

Laboratory of Catalysis and Catalytic Processes

Isotopic studies of NO_x reduction over Pt-Ba/Al₂O₃ LNT catalyst

L. Righini, N. Artioli, L. Castoldi, L. Lietti*, P. Forzatti

Laboratory of Catalysis and Catalytic Processes LCCP Energy Department, Politecnico di Milano *luca.lietti@polimi.it

Lean NO_x Traps (LNTs): pathways in the reduction of stored NO_x

• Mechanistic aspects of the reduction of stored NO_x are still under debate. *Possible steps:*

> Stored NO,

surface diffusion / spillover of stored NOx towards Pt

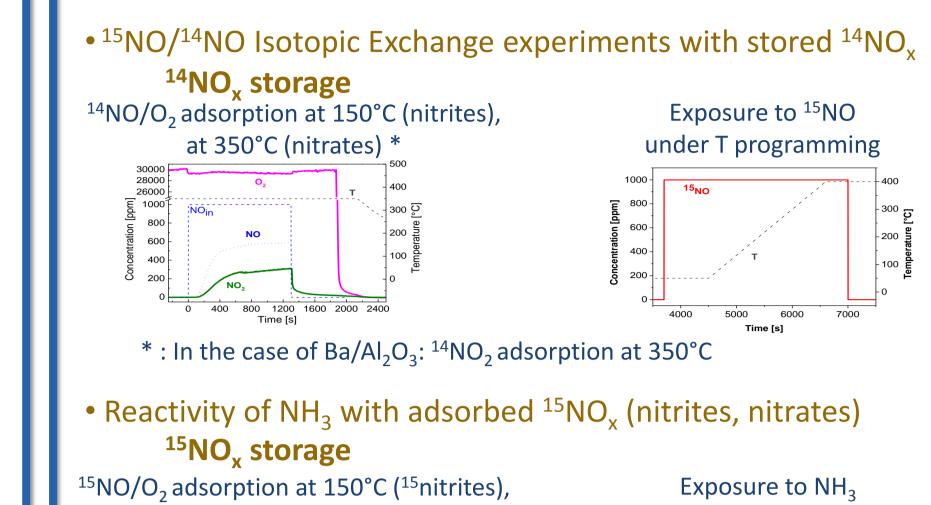
release of NO / formation of NO-related intermediates

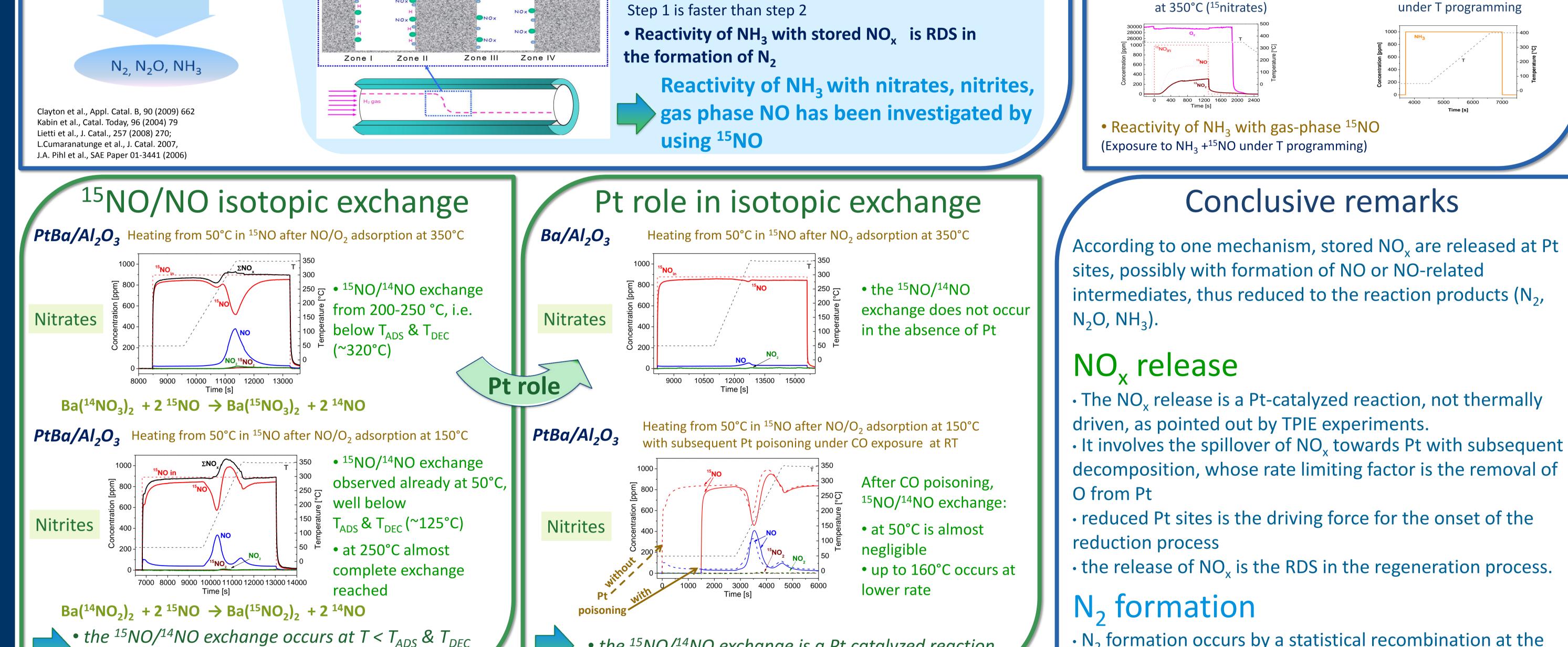
reduction of NO / NO-related intermediates over Pt

