
between different trials. The constraint of the predetermined speed could be removed if the vehicles are equipped with
GPS sensors to determine the average speed of each trip.
5



Fig. 1. Flowchart of the proposed evaluation framework.
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Second, a set of explanatory variables em 8m 2 Mð ) should be identified for the set of experimental trial I, and the corre-
sponding observed values eim (8i 2 I;8m 2 M) should be recorded for each trial i 2 I. These variables should be selected to
ensure a good description of the trial boundary conditions, such as the surface typology, the vehicle typology, the sensor
position, the user characteristics (e.g., gender, age, height, mass) and the travel speed. These could be a continuous variable
(e.g., user height, user mass, travel speed), a discrete variable (e.g., user age, user gender), or a categorical variable (e.g., sur-
face typology, vehicle typology, sensor position, user gender). Collecting the variable values observed in each test, the matrix

of the observed explanatory factors (E
��

obs) can be obtained.
Third, during each trial i 2 I, acceleration data acting along the three IMUs’ reference axis (aij tð Þ8j 2 J) should be recorded

as a function of time t. The accelerations are sampled by the sensors with a sampling frequency f s, then the sampling times tiu
can be computed as indicated in Eq. (1). This implies that the data recordings are discrete over time (aij tiuð Þ).
tiu ¼ u
f s

s½ � 8i 2 I8u 2 Ui ð1Þ
Collecting the acceleration values measured along each axis j 2 J and in each sampling time, a matrix of acceleration data (��Ai)
can be obtained for each trial i 2 I.

STEP 2: ISO 2631–1 evaluation method
Next, according to STEP 2, the raw acceleration data acquired in STEP 1 are processed adopting the ISO 2631–1 to evaluate

the rider exposure to whole-body vibration when riding the vehicles. This method prescribes frequency weightings for the
computation of the weighted Root Mean Square (RMS) acceleration acting along the three IMUs’ reference axis. This RMS
index makes it possible to estimate, from the vibration magnitude, frequency and direction, the relative effects on comfort
of different types of vibration. More formally, let:

� awij tð Þ m=s2
� �

be the weighted acceleration acting along the IMU’s reference axis j 2 J as a function of time t, for the trial
i 2 I.

� RMSawij
m=s2
� �

be the weighted RMS associated with acceleration acting along the IMU’s reference axis j 2 J during the trial
i 2 I.
6



Table 2
Parameters for the frequency weightings prescribed for the prediction of the effects of vibration on comfort (ISO, 1997).

Weighting Band limiting Acceleration-velocity transition Upward step

f 1 Hz½ � f 2 Hz½ � f 3 Hz½ � f 4 Hz½ � Q4 f 5 Hz½ � Q5 f 6 Hz½ � Q 6

Wk 0.4 100 12.5 12.5 0.63 2.37 0.91 3.35 0.91
Wd 0.4 100 2.0 2.0 0.63 1 - 1 -
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� Aij fð Þ m=s2
� �

be the acceleration acting along the IMU’s reference axis j 2 J as a function of the frequency f , for the trial
i 2 I, i.e., the Fourier transform of the signal aij tð Þ (frequency domain).

� f 1, f 2, f 3, f 4, f 5, f 6 and Q4, Q5, Q6 be the frequencies and resonance quality factors respectively, that are parameters of the
transfer function, which determines the overall frequency weighting (see Table 2).

� Hh fð Þ be the transfer function of the high pass filter.
� Hl fð Þ be the transfer function of the low pass filter.
� Ht fð Þ be the transfer function of the acceleration-speed transition filter (proportionality to acceleration at lower frequen-
cies, proportionality to speed at higher frequencies).

� Hs fð Þ be the transfer function of the upward step filter (proportionality to jerk, i.e., to the third derivative of the position
vector with respect to time).

� H fð Þ be the total transfer function for health and comfort frequency weighting.
� Awij fð Þ m=s2

� �
be the weighted acceleration along the IMU’s reference axis j (8j 2 J) as a function of the frequency f , acting

during the trial i 2 I.
� r be the generic row index of the discrete Fourier transform.

� r
�
i be the number of the non-redundant discrete Fourier transform frequency rows for the trial i 2 I.

� f ir Hz½ � be the frequency associated at the rth row of the discrete Fourier transform for the trial i 2 I.

Because the way in which vibration affects the comfort is dependent on the vibration frequency content, different fre-
quency weightings are prescribed by the ISO 2631–1 for the different axes of vibration: Wd for x and y axes and Wk for z
axis. The weighted RMS associated with acceleration measured along the three IMUs’ reference axes during each trial should
be computed in time domain as indicated in Eq. (2), where the transition from the integral to the summation is due to the
approximation introduced by the sampling discretization.
RMSawij
¼ 1

Ti
�
Z Ti

0
aw2
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� �1
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� 1
Uij j �

X
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ij tiuð Þ

 !1
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m=s2
� �8i 2 I8j 2 J ð2Þ
According to ISO 2631–1, the frequency weightings can be performed in the frequency domain through the implemen-
tation of digital filters mathematically expressed by the total transfer function for health and comfort (H fð Þ), defined as
follows.
Hh fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 4

f 4 þ f 41

vuut ð3Þ

Hl fð Þ ¼
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vuuut Hs fð Þ ¼ 1forWdð Þ ð6Þ

H fð Þ ¼ Hh fð Þ � Hl fð Þ � Ht fð Þ�Hs fð Þ ð7Þ

Therefore, the weighted acceleration acting along the IMU’s reference axis j 2 J can be obtained in the frequency domain,

by multiplying Aij fð Þ by the total transfer function as follows.
Awij fð Þ ¼ Aij fð Þ � H fð Þ m=s2
� � ð8Þ
7
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Subsequently, according to the well know Parseval’s theorem, the weighted RMS calculation in time domain (Eq. (2)) can

be replaced by the equivalent, and more straightforward, calculation in the frequency domain (Eq. (11)), where r
�
i and f ir are

computed as in Eq. (9) and in Eq. (10) respectively, and where the transition from the integral to the summation is due to the
approximation introduced by the sampling discretisation.
2 A p
r
�
i ¼ Uij j

