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Abstract—Counting tasks with overlapping and occluded tar-
gets are often tackled by means of neural networks outputting
density maps. While this approach has been proven to be highly
effective for crowd-counting tasks, it has not been exploited
extensively in other fields (like fruit counting). Furthermore,
this approach has never been used to infer the shape or the
size of the recognized objects. In this paper, we present a novel
deep learning-based methodology to automatically estimate the
number of grape berries present in an image and evaluate their
average radius as a double output of the network. For the model
training, we employ a public dataset consisting of 300 vines
images, where each berry center has been dot-annotated. Since
the dataset does not directly provide information about the berry
radii, we first develop a numerical optimization methodology
to calculate the radius of the berries, by exploiting the dot
annotations, some prior knowledge (berry maximum size), and a
current state-of-the-art segmentation model. Then, we employ the
combined information (berry center and radius) to train a custom
neural network that outputs two density maps, from which we
infer the number of berries in the image and their average size.

Index Terms—Measurement science, grapevine berry, fruit
counting, fruit size estimation, fruit yield estimation, viticulture,
neural network, deep learning, density maps

I. INTRODUCTION

Grapes are one of the world’s most valuable crops, with
a growing market including several food products such as
fresh table fruit, raisins, wine, distillates, and juice concentrate.
Several species of cultivar exist, mainly differentiated between
white, red, and black varieties. Berries may be big or tiny,
round or elongated according to species [1]. According to
the final product they are being cultivated for, grapes may
be grown using different approaches aimed at maximizing a
specific characteristic, e.g., the sugar content or the berry size
and color. Even the harvesting method is different since the
preservation of the berry is of utmost importance in the case of

table fruit and raisins production. Instead, it is not so relevant
for wine and distillate production, since the berries will be
smashed anyway after harvesting to extract the juice. However,
this difference adds complexity to the harvesting task since
automated berry-picking devices need to carefully detect the
grape clusters and pick them up without damaging them [2].

Relevant investing is being done worldwide toward robotic
and fully automated systems for fruit picking, fertilization,
and crop harvesting to face the problem of the increasing
food demand [3]. Alongside the mechanical design of the
moving machine, the research community focused its attention
on detection strategies and algorithms to equip robots with
the necessary intelligence, leveraging knowledge already being
used by production companies [4]. A fundamental topic in
viticulture research is the estimation of yield production, which
is important for the economic management of crop fields [5].
Currently, agronomists estimate the field’s yield production by
means of manual measurements, considering (i) the number
of vines, (ii) the number of grape clusters per vine, and (iii)
the number of berries per cluster, all combined to estimate
the overall weight of grown fruit and the productivity of the
field [6], [7]. Finally, in the context of Precision Agriculture
(PA), tasks such as phenotyping, crop health monitoring, and
precise localization of fruits [8], [9] even at early stages
of maturation are of utmost interest to researchers and food
production companies [10]. What all those applications have
in common is the necessity to detect and localize in space both
the grape clusters and the individual berries belonging to them.
To this aim, contactless sensors are the most promising and
effective devices that could be adopted in such complex and
unstructured environments. Moreover, the recent advances in
computer vision (CV) and artificial intelligence (AI) research
gave way to a plethora of applications that were unthinkable

277

20
23

 IE
EE

 In
te

rn
at

io
na

l W
or

ks
ho

p 
on

 M
et

ro
lo

gy
 fo

r A
gr

ic
ul

tu
re

 a
nd

 F
or

es
try

 (M
et

ro
A

gr
iF

or
) |

 9
79

-8
-3

50
3-

12
72

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
M

et
ro

A
gr

iF
or

58
48

4.
20

23
.1

04
24

09
4

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on February 14,2024 at 16:20:44 UTC from IEEE Xplore.  Restrictions apply. 



  
just a decade ago, extensively exploiting vision systems such
as color cameras and beyond visible light sensors such as near-
infrared (NIR), thermal, and hyperspectral cameras.

