
1

Multi-Technology Cooperative Driving:
An Analysis Based on PLEXE

Michele Segata, Member, IEEE , Renato Lo Cigno, Senior Member, IEEE , Tobias Hardes, Student Member,
IEEE , Julian Heinovski, Student Member, IEEE , Max Schettler, Student Member, IEEE ,

Bastian Bloessl, Member, IEEE , Christoph Sommer, Member, IEEE , and Falko Dressler, Fellow, IEEE

✦

We report in this Additional Material some background
and results that may be useful to fully appreciate and exploit
the contribution we provide in the main paper. Section 1
reports a short primer on platooning and longitudinal
vehicles’ control. The material is all available in the original
publications, but we think that having it all available at
hand with a uniform notation makes the paper easier to
read and appreciate. Section 2 presents the results and plots
that are not included in the main paper because they are
somewhat repetitive, but can be useful to build further
contributions beyond our work. Finally, Section 3 adds some
details on PLEXE and show some use cases that highlight the
potentialities of the tool.

1 PLATOONING CONTROL

The goal of this short Section is simply to provide the reader
with all the information needed to easily follow the paper
without the need to browse in the literature and with a
uniform notation. All the equations we provide here are
reported from the cited original works, and correspond to
the implementation in PLEXE. We assume the reader has
some familiarity with control theory and distributed systems
as this is not meant to be a primer or a tutorial on cooperative
driving and platooning. Symbols are described in the text
as soon as they are introduced, but we summarize them
in Table 1 for reader’s convenience. In the following xi, vi
and ai indicate the position (relative to the vehicle in front),
the speed, and the acceleration of the vehicle in position i
in the platoon. A dot on a symbol, as in ȧ, indicate a time
derivative.

• M. Segata is with the Faculty of Computer Science, Free University of
Bolzano, Italy, E-mail: michele.segata@unibz.it.

• R. Lo Cigno is with DII, University of Brescia, Italy, E-mail: re-
nato.locigno@unibs.it.

• T. Hardes is with TU Dresden, Faculty of Computer Science, Germany and
the Software Innovation Campus Paderborn (SICP), Paderborn University,
Germany, E-mail: tobias.hardes@upb.de.

• J. Heinovski, M. Schettler, and F. Dressler are with the School for
Electrical Engineering and Computer Science, TU Berlin, Germany, E-
Mail: {heinovksi, schettler, dressler}@ccs-labs.org.

• C. Sommer is with TU Dresden, Faculty of Computer Science, Germany,
E-mail: sommer@cms-labs.org.

• B. Bloessl is with the Secure Mobile Networking Lab, TU Darmstadt,
Germany, E-mail: mail@bastibl.net.

Table 1
List of symbols.

Symbol Meaning

□̇ first derivative of □
□i value of a variable □ for the i-th vehicle in a platoon
u control input (desired acceleration)
a acceleration
v speed
x position
l length of the vehicle
τ first-order lag time constant
∆t simulation time step
H time headway for inter-vehicle gap (ACC and Ploeg)
λ weight factor between spacing and speed errors (ACC)
kp distance error gain (proportional gain, Ploeg)
kd speed error gain (derivative gain, Ploeg)
dd fixed, desired gap (PATH)
C1 leader and preceding vehicle acceleration weight (PATH)
ξ controller damping ratio (PATH)
ωn controller bandwidth (PATH)

The first requirement to implement an automatic control
on a vehicle is knowing (and modeling) it’s dynamic behav-
ior, or, in other words, understand how the vehicle responds
to an input or command normally given in terms of desired
acceleration.

The simplest possible model available in PLEXE is a first
order lag characterized by the following differential equation
for the acceleration a and the control input u (which is the
command computed by the control law or, equivalently, a
desired acceleration):

ȧ = −1

τ
a+

1

τ
u. (1)

In Equation (1) τ indicates the time constant of the lag: the
higher the value, the slower the response of the engine and
the braking system. A typical value found in the literature is
500 ms [1]. Within the simulator, Equation (1) is implemented
using the following discrete update rule

a[k + 1] = α · u[k] + (1− α) · a[k], α =
∆t

τ +∆t
, (2)

where k is the simulation step and ∆t the sampling time
of the simulator. PLEXE includes more sophisticated models
of vehicles’ dynamics that include the role or air-drag, the
engine power, the gears and so forth. As these models are

2

brand-and-model specific, they are not suited to derive
general results, but they can be used to verify general
hypotheses onto specific vehicles, and can also be used as
templates to include other models and possibly to state
minimum requirements that vehicles have to meet to be part
of a cooperative driving system. The interested reader can
find a complete description of the model in [2, Section 2.3].