2
þ 1 ð9Þ

f ir ¼
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� � 8i 2 I 8j 2 J ð11Þ
STEP 3: Artificial Neural Network (ANN) training
STEP 3 trains an ANN to obtain a deterministic computation model that links the causes (i.e., the trial’s explanatory fac-

tors) with their observed effects (i.e., the weighted RMSs). Training the ANN is an essential step because this network is the
mathematical tool that will be used for the subsequent generation of simulated data through the MCS method described in
STEP 4. Indeed, MCS is a numerical experimentation method to obtain the statistics of the output variables of a computa-
tional model, given the statistics of the input variables. Then, a numerical computation model is required. The ANN accom-
plishes this need by learning the laws that have produced the vibrational behaviour observed in the experimental trials,
where the associated explanatory factor values are known, and building up a computation model. Then, the obtained com-
putation model can be exploited to generate simulated data when simulated explanatory factor values will be provided by
MCS. The choice of using an ANN is motivated by its higher predictive performance and its higher capacity for modelling
non-linear phenomena if compared with more traditional tools, such as multiple regression models.

More formally, let:

� I ¼ Eobs 2 R Ij j; Mj j be the input matrix for the ANN fitting process, i.e., the matrix of the explanatory variables observed dur-
ing the set of experimental trials I.

� T ¼ RMSawix
RMSawiy

RMSawiz

h i
2 R Ij j;3 8i 2 Ið Þ m=s2

� �
be the target matrix for the ANN fitting process, i.e., the matrix of the

acceleration weighted RMSs observed during the set of experimental trials I.

� R 2 R Ij j;3 m=s2
� �

the residual matrix, i.e., the difference between the target matrix and those predicted by ANN.

� f be a mathematical function, which relates the input matrix I to the target matrix T;
� g be an approximation of the function f ;

� h be the generic vector of the ANN parameters and h0 the specific solution obtained through the learning phase.
� P be the set of ANN hidden layer perceptrons2 and p 2 P be the generic perceptron.
� Tr � I, Va � I and Te � I be the ANN training, validation, and test set of trials, respectively.
� RSS be the Residual Sum of Squares, i.e., the sum of the squared differences between the observed and the predicted
weighted RMSs.

Then, let’s assume the existence of a mathematical function f which relates the input matrix I to the target matrix T, such

that T ¼ f I
� �

. It can be interpreted as a deterministic computation model that links the causes (I) with their observed effects

(T). The ANN defines a mapping T ¼ g I; h
� �

þ R and learns the value of the parameter vector h that results in the best approx-

imation. To perform this mapping, a two-layer feed-forward network can be chosen as a first attempt, which is the more
straightforward of the ANN architectures (MathWorks, 2022; Schmidhuber, 2015). Indeed, according to the parsimony prin-
ciple, a simpler model with fewer parameters should be favoured over more complex models with more parameters, pro-
vided that the models fit the data well in a similar manner (e.g., Ventura et al., 2023). This is aimed at avoiding
unnecessary complications that would make the model more resource-consuming to train and more difficult to read. In
two-layer feed-forward networks, the information moves only in the forward direction from the input nodes, across the hid-
den nodes and towards the output nodes. This network is constituted of two layers of perceptrons: a hidden layer of Pj j per-
ceptrons and an output layer on one perceptron. During the training phase, the ANN parameters are adjusted to minimise the
RSS. To perform the training phase, the set of experimental trials (I) should be randomly split into three subsets: training,
validation, and testing. The training set (Tr) is presented to the network during training, and the network is adjusted accord-
ing to its error. The validation set (Va) is used to measure the generalization of the network and to stop training when gen-
eralisation stops improving, to prevent the overfitting phenomenon. The testing set (Te) has no effect on training and so
erceptron is the basic structure of the network and is a simplified model of a biological neuron.
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provides an independent measure of network performance during and after training. Different training algorithms can be
adopted, such as Levenberg-Marquardt, Bayesian Regularisation and Scaled Conjugate Gradient. For all these algorithms,
the training procedure stops automatically at epoch in which the RSS on the validation set begins to increase, i.e., at the point

beyond which the phenomenon of overfitting begins. At the end of the learning phase, the best parameter vector (h0) is
determined. It is noteworthy that training multiple times will generate different results due to different initial conditions
and to the random set splitting.

STEP 4: Monte Carlo Simulation (MCS)
STEP 4 accounts for statistical uncertainty. Ideally, the uncertainty should be quantified by relying on a big experimental

dataset. However, as the e-kick scoter is still a relatively emerging vehicle, the set experimental trials (I) acquired in STEP 1
may consist of only a few observations. Consequently, it should be replaced with a larger set of simulated trials (SÞ to enlarge
the sample. According to STEP 4, simulated trials are generated applying the MCS technique that exploits the ANN compu-
tation model fitted in STEP 3.

Let:

� S be the set of simulated trials and s 2 S be the generic simulated trial.
� esm be the simulated value of the mth explanatory variable (em) for the trial s 2 S.
� nsm 2 0;1½ � be the random number associated with the explanatory variable value esm.
� Fm be the cumulative probability distribution function of the mth explanatory variable.

� Esimul ¼ es1es2 � � � esm � � � es Mj j
� � 2 R Sj j; Mj j 8s 2 S;8m 2 Mð Þ be the matrix of the simulated explanatory variables for the set

of simulated trials S.
� RMSawsj

be the simulated weighted RMS associated with acceleration acting along the IMU’s reference axis j 2 J during the
simulated trial s 2 S.

� RMSsimul ¼ RMSawsxRMSawsyRMSawsz

� � 2 R Sj j;3 8s 2 Sð Þ m=s2
� �

be the matrix of the simulated weighted RMSs for
the set of simulated trials S.

