
Planning with Qualitative Action-Trajectory Constraints in PDDL

Luigi Bonassi , Alfonso Emilio Gerevini and Enrico Scala
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy

{l.bonassi005, alfonso.gerevini, enrico.scala}@unibs.it

Abstract

In automated planning the ability of expressing
constraints on the structure of the desired plans is
important to deal with solution quality, as well as
to express control knowledge. In PDDL3 this is
supported through state-trajectory constraints cor-
responding to a class of LTLf formulae. In this pa-
per, first we introduce a formalism to express tra-
jectory constraints over actions in the plan, rather
than over traversed states; the new class of con-
straints retains the same temporal modal opera-
tors of PDDL3, and adds two useful modalities.
Then we investigate compilation-based methods to
deal with action-trajectory constraints in proposi-
tional planning, and propose a new simple effec-
tive method. Finally, we experimentally study the
usefulness of our action-trajectory constraints as a
tool to express control knowledge. The experimen-
tal results show that the performance of a classical
planner can be significantly improved by exploit-
ing knowledge expressed by action constraints and
handled by our compilation, while the same knowl-
edge turns out to be less beneficial when specified
as state constraints and handled by two state-of-the-
art systems supporting state constraints.

1 Introduction
In automated planning temporal extended goals are con-
straints over the state trajectory of a plan that can be used
to express desired properties of the solutions for a planning
problem or domain control knowledge aimed at helping the
planner. Linear Temporal Logic over finite traces (LTLf )
[Pnueli, 1977; Giacomo et al., 2014] and PDDL3 [Gerevini
et al., 2009] are two of the most popular languages used to
formulate such constraints in domain-independent planning.

In this paper, similarly to what done in [Bienvenu et al.,
2011], we study an alternative way of expressing plan con-
straints and control knowledge through constraints over tra-
jectories of actions rather than states, and we propose a new
simple formalism extending classical planning with such con-
straints. For instance, in a logistics domain, for a planning
problem we could request that a certain truck should drive

from city1 to city2 during its journey, or that it should be
refueled before driving.

Action-trajectory constraints (hereinafter called action
constraints) cannot be easily and naturally expressed us-
ing state-trajectory constraints (hereinafter state constraints).
This requires that the domain is carefully modified by in-
troducing additional fluents and revising the action models,
for each problem in the domain that has different action con-
straints.1 On the contrary, to formulate action constraints we
do not have to know how states and actions are modeled: we
just need to use the labels of the (instantiated) actions and re-
late them via a temporal modal operator. Moreover, since ac-
tion constraints are independent from the state representation,
they could also be used with a more complex state represen-
tation, such as in numeric planning [Fox and Long, 2003].

The proposed language to express action constraints re-
tains the same temporal modal operators of PDDL3, and adds
two useful modalities (always-next and pattern). The
language was designed with the purpose of expressing use-
ful knowledge without incurring in significant computational
overheads to handle it at planning time.

After introducing classical planning enriched with action
constraints (PAC), we investigate compilation-based methods
to deal with action constraints in PAC planning, and pro-
pose a new effective method. Our method not only is poly-
nomial, but it also generates a compiled problem that has
solutions with exactly the same length of the solutions for
the original problem. This is an advantage over other ex-
isting formalisms for expressing control knowledge in plan-
ning, such as those based on LTLf , that need more complex
and costly compilations or increase the length of the com-
piled plans [Torres and Baier, 2015; Bienvenu et al., 2011;
Baier et al., 2008].

Then we experimentally study the usefulness of action con-
straints as a tool to express control knowledge and plan qual-
ity. The experimental results show that the performance of
a classical planner can be significantly improved by exploit-
ing knowledge expressed by action constraints and handled
by our compilation method, while the same knowledge turns
out to be less beneficial when formulated as state constraints

1E.g., stating (sometime(at truck1 city2)) in PDDL3 does not
work to simply request that the truck should drive from city1 to
city2, if in the domain the truck can reach city2 from more cities.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4606



and handled by two state-of-the-art systems supporting state
constraints [Baier and McIlraith, 2006; Bonassi et al., 2021].

The rest of the paper is organised as follows: Section 2 in-
troduces PAC; Section 3 shows how action constraints can be
compiled away in classical planning; Section 4 presents our
experimental analysis; Section 5 briefly comments on related
work; finally Section 6 gives the conclusions.

2 Classical Planning with Action Constraints
A classical planning problem is a tuple Π = 〈F,A, I,G〉
where F is a set of atoms, I ⊆ F is the initial state, G
is a formula over F , and A is a set of actions. An action
a ∈ A is a pair 〈Pre(a),Eff(a)〉, where Pre(a) is a formula
over F expressing the preconditions of a, and Eff(a) is a set
of conditional effects, each of the form c . e, where c is a
formula and e is a set of literals, both over F . With e−

and e+ we indicate the partition of e featuring only nega-
tive and positive literals, respectively. A state s is a subset
of F , with the meaning that if p ∈ s, then p is true in s,
and if p /∈ s, p is false in s. An action is applicable in s if
s |= Pre(a), and the application of an action a in s yields
the state s′ = (s \