As stated by [7], robust yield prediction by means of vision-
based approaches is achieved by improving the accuracy of the
single berries counting in images. Moreover, by computing the
average size of the berries, it is possible to estimate the total
weight of fruits seen by the camera. Despite being published in
2011, the work in [7] tackled the problem by fusing the color
information with the depth information, hence segmenting
efficiently the grape clusters and the single berries by means
of CV image processing techniques. Similar works adopted a
combination of 2D and 3D data for this purpose [11], [10],
[4]. However, relying on 3D measurements in the field can be
tricky, not to mention that AI models that directly take as input
3D information are not so common, because they typically
require a lot of computational power and result in low-speed
inference. Hence, they are currently not suitable for fast and
robust in-field analysis. Therefore, it is not surprising that the
research community mostly focused on 2D image analysis,
also considering the astonishing performance of AI models
for this type of visual data. For example, Neural Networks
have been adopted in [12] for the automatic segmentation of
grape berries using Deep Learning (DL). Several works also
analyzed the most relevant parameters to tune DL models, such
as the color space of the input images, the model architecture,
and the impact of different augmentation techniques [13], [2].
Such studies are of utmost importance to develop a robust
algorithm able to generalize between grape varieties, because
the detection of white berries is more complex compared to
red and black berries due to their distinctive color. A very
promising approach to counting single berries in the clusters
has been detailed in [14], where the authors adopted a custom
algorithm that uses the berries’ edge contour, the concave
points, and their curvature to guide the counting. The idea of
leveraging the berry edge to improve the berries segmentation
is expanded in [15], where authors defined the berries’ edge
as a new segmentation class alongside the whole berry and
the background classes.

However, among these works, no one tried to output an
average estimation of the berries’ size directly from the AI
model. The only two that tried to also produce a measure
of their radius were doing so by means of image processing
and geometrical or morphological methods after the model
produced the segmentation mask [14], [15]. In contrast, this
work focuses on the estimation of the total number of berries
in the image and of their average radius automatically at the
same time, without the need to write complex algorithms to
analyze the shape of the output segmentation mask.

To do so, we implement a customized Neural Network
capable of generating two density maps: one for estimating the
number of berries and another for estimating their radii. For
the estimation of the berry count, traditional methods typically
transform the dot annotations into a ground-truth density map
using a Gaussian kernel. However, determining the optimal
kernel size can be challenging and may lead to inaccurate

results. Thus, inspired by [16], we employ a Bayesian loss
function to exploit the dot annotations for learning a more
accurate density map. Regarding the estimation of berry radii,
since the dataset does not directly provide this information,
we first develop a numerical optimization methodology to
calculate the average radius of the berries, by leveraging the
dot annotations, prior knowledge (such as the maximum size
of berries), and a modified version of the well-known Segment
Anything Model [17]. Then, by combining the information of
the berry centers and radii, we can learn an accurate density
map specifically for the mean radius estimation.

II. PROPOSED METHODOLOGY

The purpose of this work is to develop an algorithm to
extract the number of berries and their average radius in pixels
from an image. The algorithm consists of a neural network
adapted from [16], which takes in input one image and outputs
two density maps, called Dn and Dr, used to predict the
estimated number Ñ of berries and their estimated average
radius r̃mean, respectively (see Fig. 1). The architecture of the
proposed neural network is discussed in Section II-A.

Our model has been trained and tested on Embrapa
WGISD [18], a public dataset designed for object detec-
tion and instance segmentation in viticulture. The dataset,
described comprehensively in Section II-B, contains dot an-
notations that approximate the center positions of the berries.
These dot annotations play a crucial role in training our model
to learn the density maps Dn and Dr. In particular, drawing
inspiration from the approach presented in [16], we employ the
dot annotations to generate a likelihood map that represents
the probability of a pixel belonging to a specific berry. These
probabilities are then leveraged to learn the density map Dn.
Instead, the likelihood map alone is insufficient for estimating
Dr due to the lack of information regarding the berry radii

Fig. 1. Scheme of the inference process. The image is elaborated by the
Custom Neural Network and two probability density maps are returned as
output. Pixel densities are summed to compute the estimate of the number of
berries Ñ and their average size r̃mean.
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in the dataset. To address this limitation, we integrate a
numerical optimization framework that allows us to estimate
the radii of the berries, which will be subsequently used in the
derivation of Dr. A detailed discussion on the construction of
the likelihood map and the numeric estimation of the berry
radii is provided in Section II-C, which covers the details of
the training process.