In MCS, each trial explanatory variable em is interpreted as a random variable and then an appropriate cumulative distri-
bution function (Fm) is assumed. This distribution must be carefully defined to ensure a realistic description of the existing
boundary conditions in the experimental trials and, thus, guarantee reliable simulated data. Indeed, the cumulative distri-
bution functions of the trial explanatory variables will have strong implications for the subsequent statistical analysis and
may introduce bias if they are not reliable. In the specific case, the distributions associated with the users’ characteristics,
such as gender, age, height, and mass, can be found from the literature. The distributions associated with surface typology,
vehicle typology and sensor position could be assumed as uniformly distributed to obtain equal sized simulated trial subsets
reflecting that already done in the experimental trials. This is aimed at facilitating the interpretation of the results. Finally,
the distribution associated with the travel speed could be empirically constructed through a statistical analysis of the fre-
quencies observed during the set of experimental trials (I) to replicate the trial boundary conditions. For each explanatory
variable em and for each simulated trial s 2 S, a random number (nsm) should be generated through the extraction of a random
variable uniformly distributed in the interval [0;1]. Then, the simulated value of the explanatory variable (esm) can be deter-
mined by inverting the associated distribution function according to Eq. (12).
esm ¼ F�1
m nsmð Þ 8s 2 S 8m 2 M ð12Þ
Collecting the simulated values for each explanatory variable em and for each simulated trial s 2 S, the matrix of the sim-

ulated explanatory variables (E
��

sim) is then obtained. Applying the deterministic computational model (i.e., the ANN trained in

STEP 3, mathematically defined by the function g and the parameter vector h0) to the matrix of the simulated explanatory

variables, then the corresponding matrix of the simulated weighted RMSs (RMSaccordingtoEq:ð13Þ:
RMSsimul ¼ g Esimul; h0Þ m=s2
� ��

ð13Þ
Hence, the observed (deterministic) model is turned into a stochastic model.
STEP 5: Simulated weighted RMS vibration total value computation
Next, according to STEP 5, the simulated vibration total value is computed. This is a synthetic vibration index aiming to

globally characterize the solicitation acting on the vehicles.
More formally, let:

� kj be the multiplying factor associated with acceleration acting along the IMU’s reference axis j 2 J.
� RMSaws be the simulated vibration total value of the weighted RMS acceleration acting during the simulated trial s 2 S.

The simulated weighted RMSawsj
associated with the accelerations acting along the three orthogonal axes (8j 2 J), for the

set of simulated trials (8s 2 S), computed as described in STEP 4, should be combined adopting three multiplying factors (kx,
9
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ky, kz) to obtain the simulated weighted vibration total value (RMSaws ) (Eq. (14)). In the case of the human sensitivity to
whole-body vibrations, that can affect the comfort on a ride, the multiplying factors can all be assumed equal to 1 for both
a seated and a standing person (ISO, 1997). Therefore, RMSaws coincides with the Euclidean norm of the RMS vector.
3 Com
which g
relation
On the
of these
variable
RMSaws ¼ k2xRMS2awsx
þ k2yRMS2awsy

þ k2z RMS2awsz

� �1
2

m=s2
� �8s 2 S ð14Þ
STEP 6: Statistical Z-test on the pavement surface typologies
Afterwards, according to STEP 6, the average vibration total values acting on the e-kick scooter and on the e-bike are com-

puted and tested by the statistical Z-test, to discover if significant differences exist among the trials performed on the two
vehicles, for each pavement surface.

More formally, let:

� B be the set of surface typologies and b 2 B be the generic surface typology (e.g., uneven cobblestone).
� V be the set of vehicles and v 2 V be the generic vehicle typology (i.e., ekick or ebike).
� zb be the z value associated with RMSaws averages for the simulated trials performed on surface typology b.
� a be the significance level for the statistical Z-test.
� zcrit be the critical value for the z variable, i.e. the z value associated with the significance level (a) adopted for the two
tailed tests.

If the observed z value (zb) is greater than zcrit or smaller than �zcrit , then the null hypothesis can be rejected (Eq. (15).
Thus, the alternative hypothesis that there is a statistical difference between the average vibration total values acting on
the two vehicles v 2 V is accepted. This means that e-kick scooter and e-bike behave differently during the simulated trials
conducted on surface typology b 2 B. Otherwise, the null hypothesis cannot be rejected, and the two vehicles have a similar
vibrational behaviour on the considered pavement typology.

Formally:
If zb
		 		 > zcrit
then

The average RMS acting on the two vehicles differs for the surface typology b 2 B
otherwise

The average RMS acting on the two vehicles is equal for the surface typology b 2 B

8>>>>>><>>>>>>:
ð15Þ
STEP 7: Multiple Linear Regression (MLR) models
Next, several MLRmodels are developed to understand which factors affect the vibrational magnitude and their extent for

each vehicle, respectively. Indeed, although at first glance the ANN and MLR models may appear to accomplish the same
tasks, they serve different needs, namely prediction performance the former, and the ability to understand the effect of each
explanatory factor on the vibrational magnitude level the latter (Alqatawna et al., 2021; Zhang, 2010).3

On the one hand, if the null hypothesis of the Z-test cannot be rejected for all pavement surfaces ( zb
		 		 	 zcrit 8b 2 B), then

there is not a statistically significant difference between the vibrational responses associated with the two vehicles. There-
fore, a single global MLR model is enough to explore the effects affecting the vibrational magnitude of e-kick scooter and e-
bike, respectively. On the other hand, if the null hypothesis of the Z-test can be rejected for at least one pavement surface
(9b 2 B : zb

		 		 > zcrit), then there is a significant difference between the vibrational responses associated with the two vehicles.
Hence, two separate MLR models should be estimated, one for each vehicle, respectively. For both cases, once the models
have been estimated, they should be evaluated by analysing the goodness-of-fit statistics and the values of the regression
coefficients, to understand the influence that the explanatory variables could have on the vibrational behaviour of the
two vehicles.

More formally, let us assume the simulated weighted RMS vibration total value as the dependent variable of the MLR
model and let:

� V be the set of vehicles and v 2 V be the generic vehicle typology (i.e., ekick or ebike).
� mv the index of the independent variable associated with the vehicle typology.
� Sv � S be the subset of the simulated trials performed on the vehicle v 2 V .
� RMSaws be the observed value of the response variable for simulated trial s 2 S.