⋃
c.e∈Eff(a)
with s|=c

e−) ∪
⋃

c.e∈Eff(a)
with s|=c

e+. We indicate

with s[a] the state resulting from applying action a in s, and,
with a little abuse of notation, we write a conditional effect
of the form > . e as a simple unconditional effect e. A plan
π for a problem Π = 〈F,A, I,G〉 is a sequence of actions
〈a1, a2, . . . , an〉 from A; π is valid for Π (a solution) iff the
sequence 〈s1 = I, s2 = s1[a1], . . . , sn+1 = sn[an]〉 of states
(state trajectory) is such that ∀ i ∈ [1, . . . , n] si |= Pre(ai),
and sn+1 |= G. We denote with |π| the length of plan π, and
with π(t) the t-th action of π.

The following definition formalizes the semantics of a for-
mula φ in Negation Normal Form (NNF) defined over a set A
of actions, intended as the set of atoms formed by the labels
naming the actions in A.

Definition 1. LetA be a set of actions of a planning problem.
Given a plan π, an action formula φ defined over A written
in NNF is true at time t in π, i.e. π(t) satisfies φ, iff:

• If φ = a then π(t) = a.

• If φ = ¬a then π(t) 6= a.

• If φ = ψ1 ∧ ψ2 with ψ1 and ψ2 action formulae over A,
then π(t) satisfies ψ1 and π(t) satisfies ψ2.

• If φ = ψ1 ∨ ψ2 with ψ1 and ψ2 action formulae over A,
then π(t) satisfies ψ1 or π(t) satisfies ψ2.

In a sequential plan, exactly one action is executed at
each time step. I.e., given a plan formed by a set of ac-
tions {a1, a2, . . . , an}, the following formulae over the action
atoms hold for t = 1 . . . |π|:
π(t) = ai ⇒ π(t) 6= aj , ∀j ∈ {1 . . . n}, j 6= i
π(t) = a1 ∨ π(t) = a2 ∨ . . . ∨ π(t) = an.

Due to these properties of a sequential plan, there is only a
restricted class of relevant formulae over action literals. For
instance, action formula a1 ∨¬a2 can be rewritten as the dis-
junction of all action names (atoms) of a planning problem

different from a2. This is because, for every time step of a
plan, the execution of any action except a2 satisfies the for-
mula. Another example is ¬a1 ∧ a2. Such formula is equiva-
lent to a2, since a2 is the only action satisfying ¬a1 ∧ a2.

In general, it can be proven that for a sequential plan every
action formula can be rewritten as an equivalent formula φ
that is either a disjunction of positive action literals, > or ⊥.
An action atom a satisfies a disjunction of positive literals φ if
a is a disjunct of φ, and we denote this by a ∈ φ (analogously,
a 6∈ φ denotes that a is not a disjunct of φ). In the rest of
the paper, we assume that all action formulae are rewritten as
disjunctions of positive literals. If a formula is equivalent to
> (resp. ⊥), we can rewrite it as the disjunction of all action
atoms of the planning problem (resp. the empty disjunction).

We introduce action constraints as a class of temporal
logic formulae over a sequence π of actions. Such con-
straints use the same modal operators of the qualitative state
constraints in PDDL3, except for the additional operators
always-next and pattern. Specifically, they can be
of the following types (where φ and ψ are action formu-
lae): (always φ), shortened as Aφ, requires that only ac-
tions that satisfy φ are in π; (sometime φ), shortened as
STφ, requires that at least one action satisfying φ is in π;
(at-most-once φ), shortened as AOφ, requires that an
action satisfying φ can appear in π only if no action satis-
fying φ is in π before; (sometime-before φ ψ), short-
ened as SBφ,ψ , requires that if an action satisfying φ ap-
pears in π at a time t, then an action satisfying ψ is in π
at a time before t; (sometime-after φ ψ), shortened as
SAφ,ψ , requires that if an action satisfying φ is in π at a time
t, then an action that satisfies ψ is in π at a time after t;
(always-next φ ψ), shortened as AXφ,ψ , requires that if
an action satisfying φ is in π, then it is immediately followed
by an action satisfying ψ;2 (pattern φ1 . . . φk), shortened
as PAφ1...φk , requires that, for i = 1 . . . k − 1, there exists
an action in π satisfying φi followed at some later time by an
action satisfying φi+1.

Definition 2. Given a plan π = 〈a1, a2, . . . , an〉, the follow-
ing rules define when an action constraint is satisfied by π:

π satisfies (always φ) iff ∀t : 1 ≤ t ≤ |π| · π(t) ∈ φ
π satisfies (sometime φ) iff ∃t : 1 ≤ t ≤ |π| · π(t) ∈ φ
π satisfies (at-most-once φ) iff ∀t1 : 1 ≤ t1 ≤ |π| · if π(t1) ∈ φ

then ∀t2 : t1 < t2 ≤ |π| · π(t2) 6∈ φ
π satisfies (sometime-after φ ψ) iff ∀t1 : 1 ≤ t1 ≤ |π| · if π(t1) ∈ φ

then ∃t2 : t1 ≤ t2 ≤ |π| · π(t2) ∈ ψ
π satisfies (sometime-before φ ψ) iff ∀t1 : 1 ≤ t1 ≤ |π| · if π(t1) ∈ φ

then ∃t2 : 1 ≤ t2 < t1 · π(t2) ∈ ψ
π satisfies (always-next φ ψ) iff ∀t : 1 ≤ t < |π| · if π(t) ∈ φ

then π(t+ 1) ∈ ψ and π(|π|) 6∈ φ
π satisfies (pattern φ1 . . . φk) iff ∃ a sequence of actions 〈a1, . . . , ak〉 from

π that are ordered as in π, such that ∀i ∈ {1, . . . , k} ai ∈ φi.

