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Abstract—This paper focuses on the development and eval-
uation of a portable vision-based acquisition device for vine-
yards, equipped with a GPU-accelerated processing unit. The
device is designed to perform in-field image acquisitions with
high-resolution and dense information. It includes three vision
systems: the Intel® RealSense™ depth camera D435i, the Intel®
RealSense™ tracking camera T265, and a Basler RGB DART
camera. The device is powered by an Nvidia Jetson Nano
processing board for both simultaneous data acquisition and real-
time processing. The paper presents two specific tasks for which
the acquisition device can be useful: wood volume estimation
and early bud counting. Acquisition campaigns were conducted
in a commercial vineyard in Italy, capturing images of vine shoots
and buds using the prototype device. The wood volume estimation
software is based on image processing techniques, achieving an
RMSE of 2.1 cm3 and a mean deviation of 1.8 cm3. The buds
detection task is obtained by fine-tuning the YOLOv8 model on
a purposely acquired custom dataset, achieving a promising F1-
Score of 0.79.

Index Terms—Measurement science, vineyard monitoring, vi-
sion systems, pruning wood estimation, bud detection, precision
farming, deep learning, image processing, embedded systems.

I. INTRODUCTION

Nowadays, grapevine farming and wine production are
focusing on improving yield quality [1]. This trend started
in the late ‘80s and involves highly trained and specialized
employees like agronomists and enologists. Continuous studies
and research are being conducted to scientifically enhance
wine quality through innovative farming methods [2] and ad-
vancements in the wine fermentation process [3]. The pursuit
of improved product quality necessitates also a more precise
management of individual grapevines [4]. For instance, in the
production of Amarone wine, vines are planted closer together
to maximize their number while minimizing the grape-to-vine
ratio [5]. Numerous techniques are being explored to enhance
the management of individual vines [4], thereby driving the
adoption of new technologies. On the other hand, we are facing
the effects of climate change [6], combined with the need for
a sustainable farming-oriented approach. Climate change has
resulted in more frequent and intense meteorological events
with significant impacts on micro and macro biological aspects
[7].

In this context, sustainable vineyard management becomes
crucial, requiring intelligent dosing of water, fertilizer, and

pesticides to preserve the biological environment [8]. Pro-
ducers are becoming involved in how technology can im-
prove quality and contain the cost of an environmental-safe
production. Yield and vegetative prediction are the main
challenges in this endeavor, and they rely heavily on in-
field data, which are difficult and time-consuming to acquire
[9]. In this context, optical sensors provide the capacity to
collect a substantial amount of data from the environment,
facilitating the extraction of the predominant vineyard feature:
color. Color not only characterizes the state of the plants but
also discriminates among their various organs, making it a
valuable source of information for detailed analysis. The ideal
solution for agronomists is a device able to scan the field at
a close distance, thus acquiring high-resolution images dense
with information in which each part of the plant is big enough
to actually detect and understand its health and growing status.
Therefore, there is a rising need for autonomous ground
vehicles (AGVs) in contrast with aerial vehicles capable of
performing various tasks in the field alongside monitoring,
such as disbudding, collection, and pruning, which heavily
rely on imaging sensors for environmental mapping and lo-
calization [10]. Vision systems mounted on different vehicles
offer reliable measurements during motion if appropriately
designed and tuned. Images acquired through those systems
have to be processed in order to obtain reliable information
about the vineyard status. Frameworks such as OpenCV have
been introduced to mathematically interpret these light-derived
data types, extracting geometric and chromatic characteristics.
In recent times, machine learning techniques have emerged,
enabling the conversion of these features into qualitative
information that is well-suited for agronomic assessment and
decision-making support.