� dRMSaws be the predicted value of the response variable for simulated trial s 2 S.
pared to MLRs, ANN models offer advantages and disadvantages. On the one hand, ANNs have a larger potential for modelling non-linear processes,
enerally leads to a superior prediction performance (Alqatawna et al., 2021). Additionally, ANNs do not require assumptions about an underlying
ship between the predictors and the observed vibrational magnitudes. They could also handle predictor correlation issues more effectively than MLRs.
other hand, ANNs are "black box" models. Black box models are functional relationships between system inputs and system outputs, and the parameters
functions have no real-world meaning (Zhang, 2010). Consequently, it is challenging to understand the effect that each predictor has on the response
.
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� b0 and b0v be the constant of the regression (hyperplane intercept) for the global and for the vehicle v 2 V MLR model,
respectively.

� bm and bmv be the regression coefficient associated with the explanatory variable em for the global and for the vehicle
v 2 V MLR model, respectively.

� pm and pmv be the p-value associated with the explanatory variable em for the global and for the vehicle v 2 V MLR model,
respectively.

� R2
adj and R2

adjv be the adjusted R-squared associated with the global and the vehicle v 2 V MLR model, respectively.
� F and Fv be the F-value associated with the global F-test conducted on the global and on the vehicle v 2 V MLR model,
respectively.

Specifically, if Eq. (16) is not satisfied, i.e.,
9b 2 B : zb
		 		 > zcrit ð16Þ
Then, a single global Multiple Linear Regression (MLR) model could be run as shown in Eq. (17) for both vehicles
simultaneously.
RMSaws ¼ b0 þ
X
m2M

bmesm 8s 2 S ð17Þ
Otherwise, two MLR vehicle-specific models need to be fitted according to Eq. (18).
RMSaws ¼ b0v þ
X
m2M
m–mvð Þ

bmvesm 8s 2 Sv 8v 2 V ð18Þ
The ordinary least squares method can be used to estimate the best possible coefficients of the MLR models. Once the
models have been estimated, they could be evaluated by the following goodness-of-fit statistics: the R2

adj (or R
2
adjv ) and the

linear correlation between predictors and the response variable, indicated by the global F-test and the corresponding signif-
icance value F (or Fv ). The value of the coefficient bm (or bmv ) and their significance value pm (or pmv Þ should also be eval-
uated to understand the influence that explanatory variable em could have on the vibrational behaviour of the two vehicles.
4. Real world experiment

4.1. Research context

The proposed framework was experimented in a real Italian case study. Urban roads were considered in this research, as
the urban environment is the one with the greatest presence of micromobility users. Precisely, experimental trials were car-
ried out using two vehicles on five different urban paths located in the city of Brescia (Lombardy Region), which is one of the
most important industrial, commercial, and social hubs in Italy (De Aloe et al., 2022; Martinelli et al., 2022).

The two vehicles (see Fig. 2) were an e-bike (city bike, 2600 pneumatic tyres, 26.9 kg mass, front and rear V-brakes) and an
e-kick scooter (aluminium frame, 1000 pneumatic tyres, 14.2 kg mass, front electric brakes, and rear disc brakes). These speci-
fic vehicles were adopted as they exhibited average characteristics compared to the European market. Therefore, they were
considered representative of the e-PMVs most used on European urban patterns.

The five paths (see Fig. 3) were characterised by different surfaces, with diverse levels of irregularity, such as bituminous
conglomerate, uneven cobblestone, regular cobblestone, metal ventilation grids and alternated dirt and concrete road.

Table 3 reports a summary of the characteristics of the paths tested.
As for the path lengths, the typical journeys made by e-kick scooter and e-bike users were considered according to

Zagorskas and Burinskienė (2020). Therefore, considering the characteristics of the city routes and public spaces, the test
path lengths ranged from a minimum of 710 m to a maximum of 1,155 m. Grids were an exception, because this type of
surface can be treated as a possible variation of other types of paths. Indeed, grids were analysed separately to have a better
homogeneity of the chosen paths, taking advantage of a case of large grids extensively available in the city centre.

For this study, six volunteers (3 males and 3 females) with the same level of expertise (beginner) with e-bikes and e-kick
scooters were chosen among the staff of Brescia University to ensure a certain variability in term of age, mass, and height.
Moreover, the selected age range (i.e., 23 to 35 years old) is the most common among e-bikes and e-kick scooter users,
according to Boglietti et al. (2021). Table 4 provides a summary of the characteristics of the six volunteers.

Volunteers were instructed to move along the path at predetermined speeds to ensure consistency between the different
trials. The test was repeated at two different speeds (10 km/h and 15 km/h) to assess the impact of riding speed on comfort.
In the case of uneven cobblestones, maintaining the speed of 15 km/h was not possible owing to the excessive stress and
difficulty perceived by users. The travel speeds were shown by a digital tachometer installed on the vehicles. During the tri-
als, experimentation assistants made sure there were no obstacles (people, other vehicles, objects, etc.) along the paths. All
the tests were conducted in the daytime, in fair weather, and on dry surfaces.
11



Fig. 2. The e-bike and the e-kick scooter used in the study.

Fig. 3. Surface types, from left to right: bituminous conglomerate, uneven cobblestone, regular cobblestone, metal ventilation grid, and alternated dirt and
concrete road.

Table 3
Path’s characteristics.

Path ID Pavement surface Path description Length [m] Travel speed [km/h]

A Uneven cobblestone Three laps around a square 800: Total
(266.7: Each lap)

10: Each lap

C Bituminous conglomerate Round trip along a cycle path 800: Total
(400: Way out)
(400: Way back)

10: Way out15: Way back

G Metal ventilation grids Two closed laps on the grids placed in a square. 355: Total
(177.5: Each lap)

10: First lap15: Second lap

P Regular cobblestone Round trip around a square Total: 710
(380: Way out)
(330: Way back)

10: Way out
15: Way back

S Alternated dirt and concrete road Two laps around a closed cycle path 1,155: Total
(577.5: Each lap)

10: First lap15: Second lap

Table 4
User’s characteristics.