We call PAC the class of classical planning problems en-
riched with action constraints.

2This constraint can express some complex valid action se-
quences. E.g., AXa,a∨b accepts plans with any number of consecu-
tive a’s repetitions, if this sequence terminates with action b.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4607



Definition 3. A classical planning problem with action con-
straints (a PAC problem) is a tuple 〈Π, C〉 where Π is a clas-
sical planning problem and C is a set of action constraints.

The valid plans of 〈Π, C〉 are the valid plans of Π that sat-
isfy all constraints in C. PAC allows the definition of ac-
tion constraints that cannot be captured by using state con-
straints. Indeed, the same sequence (trajectory) of states
can be generated by different sequences (trajectories) of ac-
tions. Therefore, in general, it is not possible to distin-
guish the different action trajectories by constraints over the
state trajectory only. For instance, consider a problem where
the set of actions A is {a1, a2, a3} with a1 = 〈p0, {e0}〉,
a2 = 〈p1, {e0}〉, a3 = 〈e0, {goal}〉, I = {p0, p1},
and G = goal. Both plans π1 = 〈a1, a3〉 and π2 =
〈a2, a3〉 solve the problem inducing the same state trajectory
〈{p0, p1}, {p0, p1, e0}, {p0, p1, e0, goal}〉. Consider now ac-
tion constraint (sometime a2). While π2 satisfies such ac-
tion constraint, π1 does not. However, it is not possible to dis-
tinguish π1 from π2 by just looking at the (same) sequence of
states induced by π1 and π2: there is no state-trajectory con-
straint that rules π1 out.

We allow all constraints to be formulated in first-order rep-
resentation. For instance, by writing:

∀ bus . (sometime ∃ city .
Drive(bus, city, city-a) ∨Drive(bus, city, city-b))

we are declaring an equivalent set of (instantiated) action con-
straints requiring that all buses have to drive to city-a or
city-b at least once.

3 Solving PAC Problems through Compilation
In this section we propose a compilation schema, called PAC-
C (PAC compiler), that translates a PAC problem into an equiv-
alent classical planning problem. We distinguish our action
constraints in two classes: Prevent Constraints (PC) and Re-
quest Constraints (RC). Intuitively, PCs are constraints used
to express properties that must not be violated at any time
in the plan, while RCs enforce that certain actions must oc-
cur in every solution plan. PCs are: Aφ, SBφ,ψ , AOφ and
AXφ,ψ; RCs are: STφ, SAφ,ψ and PAφ1...φk . PAC-C works by
preventing the execution of actions that would violate some
PCs, and forcing the planner to include in the plan the actions
necessary to satisfy all RCs on a state dependent basis.

Actions that cannot appear in the plan at some time step
t depend on actions scheduled before t. For instance, if
(at-most-once a) is a required constraint, then having a
in the plan at a time t should be prevented if a has already
been scheduled in the plan prefix preceding t. The same logic
applies to the actions that still need to be included in the plan
to satisfy some RC. To record the presence in the plan under
construction of the actions relevant for the constraints, PAC-
C uses a set of fresh atoms, built by taking into account the
constraint at hand, as described below.
PC Atoms. For every AOφ and SBφ,ψ , atoms doneφ and
doneψ are used to record whether φ and ψ have ever held.
For every AXφ,ψ , atom requestψ is used to signal that the
formula φ is satisfied at a plan step t, and the planner has to
schedule an action a ∈ ψ immediately after t.

Algorithm 1: PAC-C

Input : A PAC Problem Π = 〈〈F,A, I,G〉, C〉
Output: A classical planning problem equivalent to Π
/* Phase (I) */

1 F ′ = F ∪ PC-atoms ∪ RC-atoms
2 I′ = I ∪

⋃
SAφ,ψ

gotφ,ψ

/* Phase (II) */

3 A′ = {a | a ∈ A and for each Aφ ∈ C, a ∈ φ}
4 foreach a ∈ A′ do
5 foreach c ∈ PC(C) do
6 if c = AOφ and a ∈ φ then
7 Pre(a) = Pre(a) ∧ ¬doneφ
8 Eff(a) = Eff(a) ∪ {doneφ}
9 if c = SBφ,ψ then