Possible driving force of NO, release:

- heat of reductant combustion reactions (THERMAL RELEASE) • decrease of equilibrium stability of NO_x due to decrease of P_{02} and P_{N0} (THERMODYNAMIC RELEASE) • establishment of net reducing environment (CHEMICAL RELEASE)
- Open issues: Pathways of NO, release and subsequent reduction can be hardly decoupled
 - ¹⁵NO/NO Isotopic exchange technique has been used to investigate independently the two steps

Ba sites

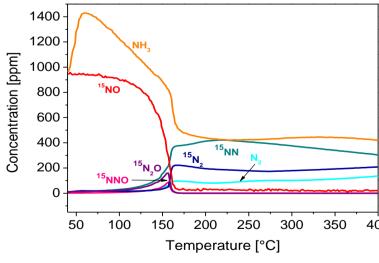



Step 1: $Ba(NO_3)_2 + 8H_2 \rightarrow 2NH_3 + Ba(OH)_2 + 4H_2O$ Step 2: 3 $Ba(NO_3)_2 + 10 NH_3 \rightarrow 8 N_2 + 3 Ba(OH)_2 + 12 H_2O$

Steps 1 + 2 : $Ba(NO_3)_2 + 5H_2 \rightarrow Ba(OH)_2 + N_2 + 4H_2O$ Step 1 is faster than step 2

Methods

• Catalysts: Pt-Ba/Al₂O₃ (Pt=1% w/w; Ba=16% w/w) and Ba/Al₂O₃ (Ba=16% w/w) prepared by incipient wetness impregnation of commercial γ -Al₂O₃ calcined at 700°C

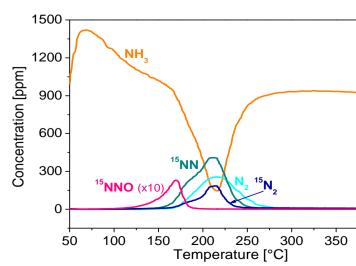

nitrites are more readily exchanged than nitrates

• the ¹⁵NO/¹⁴NO exchange is a Pt catalyzed reaction

Reaction of NH_3 with gaseous NO and stored NO_x (PtBa/Al₂O₃)

$NH_{3} + {}^{15}NO$

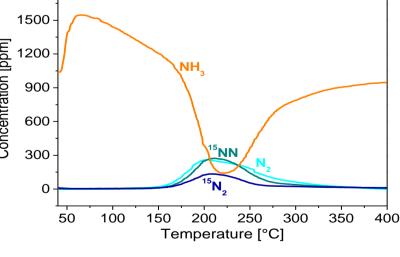
Heating from 40°C in $NH_3 + {}^{15}NO$



initial formation of only labeled N₂O then and all types of N₂; complete selectivity to N₂ above 180°C • isotopic distribution in line with the statistical recombination of N ad-atoms formed by NO and NH₃ dissociation