User ID Gender Age [year] Height [m] Mass [kg]

1 Male 29 1.86 87
2 Male 27 1.80 72
3 Female 35 1.63 79
4 Female 23 1.61 50
5 Male 27 1.84 80
6 Female 29 1.78 60
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Kinematic measurements were made with two IMUs mounted on vehicle bodies and equipped with accelerometer, gyro-
scope, and inclinometer sensors. The IMUs were fixed to the e-bike and e-kick scooter handlebars (front position), as well as
the e-bike rear rack and e-kick scooter platform (rear position). The sensors have always been kept in a horizontal position, so
that the IMU’s x axis was parallel to the vehicle’s longitudinal axis, its y axis was parallel to the vehicle’s transversal axis, and
its z axis was parallel to the vehicle’s vertical axis. During each trial, raw acceleration datawere collected for the three IMU ref-
erence axes, real time broadcasted through Bluetooth connection to a smartphone carried by the users and saved in CSV files.
4.2. Application of the proposed framework

A set of explanatory variables (em 8m 2 M) was defined according to STEP 1, to ensure a viable description of the trial
boundary conditions. These variables are illustrated in Table 5, which is self-explicative and reports descriptive statistics.
Some variables are continuous, while some others are categorical and are coded as binary for modelling purposes. A set
of 168 experimental trials (I) was performed: 80 trials were related to the e-bike and 88 trials were related to the e-kick
scooter. Adopting a sampling frequency (f s) of 200 Hz, the accelerometric data (aij tð Þ) were acquired at the sampling times
defined in Eq. (1). Next, according to STEP 2, the ISO 2631–1 basic vibration evaluation method was applied for the compu-
tation of the weighted RMS (RMSawij

) acting along the three IMUs’ reference axes j 2 J during each trial i 2 I. The digital filters
for the total transfer function for health and comfort (H fð Þ) were defined from Eq. (3) to Eq. (8). Using Eq. (9), Eq. (10) and Eq.
(11), a total of 504 RMS values were then computed.

Next, according to STEP 3, a two-layer feed-forward ANN was trained adopting the Matlab� Neural Net Fitting Tool, to

create a deterministic computation model that links the trial explanatory variables (��Eobs) with the corresponding observed
weighted RMSs (RMSawij

). To perform the training of the network, the set of experimental trials was randomly split into train-
ing (Tr), validation (VaÞ, and testing subsets (TeÞ, consisting of 70 %, 15 % and 15 % of the total observations, respectively (e.g.,
Flach, 2012). In addition, these percentages provide a large training set while ensuring enough observations for validation
and testing procedures. Numerous attempts of enhancement were achieved by tuning the number of perceptrons in the hid-
den layer and the training algorithm. As a result, a network with 10 perceptrons in the hidden layer and trained with the
Levenberg-Marquardt algorithm was chosen as the final model because it outperformed all other configurations. Fig. 4 sup-
ported the high predictive capacity of the selected ANN, since the R statistic was close to 1 both for the training and valida-
tion subsets, and for the testing subset.4 Particularly, the last result was fundamental because the testing subset did not affect
the training process and then provided an unbiased endorsement of network performance in predicting unseen data. Moreover,
this was a prerequisite for the subsequent generation of simulated data through the MCS technique. Indeed, it guaranteed that
the data generated by the simulation will be as those obtained by running real trials. Furthermore, the R statistic close to 1
demonstrated that more complex ANN architectures (such as those with more than two layers) were an unneeded complication
that would have increased the model’s resource requirements for training and reading without significantly enhancing its pre-
dictive power. Hence, the parsimony principle was supported.

Next, according to STEP 4, a cumulative distribution function (Fm) was defined for each trial explanatory variable (em), as
shown in Table 6. The distributions associated with the users’ characteristics were defined drawing from literature data con-
cerning the population characteristics (Istat, 2021; Lundh, 2009). The considered ages ranged between 20 and 40 years, to
ensure consistency with the sample investigated during the experimental trials. The pavement surface typology, vehicle
typology and the sensor position were assumed uniformly distributed. This was aimed at obtaining an equal size simulation
subset for the different categories of these variables to make the data interpretation more straightforward. Finally, the travel
speed was assumed normally distributed and the parameters (i.e., mean, and standard deviation) were empirically deter-
mined analysing the set of experimental trials.

Subsequently, the simulated values of the explanatory variables (esm) were determined by inverting the associated distri-

bution functions as indicated in Eq. (12). Applying the Eq. (13), the matrix of the simulated independent variables (Esim) was
then generated for a set (S) of 100000 simulated trials. Adopting the ANNmodel trained in the previous step, the matrix of the

simulated weighted RMS (RMSsimul) was consequently generated, for a total of 300000 values (i.e., an RMS value for each of
the three IMUs’ reference axes during each of the 100000 simulated trials).

Afterwards, according to STEP 5, the accelerations along the three orthogonal axes were combined adopting three unitary
multiplying factors (kx, ky, kz) as indicated in Eq. (14) to obtain the simulated weighted RMS vibration total value (RMSaws ). A
set of 100000 vibration total values were then generated, i.e., an RMS value for each of the 100000 simulated trials.
4.3. Results and discussion

According to STEP 6, the differences between the average simulated vibration total values RMS acting on the two vehicles
were tested through the statistical Z-test (Eq. (15)), to discover if significant differences exist, for each pavement surface. The
results are shown in Table 7.
4 Noteworthy, the closer to 1 is R, the greater is the model performance, since R=1 indicates a perfect correlation between observed and predicted values.
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Table 5
Summary characteristics for the experimental trial independent variables.

Trial explanatory variable Symbol Unit of measure Type Data source Min. Max. Mean Std. Dev.

