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Abstract

The slice-rank method, introduced by Tao as a symmetrized version
of the polynomial method of Croot, Lev and Pach and Ellenberg and
Gijswijt, has proved to be a useful tool in a variety of combinatorial
problems. Explicit tensors have been introduced in different contexts
but little is known about the limitations of the method.

In this paper, building upon a method presented by Tao and Sawin,
it is proved that the asymptotic slice rank of any k-tensor in any field
is either 1 or at least k/(k − 1)(k−1)/k. This provides evidence that
straight-forward application of the method cannot give useful results in
certain problems for which non-trivial exponential bounds are already
known. An example, actually a motivation for starting this work, is
the problem of bounding the size of trifferent sets of sequences, which
constitutes a long-standing open problem in information theory and in
theoretical computer science.
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1 Introduction

The polynomial method has been receiving renowed attention since the
breakthrough result of Croot, Lev and Pach [2] and subsequent follow-up
results, among which the notable ones by Ellenberg and Gijswijt [5] and
Naslund and Sawin [8]. A useful symmetrized formulation of this particular
application of the polynomial method was provided by Tao in [10] based on a
notion of slice rank of tensors. In this formulation, the size of combinatorial
structures under study is upper-bounded by the slice rank of appropriately
constructed tensor powers. The notion of slice rank can be interpreted in a

*DII/DICATAM - Sez. Matematica, Università degli Studi di Brescia, Via Branze 38,
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more general framework of tensor-ranks which is given an in-depth discus-
sion in [1].

The slice rank method has been applied to several combinatorial prob-
lems such as the tri-colored sum-free sets, the sunflowers free sets, the capsets
and the progression-free problem. In those cases, the method gave the first
non-trivial exponential bounds on the size of the considered combinatorial
structures. In a follow-up note, Tao and Sawin [9] showed that the bounds
derived in [5] and [8] are exponentially optimal in the context of this polyno-
mial method. Namely, no further exponential improvement can be obtained
by more refined bounds on the slice rank of the adopted tensors, since the
computed upper bounds coincide with the true values asymptotically to the
first order in the exponent (that is, the bounds on the asymptotic slice ranks,
in the sense of [1], are tight).

A problem which has a similar flavor, but possibly a different nature,
is that of determining the exponential growth of trifferent sets of ternary
sequences. In this case one asks for the size of the largest subset of Fn3 with
the property that any three distinct elements are simultaneously distinct
in at least one coordinate. That is, they are projected onto F3 in at least
one coordinate. This problem originates both in the context of information
theory and in theoretical computer science, respectively as a problem of
zero-error capacity under list decoding (or hypergraph capacity) or perfect
hashing in a ternary alphabet. See [3, Prob. 10.29], [7], [4] for further
details.

If T (n) is the size of a largest trifferent subset of Fn3 , one can prove easily
by induction that

T (n) ≤ 2

(
3

2

)n
.

So, in this case there is already a simple non-trivial exponential upper bound
on the size of the combinatorial structure, and it is rather natural to ask
whether the slice rank method can be used to improve upon it. Neglecting for
a moment the details of how one might try to encode the trifference problem
in the slice-rank method, one is easily led to the question of whether there
exists at all tensors whose n-fold tensor powers have a slice rank which grows
exponentially slower than (3/2)n.

In general, we ask what the smallest possible asymptotic slice rank of a
tensor can be, assuming the tensor is not a slice already. The main result
of this paper is to show that there is indeed a gap; any k-tensor in any
field has either asymptotic slice rank 1 (i.e., it is a slice) or at least k/(k −
1)(k−1)/(k). This can be interpreted as an extension of the fact that the
standard asymptotic rank of matrices is either 1 or at least 2. In the case
k = 3, the found value is 3/22/3 ≈ 1.889 > 3/2, so that no straight-forward
application of the slice rank method can give improvements over known
bounds for the trifference problem (but see Section 3).
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In Section 2 we prove our statement on the asymptotic slice rank of
k-tensors. The main technical contribution is to show that all instances
of the method of Tao and Sawin (which depend on tensor representation)
give a trivial lower bound if and only if the tensor has slice-rank 1. In
Section 3, taking again inspiration from the trifference problem, we add
some comments on the limitations of our own result.

1.1 Notation

Following [9], we consider finite-dimensional vector spaces, V1, . . . , Vk, over
a field F and a basis Bi = (bi,s)s∈Si for each Vi, i ∈ [1, k], indexed by some

finite set Si ⊂ Z. Given Γ ⊆ S1 × · · · × Sk ⊂ Zk, a k-tensor of
⊗k

i=1 Vi will
be defined as:

v =
∑

(s1,...,sk)∈Γ

cs1,...,skb1,s1 ⊗ · · · ⊗ bk,sk .

In case all the coefficients are nonzero, Γ is said to be the support of v with
respect to the bases B = {B1, . . . , Bk}. For each 1 ≤ j ≤ k, we use the jth

tensor product ⊗j : Vj
⊗k

i=1,i 6=j Vi →
⊗k

i=1 Vi as defined in [9] and let πj
be the projection on the j-th coordinate.

The notion of rank that will be discussed here is the following one:

Definition 1. Tensors of the form vj ⊗j vĵ for some vj ∈ Vj and vĵ ∈⊗k
i=1, i6=j Vi have slice rank one and are said to be slice tensors. The slice

rank of an element of
⊗k

i=1 Vi is defined to be the least non negative integer
r such that v is a linear combination of r slice tensors.

