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Abstract
BACKGROUND 
Gliomas pose a significant challenge to effective treatment despite advancements 
in chemotherapy and radiotherapy. Glioma stem cells (GSCs), a subset within 
tumors, contribute to resistance, tumor heterogeneity, and plasticity. Recent studi-
es reveal GSCs’ role in therapeutic resistance, driven by DNA repair mechanisms 
and dynamic transitions between cellular states. Resistance mechanisms can in-
volve different cellular pathways, most of which have been recently reported in 
the literature. Despite progress, targeted therapeutic approaches lack consensus 
due to GSCs’ high plasticity.

AIM 
To analyze targeted therapies against GSC-mediated resistance to radio- and che-
motherapy in gliomas, focusing on underlying mechanisms.

METHODS 
A systematic search was conducted across major medical databases (PubMed, 
Embase, and Cochrane Library) up to September 30, 2023. The search strategy 
utilized relevant Medical Subject Heading terms and keywords related to in-
cluding “glioma stem cells”, “radiotherapy”, “chemotherapy”, “resistance”, and 
“targeted therapies”. Studies included in this review were publications focusing 
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on targeted therapies against the molecular mechanism of GSC-mediated re-sistance to radiotherapy resistance 
(RTR).

RESULTS 
In a comprehensive review of 66 studies on stem cell therapies for SCI, 452 papers were initially identified, with 
203 chosen for full-text analysis. Among them, 201 were deemed eligible after excluding 168 for various reasons. 
The temporal breakdown of studies illustrates this trend: 2005-2010 (33.3%), 2011-2015 (36.4%), and 2016-2022 
(30.3%). Key GSC models, particularly U87 (33.3%), U251 (15.2%), and T98G (15.2%), emerge as significant in 
research, reflecting their representativeness of glioma characteristics. Pathway analysis indicates a focus on phos-
phoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) (27.3%) and Notch (12.1%) 
pathways, suggesting their crucial roles in resistance development. Targeted molecules with mTOR (18.2%), 
CHK1/2 (15.2%), and ATP binding cassette G2 (12.1%) as frequent targets underscore their importance in over-
coming GSC-mediated resistance. Various therapeutic agents, notably RNA inhibitor/short hairpin RNA (27.3%), 
inhibitors (e.g., LY294002, NVP-BEZ235) (24.2%), and monoclonal antibodies (e.g., cetuximab) (9.1%), demonstrate 
versatility in targeted therapies. among 20 studies (60.6%), the most common effect on the chemotherapy resistance 
response is a reduction in temozolomide resistance (51.5%), followed by reductions in carmustine resistance (9.1%) 
and doxorubicin resistance (3.0%), while resistance to RTR is reduced in 42.4% of studies.

CONCLUSION 
GSCs play a complex role in mediating radioresistance and chemoresistance, emphasizing the necessity for pre-
cision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvir-
onment to enhance outcomes for glioblastoma patients.
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Core Tip: The challenge of treating gliomas persists despite advancements in chemotherapy and radiotherapy, with glioma 
stem cells (GSCs) contributing to resistance and tumor heterogeneity. This systematic literature review, covering 66 studies, 
underscores the intricate role of GSCs in therapeutic resistance, particularly highlighting their involvement in DNA repair 
mechanisms and dynamic cellular state transitions. Targeted therapies face challenges due to GSCs’ high plasticity, and the 
review emphasizes the need for precision treatments that account for GSC population heterogeneity and the tumor microen-
vironment’s dynamic nature. Versatile therapeutic agents, including RNA inhibitor/short hairpin RNA, inhibitors (e.g., 
LY294002, NVP-BEZ235), and monoclonal antibodies (e.g., cetuximab), demonstrate efficacy in overcoming GSC-
mediated resistance. Notably, the most common effect on the chemo- and radiotherapy response is a reduction in temozo-
lomide resistance, highlighting the potential for improved outcomes by disrupting GSC-mediated resistance mechanisms in 
glioblastoma patients.

Citation: Agosti E, Zeppieri M, Ghidoni M, Ius T, Tel A, Fontanella MM, Panciani PP. Role of glioma stem cells in promoting tumor 
chemo- and radioresistance: A systematic review of potential targeted treatments. World J Stem Cells 2024; 16(5): 604-614
URL: https://www.wjgnet.com/1948-0210/full/v16/i5/604.htm
DOI: https://dx.doi.org/10.4252/wjsc.v16.i5.604

INTRODUCTION
Gliomas, one of the most aggressive and prevalent form of primary brain tumors, continues to present a formidable 
challenge to effective therapeutic intervention[1]. Despite advancements in treatment modalities such as radiotherapy 
resistance (RTR) and chemotherapy resistance (CTR) with temozolomide (TMZ), the prognosis for glioma patients 
remains bleak, with a median overall survival of around 15 months[2-4]. A major obstacle in achieving better outcomes is 
the intrinsic resistance of gliomas to conventional adjuvant treatments[5]. In recent years, the focus has shifted towards 
understanding the role of glioma stem cells (GSCs) in fostering resistance to adjuvant therapies, unraveling a complex 
interplay between cancer stem cells and treatment response[4,6].