10 if a ∈ φ then Pre(a) = Pre(a) ∧ doneψ
11 if a ∈ ψ then Eff(a) = Eff(a) ∪ {doneψ}
12 if c = AXφ,ψ then
13 if a ∈ φ then Eff(a) = Eff(a) ∪ {requestψ}
14 else if a ∈ ψ then Eff(a) = Eff(a) ∪ {¬requestψ}
15 if a 6∈ ψ then Pre(a) = Pre(a) ∧ ¬requestψ
16 foreach c ∈ RC(C) do
17 if c = STφ and a ∈ φ then Eff(a) = Eff(a) ∪ {gotφ}
18 if c = SAφ,ψ then
19 if a ∈ ψ then Eff(a) = Eff(a) ∪ {gotφ,ψ}
20 if a ∈ φ and a 6∈ ψ then Eff(a) = Eff(a) ∪ {¬gotφ,ψ}
21 if c = PAφ1...φk then
22 foreach φi ∈ 〈φ1 . . . φk〉 · a ∈ φi do

23 Eff(a) = Eff(a)∪
{
{stagei−1

c . stageic} if i > 1

{stage1c} otherwise
/* Phase (III) */

24 G′ = G ∧
∧

SAφ,ψ∈C
gotφ,ψ ∧

∧
STφ∈C

gotφ ∧
∧

AXφ,ψ∈C
¬requestψ ∧∧

c=PAφ1...φk
∈C

stagekc

25 return 〈F ′, A′, I′, G′〉

RC Atoms. For every STφ and SAφ,ψ , atoms gotφ and
gotφ,ψ are used to record whether or not the constraint is sat-
isfied by the prefix plan. For every PAφ1...φk , we add a set
of atoms called stage atoms to keep track of the progress of
the pattern in the plan. The set of stage atoms is defined as
follows:

StageAtoms(C) =
⋃

c=PAφ1...φk∈C

{stage1
c , . . . , stage

k
c}

Atoms stageic (i ∈ {1, . . . , k}) will hold in a plan state s iff
(pattern φ1 . . . φi) is satisfied by the plan prefix up to s.

Compilation schema. Algorithm 1 specifies the full com-
pilation schema, called PAC-C. There are three different
phases: (I) creation of necessary atoms and setup of the ini-
tial state to reflect the status of the constraints; (II) revision of
the preconditions and effects of relevant actions; (III) setup of
the goal to enforce the satisfaction of all RCs and AXs con-
straints.

Phase (I). The necessary PC and RC atoms are created and
the initial state is setup (lines 1-2). When a plan has no ac-
tions, all SAφ,ψ constraints are satisfied, and so the corre-
sponding gotφ atoms are set to true in the initial state.

Phase (II). The algorithm prunes all actions that do not sat-
isfy the always constraints. Then it modifies the actions to
keep all constraints in check. For a PC, PAC-C determines
new preconditions that must be fulfilled for the actions that

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4608



interact with the constraint. In particular, PAC-C prevents hav-
ing in the plan actions that (a) make φ true a second time (in
the case of an AOφ), (b) make φ true if doneψ is false (in the
case of a SBφ,ψ), and (c) cannot make ψ true when there is a
request of it triggered by the previous action (in the case of an
AXφ,ψ). For PCs, new effects are added to keep track of the
execution of relevant actions. For instance, an AXφ,ψ con-
straint requires to restrict the possible actions in the plan at
the next time step when φ becomes true. If an action a in the
plan satisfies φ at some time t, the triggered request for some
action satisfying ψ at time t+1 is encoded by disallowing the
occurrence of any action not satisfying ψ (lines 13-15). If an
action does not trigger the constraint and satisfies ψ instead,
then ¬requestψ is added to its effects (lines 13-14), disabling
the request of ψ demanded by the constraint.

For RCs, PAC-C adds a set of effects to keep track of
the relevant actions that appear in the plan. A STφ con-
straint requires that at least one action that satisfies φ ap-
pears sometime in the plan. Atom gotφ is then added to
all actions that make φ true. For a SAφ,ψ constraint, PAC-
C adds effects to signal the necessity of ψ whenever φ be-
comes true (lines 19-20). For a PAφ1...φk constraint, the algo-
rithm checks if an action satisfies any formula in {φ1 . . . φk}.
E.g., if an action a in the plan makes formula φi true and
(pattern φ1 . . . φi−1) is already satisfied by the plan pre-
fix up to a, then (pattern φ1 . . . φi) will become satisfied.
PAC-C keeps track of this information by adding conditional
effect stagei−1

c . stageic to all actions satisfying φi (line 23).

Phase (III). The last step consists in setting up the new
goals of the problem: all the STφ, SAφ,ψ , AXφ,ψ and
PAφ1...φk constraints must be satisfied. This means that in
the final state all gotφ, gotφ,ψ and stagekc atoms have to hold,
and there is no pending request of an action to satisfy some
AXφ,ψ (line 24).

The additional preconditions and effects of the compilation
prevent the planner form generating any sequence of actions
that violates one or more PCs, while the additional goals force
the planner to satisfy all RCs. The following theorem states
that any plan of the original problem Π is a solution of Π if
and only if the same plan with its actions modified by PAC-
C is a solution for the translated problem Π′. Note that the
original and the modified plan have exactly the same length.