Ongoing research endeavors are focused on benchmarking
algorithms for detecting the plant’s hydric state and leaf
diseases [11]. The Televitis research group based in La Rioja,
Spain, is actively testing various imaging approaches in vine-
yards [12], employing diverse techniques to estimate pruning
mass [13]. Moreover, the Eden library group is developing
deep learning datasets to detect different types of vine diseases
[14] and is also working on a vision-based device for infield
image acquisition [15]. However, the research community is
not focusing enough on the problem of in-field acquisitions
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and dealing with unstructured environments, while this is a
problem typically addressed by commercial companies.

With this work, we developed a first prototype of a
portable vision-based acquisition device equipped with a GPU-
accelerated processing unit. The device can be used for in-field
reliable image acquisitions, also mapping the saved images in
the vineyard thanks to odometry data acquired jointly. More-
over, we envisioned a couple of tasks for which this device can
be extremely useful for agronomists: (i) the estimation of wood
volume (vine branches and shoots), and (ii) early bud counting.
Wood volume estimation can be useful to analyze the actual
growth of plants during the previous year, enabling tailored
fertilization practices [16] and helping to evaluate if pruning
strategies are effective, or even detect diseases affecting the
lignification of the vine (e.g. Flavescence dorèe [17]). Early
bud detection and tracking contribute to generating a vigor
map of the vineyard, representing the growth of upcoming
vine shoots that will produce leaves, flowers, and grapes,
also giving an estimation of the future yield of the whole
vineyard way before the production of fruits, which is a
practice sometimes adopted in viticulture.

II. MATERIALS

A. Acquisition device

In this paper we describe and validate our optical acquisition
device shown in Fig. 1. A total of 3 vision systems were
mounted and fixed on a professional tripod using custom-made
3D-printed supports. The cameras adopted are (A) an Intel®
RealSense™ depth camera D435i, (B) an Intel® RealSense™
tracking camera T265, (C) a Basler RGB DART camera
(model daA2500-14uc), equipped with C-mount optics of focal
length 8 mm, and iris aperture set to F 1.4 to obtain a depth
of field in sharp focus on the shoots and out of focus on the
background. To ensure a fast acquisition and image-saving
frame rate, an NVIDIA Jetson Nano processing board was
used as the acquisition device (device D in Fig. 1). With
its multi-processing libraries and dedicated video card, the
Jetson Nano enabled the simultaneous processing of multiple
camera streams. Additionally, this GPU-based device offers
the advantage of low power consumption and can be powered
by an external battery (e.g. power banks or solar panels). It
is worth noting that the depth camera D435i datasheet [18]
claims that the depth resolution is less than 2% at a distance
of 2 m and, more generally, the depth accuracy is between
2.5 mm to 5 mm at 1 m distance from the object, showing
accuracy drifts that increase with distance [19]. However, in
comparison to other RGB-D devices available in the market,
the Intel® RealSense™ D435i stands out as not only cost-
effective but also highly robust for outdoor measurements.
Additionally, it boasts low power consumption, making it an
ideal choice for integration into mobile embedded platforms.
Furthermore, during our data acquisition process, we main-
tained controlled background conditions while intentionally
allowing uncontrolled natural sunlight to illuminate the vine
shoots. This approach ensured that we captured real-world

variations in lighting conditions, thus enhancing the robustness
and authenticity of our experimental setup.

Fig. 1: Image of the proposed acquisition set-up. (A) depth
camera D435i, (B) tracking camera T265, (C) Basler RGB
camera with optics, (D) Nvidia Jetson Nano.

Although the proposed acquisition device is compact and
easy to use, not every camera was employed at the same time.