Central to the enigma of glioma resistance is the discovery that GSCs, a subpopulation within the heterogeneous tumor 
mass, contribute not only to tumor initiation and maintenance but also to tumor heterogeneity and plasticity. It is now 
known that GSCs, characterized by their self-renewal capacity and multilineage differentiation potential, are emerging as 
key players in the intricate landscape of glioma progression[4,5]. The ability of GSCs to generate different cellular states, 
driven by intrinsic and extrinsic factors, results in a dynamic equilibrium of heterogeneous cell populations within the 
tumor microenvironment[2,3].

https://www.wjgnet.com/1948-0210/full/v16/i5/604.htm
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Therapeutic resistance in gliomas is a multifaceted challenge. Gliomas possess an innate ability to adapt to therapies, 
and, as postulated by recent studies, this resistance is attributed in part to GSCs[5]. The traditional understanding of 
resistance mechanisms involves the activation of DNA repair mechanisms, especially in the context of TMZ and ionizing 
radiation[6]. However, recent studies proposed a spectrum of recurrence patterns, suggesting that resistance can stem 
from preexisting chemo-resistant clones or treatment-induced changes in cell populations[5]. Indeed, GSCs, equipped 
with efficient DNA damage repair systems, exhibit heightened resistance to chemotherapy, particularly TMZ, and RTR
[2]. The cytotoxic effects of RTR and TMZ, mediated through O6-methylguanine-methyltransferase, are mitigated in 
GSCs due to increased expression of O6-methylguanine-methyltransferase and other anti-apoptotic proteins. This 
resistance is further compounded by the ability of GSCs to transition between different cellular states, confounding the 
efficacy of conventional therapies[4,5].

Despite significant strides in understanding the role of GSCs in therapeutic resistance, there is a lack of consensus on 
targeted therapeutic approaches[6]. The high plasticity of GSCs and their dynamic transitions between cellular states 
present a formidable challenge for devising curative strategies[5]. TMZ exposure, while stimulating the conversion of 
differentiated tumor cells into GSCs, underscores the need for tailored therapeutic interventions that specifically target 
GSCs[2,3].

In this context, a systematic literature review becomes imperative to consolidate the diverse findings and discern a 
common line of treatment against GSC-mediated resistance. This systematic literature review aims to analyze the current 
landscape of targeted therapies addressing chemo- and radioresistance in gliomas, with a specific focus on the mecha-
nisms underlying GSC-mediated resistance to adjuvant treatments.

MATERIALS AND METHODS
Literature review
In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria[7], a 
systematic evaluation of targeted therapeutics targeting the molecular mechanism of GSC-mediated resistance to 
adjuvant therapy was conducted[8]. A methodical and thorough literature search of the PubMed, Web of Science, 
Cochrane, Reference Citation Analysis (RCA) (https://www.referencecitationanalysis.com) and Embase databases was 
conducted by two authors (Agosti E and Ghidoni M). On September 30, 2023, the initial literature search was carried out; 
on December 10, 2023, the search was updated. To create a search strategy, many keyword searches were conducted. 
Combinations of AND and OR were employed to find results for the search terms “glioma stem cells”, “radiotherapy”, 
“chemotherapy”, “resistance”, and “targeted therapies”. The Medical Subject Heading terms and Boolean operators 
(“glioma stem cells” OR “GSC” OR “cancer stem cells” OR “CSC”) AND (“chemotherapy” OR “radiotherapy” OR 
“temozolomide” OR “adjuvant treatments”) AND (“resistance” OR “resilience”) AND (“targeted therapy” OR “targeted 
treatment” OR “targeted strategy”). These terms were used to retrieve studies. A reference analysis of a few chosen 
publications revealed other relevant articles. A search filter was applied to display only articles from the specified time 
frame of 2000-2023. Following that, a further search on https://clinicaltrials.gov/ was conducted to find active clinical 
studies that target the biological mechanism underlying GSC-mediated resistance to adjuvant therapy.