A. Custom Neural Network Architecture

The proposed neural net takes in input an image with size
H ×W and outputs two density maps Dn and Dr, used to
esteem the number of berries and the mean radius, respectively,
both with size H×W . The architecture utilizes VGG-19 [19]
as a backbone, which is a standard classification network. The
backbone is followed by a bilinear interpolation layer which
scales the backbone’s output to 1/8 of the size of the input
image. Subsequently, a regression header is incorporated into
the architecture, comprising two 3 × 3 convolutional layers
with 256 and 128 channels, respectively, along with two 1×
1 convolutional layers. This regression header generates the
two density maps, which are then appropriately scaled using
an interpolation layer to match the size of the input image.
Our network mainly differs from the one described in [16] by
incorporating two 1×1 convolutional layers instead of a single
layer. This modification is crucial as our network is designed
to output not only the density map used for estimating the
number of berries, but also the density map required for the
estimation of berry radii.

B. Dataset

The Embrapa WGISD includes 300 images of grape clusters
from five different grape varieties (Chardonnay, Cabernet
Franc, Cabernet Sauvignon, Sauvignon Blanc, and Syrah),
with variations in pose, illumination, and focus, as well as

genetic and phenological differences. To capture the images,
a Canon EOS REBEL T3i DSLR camera, and a Motorola
Z2 Play smartphone were used. The cameras were positioned
between the vine lines at distances of 1-2 meters, with the
EOS REBEL T3i camera capturing 240 images, including all
Syrah pictures, and the Z2 smartphone taking 60 images of
all other grape varieties. The resulting images were scaled to
2048×1365 pixels for the REBEL and 2048×1536 pixels for
the Z2. Additional details about the image capture process can
be found in the Exif data of the original image files, which
are included in the dataset. In all 300 images, Geng Deng and
colleagues [20] provided point-based annotations identifying
a total of 187,374 berries.

C. Training process

The proposed algorithm has been trained on a random se-
lection of 225 images, which accounts for 75% of the total 300
available images. The training procedure is repeated 600 times
(training epochs) and once for each image of the training set
(batch size equal to 1). The training was performed employing
Pytorch 1.14, a framework for Tensors and Dynamic neural
networks in Python with strong GPU acceleration [21].

The overall training process is illustrated in Fig. 2. The
diagram showcases the different blocks involved, and their
descriptions are provided below.

1) Data Loading and Preparation: First, a data loader picks
an image (that has not been picked yet during the current
epoch) and its corresponding dot annotations from the train
set. Then, a random crop with a 512 × 512 size is extracted
from the image. The cropped image with the associated dot
annotations is retained and passed to the next step.

2) Likelihood Map and Target Radius Numerical Com-
putation: This block focuses on computing the likelihood

Fig. 2. Scheme of the training process. The procedure can be divided into three main blocks: (i) data loading and preparation, (ii) likelihood map computation
and target radius estimation, and (iii) Bayesian loss and output generation.

279

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on February 14,2024 at 16:20:44 UTC from IEEE Xplore.  Restrictions apply. 



  
map, which determines the probability of a pixel belonging
to a specific berry, and numerically estimating the radius of
the berries. These calculations are crucial for the subsequent
calculation of the Bayesian loss used as function loss in
training. To begin this process, the initial step is to segment
all the berries within the image. This segmentation task is
accomplished using the Segment Anything Model (SAM) [17],
a cutting-edge instance segmentation model that utilizes the
Mask-RCNN architecture to achieve accurate object detection
and segmentation in images.

In our approach, we input the cropped image and corre-
sponding dot annotations into SAM, which outputs a matrix
of logits (M ) with dimensions 512 × 512 × (N + 1), where
N represents the number of berries in the cropped image. We
noted that sometimes SAM, when prompted with berry anno-
tated dots, includes in the outputted mask pixels belonging to
leaves or branches close to the selected berry. This happens
more often when the target berries are heavily occluded (by
leaves, brunches or other berries). In order to limit the impact
of this erroneous behaviour we adopted the following strategy.
While in the original SAM framework [17], M is directly
processed to generate the final segmentation, we propose an
additional processing step for M . In particular, we take into
consideration the maximum berry size, manually identified as
rmax = 40 pixels. To enforce this constraint, we generate a
new logits matrix, denoted as M ′, as follows:

M
′
i,j,k =

{
Mi,j,k, if di,j,k ≤ rmax

−∞, otherwise
(1)

where di,j,k is the euclidean distance from the (i, j)-th pixel
(xi,j) and the k-th annotated berry (yk). Then, M ′ is used to
obtain the final segmentation mask, denoted as Mseg . This
mask is a matrix of size 512 × 512 × (N + 1), where the
(i, j, k)-th element is assigned a value of 1 if xi,j belongs to
yk, otherwise, if xi,j does not belong to yk, that element is
set to 0.