To perform vine shoots volume estimation measurements
only the depth camera D435i was used, which captures depth
information at a resolution of 1280x720 pixels, together with
its RGB sensor, which provides high-resolution color images
at 1920x1080 pixels. Additionally, we utilized the tracking
camera T265 to precisely localize in space each acquisition.
However, the bud detection task requires color images of
higher quality due to the low dimension of the buds compared
to the background noise. Therefore, to capture a multitude
of bud images the Basler camera was employed instead of
the D435i depth camera. In addition, several images were
also taken using a smartphone (RedMi Note 11 Pro, camera
with sensor size 1/1.52”, resolution 12, 000 × 9, 000 px, iris
aperture ranging from F 1.9 to F 2.4), some taken when it was
mounted on the acquisition device, and some close-ups taken
manually. This strategic combination allowed us to capture
diverse sets of images, each exhibiting distinct chromatic and
optical characteristics. The acquisitions were always coupled
with the odometry data obtained by the tracking camera T265.
By using the tracking camera, a CSV file containing the
localization, orientation, and velocity information for each
frame was also generated alongside the raw image data.
Odometric data were acquired at a rate of 1, 500 FPS, allowing
us to localize all the image frames and generate a vineyard
map of the measurement locations.

B. Acquisition field and experimental campaigns

The Masi Agricola winery (N 4531′36.1596′′, E
1051′43.1496”) generously provided us access to one
of their vineyards dedicated to the cultivation of Corvina
grapes following the Guyot vine training system [20]. In the
Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina
is the main grape variety cultivated for the production of the
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famous Amarone red wine. For both research purposes (shoots
volume estimation and bud detection) the acquisitions were
conducted in the same field and at the same time, leveraging
slightly different protocols. Data collection took place in
winter, before vine pruning, allowing for the presence of
numerous vine shoots resulting from the previous spring and
summer’s vegetative phase. Data acquisition was conducted
during daylight hours, encompassing various ambient lighting
conditions.

Fig. 2: Image of the acquisition area in the field.

1) Shoots acquisition campaign: To extrapolate meaningful
pixels from the vineyard surroundings without using AI seg-
mentation algorithms, a background-free set-up was designed
and implemented on the field by fixing white sheets behind
the target vine as shown in the left part of Fig. 2. This
experimental set-up enables easy segmentation of vine images
using computer vision algorithms, resulting in the extraction
of relevant pixels.

2) Buds acquisition campaign: In this case, it was not
required to cover the background thanks to the settings of the
Basler RGB camera that produced a short depth of field. Since
a high amount of images needed to be saved for AI training
purposes, the idea was to acquire pictures while moving in
a continuous fashion. Hence, instead of taking single images,
a full video of the whole movement along the vineyard was
recorded.

III. PROPOSED METHODOLOGY

A. Shoots volume estimation procedure

The procedure applies image processing algorithms to the
RGB image to filter data from the corresponding depth image
using standard imaging techniques [21]. This results in a point
cloud (PC) further processed to obtain sub-cylinders (SM) that
approximate its volume. The final volume of the branch sample
is obtained as the sum of the SM’s volumes. Refer to Fig. 3
and Fig. 4 for the complete procedure.

1) 2D mask generation: The original RGB image of the
sample is convered to Grayscale. To enhance the image quality,
we apply a Histogram Stretch algorithm. A thresholding
operation generates a binary mask M , which is further refined

Fig. 3: RGB-D image processing pipeline.

through an erosion morphological operation with kernel Ke.
This operation produces another thinner mask M∗.

2) Depth pre-processing: The compressed depth image D
is refined by applying a Closing operation to reduce data noise.
Then, the refined mask M∗ is superimposed on the depth
image, thus obtaining a depth image D∗ without border effects
that may happen due to the branch shape and light illumination
noise (e.g., multipath error, occlusions). Since the resulting D∗

may have holes due to reflective surfaces or occlusions, and
the filtering step applied using M∗ greatly reduced its border,
we apply a Dilation procedure with kernel Kd > Ke. This
fills out the holes and enlarges the perimeter of the sample.
However, even if this procedure fills out the internal holes, it
may distort the original shape of the sample. Therefore, we
superimpose mask M to filter out wrong points and retain
the original shape of the sample. The resulting pre-processed
depth is called D∗∗.

Fig. 4: Volume estimation procedure

3) Point Cloud generation: With the pre-processed depth
data D∗∗ in hand, we generate the corresponding PC by
applying the intrinsic data of the IR sensor of the RGB-D
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camera obtained from camera calibration (image center cx,
cy , focal length fx, fy , distortion parameters). To correct
any scattered behavior that may be present due to image
compression, we apply a Z-score normalization procedure to
the resulting PC.