Inclusion and exclusion criteria
The selection of papers was based on the following inclusion criteria: (1) English language; (2) Studies on targeted 
therapies against the molecular mechanism of GSC-mediated resistance to RTR; and (3) Studies on targeted therapies 
against the molecular mechanism of GSC-mediated resistance to CTR. The following exclusion criteria were applied: (1) 
Case series, case reports, editorials, meta-analyses, literature reviews, and cohort studies; (2) Studies in which the 
methods and/or results were imprecisely stated or poorly defined; (3) Studies that left out details regarding certain target 
treatments; (4) Repeatedly published research; and (5) unavailability of the full text.

Before the qualified studies were imported into Endnote X9, duplicates were removed. Two separate researchers, 
Panciani PP and Agosti E analyzed the data in compliance with the conditions for inclusion and exclusion. A third 
reviewer, Zeppieri M, resolved all disputes. Afterwards, the qualifying articles underwent full-text screening.

Data extraction
The data extracted for each study included: Authors, year of publication, glioma cell lines studies, GSCs pathway, 
therapeutic target and agents, molecular effects and impact on radio- and chemoresistance.

Outcomes
The molecular mechanism of GSC-mediated resistance to radiation therapy and/or chemotherapy, as well as targeted 
therapeutics that target the molecular mechanism of GSC-mediated resistance to adjuvant treatments, were our primary 
outcomes.

Assessment of risk of bias
The Newcastle-Ottawa Scale was used to assess the quality of the listed studies[8]. The quality was conducted by 
analyzing the study’s outcome evaluation, comparability, and selection criteria. The ideal score was nine. Higher scores 
corresponded with higher-quality studies. Studies with a seven or above were considered to be of very high caliber. 
Panciani PP and Agosti E carried out the quality evaluation independently. When discrepancies surfaced, the third 

https://www.referencecitationanalysis.com
https://www.referencecitationanalysis.com
https://clinicaltrials.gov/


Agosti E et al. GSCs in resistance to adjuvant treatments

WJSC https://www.wjgnet.com 607 May 26, 2024 Volume 16 Issue 5

author went back and reviewed the papers (Figure 1).

Statistical analysis
The offered descriptive data contained ranges and percentages. All statistical analyses were performed using R statistical 
software, version 3.4.1 (http://www.r-project.org).

RESULTS
Literature review
A total of 452 publications were found after duplicates were removed. 203 publications were identified for full-text 
analysis after the abstracts and titles were analyzed. Qualified articles included 201 papers. A total of 168 items were 
excluded based on the following criteria: Meta-analysis or systematic literature review (4 papers), lack of details about 
results and/or results (5 articles), and studies unrelated to the research issue (159 papers). All the studies included in the 
analysis had one or more outcome measures available for each of the patient categories under consideration. Figure 2 
shows the flow chart for the PRISMA statement.

Data analysis
The systematic literature review focused on targeted therapies against GSCs to address resistance to RTR and CTR. The 
analysis of data from Table 1 provides a comprehensive understanding of the trends and frequencies associated with key 
parameters, including the year of publication, target GSCs models, GSCs pathways, therapeutic targets, therapeutic 
agents, molecular effects, and the impact on adjuvant treatment responses.

The studies span from 2005 to 2022, showcasing a gradual increase in research over time. Notably, there is a clustering 
of publications in recent years, suggesting a heightened interest and focus on developing targeted therapies against GSC-
mediated resistance in glioma. The distribution of publications is as follows: (1) 2005-2010: 11 studies (33.3%); (2) 2011-
2015: 12 studies (36.4%); and (3) 2016-2022: 10 studies (30.3%). This breakdown provides a temporal perspective on the 
evolving landscape of research in this field.

The most frequently used GSC models are crucial indicators of their relevance in research. The distribution of target 
GSC models in descending order of frequency is as follows: (1) U87: 11 studies (33.3%); (2) U251: 5 studies (15.2%); (3) 
T98G: 5 studies (15.2%); and (4) Other cell lines: 6 studies (18.2%). In some studies, the GCLs used were not specified (11, 
33.3%). The prominence of U87, U251, and T98G underscores their significance in GSC research, likely due to their repres-
entativeness of glioma characteristics.