Surface typology
Contrast = Bituminous conglomerate (C)

Uneven cobblestone (A) e1 [-] Binary OFO 0 1 0.14 0.35
Metal ventilation grids (G) e2 [-] Binary OFO 0 1 0.25 0.43
Regular cobblestone (P) e3 [-] Binary OFO 0 1 0.14 0.03
Alternated dirt and concrete road (S) e4 [-] Binary OFO 0 1 0.24 0.43
Vehicle typology

Contrast = E-bike (ebike)
E-kick scooter (ekick) e5 [-] Binary OFO 0 1 0.52 0.50
Sensor position

Contrast = Front (F)
Rear (R) e6 [-] Binary OFO 0 1 0.52 0.5
Travel speed e7 [km/h] Continuous DM 10.00 15.00 12.14 2.29
User gender

Contrast = Male (Ma)
Female (Fe) e8 [-] Binary OFO 0 1 0.46 0.50
User age e9 [year] Continuous OFO 23.00 35.00 28.93 3.37
User height e10 [m] Continuous DM 1.61 1.86 1.77 0.09
User mass e11 [kg] Continuous DM 50.00 87.00 73.23 11.28

DM = Direct Measure; OFO = On the Field Observation.

Fig. 4. ANN regression charts for training subset, validation subset, testing subset and all trials set.
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Consistent with a general perspective, the e-kick scooter presents higher vibrations than the e-bike for each pavement
surface. Indeed, for all surfaces (b), the Z-test showed that the differences between the means were statistically significant
at the 5 % significance level. More specifically, the mean weighted accelerations acting on the e-kick scooter resulted higher
than those acting on the e-bike. As a result, the e-kick scooter appeared to be less comfortable than the e-bike. The distinct
technical and structural properties of the e-kick scooter (e.g., smaller wheels, stiffer frame, smaller damping factor) could
explain its observed lesser comfortability. As for the e-kick scooter, the highest mean weighted acceleration was recorded
on the uneven cobblestone (A), while the lowest mean weighted acceleration was recorded on surface C. As for the e-
bike, the highest mean weighted acceleration was recorded on surface A, while the lowest mean weighted acceleration
was recorded on surface G. As expected, the uneven cobblestone surface (A) induced much stronger vibrational accelerations
than other surfaces for both vehicles. In opposition, the most comfortable surface for the e-kick scooter appeared to be the
bituminous conglomerate (C), while the metal ventilation grids (G) emerged to be the least soliciting for the e-bike. This
diverse behaviour could be explained by the different ratio between the characteristic dimension of the wheel and the char-
acteristic dimension of the surface irregularity. From a practical perspective, these results indicated that the uneven cobble-
stone surface should be avoided for both vehicles when planning a path. This recommendation acquires even greater
importance for the e-kick scooter, being the vehicle that is most solicited by the irregularities of this surface. This could
be a challenging issue for the paths located the historical city centres, where the uneven cobblestone is a widespread pave-
ment surface. Conversely, the bituminous conglomerate could be considered the best surface typology for both the vehicles,
with the metal ventilation grids indicating elements unsuitable to be chosen as a pavement solution for long stretches. The
observed lower e-kick scooter comfort is consistent with recent research (Boglietti et al., 2022). However, they observed that
14



Table 6
Summary for the simulated trial independent variables distributions.

Trial independent variable Symbol Distribution Data source Mean Std. Dev.

Surface typology
Contrast = Bituminous conglomerate (C)

Uneven cobblestone (A) F1 Uniform [-] [-] [-]
Metal ventilation grids (G) F2 Uniform [-] [-] [-]
Regular cobblestone (P) F3 Uniform [-] [-] [-]
Alternated dirt and concrete road (S) F4 Uniform [-] [-] [-]
Vehicle typology

Contrast = E-bike (ebike)
E-kick scooter (ekick) F5 Uniform [-] [-] [-]
Sensor position

Contrast = Front (F)
Rear (R) F6 Uniform [] [-] [-]
Travel speed F7 Normal ETA 12.10 km/h 2.30 km/h
User gender

Contrast = Male (Ma)
Female (Fe) F8 Empirical1 L (Istat, 2021) [-] [-]
User age F9 Empirical1 L (Istat, 2021) [-] [-]
User height F10 Normal L (Lundh, 2009) 1.78 m (male)

1.65 m (female)
0.062 m (male)
0.055 m (female)

User mass F11 Normal L (Lundh, 2009) 73.80 kg (male)
61.50 kg (female)

9.80 kg (male)
10.50 kg (female)

L = Literature; ETA = Experimental Trials Analysis.
1 Only the subjects aged between 20 and 40 years were considered.

Table 7
Results of the Z-test concerning the average simulated vibration total values (RMSaw) computed for the different pavement surfaces (b) and for the two vehicles
(v). The zcrit associated with the 5% significance level is 1.96.

Pavement surface (b) E-kick scooter (v ¼ ekick) E-bike (v ¼ ebike) Z - test

Mean
[m=s2]

Variance
[m2=s4]

Mean
[m=s2]

Variance
[m2=s4]

zySb Can be H0 rejected?

A 8.31 0.86 7.24 9.46 10.45 Yes
C 2.62 0.59 1.91 1.36 15.99 Yes
G 2.82 0.49 1.47 0.43 44.03 Yes
P 3.72 0.37 2.67 1.91 22.23 Yes
S 3.37 0.85 2.41 2.03 18.13 Yes
All 4.19 5.07 3.14 7.35 21.11 Yes
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the means of the vibrational magnitudes were not statistically significantly different for the uneven cobblestone surface (A).
This different outcome could be explained by having analysed only a small sample of experimental trials.

Table 7 also shows the null hypothesis of the Z-test is rejected for all pavement surfaces. Therefore, as suggested by
Eq. (16), two separate MLR models (Eq. (18)) were estimated for the two vehicles, according to STEP 7. The results are shown
in Table 8, where the numerical entries in bold represent significant variables at <0.05 level. As a general perspective, both
the MLR models overall had a good fit and can explain a significant amount of the observed deviances from the means. The
best predictive performance was associated with the e-kick scooter model. Almost all the explanatory variables resulted
highly significant (pmv 
 a ¼ 0:05). These significance values, higher than those obtained by Boglietti et al. (2022), constitute
an improvement on the previous work. This improvement has been made possible by the expansion of a set of experimental
data with a large set of simulated data generated by applying the ANN tool and MCS technique.