4) Cylindrification: To compute the sample’s volume, the
idea is to divide it in sub-cylinders (SM) to reduce the
approximation error. Therefore, the division of the original
branch is performed through an iterative process. First, a PCA
analysis is conducted on the original PC to extract its principal
components. These are used to identify the cutting direction
which is the longest of the three (first principal component).
The PC is cutted in half along this direction, obtaining two
halves of the original PC. This procedure is repeated i times,
where i = log2

hmax

hmin
. The resulting i is approximated to the

closest integer value. As a result, after the cylindrification
procedure, we end up with n = 2i SM. Afterwards, the SMs
are filtered using a K-d tree to remove outliers belonging to
the background. To apply it, considering that the camera has
a minimum resolution of 1mm, in this work we defined the
radius of the K-d tree searching area equal to 2mm and the
number of points belonging to the area at least equal to 6,
thus avoiding pointy shapes that are actually noise and not
real data.

5) Volume estimation: For each SM, the algorithm com-
putes the enclosing 3D box by using the min and max of each
dimension. This results in the SM size along each axis (Sx, Sy ,
Sz). Due to the specifications of the cylindrification procedure
(i.e., the definition of i and n), the highest of the three is the
height hn of the n−th SM. Then, we project the 3D data of the
SM on a plane obtained by applying a PCA on the points of the
SM (ideally, this should be equal to projecting to plane XY).
Therefore, we apply a Convex Hull to compute the area An

of the SM and obtain the diameter as dn = An

hn
. This method

accurately approximates the mean diameter of branches with
varying diameters. After obtaining hn and dn for each SM,
we perform a statistical analysis to found incorrect data by
checking the mean and standard deviation of both h and d. If
an outlier value is found, it is replaced by h∗ or d∗ accordingly,
computed as the mean of the preceding and following SM h
or d. The total wood volume Vtot is then calculated using:

Vn = Ln × π × d2n
4

(1)

Vtot =

n∑

j=1

Vj (2)

B. Bud detection

In order to accurately map the presence of new buds in
vineyards, which serve as indicators of canopy architecture
and vine health, we conducted fine-tuning of the YOLOv8
image detection model [22]. We have selected the YOLOv8n
nano model, which is the lightest variant among the available
models, to reduce computational power. This decision was
made to ensure the feasibility of implementing our software
on the device in the final real-time prototype. As the device is

intended to be operational on a moving platform, uploading
image data in real-time can be both time-consuming and
energy-intensive. By enabling onboard image processing
and updating only the numerical data, we can optimize the
entire vineyard monitoring process and provide real-time
information to the agronomist. This approach minimizes the
need for data transfer and facilitates efficient monitoring
operations. This process involved a reconfiguration of the
neural network by fine-tuning the last layer to detect a
single class and generate bounding boxes around the buds.
We assembled a custom dataset by taking several photos of
the early buds during our acquisition campaigns in winter.
The final dataset contains a total of 200 images, 85% of
them taken using the Basler RGB camera, 10% using the
smartphone camera (RedMi Note 11 Pro), and the remaining
5% were images downloaded from the internet without
referring to a particular published dataset (see Section ?? for
cameras details). This variation in data sources allowed us to
incorporate a wide range of optical features into our dataset,
enhancing the model’s ability to generalize across different
scenarios. Image samples of the three sets are shown in Fig.
5. The YOLOv8 neural network operates with a maximum
image resolution of 640 px. However, buds are relatively
small, hence we leveraged the capabilities of its embedded
augmentation library [22], which includes image manipulation
and cropping functions. As a result, the images in our dataset
have a resolution of up to 1280 px, enabling the network to
effectively process the augmented input data.