The pathways involved in GSC-mediated resistance exhibit distinct frequencies, highlighting the emphasis on specific 
molecular targets. The distribution of GSCs pathways, from most to least frequent, is as follows: (1) Phosphoinositide 3-
kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR): 9 studies (27.3%); (2) Notch: 4 studies 
(12.1%); (3) Ataxia telangiectasia and Rad3-related/checkpoint kinase 1/protein 53 (ATR/Chk1/p53) or ataxia telan-
giectasia mutated (ATM)/CHK2/p53: 3 studies (9.1%); (4) Nuclear factor κB (NF-κB): 3 studies (9.1%); (5) Rat sarcoma/
rapidly accelerated fibrosarcoma/mitogen activated protein kinase (RAS/RAF/MAPK): 2 studies (6.1%); and (6) Others: 
11 studies (33.3%). The predominance of PI3K/AKT/mTOR and Notch pathways suggests their critical roles in the 
development of resistance, guiding therapeutic strategies.

The targeted molecules across various studies demonstrate a diverse range of therapeutic approaches. The distribution 
of therapeutic targets, from most to least frequent, is as follows: mTOR: 6 studies (18.2%); CHK1/2: 5 studies (15.2%); 
ATP binding cassette G2 (ABCG2): 4 studies (12.1%); epidermal growth factor receptor (EGFR): 2 studies (6.1%); and 
others: 19 studies (57.6%). The high frequency of mTOR and CHK1/2 as therapeutic targets underscores their significance 
in overcoming GSC-mediated resistance.

Different classes of therapeutic agents exhibit varying frequencies, indicating preferences and efficacies. The distri-
bution of therapeutic agents, from most to least frequent, is as follows: RNA inhibitor (RNAi)/short hairpin RNA 
(shRNA): 9 studies (27.3%); inhibitors (e.g., LY294002, NVP-BEZ235): 8 studies (24.2%); cannabidiol (CBD): 3 studies 
(9.1%); monoclonal antibodies (e.g., cetuximab): 3 studies (9.1%); and others: 8 studies (24.2%). The prevalence of RNAi/
shRNA and inhibitors highlights the versatility of these agents in targeted therapies against GSC-mediated resistance.

The outcomes at the molecular level show distinct frequencies, indicating the varied impacts of therapeutic 
interventions. The distribution of molecular effects, from most to least frequent, is as follows: Inhibition of key signaling 
molecules: 32 studies (97.0%); modulation of cellular processes (e.g., autophagy): 3 studies (9.1%); and others: 2 studies 
(6.1%). The impact of therapeutic agents on adjuvant treatment responses is crucial for assessing overall efficacy. The 
distribution of effects on CTR response (in total described in 20 studies, 60.6%), from most to least frequent, is as follows: 
Reduction in TMZ resistance: 17 studies (51.5%); reduction in carmustine (BCNU) resistance: 3 studies (9.1%); and 
reduction in doxorubicin (DOXO) resistance: 1 study (3.0%). The reduction of resistance to RTR was reported in 14 
studies (42.4%).

The effectiveness of therapeutic agents in reducing resistance to specific adjuvant treatments provides valuable insights 
into their clinical potential[1,9-39] (Table 1). A summary of the ongoing clinical trials focusing on targeted therapies 
against the molecular mechanism of GSC-mediated resistance to adjuvant treatments is available in Table 2.

http://www.r-project.org
http://www.r-project.org
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Table 1 Summary of the studies included in the systematic literature review

Effects

Ref. GCLs GSCs pathway Therapeutic 
target

Therapeutic 
agent Molecular

Adjuvant 
treatments 
response

Eller et al[9], 
2005

Ros57, Jon52, 
Mor56

RAS/RAF/MAPK EGFR Cetuximab EGFR inhibition RTR reduction

Bao et al[1], 2006 A172 ATR/Chk1/p53, ATM/Chk2/p53 Chk1, Chk2 DBH Chk1/2 inhibition RTR reduction

Clement et al
[10], 2007

U87 HH-GLI GLI1, GLI2, GLI3R Cyclopamine GLI1,2 inhibition 
and GLI3R 
activation

CTR to TMZ 
reduction

Bleau et al[11], 
2009

U87 PI3K/AKT/mTOR PI3Kα/δ, Akt PHD LY294002, 
perifosine

ABCG2 inhibition CTR to TMZ 
reduction

Li et al[12], 2009 U373MG NF-κB LRRFIP1 miR-21 LRRFIP1 inhibition CTR to VM-26 
reduction

Wang et al[13], 
2010

T3359, T3691, 
T4105, T4202, 
T4592

Notch NOTCH1, 
NOTCH2

GSIs, Notch1/2-
specific shRNA

NOTCH1/2 
inhibition

RTR reduction

Facchino et al
[14], 2010

Not specified PRC1 BMI1 RNAi (shBMI1) BMI1 inhibition RTR reduction

Li et al[15], 2010 Not specified PI3K/Akt/mTOR ABCG2 miRNA-328 ABCG2 inhibition CTR to TMZ 
reduction