At this stage, we can numerically compute the likelihood
map P and the radii of the berries rk by designing a new
logits matrix M

′′
that enables the convergence of P to the

segmentation mask Mseg through cross-entropy minimization.
P will be a 512×512× (N +1) matrix, where the (i, j, k)-th
element, denoted as P (xi,j ∈ yk), represents the probability
of pixel xi,j belonging to the kth berry (yk) or the background
(yN+1). The computation of P is determined by the SoftMax
function applied to M

′′
, as follows:

P (xi,j ∈ yk) =
eM

′′
i,j,k

∑N+1
k=1 e

M
′′
i,j,k

(2)

In our methodology, we design the matrix M
′′

as:
{
M

′′
i,j,k =

−d2
i,j,k

σ2
k

, if k ≤ N

M
′′
i,j,k = −σ2

ratio, if k = N + 1
(3)

Here, σk is the optimization variable which controls the
probability of xi,j belonging to yk, and σratio is a pre-defined

constant that establishes the relationship between σk and the
corresponding radius rk. Specifically, σratio = rk

σk
, indepen-

dently of k. Basically, the magnitudes of |M ′′
i,j,k| express

the normalized distance from xi,j to yk. The sigma values
are initialized as σk = rmax

2·σratio
. These values are refined by

minimizing the cross-entropy between P and Mseg . Upon
optimization, the radius rk of the kth annotated berry is
computed as rk = σk · σratio, and the mean radius is given by

rmean = 1
N

N∑
k=1

rk. For clarity, we remark that |M ′′
i,j,N+1| rep-

resents the normalized distance from xi,j to the background,
which remains constant for all pixels. This design ensures that
a pixel located on the edge of the kth berry is equidistant
from the kth annotated dot (approximating the berry center)
and the background. Specifically, when di,j,k = rk, we have
M

′′
i,j,k =

−r2k
σ2
k

= −σ2
ratio.

3) Bayesian Loss and output generation: To train the
Neural Network to generate the desired density maps Dn and
Dr, we employ the following custom Bayesian loss:

LBayes = Ln + Lr (4)

Ln is the loss associated with the berry number estimation
and Lr is the loss related to the berry mean radius. The two
components of the loss are defined as:

Ln =
N∑

k=1

|1− En
k |+ |En

N+1|

Lr =
N∑

k=1

|σk − Er
k|+ |Er

N+1|
(5)

where En
k and Er

k are computed as:

En
k =

512∑
i=1

512∑
j=1

Dn
i,j · P (xi,j ∈ yk)

Er
k =

512∑
i=1

512∑
j=1

Dr
i,j · P (xi,j ∈ yk)

(6)

Basically, Ln requires that for each of the annotated berry,
the sum of the product between Dn and P is equal to one.
Similarly, Lr requires that for each of the annotated berry, the
sum of the product between Dr and P is equal to each berry’s
radius divided by σratio. The subscript N + 1 indicates the
background, so adding En

N+1 (Er
N+1) to Ln (Lr) constraints

Dn (Dr) to be as close as possible to 0 in those pixels
belonging to the background.

At the inference stage, neither the dot annotations nor σk
values are available, as well as the likelihood map P . Nether-
less, the two quantities of interest, namely, the total number
N of berries and the mean radius rmean of the berries, can be
estimated as:

Ñ =

N+1∑

k=1

En
k =

N+1∑

k=1

512∑

i=1

512∑

j=1

Dn
i,j · P (xi,j ∈ yk) =

=

512∑

i=1

512∑

j=1

Dn
i,j ·

N+1∑

k=1

P (xi,j ∈ yk) =

512∑

i=1

512∑

j=1

Dn
i,j

(7)
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and

r̃mean =
σratio

Ñ

N+1∑

k=1

En
r =

=
σratio

Ñ

N+1∑

k=1

512∑

i=1

512∑

j=1

Dr
i,j · P (xi,j ∈ yk) =

=
σratio

Ñ

512∑

i=1

512∑

j=1

Dr
i,j ·

N+1∑

k=1

P (xi,j ∈ yk) =

=
σratio

Ñ

512∑

i=1

512∑

j=1

Dr
i,j

(8)

In conclusion, the total number Ñ of berries can be deter-
mined by summing all the values of the Dn, while the mean
radius r̃mean of the berries can be obtained by multiplying the
sum of all the values of Dr with the pre-defined σratio value
and dividing it with the esteemed number of berries.