(a) (b) (c)

Fig. 5: Example images from our custom dataset taken using
(a) the Basler DART color camera, (b) the RedMi Note 11
Pro smartphone camera, (c) downloaded from the internet.

IV. PRELIMINARY RESULTS

A. Shoots volume estimation results

Once the shoots volume estimation procedure was estab-
lished, we proceeded to measure real vine shoots sample in
a semi-controlled environment. We performed measurements
at different distances to validate our model and identify the
optimal distance to acquire the wood branch. 450 RGB-D
images were taken at distances ranging from 600 mm to 1200
mm in laboratory conditions with sunlight illumination and
controlled background. Fig. 6 shows the normal distribution
of the errors with respect to the actual dimensions.

As expected, the estimation error exhibits a linear increase
with distance, resulting in an acceptable uncertainty up to a
distance of 1000 mm. We identify a secure range for future
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Fig. 6: Histogram distribution of the volume measurement
errors with respect to the actual volume.

acquisition between 600 mm (lower sensor limit) and 1000
mm. For shoot volume measurements, we obtained a total
RMSE of 2.1 cm3 (9.7%) and a mean deviation of 1.8 cm3

(8.3%).

B. Bud detection results

We performed fine-tuning retraining the YOLOv8 neu-
ral network to improve its performance in detecting buds,
particularly in dynamic image settings. Typical metrics to
evaluate object detector performance are F1-Score, Precision,
and Recall as common standard [23]. In vineyard images,
false positives can easily arise due to the abundance of wood
pixels, especially from the foreground rows extending toward
the background rows. Due to their small size in relation
to the image plane, frequent partial occlusion, and potential
confusion with the background, we accepted the possibility
of some missed detections. As a result, we devised a plan to
explore the frequency of occluded buds in order to improve
the Recall value.

Our validation procedure involved a small dataset consisting
of 45 brand new images, each containing a minimum of
three buds. To ensure an independent and robust validation,
we carefully composed the dataset with 85% of the images
sourced from the internet, 10% captured using a smartphone
camera, and the remaining 5% acquired with the Basler
RGB camera in the vineyard. By constructing a validation
dataset that is specular (opposite) to the training dataset, we
aimed to prevent the network from relying solely on camera-
specific features, thus enhancing its generalization ability. The
resulting model achieved an F1-Score of 0.79, Precision and
Recall of 0.88 and 0.72 respectively. Based on our preliminary
dataset, the obtained metrics show promise. The high precision
achieved is consistent with our objective of minimizing false
predictions. However, a lower recall value is acceptable due
to the presence of occluded buds and their heterogeneity.

V. CONCLUSIONS

The obtained results for both the shoots’ volume estimation
and bud detection are promising, despite being at their initial
stage of development. We establish an optimal configuration
for our multi-sensor device to be used in future vineyard ac-
quisitions, maximizing sensor sensitivity and minimizing mea-
surement uncertainty. It is observed that the volume estimation
depends greatly on the quality of the raw data (both color and
depth). This is especially crucial for measurements of such
thin objects as the vines’ branches and shoots. Therefore, in
future developments, our focus should be on the improvement
of the volume estimation procedure leveraging better quality
images taken from cameras such as the Basler DART color
camera. However, we need to pay attention to other parameters
when choosing the camera, such as the overall cost and
integration with the embedded platform. Our upcoming winter
plans involve the validation of this measurement system in an
authentic vineyard setting. To achieve this, we will develop an
intelligent segmentation approach capable of distinguishing the
vine shoots from the background without relying on the use
of white sheets. The bud estimation model, on the other hand,
achieved an acceptable level of accuracy; however, it may be
improved in the future by expanding the dataset with images
taken with different backgrounds. In fact, we suspect that
the reduced accuracy is due to the presence of unseen noise
that strongly characterizes the images downloaded from the
internet in contrast with the ones taken using our acquisition
device and software. Future developments of the project as
a whole will include the estimation of the leaf area index
and grape bunches volume, in conjunction with leaf and grape
object detectors.
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