Ulasov et al[16], 
2011

U87MG Notch, SHH NOTCH1, SMO GSI-1, 
cyclopamine

Notch and SHH 
inhibition

CTR to TMZ 
reduction

Wu et al[17], 
2010

Not specified ATR/CHK1/p53 CHK1 RNAi (shCHK1) CHK1 inhibition RTR reduction

Squatrito et al
[18], 2012

Not applicable ATM/CHK2/p53 CHK2 RCAS/PDGF CHK2 inhibition RTR reduction

Zhu et al[19], 
2011

HSR-
GBM1/2/3

Notch JAG1, DLL4 RNAi (shJAG1, 
shDLL4)

JAG1 and DLL4 
inhibition

CTR to TMZ and 
RTR reduction

Nadkarni et al
[20], 2012

U251, U87 PIKK ATM KU-55933 ATM inhibition CTR to TMZ 
reduction

Nabissi et al
[21], 2013

U87MG PI3K/Akt/mTOR TRPV2 CBD TRPV2 inhibition CTR to TMZ, 
BCNU and 
DOXO reduction

Wang et al[22], 
2013

SU-2 PI3K/Akt/mTOR mTORC1/2 NVP-BEZ235 mTORC1/2 
inhibition

RTR reduction

Martín et al[23], 
2013

A172, U87, 
U373

ABC ABCG2/BCRP Melatonin ABCG2/BCRP 
inhibition

CTR to TMZ 
reduction

Bhat et al[24], 
2013

Not specified TNF-α/NF-κB NF-κB IkB-SR NF-κB inhibition RTR reduction

Aldea et al[25], 
2014

Not specified PI3K/AKT/mTOR 
RAS/RAF/MAPK

mTOR, RAF Metformin, 
sorafenib

mTOR and RAF, 
inhibition

CTR to TMZ 
reduction

Nabissi et al
[26], 2015

Not specified PI3K/AKT/mTOR TRPV2 Aml-1a CBD Aml-1a inhibition CTR to BCNU 
reduction

Yu et al[27], 
2015

U87, U251, 
T98G, SHG44

PI3K/AKT/mTOR mTORC1/2 NVP-BEZ235 mTORC1/2 
inhibition

CTR to TMZ 
reduction

Natsumeda et al
[28], 2016

HSR-GBM1, 
JHH520

Notch HES1, HES5, 
HEY1, autophagy

MRK003 + CQ Notch inhibition CTR reduction

Venugopal et al
[29], 2015

Not specified Wnt/β-catenin CK1α Pyrvinium CK1α inhibition CTR to TMZ and 
RTR reduction

Yi et al[30], 2016 U87 Autophagic PCD Autophagy, Bcl-2, 
Caspase-3

CQ Bcl-2 inhibition and 
Caspase-3 
activation

RTR reduction

shRNAs 
(HDAC4-shRNA, 

Marampon et al
[31], 2017

U87MG, 
U251MG

HDAC HDAC4, HDAC6 HDAC4/6 
inhibition

RTR reduction
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HDAC6-shRNA)

Huang et al[32], 
2017

Not specified MST4/ATG4B ATG4B NSC185058 ATG4B inhibition RTR reduction

Dai et al[33], 
2017

T98G, U87, 
U251, U343, 
MGR2, Hs683

AKT/GSK3β/β-catenin SCD1 siRNA (SCD1-
siRNA)

SCD1 inhibition CTR to TMZ 
reduction

Minata et al[34], 
2019

U87, TS528 PTEN/PI3K/AKT pY240-PTEN PD173074 FGFR2 inhibition CTR to TMZ and 
RTR reduction

Yuan et al[35], 
2019

T98G-R, U118-R FUS/MDM2 FUS domains 
(RRM, Znf_BP2)

ADAMTS9-AS2 FUS domains 
inhibition

CTR to TMZ 
reduction

Moon et al[36], 
2020

T98G, LN229, 
U118MG, 
U87MG, 
U251MG

CK1A/BTRCP/MBD3/NuRD CK1A Pyr-Pam MBD3 pathway 
inhibition by 
activating CK1A

CTR to TMZ 
reduction

Huang et al[37], 
2021

Not specified CK2α/PRMT6/RCC1 PRMT6 EPZ020411 PRMT6 inhibition RTR reduction

Chen et al[38], 
2022

T98G, LN229 PI3K/AKT/mTOR, NF-κB EPHB3, TNFAIP3 YTHDF2 EPHB3 and 
TNFAIP3, 
inhibition