Theorem 1. Let Π = 〈〈F,A, I,G〉, C〉 be a PAC problem
and Π′ = 〈F ′, A′, I ′, G′〉 the problem obtained by compil-
ing Π through Algorithm 1. A plan π = 〈a1, a2, . . . , an〉 is
a solution for Π iff plan π′ = 〈τ(a1), τ(a2), . . . , τ (an)〉 is a
solution for Π′, where τ(ai) is the transformation of ai per-
formed by Algorithm 1 (Phase II) for i = 1 . . . n.

Proof Sketch. Both directions can be proven by contradic-
tion, considering each type of constraints one by one. That
is, we show that if π′ (π) is not a valid plan for Π′ (Π) then
also π (π′) cannot be a valid plan for Π (Π′). Full proof in the
supplementary material.3

3Supplementary material, benchmark domains and Python im-
plementation of PAC-C can be found at https://bit.ly/3kerz8s.

4 Experimental Analysis
Our experiments are aimed at evaluating the usefulness of
action constraints as knowledge that can be effectively ex-
ploited to improve problem-solution coverage and plan qual-
ity. We evaluate the behavior of a classical planner with/with-
out this (compiled) knowledge. For comparison reasons we
also investigate how the classical planner can be enhanced by
using the same control knowledge expressed as (compiled)
state-trajectory constraints formulated in LTLf [Giacomo and
Vardi, 2013] or PDDL3 [Gerevini et al., 2009]. As classical
planner we used LAMA [Richter and Westphal, 2010], that
was run on the original benchmark problems and on the cor-
responding problems extended with control knowledge. Such
knowledge was compiled by three different methods: PAC-
C3 (for action constraints), TCORE (for PDDL3 constraints)
[Bonassi et al., 2021], and LTL-C (for LTLf constraints)
[Baier and McIlraith, 2006]. To the best of our knowledge,
TCORE and LTL-C are the most effective approaches to deal
with the considered class of constraints.

We measured performance in terms of number of solved in-
stances (coverage), CPU time of the planner, and plan length
of the solution (when found). For the compilation-based ap-
proaches, CPU time includes compilation time. All experi-
ments ran on an Xeon Gold 6140M 2.3 GHz, with time and
memory limits of 1800s and 8GB, respectively.

4.1 Benchmark Design
Since there are no available benchmarks featuring action con-
straints, we generated a new benchmark suite3 starting from
the problems of the 5th International Planning Competition.
We considered the following domains: Trucks, Storage,
TPP, Openstack and Rover. All original instances of
Rover, TPP, and Openstack are easily solved by LAMA,
while the planner struggles to find solutions for some in-
stances of Trucks and Storage. For this reason, we de-
signed our action constraints with different objectives for the
two groups of domains: in Trucks and Storage, con-
straints were designed with the purpose of boosting problem
coverage, while in the other domains the constraints were
designed to improve plan quality. Our benchmark suite in-
volves 160 instances: 30 in each of Trucks, Storage,
TPP and Openstack, and 40 in Rover. To evaluate the
use of LTLf and PDDL3, for each instance we generated two
further instances: one encoding the action constraints into an
equivalent formulation in LTLf ; the other encoding an equiv-
alent instance using PDDL3 qualitative state-trajectory con-
straints. Such instances were not formulated starting from the
action constraints specification; that is, the constraint knowl-
edge was directly formulated into either action constraints or
state constraints (PDDL3 or LTLf ), without going through ac-
tion constraints first. Note that the conversion in PDDL3 has
been possible only for a subset of the considered domains. In
what follows we describe the constraints introduced in each
domain.

TPP. This domain encodes the Traveling Purchaser Prob-
lem (TPP) [Ramesh, 1981]. We have a set of markets and a
set of products. Each market sells different products in dif-
ferent quantities, and the objective is to collect and deliver at

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4609

https://bit.ly/3kerz8s


the depot the required quantity of products by using trucks.
Each truck can drive to different locations, buy, load and un-
load products. While a single truck is sufficient to visit all
markets, we observed that a greedy planner tends to move all
trucks back and forth from depots to markets producing plans
of very bad quality. To overcome this problem we forced the
planner to use only a single truck driving in a subset of the
roads via the following always constraints:

(always ∀ from, to . ¬Drive(truck2, from, to))
(always ¬Drive(truck1,market2, depot1)∧

¬Drive(truck1,market1,market2))

Moreover, we forced the truck to visit markets in a precise
order through the following pattern constraint:

(pattern Drive(truck1, depot1,market2)

Drive(truck1,market2,market1)

Drive(truck1,market1, depot1))

In TPP a planner is allowed to move a truck multiple times
from depots to markets to deliver a product; a better strategy
is gathering the required quantity of a product and then go
back to unload the product. We enforced this by constraint

(sometime ∃market.Load(product1, truck1,market, levelx))

This constraint is repeated for every product, and in each case
it is satisfiable as trucks have unlimited storing space. Finally,
we require that after buying a product, that product is imme-
diately loaded in the truck:

(always-next

∃ product, ∃market. Buy(truck1, product,market)
∃ product, ∃market, ∃ level.