In our contribution we assume that when communica-
tions are not available the vehicle falls back to a standard,
radar-based ACC. ACC implementations may differ slightly
one another, but they can all be modeled by the control law
in Equation (3) reported in [3, Chapter 6], which assumes a
constant headway-time between vehicles, as mandated with
human drivers, and thus a distance between platoon vehicles
that increases with speed.

ui = − 1

H
(ε̇i + λδi) (3)

δi = xi − xi−1 + li−1 +Hvi (4)
ε̇i = vi − vi−1 (5)

In Equation (3), H is the time headway and li is the length
of vehicle i.

We note incidentally that this control law assumes that the
radar can efficiently estimate the speed difference of the own
vehicle from the vehicle in front, which is not necessarily
true, thus this model can be somewhat optimistic in the
evaluation of ACC performance. The parameter λ controls
how aggressive the ACC is with respect to the distance
from the vehicle in front. We used a constant value often
reported in the literature in the experiments, which, as we
have shown, can easily lead to accidents in case of abrupt
transition from PATH Cooperative Adaptive Cruise Control
(CACC) (see Equation (7)) to ACC. A larger value of λ, or
better, a dynamic λ can be used to reduce the probability of
rear-end collisions, but this is clearly beyond the scope of
this paper. Also exploring what happens when the control
of the vehicle is given back to the human driver instead of
an ACC is interesting, but to do this analysis the Intelligent
Driver Model (IDM) [4] and Krauss [5] car-following models
already available in PLEXE are not enough, because they
do not account for the “surprise” of a driver that all of a
sudden is requested to be in control of a vehicle they were
not driving till the moment before.

Integral parts of our study are the Ploeg’s and PATH
CACC [1], [6] that we use when all three communication
interfaces are available (PATH) or when only one or two are
available (Ploeg).

Ploeg’s CACC has been designed to mimic an advanced
ACC system, thus it follows the constant headway-time
model:

(6)u̇i =
1

H
(−ui + kp (xi−1 − xi − li−1 −Hvi)

+ kd (vi−1 − vi −Hai) + ui−1)

Ploeg’s CACC allows a smaller headway-time compared to
standard ACC because it can exploit the knowledge of the
front vehicle input ui−1, thus discounting the actuation lag
of the vehicle in front. Given its design goals Ploeg’s CACC
is the ideal transition controller toward an ACC, as it can

Table 2
Network parameters.

Parameter Value

Packet payload size 200 Byte
Beacon frequency 10 Hz

80
2.

11
p

Transmission power 20 dBm
Bit rate 6 Mbit/s
Noise floor −95 dBm
Path-loss model Free-space, α = 2
Frequency 5.89 GHz

V
LC

Transmission power 10 dBm
Bit rate 1 Mbit/s
Headlight max tx range 100 m (LOS)
Taillight max tx range 30 m (LOS)
Headlight max tx angle 45°
Taillight max tx angle 60°

C
-V

2X

Transmission power (UE) 26 dBm
Transmission power (eNB) 40 dBm
Frequency 2.1 GHz
Mode C-V2X Mode 3 (D2D, eNB assisted)
Channel configuration Urban macrocell (SimuLTE provided)

smoothly increase the vehicles’ headway-time to the one
which is safe for the ACC system.

PATH’s CACC goal is instead the maximization of per-
formance in terms of road usage and fuel consumption: both
goals require the minimum possible vehicle inter-distance
independently from the speed. To achieve this goal it uses
information also from the leader of the platoon and not
only from the vehicle in front as described by the following
equations:

(7)ui = α1ui−1 + α2u0 + α3(vi − vi−1)

+ α4(vi − v0) + α5(xi − xi−1 + li−1 + dd)

where

α1 = 1− C1; α2 = C1; α5 = −ω2
n (8)

α3 = −
(
2ξ − C1

(
ξ +

√
ξ2 − 1

))
ωn (9)

α4 = −C1

(
ξ +

√
ξ2 − 1

)
ωn. (10)

Differently from Equations (3) and (6), we have no head-
way time H but a fixed desired distance dd regardless of
the cruising speed. C1, ξ, and ωn are control parameters
regulating the weight between leading and preceding vehicle
accelerations, the damping ratio, and controller bandwidth,
respectively.