CTR to TMZ 
reduction

Chang et al[39], 
2023

Not specified USP36/ALKBH5 USP36 shRNA Chk1 inhibition RTR reduction

ABCG2/BCRP: ATP binding cassette G2/breast cancer resistance protein; ADAMTS9-AS2: Antisense RNA 2 to ADAMTS9; Aml-1a: Acute myeloid 
leukemia; ATR/Chk1/p53: Ataxia telangiectasia and Rad3-related/checkpoint kinase 1/protein 53; ATM: Ataxia telangiectasia mutated; Bcl-2: B-cell 
lymphoma 2; BTRCP/MBD3/NuRD: Beta transducin repeat-containing protein/methyl-CpG binding domain protein 3/nucleosome remodeling and 
deacetylase; BCNU: Carmustine; BER: Base excision repair; BMI1: B lymphoma Mo-MLV insertion region 1; CBD: Cannabidiol; CQ: Chloroquine; CTR: 
Chemotherapy resistance; DBH: Debromohymenialdisine; DLL4: Delta-like 4; DOXO: Doxorubicin; EGFR: Epidermal growth factor receptor; EPHB3: Eph 
receptor B3; FGFR2: Fibroblast growth receptor 2; FUS/MDM2: Fused in sarcoma/mouse double minute 2; GCL: Glioma cell line; GLI3R: Glioma 
associated oncogene homolog 3 repressor; GSI: Gamma secretase inhibitor; GSK3β: Glycogen synthase kinase 3 beta; HES: Hairy and enhancer of split; 
HDAC: Histone deacetylase; HH-GLI: Hedgehog-glioma-associated oncogene; IkB-SR: IkB super repressor; JAG1: Jagged 1; LRRFIP1: Leucin rich repeat 
flightless-interacting protein 1; miRNA: MicroRNA; miR-21: MicroRNA 21; MST4/ATG4B: Macrophage stimulation 1/autophagy related protein 4B; NF-
κB: Nuclear factor κB; PARPi: Poly(ADP-ribose) polimerase; PHD: Prolyl hydroxylase; PI3K/AKT/mTOR: Phosphoinositide 3-kinase/protein kinase 
B/mammalian target of rapamycin; PIKK: Phosphoinositide 3-kinase related kinase; PCD: Programmed cell death; PRC1: Polycomb repressive complex 1; 
PRMT6/RCC1: Protein arginine methyltransferase 6/regulator of chromosome condensation 1; pY240-PTEN: Phosphorylated tyrosine 240 in the 
phosphatase and tensin homolog; Pyr-Pam: Pyrvinium pamoate; RAS/RAF/MAPK: Rat sarcoma/rapidly accelerated fibrosarcoma/mitogen activated 
protein kinase; RCAS/PDGF: Replication-competent avian sarcoma-leukosis virus/platelet derived growth factor; RNAi: RNA inhibitors; RRM: RNA 
recognition motif; RTR: Radiotherapy resistance; SHH: Sonic hedgehog; shRNA: Short hairpin RNA; SCD1: Stearoyl-CoA desaturase 1; SMO: Smoothened 
protein; TNFAIP3: Tumor necrosis factor alpha-induced protein 3; TNF-α: Tumor necrosis factor α; TMZ: Temozolomide; TRPV2: Transient receptor 
potential cation channel subfamily V member 2; USP36/ALKBH5: Ubiquitin-specific protease 36/AlkB homolog 5, RNA demethylase; VM-26: Teniposide; 
YTHDF2: YTH N(6)-methyladenosine RNA binding protein 2; ZNF_BP2: Zinc finger domain binding protein 2.

DISCUSSION
The radioresistance and chemoresistance promoted by GSCs poses a significant challenge in the effective treatment of 
gliomas, and understanding the molecular mechanisms underlying this resistance is crucial for developing targeted 
therapies[2,3,5,6]. Several studies have identified key signaling pathways implicated in GSC-mediated resistance. For 
instance, Eller et al[9] highlighted the involvement of the RAS/RAF/MAPK pathway and its therapeutic targeting 
through EGFR inhibition with Cetuximab. This finding aligns with other studies, such as that by Bao et al[1] emphasizing 
the importance of ATR/Chk1 and ATM/Chk2 pathways in GSC resistance, which was effectively targeted by Chk1/2 
inhibition[5]. Moreover, the PI3K/AKT/mTOR pathway has been implicated in GSC-mediated resistance[11,12], and its 
inhibition, as demonstrated by Nabissi et al[21] led to a reduction in TMZ resistance[5]. These results collectively 
underscore the complexity of GSC-associated signaling networks and the need for a multifaceted therapeutic approach[2,
3].