Load(product, truck1,market, level))

For TPP we also designed an equivalent formulation using
LTLf constraints by transferring the constraints over actions
to constraints over states. This can be done by inspecting the
action structure and enforcing to traverse only those states
that would be traversed by the actions. E.g., we formulate
pattern constraints in LTLf as follows:

(at(truck1, depot1) ∧at(truck1,market2)∧
((at(truck1,market2) ∧at(truck1,market1)∧
((at(truck1,market1) ∧at(truck1, depot1))))))

Overall, we have one constraint in the smallest benchmark
instance and 22 constraints in the largest one.
Storage. In this domain the goal is to move some crates
inside depots by a set of hoists. Hoists can operate inside
and outside depots, lift crates, and drop them into depots or
containers. Finding a solution in Storage can be a difficult
task, because leaving a create right at the entrance of a depot
will prevent hoists from moving into that depot in the future.
To aid the planner, we forced crates to be positioned starting
from the storage areas further away from the entrance. This
was encoded using a pattern constraint. We also prevented
the unnecessary lifting of a crate via the following constraint:

∀ crate. (at-most-once ∃hoist. Lift(hoist, crate))

All constraints were also translated into PDDL3 and LTLf .
E.g., the previous at-most-once constraint was translated
in LTLf by the following formula, for each crate c, where
φ = ∃hoist. lifting(hoist, c):

(φ⇒ (φU((¬φ) ∨ final)))
Each benchmark instance has from 2 to 21 constraints.
Trucks. This is a logistics domain concerning the delivery
of packages to different locations by some trucks. The space
inside the trucks is partitioned into areas, and a package can
be loaded in an area only if all areas in between the door and
the area in consideration are free. This requirement must also
hold when a package is unloaded. In addition, some packages
must be delivered by a deadline. To improve problem cover-
age, we used at-most-once constraints to impose that ev-
ery package is loaded inside a truck at most one time. Overall,
each benchmark instances has from 3 to 20 constraints.
Rover. The objective is acquiring data about soil, rocks
and images of a planet. Data are gathered by a set of rovers
that can move across waypoints. Each rover has different
equipment to either sample the soil/rocks or take images. The
acquired data must be communicated to the lander. In this do-
main there are many actions that are unnecessary to achieve
the goal. E.g., if the goal does not require the data of the rock
located at some waypoint, there is no need to sample it. Such
actions can be forbidden through always constraints. More-
over, by set of sometime-before constraints we required
that the rovers communicate data only after all the needed
data have been gathered. Finally, we broke some symmetri-
cal solutions by forcing an order to the communications:

(sometime-before

∃ rover. Send soil data(rover, waypointx)
∃ rover. Send rock data(rover, waypointy))

These constraints were also formulated in LTLf and PDDL3.
E.g., the previous action constraint in LTLf is:

(¬φ∧ψ)R(¬φ)
with φ = Communicated soil data(waypointx)

ψ = Communicated rock data(waypointy)

Each benchmark instance has from 6 to 138 constraints.
Openstack. This domain models a combinatorial opti-
mization problem where a set of orders must be shipped.
To start the production of an order, a new “stack” must be
opened. Each order can be shipped only if a given set of
products associated to that order has been produced. Once an
order is shipped, the previously occupied stack can be used
for new orders. To make a product, all orders that include it
must be in a stack. The objective is to find a production that
minimizes the number of opened stacks. The domain actions
can open a new stack, start a new order, ship a finished order,
set up the machine for production, and make a product. An
optimal solution plan has the fewest open-new-stack actions.

To aid the planner in finding good quality solution, we used
two always-next constraints: the first requires that after
opening a new stack an order is immediately started; the sec-
ond requires that after setting up the machine, the product is
immediately made. Every instance of Openstack feature
these two constraints.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4610



Domain BASELINE PAC-C LTL-C TCORE

Trucks (30) 15 22 11 18
Storage (30) 20 30 13 28

Rover (40) 40 40 20 40
TPP (30) 30 30 17 –
Openstack (30) 30 30 5 –

Total 135 152 66 86

Table 1: Coverage of the considered systems. In parenthesis, the
number of benchmark instances for a given domain.

Domain Improved instances Avg improvement
PAC-C LTL-C TCORE PAC-C LTL-C TCORE

Trucks 3 1 4 -1.00 -1.27 -0.80
Storage 3 1 2 -6.30 -4.46 -5.70

Rover 22 5 24 7.33 0.55 5.28
TPP 25 12 – 40.13 15.82 –
Openstack 24 5 – 3.03 1.80 –

Table 2: Pairwise comparison of PAC-C/LTL-C/TCORE vs the BASE-
LINE in terms of plan length over instances solved by both the two
compared systems. The first 3 columns show the instances number
with improved solutions, the others the average improvement.