PLEXE includes also other CACC models [7]–[9] that we
have not used in this study, and adding others is simple
given the modularity of the simulation framework.

2 ADDITIONAL RESULTS

This section shows additional results that are not included in
the main manuscript. In addition, in Table 2, we list all the
main network parameters used in the simulations. Figures 1
and 2 show the acceleration and distance behavior for the
naïve fallback mechanisms for scenarios 2 and 3 respectively.
It is clear in both cases that the crashes we observe are not
a remote chance, but they are intrinsic to an abrupt change
from a cooperative driving situation, where vehicles exploit
the knowledge of each other dynamics and intentions, to

3

(a) acceleration, näive fallback-8

-6

-4

-2

0

2
ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, näive fallback

0 50 100 150 200

0
2
4
6
8

10
12
14

d
is
ta
n
ce

[m
]

time [s]

Figure 1. Acceleration and inter-vehicle until the crash for the näive
fallback in scenario 2.

(a) acceleration, näive fallback-8

-6

-4

-2

0

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, näive fallback

0 50 100 150 200

0
2
4
6
8

10
12
14

d
is
ta
n
ce

[m
]

time [s]

Figure 2. Acceleration and inter-vehicle until the crash for the näive
fallback in scenario 3.

one of autonomous driving, where vehicles can rely only
on the local sensors. The crashes occur immediately after
the communication failure with the emergency braking; in
practice none of the vehicles attempt a reaction to V0 abrupt
braking, and collisions occur. The experiments stop as soon
as one vehicle collides.

Figure 3 presents the performance of the proposed Safe
Autonomous Switchover Algorithm (SafeSwitch) for scenario
5, i.e., when a technology fails for all the vehicles in the
platoon at the same time and with failure of two technologies.
This can happen in rare cases, for instance if there is a
jamming attack on IEEE 802.11p, or because an LTE base
station fails, thus stopping to serve the entire platoon.
Clearly the occurrence of both cases is extreme. SafeSwitch
works as intended, safely distancing vehicles without abrupt
accelerations. PLEXE highlights the same amplification of
the deceleration observed in scenario 1 (main paper). The
amplification is however more severe and this is due to the
fact that a different controller (i.e., Ploeg) is used, so the
behavior is slightly different.

The situation of scenario 6, multiple failures and recov-
eries at the same vehicle with an emergency brake after the
second failure, leads to the results presented in Figure 4. The
deceleration due to the emergency braking is abrupt, but

(a) acceleration, scenario 5
-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, scenario 5

0 20 40 60 80 100 120

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

Figure 3. Acceleration and inter-vehicle distances for scenarios 5 (multiple
failures).

(a) acceleration, scenario 6-8

-6

-4

-2

0

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, scenario 6

0 50 100 150 200

0

5

10

15

20

d
is
ta
n
ce

[m
]

time [s]

Figure 4. Comparison of acceleration and inter-vehicle distances for
scenarios 6 (multiple failures).

this is unavoidable, and during the braking maneuver the
distance of V3, the one with failing communications, reduces
drastically, but remains safe, and then quickly returns to
the distance dictated by Ploeg’s controller in state F1, after
the communication recovery the platoon returns to normal
cruising with PATH’s controller.

Finally, Figures 5 and 6 present two additional runs
relative to the scenario with realistic communication failures.
It is evident that the stochastic pattern of losses affects
the quantitative behavior of the platoon, as the dynamic
patterns observed in the lower plots of these figures are
different and are also different from those reported in the
main paper. However, from a qualitative point of view the
behavior is consistent, with IEEE 802.11p and LTE losses
driving the performance, with Visible Light Communication
(VLC) ones often induced by the increased distance between
vehicles, a situation that can be recovered only if the other
two technologies work well for a long enough period of
time, as can be observed in Figure 6. We also observe that
handovers sometimes result in burst of losses and sometimes
not, hinting that handover procedures can still be improved.
This is very important, in light of 5G advent, where with
a high density of gNodeB and very frequent handovers, it
is important that these latter are loss-free for cooperative

4

0

1
0

1
0

1
F
E
R

11
p

C
-V

2X
V
L
C

(a) leader FER

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(b) front FER

-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(c) acceleration

0 50 100 150 200

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

(d) distance

Figure 5. Vehicle dynamics induced by the fallback FSM and frame error
rates for the scenario with realistic failures, second replica.

driving applications.