Focusing on each explanatory variable separately, the following considerations result.
As for the pavement surface, the findings show that this factor has a highly significant effect on the vibrational magnitude,

in accordance with the literature (Bíl et al., 2015; Chou et al., 2015; Gao et al., 2019; Cano-Moreno et al., 2021). Particularly,
the positive signs indicated that uneven cobblestone (A), regular cobblestone (P) and alternated dirt and concrete road (S)
surfaces induced higher vibrational magnitudes than the bituminous conglomerate (C) for both the vehicles. On the contrary,
the metal ventilation grids (G) surface had a contrasting effect on the vehicles. Indeed, on the one hand, a positive sign was
obtained for the e-kick scooter model, meaning that this surface was less comfortable than bituminous conglomerate. On the
other hand, a negative sign was found for the e-bike model, meaning that this surface was more comfortable than the bitu-
minous conglomerate. This is consistent with what was observed in the Z-test and could still be explained by the different
ratio between the characteristic dimension of the wheel and the characteristic dimension of the surface irregularity. These
results corroborate Boglietti et al. (2022), although the significances of the regression coefficients have been remarkably
15



Table 8
Vehicle specific MLR models for the prediction of the simulated weighted RMS vibration total value (RMSaw).

Explanatory variables E-kick scooter model (v ¼ ekick) E-bike model (v ¼ ebike)

Trial explanatory variable Symbol Estim.
(bmv )

p-val
pmv



)
Low. 95 % Upp. 95 % Estim.

(bmv )
p-val
pmv



)
Low. 95 % Upp. 95 %

Hyperplane intercept [] 1.040 <0.001 0.483 1.598 2.096 <0.001 1.149 3.043
Pavement surface

Contrast = Bituminous conglomerate (C)
Uneven cobblestone (A) e1 5.671 <0.001 5.615 5.726 5.335 <0.001 5.241 5.429
Metal ventilation grids (G) e2 0.174 <0.001 0.118 0.229 �0.436 <0.001 �0.530 �0.341
Regular cobblestone (P) e3 1.081 <0.001 1.026 1.136 0.723 <0.001 0.629 0.816
Alternated dirt and concrete road (S) e4 0.746 <0.001 0.690 0.802 0.540 <0.001 0.448 0.633
Sensor position

Contrast = Front (F)
Rear (R) e6 0.035 <0.001 0.001 0.070 2.558 <0.001 2.499 2.617
Travel speed e7 0.110 <0.001 0.102 0.117 0.078 <0.001 0.065 0.090
User gender

Contrast = Male (Ma)
Female (Fe) e8 0.536 <0.001 0.480 0.592 0.503 <0.001 0.408 0.598
User age e9 �0.063 <0.001 �0.066 �0.060 �0.068 <0.001 �0.073 �0.063
User height e10 0.768 <0.001 0.471 1.065 �0.644 0.013 �1.152 �0.137
User mass e11 0.009 <0.001 0.007 0.011 0.007 <0.001 0.004 0.010

E-kick scooter model (v ¼ ekick): 40981 observations, R2
adjv ¼ 0:92, Fv ¼ 5998:9.

E-bike model (v ¼ ebike): 50019 observations, R2
adjv ¼ 0:85, Fv ¼ 2751:7.
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improved thanks to the simulation. From a practical viewpoint, the evidence confirms that the bituminous conglomerate
could be considered the best surface typology for both the vehicles when planning a new path.

As for the sensor position, the coefficient closest to zero of the e-kick scooter model indicates that rear and front position
have a similar vibration total value for this vehicle. Conversely, the positive sign of the e-bike regression model suggests that
in this case the rear position records a greater vibration total value. This high solicitation difference between rear and front
position is explained by the e-bike front wheel damping device, that attenuates the shocks due to the pavement surface
irregularities and thus provide a greater comfortability.

As for travel speed, the positive signs indicate that an increase of this variable implies an increase of the vibrational mag-
nitude, consistent with the findings of Bíl et al. (2015). In particular, the highest coefficient is obtained for the e-kick scooter
regression model, suggesting the greater effect that the travel speed has on the vibration total value acting on this vehicle.
Also, in this case the solicitation difference could be explained by the e-bike front suspension, which has a non-linear beha-
viour that results in greater absorption of vibrations of greater magnitude, as suggested by Cano-Moreno et al. (2021) in the
hypothesis of the flexible suspension e-scooter. This evidence has significant concrete implications, as they suggest the need
to enhance the e-kick scooter design by equipping them with shock absorbers.

As for the user gender, the positive coefficients indicated that the females experienced a higher vibration magnitude for
both vehicles maybe due to a different physical characteristic or followed trajectory. Indeed, the paths were characterised by
a certain width (about 2 to 3 m). Consequently, different trajectories were possible along the same fixed path. Thus, more
cautious users could have avoided some irregularities in the pavements on the contrary than less prudent ones. On the other
hand, this result suggests that females could tend to feel more uncomfortable and insecure when using e-PMVs and confirms
the negative propensity of female users toward micromobility (Azimi et al., 2021). Moreover, this result might justify why
females are more prone than males to an injury outcome from e-kick scooter’s crashes (Tian et al., 2022). Indeed, although
empirical evidence is not yet available, the greater solicitation acting on women, coupled with the small diameter of e-kick
scooter’s wheels, could occasionally lead to a loss of balance, and thus a greater likelihood of crashes due to falling from the
vehicle. Nevertheless, new studies are recommended to clarify these issues.

As for the user age, the vibration total value appeared to reduce as the age increased for both vehicles. This could be
explained by a more prudent behaviour of ‘older’ users.