4.2 Experimental Results
Coverage. Table 1 shows the overall coverage achieved us-
ing BASELINE (LAMA run on the original instances without
constraints), PAC-C, LTL-C and TCORE. We first comment on
the results obtained for Storage and Trucks, the two do-
mains featuring constraints formulated to improve coverage.
The action constraints in Trucks help the planner by prun-
ing the search space, and this led PAC-C to solve 7 more in-
stances w.r.t. BASELINE. For Storage, the BASELINE fails
to solve 10 instances, and we advocate this to the fact that
hoists can leave crates in areas that will obstruct future move-
ments inside the depot, and this is not captured by LAMA’s
heuristic. This cannot happen for the instances with action
constrains: a hoist can lift a crate at most once and crates
must be positioned starting from areas that are far away from
the door. With these constraints, PAC-C manages to solve
all instances of Storage. These results confirm that action
constrains can improve the performance of a state-of-the-art
classical planner. Also using TCORE coverage is incremented,
but not as much as with PAC-C: 3 and 8 more instances are
solved in Trucks and Storage, respectively. By encoding
the same knowledge as state constraints in LTLf and using
LTL-C, we did not obtain any improvement. Rather, the per-
formance of LAMA was even worsened (coverage reduces
for all considered domains). PAC-C turned out to be (much)
more effective, coverage wise, than LTL-C and TCORE.

Plan quality. Table 2 and Figures 1a, 1b and 1c give an
overall picture of the quality of the plans obtained by the
compilation-based systems with respect to the baseline across
all domains. From Figure 1a it is possible to see that PAC-C
performs really well in Rover, TPP and Openstack. In

(a) (b)

(c) (d)

Figure 1: Quality improvement measured as difference of plan
length (y-axis) between PAC-C and the BASELINE (a), LTL-C and the
BASELINE (b), TCORE and the BASELINE (c), over instances solved
by at least one of the two compared systems (x-axis). (d) Coverage
(y-axis) versus planning time (x-axis).

TPP, the BASELINE moves trucks in a very suboptimal way to
buy all products, while PAC-C substantially reduces the num-
ber of drive actions. Plan quality is improved for 25 instances
and, on average, plans have 40 actions less than the BASE-
LINE. Also in Rover and Openstack PAC-C performs
well, improving quality in most cases. These results confirm
that control knowledge expressed as action constraints can
effectively lead to better quality solutions. With LTL-C the
improvement is limited. TCORE shows good performance in
Rover, while for Openstack and TPP it was not possible
to reformulate our action constraints in PDDL3 (in the tables
indicated with “–”). For Trucks and Storage, plan qual-
ity is worsened by all compared systems. In our benchmarks,
coverage and quality is not improved at the same time; this
is not surprising since they were designed with constraints
aimed at improving coverage or solution quality, but not both.
CPU time. Figure 1d shows how coverage and CPU time
are related. As expected, all compilation-based approaches
tend to increase their coverage over time more slowly w.r.t.
the BASELINE, since performing the compilation takes some
time that we do not have in BASELINE. While the coverage
of the BASELINE tails-off after around 26 secs (coverage gets
to 132 solved instances), PAC-C keeps increasing coverage,
outperforming the BASELINE after about 90 CPU seconds.

5 Related Work
Micheli and Scala (2019) introduced a formalism supporting
action constraints specified as quantified temporal metric ax-
ioms. Such axioms define constraints over the execution tim-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4611



ing of the actions. The constraints in PAC focus on a class of
qualitative temporal constraints allowing to handle the con-
straints through a polynomial compilation into classical plan-
ning. Handling quantified temporal metric axiom is much
more involved, and the computational complexity of planning
with such axioms is still unknown.

The generation of macro actions is an approach to synthe-
size control knowledge where multiple consecutive actions
are combined into a single macro action (e.g. [Botea et al.,
2005]). PAC can express sequences of (possibly disjunctive)
actions through pattern constraints. The main differences
are that (i) in this type of constraints actions are not neces-
sarily consecutive, and (ii) macro actions do not express con-
straints a valid plan should satisfy (typically macros are added
to the domain without removing any original action).

Hierarchical Task Network (HTN) [Erol et al., 1994] is a
well-know approach to planning that supports control knowl-
edge. The main difference with PAC planning is that in HTN
constraints represent specific domain knowledge, while in our
approach constraints are specified at the problem level, and in
the context of domain-independent PDDL planning rather than
HTN planning.

Sohrabi et al. (2009) extend PDDL3 to formulate action-
centric preferences over HTN tasks, and propose to han-
dle them natively through a dedicated HTN planning system
(HTNPLAN-P). PAC planning does not require the specifica-
tion of a hierarchical domain theory and, as we have shown,
it allows efficient compilation into classical planning with-
out constraints. This enables any classical planner support-
ing conditional effects to deal with PAC problems. Moreover,
PAC constraints include operators that are not considered in
Sohrabi et al.’s language.
LPP [Baier et al., 2008; Bienvenu et al., 2011] is a lan-

guage that harnesses the expressive power of LTLf for spec-
ifying preferred and hard constraints over trajectories of ac-
tions as well as of states. PAC focuses on a more restricted
language that, as it is the case for PDDL3 constraints versus
more general LTLf formulae [Bonassi et al., 2021; Percassi
and Gerevini, 2019], a planner can handle more effectively
(without undergoing a potentially expensive automata-based
compilation). A deeper comparison in terms of the relative
expressiveness and effectiveness for planning between LPP
and PAC is left to future work.