3 SAMPLE USE CASES AND SUBPROJECTS

This section describes the structure of PLEXE’s code base
for future users, together with the default scenarios it
provides. The following description assumes the user to
be familiar with the OMNeT++ ecosystem. PLEXE is divided
in three main sub-folders: main source code, examples, and
subprojects. The implementation of all the functionalities is
found under the src/plexe folder, starting from the root,
and this is where the core of PLEXE resides. The examples
folder includes all the sample simulations users can play with
to get acquainted with the frameworks. The subprojects
folder, instead, includes the source code and examples that
involve external libraries such as VLC or Cellular V2X
(C-V2X) modules. By default, PLEXE depends only on SUMO
and Veins, and the other components are optional.

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(a) leader FER

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(b) front FER

-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(c) acceleration

0 50 100 150 200

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

(d) distance

Figure 6. Vehicle dynamics induced by the fallback FSM and frame error
rates for the scenario with realistic failures third replica.

3.1 Flexibility through dynamic linking

Optional components are managed through a configure
script, which is present in each subproject. The role of such
script is to configure and check the dependencies of the
subproject (that is, other frameworks such as Veins VLC
or SimuLTE), generate the Makefile needed for building,
and the files required to run simulations. To better explain
this, we describe the veins_vlc subproject, which includes
example simulations like the ones provided by basic PLEXE,
but its vehicles are using VLC to communicate. We are going
to consider the file system structure in listing 1, which shows
a partial view of the folder structure and the most relevant
files. Listing 2 shows a portion of the configure script.
Lines 2 to 18 define the dependencies which, in this specific
case, are PLEXE, Veins, and Veins VLC. For each dependency
the user needs to provide:

• name: a name of the dependency;

5

• library: the name of the shared library which the
subproject will be linked against;

• default_path: the default root path where the library
is located. The user can override this via command line
arguments when running the script;

• versions: a list of accepted versions of the library;
• source_folder: the location (starting from the root

path of the library) where the source files are located;
• lib_folder: the location (starting from the root path of

the library) where the compiled shared library is located;
• images_folder: the located (starting from the root

path of the library) where additional images provided
by the library are located. It is possible to make use of
such images (e.g., a car or a pedestrian) when running
the OMNeT++ simulation in graphical mode;

• version_script: name of a script that prints (or a file
that contains) the version of the library.

Lines 20 to 24, instead, define the properties of the plexe_-
vlc subproject itself, i.e., the name of the shared library
(being built), and the parameters required to run simulations
(the shared library itself and where OMNeT++ will find the
.ned files).

The script automatically checks for the presence of all the
components and that the versions correspond to the required
ones, generating an error for the user if such task fails. Upon
a successful execution, the script generates a Makefile
for building the subproject and the script required to run
the simulation, which automatically indicates to OMNeT++
where to find all the dependencies. The user can now
develop custom OMNeT++ modules (in src/plexe_vlc)
and simulations (in examples/platooning_vlc or any
other folder). For the former step, it is important to remember
that if the user adds new C++ source files, the configure
scripts needs to be run again to update the Makefile. For
example, PlatoonVlcCar.ned defines an OMNeT++ com-
munication node representing a vehicle which, differently to
standard PLEXE, uses a VLC interface. As the configure script
automatically resolves the dependencies, the user can now
import the modules provided by Veins VLC and sobstitute
the 802.11p interface with VLC. The user has clearly the
possibility to add a new interface to study heterogeneous
communication systems.

To run a simulation, after defining all the classic OM-
NeT++ configuration files such as omnetpp.ini in a folder
of choice, the user can simply exploit the script generated by
configure. For example, running ../../bin/plexe_-
vlc_run from the examples/platooning_vlc folder
will start the OMNeT++ GUI, permitting the user to choose
which simulation to run. The user can also specify to run
through command line arguments, as in standard PLEXE.