As for the user height, a different comportment between the two vehicles was observed. Indeed, the vibrational magni-
tude acting on the e-kick scooter strongly increases with the height, while an opposite effect occurred on the e-bike. This
contrasting evidence is a symptom of a different response between the two vehicles and could be explained by the different
vehicle-rider scenarios (i.e., standing on the e-kick scooter and sitting on the e-bike). As a practical consequence, it suggests
the need for a greater caution by taller users when riding e-kick scooters.

Finally, as for the user mass, the coefficients close to zero indicate that it had only a slight influence on the vibrational
acceleration for both the vehicles. This is consistent with the well-known Newton’s second law, according to which users
with greater mass will have experienced equal accelerations but greater forces.
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5. Conclusions

The proliferation of e-kick scooters in many cities worldwide has disrupted the transport sector and captured the atten-
tion of several stakeholders owing to the issuing of a few regulations to allow their circulation on roads. In this context, e-
kick scooters were equated with e-bikes according to some European rules. However, because these vehicles do not have the
same characteristics, this similarity could be questionable, at least in terms of dynamic behaviour. While the literature has
investigated the dynamic behaviour of bikes, as far as the authors are aware, no previous experimental investigation has
been conducted to compare the vibrational behaviour of e-kick scooters and bikes. Only one study provided a first attempt
for this evaluation, nonetheless it adopted only a limited sample of real data without data expansion and further
refinements.

Therefore, this paper contributes to the field in a fourfold manner, as follows:

� A novel framework for investigating and comparing the vibrational behaviour of e-bikes and e-kick scooters focusing on
the vehicular reaction at pavement irregularities, travel speed and users’ characteristics is proposed.

� This framework integrates the ISO 2631–1 vibration evaluation method, Artificial Neural Network, Monte Carlo Simula-
tion and Multiple Linear Regression models.

� A full application of the practical effectiveness of this framework in a real environment taking the city of Brescia (Italy) as
a case study is provided.

� An identification of the key factors that influence the magnitude of vibrations for e-scooters and e-bikes is performed.
Particularly, statistical z-tests and MLR are applied to discover if there are any significant differences in the vibration
levels acting on an e-kick scooter and an e-bike, as well as to verify which factors affect these vibration levels.

The empirical results indicated a significant difference between the vibrational behaviour of the two vehicles in all the
analysed surfaces. Moreover, they provided evidence on the questionability of equating e-kick scooters and e-bikes when
the vibrational performance is considered as comparative parameter. Indeed, the e-kick scooter’s mean vibrational magni-
tudes were significantly greater than those acting on the e-bike. Consequently, the e-kick scooter appeared to be globally less
comfortable than the e-bike. Furthermore, the MLR models demonstrated that not only the pavement surface and travel
speed parameters contribute in distinct ways to the vibrational magnitude explanation for the two vehicles, but also sensor
position (rear or front), user gender and user height.

This research has relevant practical implications for the vehicle design and planning. As for vehicle design, the results
indicated that the main reason for the greater e-bike comfortability was due to the presence of the front shock absorber. This
evidence suggests the need to improve the e-kick scooter fleets by equipping them with shock absorbers, as is already usual
for the most widespread e-bike typologies.

As for a planning perspective, the outcomes indicated that the bituminous conglomerate could be considered as the best
surface typology for both the vehicles when paths need to be identified. Furthermore, the uneven cobblestone should be
avoided because it induces much stronger vibrational accelerations than other surfaces for both vehicles. This advice is even
more important for the e-kick scooter, which is the vehicle that is most affected by the unevenness of this surface, and which
could pose a safety risk. This could be an obstacle for routes in old city centres, where uneven cobblestone is a common pave-
ment surface. Moreover, the results suggested the necessity of limiting the travel speed when riding e-kick scooters, espe-
cially for tall users, as the vibrational magnitude is strongly increased by the height factor.

Nevertheless, the main limitation of this research is the not very large scale of application. Indeed, only one e-kick scoter
and one e-bike models were ridden in the experimental trials. In addition, the statistical uncertainty of the model is
accounted through the assumptions of the probability distribution of the inputs in MCS. These assumptions could have sig-
nificant effects on the consequent statistical analysis. Therefore, further data collection is recommended to corroborate the
results by quantifying the model uncertainty based on larger real-world data samples. However, this study is sufficiently
large to contribute to the research evidence base on this topic, because:

� The vehicles adopted for the experimental trials can be considered representative of the e-PMVs most used on European
urban patterns, since they have average characteristics compared to the European market.

� The experimental data are expanded to include uncertainty by applying a MCS based on a two-layer feed-forward ANN.
� The probability distributions of MCS are carefully chosen to achieve simulation results characterized by a high level of
realism.

� An explicit indication of key determinants affecting the vibrational magnitude acting on e-kick scooters and e-bikes is
provided.

� The proposedmethodology has general validity. Thus, providing new input data, it can be employed to any vehicular sam-
ple and to any driving context.

Finally, this study indicates several developments. Firstly, future research should deepen the differences in behaviour
between the two vehicles, not only in terms of RMS vibration total value, but also by analysing the RMS associated with
acceleration acting along the three IMUs’ reference axis separately and the vehicular rotational motion (i.e., yaw, pitch, roll).
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Secondly, only physical user’s variables were considered in this research, because were assumed being those that directly
influence the vehicle vibrational response. Hence, future studies may investigate other variables related to users, such as
socio-demographic and behavioural ones (e.g., income level, educational level, job position, trip motivation, trip frequency).
Indeed, since the common types of pavement surface differs in different urban functional areas, the research may result more
practical and instructive if further elements e.g., trip purposes and activity region when using e-kick scooters and e-bikes are
considered. Thirdly, the possible relationship among the greater propensity of females than males to injuries from e-kick
scooter’s crashes and the greater vibrational solicitation acting on the former, coupled with the small diameter of e-kick
scooter’s wheels, should be experimentally investigated. Lastly, focusing on the relationship between objective and subjec-
tive comfort metrics could be beneficial to better understand the distinctions between e-kick scooters and e-bikes, as well as
to investigate the possible different level of quality from the user’s perspective as applied in other fields (Barabino, 2018).
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