NH₃ + ¹⁵nitrites

Heating from 40°C in NH₃ after ¹⁵NO/O₂ adsorption at 150°C


400

• minor initial formation of ¹⁵N₂O • formation of all nitrogen isotopes, abundance of single-labelled ¹⁴N¹⁵N • the presence of ¹⁵N₂ and of ¹⁴N₂ indicates the self-coupling of N-atoms of the stored nitrites and of ammonia

NH₃ + ¹⁵nitrates

Heating from 40°C in NH₃ after ¹⁵NO/O₂ adsorption at 350°C

$NH_3 + {}^{14}NO + {}^{15}nitrates$

Heating from 40°C in NH_3 +¹⁴NO after ¹⁵NO/O₂ adsorption at 350°C 1500 $NH_2 + {}^{14}NO + {}^{15}nitrates$ 1200 900 600 300 -1500 $NH_{3} + {}^{14}NO$ 1200 -900 - NO 600 -300 50 100 150 200 250 300 350 400

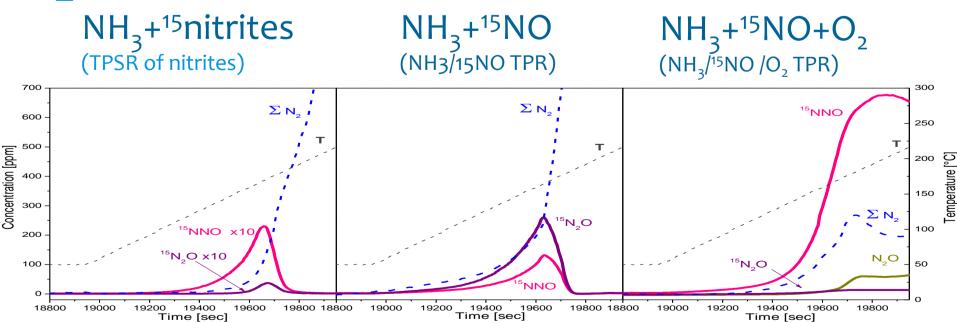
¹⁴N¹⁵N • initial formation of unlabeled N₂O and N₂ (involvement of gas-phase

reaction occurs from 150°C

trace amounts of N₂O)

• complete selectivity to N₂ (only

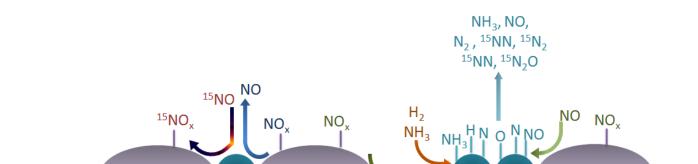
• formation of all N₂ isotopes, with


abundance of unlabelled N₂ and

NO) • @ T > 180°C complete NH_3 consumption and evolution of N₂: limited formation of ¹⁵N-containing species due to the faster reaction of NH₃ with gaseous NO

• Higher reactivity of NO if compared to nitrates

 $\cdot N_2$ formation occurs by a statistical recombination at the Pt sites of N ad-atoms formed upon NO and NH₃ decomposition. Due to the relative abundance of $^{15}N^{14}N$, formation of NH_x-NO_x surface intermediates cannot be ruled out (SCR-like pathway)


N₂O formation

• Only labelled N₂O molecules detected and produced by the reaction between undissociated ¹⁵NO with N-adatoms:

> $^{15}NO_{ads} + N_{ads} \rightarrow ^{15}NNO$ $^{15}NO_{ads} + ^{15}N_{ads} \rightarrow ^{15}N_2O$

 \cdot N₂O formation is favoured by high NO concentration (TPR) and by the presence of oxidized Pt sites (low T, O₂ presence) • reduction of nitrites leads to a higher N₂O formation than nitrates due to their easier NO release

• N_2 is formed upon statistical recombination of N ad-atom coming from NO and NH₃ dissociation over Pt sites

• the SCR-like pathway (coupling of NO- and NH₃-derived intermediates) can occur, explaining the ¹⁵NN abundance

• the NO release is the rate determining step of the reduction process

Temperature [°C]