This brief description shows how flexible PLEXE is even
considering its complexity, and that integrating a new com-
munication technology or any other OMNeT++ framework
simply requires to add a dependency to a project.

3.2 Base scenarios

Base PLEXE scenarios are located in the examples folder and
the main one resides inside the platooning subfolder. This
example simulates two scenarios using the available ACC
and CACC algorithms. The scenarios include a sinusoidal

1 /Users/user/src/
2 |-- plexe/
3 | |-- print-plexe-version
4 | |-- src/
5 | | |-- libplexe.dylib
6 | | |-- plexe/
7 | |-- subprojects/
8 | |-- plexe_vlc/
9 | |-- configure

10 | |-- bin/
11 | |-- plexe_vlc_run
12 | |-- examples/platooning_vlc/
13 | | |-- omnetpp.ini
14 | |-- src/plexe_vlc/
15 | | PlatoonVlcCar.ned
16 | | VlcRepropagationProtocol.cc
17 | | VlcRepropagationProtocol.h
18 | | VlcRepropagationProtocol.ned
19 |-- veins/
20 | |-- print-veins-version
21 | |-- src/
22 | |-- libveins.dylib
23 | |-- veins/
24 |-- veins-vlc/
25 |-- print-veins_vlc-version
26 |-- src/
27 |-- libveins-vlc.dylib
28 |-- veins-vlc/

Listing 1. File system structure (only most relevant folders and files
shown).

speed profile, a classical test of the stability of control systems,
and an emergency braking scenario, which is of obvious
interest for safety reasons. Obtaining simple performance
metrics of control systems starting from the examples is just
a matter of changing the parameters. For example, by re-
configuring the emergency braking scenario and introducing
an artificial frame error rate ranging from 0 % to 80 %, we
obtain the results in Figure 7. In the scenario we have
a platoon of 8 vehicles with the leader performing an
emergency braking maneuver with a deceleration of 8 m/s2.
We repeat each simulation point 10 times and we compute
the minimum inter-vehicle distance between each pair of
vehicles. We then plot the average over the 10 repetitions
with the relative 95 % confidence intervals. In the graph, we
only show the results for the PATH [6] and the Ploeg [1]
CACCs.

The main differences between the two is that the PATH
CACC employs a leader- and predecessor-following control
topology with a fixed inter-vehicle spacing policy (which in
our simulation is set to 5 m), while Ploeg’s CACC employs a
predecessor-following control topology with a time-headway
spacing policy of the form

d = d0 +Hv, (11)

where H = 0.5 s is the time-headway and v is the speed in
m/s. The d0 = 2m term is defined as the stand-still distance,
which avoids the vehicles colliding with each other when the
speed goes to zero.

What the figure shows is, first of all, the robustness of
CACCs to packet losses. The performance is unaffected for
losses up to 20 %, and for vehicles to become dangerously
close we need to have packet loss rates higher than 50 %.

This is a very basic scenario, but it is of extreme interest
in the cooperative driving community, and obtaining such

6

1 [...]
2 plexe = Library(name="Plexe", library="plexe", default_path="../../",
3 versions=["3.0"], source_folder="src/plexe",
4 lib_folder="src", images_folder="images",
5 version_script="print-plexe-version")
6 veins = Library(name="Veins", library="veins", default_path="../../../veins",
7 versions=["5.1"], source_folder="src/veins", lib_folder="src",
8 images_folder="images", version_script="print-veins-version")
9 veins_vlc = Library(name="Veins VLC", library="veins-vlc",

10 default_path="../../../veins_vlc", versions=["1.0"],
11 source_folder="src/veins-vlc", lib_folder="src",
12 images_folder="images",
13 version_script="print-veins_vlc-version")
14
15 libraries = LibraryChecker()
16 libraries.add_lib(plexe)
17 libraries.add_lib(veins)
18 libraries.add_lib(veins_vlc)
19
20 makemake_flags = ["-f", "--deep", "--no-deep-includes", "--make-so", "-I", ".", "-o", "plexe_vlc",
21 "-O", "out", "-p", "PLEXE_VLC"]
22 run_libs = [join("src", "plexe_vlc")]
23 run_neds = [join("src", "plexe_vlc")]
24 run_imgs = []
25
26 libraries.check_libraries(makemake_flags, run_libs, run_neds, run_imgs)
27 [...]