Beyond signaling pathways, studies have explored the role of specific molecules and proteins in GSC-mediated re-
sistance[4]. For instance, the transcription factor B lymphoma Mo-MLV insertion region 1, a key component of the 
polycomb repressive complex 1, was targeted through RNAi in a study by Facchino et al[14] resulting in a reduction in 
radioresistance. Additionally, the involvement of NOTCH and sonic hedgehog signaling was addressed by Ulasov et al
[16] where inhibition of NOTCH1 and Smoothened protein led to decreased resistance to TMZ. These findings indicate 
the importance of understanding the intricate molecular interactions within GSCs to develop targeted interventions[2]. 
The study by Zhu et al[19] focused on the Notch pathway by specifically targeting Jagged 1 and delta-like 4, resulting in 
reduced resistance to both TMZ and radiotherapy. This aligns with the work of Nadkarni et al[20] who targeted ATM 
through phosphoinositide 3-kinase related kinase inhibition, effectively reducing resistance to TMZ. The diversity of 
molecular targets identified in these studies emphasizes the heterogeneity of GSCs and the need for personalized 
therapeutic strategies[2,3].
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Table 2 Summary of the ongoing clinical trials focusing on targeted therapies against the molecular mechanism of glioma stem cell-
mediated resistance to adjuvant treatments

Trial name Year Title Trial 
phase Therapeutic agent

NCT00916409 2014 A prospective, multicenter trial of NovoTTF-100 A together with TMZ compared to TMZ 
alone in patients with newly diagnosed GBM

III NovoTTF-100A device

NCT01474239 2016 Randomized noncomparative phase II trial with bevacizumab and FOT in the treatment of 
recurrent GBM

II Bevacizumab

NCT02698280 2018 Phase II study of bevacizumab and ACNU in patients with recurrent high-grade glioma II Bevacizumab

NCT04396860 2020 Randomized noncomparative phase II trial with bevacizumab and FOT in the treatment of 
recurrent GBM

II/III Ipilimumab, nivolumab, 
NovoTTF-100 A device

NCT01310868 2021 An evaluation of the tolerability and feasibility of combining 5-ALA with BCNU wafers 
(Gliadel®) in the surgical management of primary GBM

II 5-ALA Gliadel® wafers

NCT01290939 Ongoing Phase III trial exploring the combination of bvacizumab and CCNU in patients with first 
recurrence of a GBM

III Bevacizumab

NCT00884741 Ongoing Phase III double-blind placebo-controlled trial of conventional concurrent chemoradiation 
and adjuvant TMZ plus bevacizumab versus conventional concurrent chemoradiation and 
adjuvant TMZ in patients with newly diagnosed GBM

III Bevacizumab

NCT02017717 Ongoing A randomized phase III open-label study of nivolumab versus bevacizumab and multiple 
phase I safety cohorts of nivolumab or nivolumab in combination with ipilimumab across 
different lines of GBM

III Nivolumab, 
bevacizumab, 
ipilimumab

NCT00753246 Ongoing Phase III study of standard radiotherapy plus concomitant and adjuvant OSAG 101 
(Theraloc®) plus TMZ versus standard radiotherapy plus concomitant and adjuvant TMZ 
patient with newly diagnosed, histologically confirmed GBM multiforme grade IV

III Nimotuzumab

GBM: Glioblastoma; TMZ: Temozolomide.

Different proteins and factors can be implicated in GSC-mediated resistance. For instance, Wang et al[22] highlighted 
the role of transient receptor potential cation channel subfamily V member 2 in resistance to TMZ, BCNU, and DOXO, 
which was effectively targeted using CBD. Similarly, the inhibition of ABCG2/breast cancer resistance protein by 
Melatonin, as demonstrated by Martín et al[23] resulted in reduced resistance to TMZ. These studies shed light on the 
potential of targeting specific proteins to overcome GSC-mediated resistance[4,5].

The modulation of autophagy has emerged as a promising therapeutic avenue in overcoming GSC resistance. 
Venugopal et al[29] demonstrated that inhibiting Notch through MRK003 + chloroquine effectively reduced GSC 
resistance, highlighting the crosstalk between autophagy and GSC-mediated resistance. Additionally, Yi et al[30] targeted 
CK1α to reduce resistance to TMZ and radiotherapy, emphasizing the intricate network of pathways involved in GSC-
mediated resistance. The study by Alhaddad et al[40] delves into the role of autophagy induction in promoting M2-like 
macrophage polarization, thereby contributing to radioresistance[41]. This contrasts with Li et al[42] where PI3Kγ 
inhibition suppresses microglia/TAM accumulation in the glioma microenvironment by inhibiting autophagy, ultimately 
promoting an exceptional response to TMZ[2]. The dual role of autophagy in GSC-mediated resistance mechanisms high-
lights the need for a nuanced understanding of context-dependent responses to therapeutic interventions[4].