Finally, recent work by Bonet and Geffner (2021) intro-
duced an interesting language based on sketch rules that
can be used to decompose a planning problem into specific
subproblems, reducing the problem width [Lipovetzky and
Geffner, 2012]. This language is significantly different from
action constraints, and its usefulness has been theoretically
studied only in the context of width-based planning algo-
rithms.

6 Conclusions
Imposing constraints on the action trajectory of a plan is use-
ful to guide the planner search as well as to generate plans that
have some desired properties. We have presented a new lan-
guage to express a class of action-trajectory constraints, and
a compilation-based approach to plan with such constraints.

Our compilation scheme can be used alongside any classical
planner supporting conditional effects, and it is relatively sim-
ple, computationally efficient, and compact. As experimen-
tally shown, action constraints and our compilation provide
an effective tool to express and use useful control knowledge.
A comparison with other approaches shows that, for the con-
sidered benchmarks, a classical planner can exploit knowl-
edge expressed as (compiled) action constraints more effec-
tively than equivalent formulations using state-trajectory con-
straints. Future work concerns investigating trajectory con-
straints over both actions and states, preferences over action
constraints, and further experiments with numeric domains.

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments. The work was partially supported by projects H2020-
EU AIPlan4EU and MUR PRIN-2020 RIPER.

References
[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.

McIlraith. Planning with first-order temporally extended
goals using heuristic search. In AAAI, pages 788–795.
AAAI Press, 2006.

[Baier et al., 2008] Jorge A. Baier, Christian Fritz, Meghyn
Bienvenu, and Sheila A. McIlraith. Beyond classical
planning: Procedural control knowledge and preferences
in state-of-the-art planners. In AAAI, pages 1509–1512.
AAAI Press, 2008.

[Bienvenu et al., 2011] Meghyn Bienvenu, Christian Fritz,
and Sheila A. McIlraith. Specifying and computing pre-
ferred plans. Artif. Intell., 175(7-8):1308–1345, 2011.

[Bonassi et al., 2021] Luigi Bonassi, Alfonso Emilio
Gerevini, Francesco Percassi, and Enrico Scala. On
planning with qualitative state-trajectory constraints in
PDDL3 by compiling them away. In ICAPS, pages 46–50.
AAAI Press, 2021.

[Bonet and Geffner, 2021] Blai Bonet and Hector Geffner.
General policies, representations, and planning width. In
AAAI, pages 11764–11773. AAAI Press, 2021.

[Botea et al., 2005] Adi Botea, Markus Enzenberger, Martin
Müller, and Jonathan Schaeffer. Macro-ff: Improving AI
planning with automatically learned macro-operators. J.
Artif. Intell. Res., 24:581–621, 2005.

[Erol et al., 1994] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. HTN planning: Complexity and expressiv-
ity. In AAAI, pages 1123–1128. AAAI Press / The MIT
Press, 1994.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: an extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res., 20:61–124, 2003.

[Gerevini et al., 2009] Alfonso Gerevini, Patrik Haslum,
Derek Long, Alessandro Saetti, and Yannis Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the
planners. Artif. Intell., 173(5-6):619–668, 2009.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4612



[Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dy-
namic logic on finite traces. In IJCAI, pages 854–860.
IJCAI/AAAI, 2013.

[Giacomo et al., 2014] Giuseppe De Giacomo, Riccardo De
Masellis, and Marco Montali. Reasoning on LTL on finite
traces: Insensitivity to infiniteness. In AAAI, pages 1027–
1033. AAAI Press, 2014.

[Lipovetzky and Geffner, 2012] Nir Lipovetzky and Hector
Geffner. Width and serialization of classical planning
problems. In ECAI, volume 242 of Frontiers in Artificial
Intelligence and Applications, pages 540–545. IOS Press,
2012.

[Micheli and Scala, 2019] Andrea Micheli and Enrico Scala.
Temporal planning with temporal metric trajectory con-
straints. In AAAI, pages 7675–7682. AAAI Press, 2019.

[Percassi and Gerevini, 2019] Francesco Percassi and Al-
fonso Emilio Gerevini. On compiling away PDDL3 soft
trajectory constraints without using automata. In ICAPS,
pages 320–328. AAAI Press, 2019.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, pages 46–57. IEEE Computer Society, 1977.

[Ramesh, 1981] T Ramesh. Traveling purchaser problem.
Opsearch, 18(1-3):78–91, 1981.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. J. Artif. Intell. Res.,
39:127–177, 2010.

[Sohrabi et al., 2009] Shirin Sohrabi, Jorge A. Baier, and
Sheila A. McIlraith. HTN planning with preferences. In
IJCAI, pages 1790–1797, 2009.

[Torres and Baier, 2015] Jorge Torres and Jorge A. Baier.
Polynomial-time reformulations of LTL temporally ex-
tended goals into final-state goals. In IJCAI, pages 1696–
1703. AAAI Press, 2015.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4613


	Introduction
	Classical Planning with Action Constraints
	Solving PAC Problems through Compilation
	Experimental Analysis
	Benchmark Design
	Experimental Results

	Related Work
	Conclusions