Listing 2. Partial content of the configure file of the veins_vlc subproject.

0.0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

frame error rate

av
g
m
in

d
is
ta
n
ce

(m
) PATH Ploeg

Figure 7. Average minimum inter-vehicle distance with 95 % confidence
intervals in an emergency braking scenario as function of the frame error
rate for the PATH and the Ploeg CACCs.

results is a matter of a few minutes.
Another sample scenario of interest is the aforementioned

join at back maneuver. In this example, a lone vehicle joins
an existing platoon of 4 cars by first requesting permission
to join, then being instructed to approach the platoon, and
finally joining the platoon.

Other examples include a scenario where a human
vehicle is inserted into the simulation, to show how to
simulate mixed scenarios where human-driven vehicles can
interfere from a mobility and a communication perspective.
In addition, we find a simple scenarios showing the behavior
of the realistic engine model by simulating a drag race
between three different types of vehicle.

3.3 Heterogeneous scenarios
PLEXE includes sample scenarios for the subprojects,

which deals with VLC and C-V2X. In the VLC subproject, we
have the same main scenario (sinusoidal plus emergency
braking) but using VLC as the underlying communica-
tion technology as previously described. In addition, there

is a modified communication protocol that performs re-
propagation of the beacon messages as VLC works only
in direct line-of-sight.

In the C-V2X subproject, instead, we have two platoons
running on a ring-like freeway that are located far apart.
The two platoons use the LTE uplink/downlink standard to
communicate with a centralized Traffic Authority (TA) server.
One platoon queries the TA for other platoons and, upon
receiving the reply, requests the TA guidance to approach
such platoon with the aim of merging. Once the approaching
platoon is close enough to the other, the TA demands the for-
mer to contact the latter and performs the merge maneuver
autonomously using direct Vehicle to Vehicle communication
(V2V) communication via IEEE 802.11p. In addition, V2V
beacons with control information are sent redundantly using
C-V2X Mode 3. This example is particularly important as it
shows how vehicles can be coordinated on different levels
(locally with V2V communication and remotely through the
infrastructure) and how easily PLEXE enables cooperative
driving studies with heterogeneous networking technologies.

The final subproject (named plexe_hetnet) includes a
ring road scenario with a platoon of vehicles using multiple
communication technologies simultaneously to communicate
in a V2V fashion. This is the scenario on top of which
we developed the evaluation of SafeSwitch, and it can be
extremely useful to users to understand how to integrate
multiple communication technologies into their cooperative
driving scenarios or even integrate additional simulation
frameworks.

One fundamental aspect which always represents a
parameter of choice when selecting a simulation framework
is scalability. The scalability of PLEXE heavily depends on
the communication models required for the analysis. Some
of them can be very demanding in terms of computation. For
example, Veins VLC employs geometrical models to compute
the effect of vehicle shadowing, which clearly cannot be

7

neglected. In the past, when considering IEEE 802.11p only,
we could easily simulate hundreds of vehicles [10], but such
a large number of vehicles would be difficult to handle
when using very detailed communication models. To give
the reader an idea, we run a set of simulations with a single
platoon composed by 8, 16, and 32 cars, using different
communication technologies, and measuring the execution
time. In the simulation, each vehicle sends 10 broadcast
frames per second. Figure 8 plots the real time factor of
the simulation, which is defined as follows. Let ts and tw
the time elapsed in the simulation and in the real world,
respectively. The real time factor is defined as f = tw/ts .
For example, if f = 0.1, it means that simulating 1 s requires
100 ms in the real world. On the contrary, if f = 10 the user
needs to wait 10 s for each second within the simulation.
Simplistically speaking, the lower the value of f , the better.
Clearly, the real time factor heavily depends on the hardware.
The results in Figure 8 are obtained on a 2018 MacBook Pro
with an Intel i9 processor. Running the simulations on a
different hardware would quantitatively change the results,
but qualitatively they should be, in general, the same.

First of all, the plot highlights a well-known fact about
network simulations, i.e., that the real time factor increases
more than linearly in the number of network nodes. This is
true when all nodes communicate with each other because,
disregarding optimizations, the communication model needs
to compute the probability of reception for each node
in the simulation, so the complexity intuitively increases
quadratically. Overall, in the worst case, i.e., with 32 cars and
3 simultaneous communication technologies, the real time
factor is roughly 12, meaning that it requires 120 s in the real
world to simulate a scenario of 10 s in PLEXE.