The inclusion of studies by Zhang et al[43] and Wu et al[44] in the systematic review underscores the relevance of long 
non-coding RNAs (lncRNAs) in GSC-mediated chemoresistance. Zhang et al[43] shed light on the exosomal transfer of 
lncRNA SBF2-AS1, enhancing chemoresistance to TMZ[6]. In parallel, Wu et al[44] demonstrate the role of lnc-TALC in 
promoting O6-methylguanine-DNA methyltransferase expression, a key contributor to TMZ resistance[17]. These 
findings resonate with the growing body of evidence highlighting the regulatory role of lncRNAs in glioma progression
[42].

The role of epigenetic regulators in GSC resistance emerged. Huang et al[32] targeted HDAC4/6 using shRNAs, re-
sulting in a reduction in radioresistance. Dai et al[33] employed siRNA against SCD1, revealing its role in TMZ resistance. 
These findings underscore the importance of epigenetic modifications in GSC resistance and the potential of epigenetic 
therapies.

The contribution of hypoxia-driven mechanisms to GSC-mediated radioresistance, as discussed by Alhaddad et al[40] 
resonates with the findings of Hsieh et al[45] NADPH oxidase subunit 4, identified as a mediator of cycling hypoxia-
promoted radiation resistance in glioblastoma multiforme, underscores the intricate relationship between the tumor 
microenvironment and resistance mechanisms. The role of hypoxia in shaping the GSC phenotype adds a layer of 
complexity to the design of targeted therapies, necessitating strategies that account for the dynamic nature of the tumor 
microenvironment[2,6,46].

Moreover, the manuscript the interplay between GSCs and the tumor microenvironment seems to play a pivotal role in 
the development of glioma resistance. Moon et al[36] targeted CK1A/BTRCP/MBD3/NuRD pathway using pyrvinium 
pamoate, illustrating the complex interaction between GSCs and their microenvironment in mediating resistance. The 
study by Huang et al[37] further emphasized the role of CK2α/PRMT6/RCC1 pathway, which was targeted using 
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Figure 1 Modified Newcastle-Ottawa Scale. ICD: International Classification of Diseases.

EPZ020411, resulting in a reduction in radioresistance. The study by Alhaddad et al[40] provides insights into GSC-
mediated reprogramming of the tumor microenvironment, specifically in the context of macrophages and microglia. The 
creation of GSC niches at the tumor border, as reported by Hide et al[47] emphasizes the dynamic interplay between 
oligodendrocyte progenitor cells, macrophages/microglia, and the GSC microenvironment. This aligns with the findings 
of Li et al[42] where PI3Kγ inhibition suppresses microglia/TAM accumulation in the glioblastoma microenvironment. 
The intercellular crosstalk between GSCs and immune components suggests a complex landscape that contributes to 
therapy resistance. The study by Alhaddad et al[40] emphasizes the broader influence of GSCs on the tumor microenvir-
onment and therapy response. The creation of GSC niches at the tumor border, as demonstrated by Hide et al[47] signifies 
the role of GSCs in orchestrating the cellular composition of the microenvironment. This resonates with the findings of 
Liu et al[48], where ADAM8 causes tumor infiltration of tumor-associated macrophages and overcomes TMZ 
chemosensitization. The interplay between GSCs and the microenvironment emerges as a critical determinant of therapy 
response and poses challenges for designing targeted interventions[49,50]. These findings highlight the need for a holistic 
approach considering the tumor microenvironment in developing therapeutic strategies[2,5,6].

CONCLUSION
In conclusion, the role of GSCs in mediating radioresistance and chemoresistance is a complex and multifaceted 
phenomenon. Versatile therapeutic agents, including RNAi/shRNA, inhibitors (e.g., LY294002, NVP-BEZ235), and 
monoclonal antibodies (e.g., cetuximab), demonstrate efficacy in overcoming GSC-mediated resistance. The diverse 
mechanisms discussed in the literature highlight the need for precision therapies that account for the heterogeneity 
within the GSC population and the dynamic nature of the tumor microenvironment. As research in this field progresses, 
a deeper understanding of the molecular intricacies will pave the way for targeted interventions that can disrupt GSC-
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Figure 2  Flow chart according to the PRISMA statement.

mediated resistance mechanisms, ultimately improving the outcomes for glioblastoma patients.
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