III. EXPERIMENTAL RESULTS

During the evaluation phase, our model has been tested
on the unseen test set consisting of K = 75 images. Unlike
the training phase, where images were cropped due to GPU
limitations, the entire image is fed into the algorithm for
testing. To assess the accuracy of the counting task, we utilize
three metrics: mean absolute error (MAE), mean squared error
(MSE), and mean absolute percentage error (MAPE). These
metrics are calculated as follows:

MAE =
1

K

K∑

k=1

|Nk − Ñk|

RMSE =
1

K

√√√√
K∑

k=1

(Nk − Ñk)2

MAPE =
100

K

K∑

k=1

|Nk − Ñk|
Nk

(9)

where Nk and Ñk are the ground-truth count and the
estimated count for the kth image, respectively.

While the ground-truth for the number of berries can be
accurately obtained from the dot annotations, the ground-truth
for the mean berry radius is not available initially. In order to
assess the accuracy of our predictions regarding the berry radii,
we calculate the mean absolute error (MAEr) between the es-
timated mean berry radius (r̃mean) to the reference mean radius
(rmean) computed as discussed in Section II-C2. However, it is
important to acknowledge that rmean is obtained from a process
with unknown uncertainty. Therefore, in future developments,
it will be necessary to validate the entire measurement chain
to ensure the accuracy and reliability of our results.

Table I reports the results obtained on the test images for
different values of σratio. The proposed algorithm achieves
remarkable performances in estimating the number of berries,
with a low percentage error ranging from 3.7% to 7%. For

the radius estimation, the algorithm still achieves interesting
results, with an average error of approximately 2 pixels (r̃mean
ranging from 15 to 35 pixels). Further enhancements could
potentially be achieved by exploring and testing additional
values of σratio through an hyper parameter optimization. In
this work we empirically identified σratio = 2 as the best
neural network among the tested one (lowest MAE and
MAEr values).

TABLE I
EXPERIMENTAL RESULTS USING DIFFERENT VALUES OF σRATIO .

σratio MAE RMSE MAPE MAEr [px] MAPEr

0.75 37.7 49.7 6.3% 2.3 9.6%

1.00 40.2 50.1 6.7% 2.1 8.8%

2.00 21.7 31.0 3.6% 1.7 7.1%

3.00 22.2 30.0 3.7% 1.8 7.5%

In table II we show the results obtained by two other works
for in-field berry counting compared to our best performing
net(σratio = 2). Note that for [22] neither the MAPE nor
the average number of berries per image were reported. Since
it has been validated on our same data-set (WGISD) we
approximated the number of berries per image by dividing
the total number of berries in the data set per the number of
images (it might be different due to different train-test splits).

TABLE II
COMPARISONS WITH OTHER WORKS

Method Avg. berry-number per image MAE MAPE

SAGBCNet [22] ≃ 624 35.6 ≃ 5.7%

GBCNET [23] 1093 117.4 10.7%

STEWIE 601 21.7 3.6%

IV. CONCLUSIONS

The novel methodology presented in this paper is able to
robustly estimate the number of grape berries in a real in-field
vineyard image, where several grape clusters are present as
well as background noise such as leaves and branches, result-
ing in an overall estimation error less than 4%. In addition
to the counting task, our proposed model also estimates the
average radius of the berries, which is a novel contribution
to AI-driven viticulture research. Our approach can be also
applied to other fruits as long as the fruit has a spherical shape.

Despite being a promising work, some careful evaluation of
the target radius estimation should be carried out in the future
to (i) improve the current model by conducting a validation
campaign of the radius estimation task, (ii) expand the model
to accurately estimate the overall size of elongated and thin
berries which have not a perfect spherical shape and (iii)
address the conversion px to mm for fruit size estimate.
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