The graph finally highlights the impact of communication
models: the more the technologies, the higher the simulation
time. The IEEE 802.11p model provided by Veins is the
most efficient one. When using only this technology, even
a simulation with 32 vehicles runs faster than real time.
What it is interesting to observe is the huge impact of
the VLC model. For 8 and 16 vehicles, the VLC model is
faster than the simulations using IEEE 802.11p and C-V2X,
but then its real time factor drastically increases for the
simulation with 32 cars. As mentioned before, the VLC
channel layer requires geometrical computations to calculate
the effects of shadowing. For a small number of vehicles, the
computational effort is limited, but this quickly grows as we
increase the nodes in the simulation, dominating over all the
other algorithmic components.

These results show that PLEXE can potentially scale but
there is clearly a limitation induced by the models that
researchers need to consider. It is thus necessary to select
the communication models and the scale of the simulation
depending on the required granularity. If a study focuses
on the physical layer and requires very low level channel
details (e.g., ray tracing), it will certainly be unfeasible to run
a simulation with hundreds of cars. On the other hand, if the
user is interested in traffic-related metrics for which a large
number of vehicles is required (e.g., throughput), considering
multiple communication technologies might not be necessary.
It is thus needed to find the right balance depending on the
requirements but, as we have clearly shown, the flexibility
of PLEXE enables its users to easily tune and configure the

802.11p only
VLC only
802.11p and C-V2X
802.11p, C-V2X, and VLC

5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

re
al

ti
m
e
fa
ct
o
r
[#

]

number of vehicles [#]

(a) full y axis

802.11p only
VLC only
802.11p and C-V2X
802.11p, C-V2X, and VLC

5 10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

re
al

ti
m
e
fa
ct
or

[#
]

number of vehicles [#]

(b) zoomed y axis

Figure 8. Simulation real time factor as function of the number of vehicles,
for different communication models. The gray line highlights a real time
factor of 1.

simulator for their purposes.

REFERENCES
[1] J. Ploeg, B. Scheepers, E. van Nunen, N. van de Wouw, and H.

Nijmeijer, “Design and Experimental Evaluation of Cooperative
Adaptive Cruise Control,” in IEEE ITSC 2011, Washington, D.C.:
IEEE, Oct. 2011, pp. 260–265.

[2] M. Segata, “Safe and Efficient Communication Protocols for Pla-
tooning Control,” PhD Thesis, University of Innsbruck, Innsbruck,
Austria, Feb. 2016.

[3] R. Rajamani, Vehicle Dynamics and Control, 2nd ed. Springer, 2012.
[4] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States

in Empirical Observations and Microscopic Simulations,” PRE,
vol. 62, no. 2, pp. 1805–1824, Aug. 2000.

[5] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a
microscopic model of traffic flow,” APS Physical Review E, vol. 55,
no. 5, pp. 5597–5602, May 1997.

[6] R. Rajamani, H.-S. Tan, B. K. Law, and W.-B. Zhang, “Demon-
stration of Integrated Longitudinal and Lateral Control for the
Operation of Automated Vehicles in Platoons,” TCST, vol. 8, no. 4,
pp. 695–708, Jul. 2000.

[7] A. Ali, G. Garcia, and P. Martinet, “The Flatbed Platoon Towing
Model for Safe and Dense Platooning on Highways,” IEEE
Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp. 58–68,
Jan. 2015.

[8] S. Santini, A. Salvi, A. S. Valente, A. Pescapè, M. Segata, and
R. Lo Cigno, “A Consensus-based Approach for Platooning with
Inter-Vehicular Communications and its Validation in Realistic
Scenarios,” TVT, vol. 66, no. 3, pp. 1985–1999, Mar. 2017.

[9] G. Giordano, M. Segata, F. Blanchini, and R. Lo Cigno, “The
joint network/control design of platooning algorithms can enforce
guaranteed safety constraints,” Elsevier Ad Hoc Networks, vol. 94,
Nov. 2019.

[10] M. Segata, B. Bloessl, S. Joerer, et al., “Towards Communication
Strategies for Platooning: Simulative and Experimental Evalua-
tion,” TVT, vol. 64, no. 12, pp. 5411–5423, Dec. 2015.