In the note [9], Terence Tao and William Sawin introduce a combinatorial
way to study the slice rank of tensors. The key idea is to study the entropy
of a set Γ ⊂ Zk defined as follows:

H(Γ) := sup
(X1,...,Xk)

min(h(X1), . . . , h(Xk)),

where (X1, . . . , Xk) ranges over the random variables taking values in Γ and
h(X) is the Shannon entropy of the discrete variable X. In detail,

h(X) = −
∑
α

pα log(pα) ,

where pα is the probability that X = α (we set 0 log 0 = 0 by definition).
Note that h(X) = 0 if and only if X is constant, so that H(Γ) = 0 if and
only if at least one of the coordinates is constant in Γ.

Using this notations, the upper bound on the slice-rank of tensors derived
in [9] can be stated as follows.
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Proposition 1 ([9]). Let v be a k-tensor and let Γ be its support with respect
to the bases B. Then:

srank(v⊗n) ≤ exp((H(Γ) + o(1))n).

In [9], the authors also provide a lower bound on the asymptotic slice
rank of a k-tensor v. At this purpose, given total orderings σ1, . . . , σk for the
finite sets S1, . . . , Sk, consider the product ordering σ = σ1 × σ2 × · · · × σk.
Since σ is a partial ordering, for any subset Γ we can define

Γσ := max
σ

(Γ)

i.e. the set of maximal elements of Γ with respect to σ. The lower bound of
[9] can be states as follows:

Proposition 2 ([10]). Let v be a k-tensor and let Γ be its support with
respect to the bases B. Then, given a (product) ordering σ:

srank(v⊗n) ≥ exp((H(Γσ) + o(1))n).

Proposition 2 lower bounds the slice rank of a tensor in terms of the
entropy of antichain of maximal elements of its support with respect to
some bases and ordering. For a given tensor, different bases and different
orderings will in general give different lower bounds, and one might wonder
what the best choice is. In particular, one might ask how small can the right
hand side be, for some tensors, even for the optimal choice. Our main result
is that either the tensor is a slice or one can choose bases and ordering for
which H(Γσ) ≥ log(k/(k − 1)(k−1)/(k)). Using Proposition 2, this leads to
the following result.

Theorem 1. Let v be a k-tensor that is not a slice. Then:

srank(v⊗n) ≥ (k/(k − 1)(k−1)/(k))n+o(n).

We prove this in two steps. First we show that, for any ordering σ and
finite set Γ, the quantity H(Γσ) is either zero or at least ξk := log(k/(k −
1)(k−1)/(k)). The main task is then to show that, if v is a k-tensor which
is not a slice, then there exist bases B and an ordering σ with respect to
which the tensor support Γ satisfies H(Γσ) 6= 0. Hence, using Proposition
2, srank(v⊗n) ≥ exp(ξk(n+ o(n))).

2 Proof of Theorem 1

Lemma 1. Let Γ ⊆ Zk with k ≥ 2. Then H(Γ) 6= 0 implies that there exists
Γ̄ ⊆ Γ such that H(Γ̄) 6= 0 and |Γ̄| ≤ k.
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Proof. We prove that, given Γ such that |π1(Γ)| > 1, . . . , |πk(Γ)| > 1, there
exists Γ̄ ⊆ Γ such that |Γ̄| ≤ k while still |π1(Γ̄)| > 1, . . . , |πk(Γ̄)| > 1,
implying H(Γ̄) > 0. We proceed by induction.

For the base case, k = 2, let (x1, x2) ∈ Γ. Since |π1(Γ)| > 1 and
|π2(Γ)| > 1, there exist (y1, y2) and (z1, z2) such that y1 6= x1 and z2 6=
x2. If y2 6= x2 (or z1 6= x1) we can choose Γ̄ to be {(x1, x2), (y1, y2)}
(reps.{(x1, x2), (z1, z2)}). Assuming y2 = z2 and z1 = x1, instead, we can
choose Γ̄ to be {(y1, y2), (z1, z2)}.

Assume now the statement if proved for k− 1 and consider Γ ⊂ Zk. Let
Γ̃ ⊂ Γ be the smallest subset of Γ such that |π1(Γ̃)| > 1, . . . , |πk−1(Γ̃)| > 1.
Because of the inductive hypothesis (applied to the projection of Γ̃ on the
first k−1 coordinates), we have that also |Γ̃| ≤ k−1. If also |πk(Γ̃)| > 1, then
Γ̃ is already a subset of Γ that satisfies the required properties. Otherwise,
since πk(Γ) > 1, there exists x ∈ Γ so that, set Γ̄ := {x} ∪ Γ̃, we have
|π1(Γ̄)| > 1, . . . , |πk(Γ̄)| > 1. Since |Γ̃| ≤ k−1 we also have that |Γ̄| ≤ k.

Proposition 3. Let Γ be a finite subset of Zk. Then denoted by ξk :=
log(k/(k− 1)(k−1)/k), for any ordering σ, H(Γσ) 6∈ (0, ξk). Moreover, there
exist Γ ⊆ Zk and σ such that H(Γσ) = ξk.

Proof. Let us consider an ordering σ such that H(Γσ) 6= 0. Because of
Lemma 1, we may suppose |Γσ| ≤ k. It follows from the definition that
H(Γσ) ≥ min(h(X1), . . . , h(Xk)) where (X1, . . . , Xk) is the uniformly dis-
tributed random variable on Γσ. The rest is just an application of the data
processing inequality for the entropy; we write the details for readers with
a different background. For any i ∈ [1, k], denote by pα the probability of
the event Xi = α, so that h(Xi) = −

∑
α∈Si

pα log(pα). Since |πi(Γσ)| 6= 1,
there exists ᾱ ∈ Si such that 1/k ≤ pᾱ ≤ 1/2. Then, it follows from Jensen’s
inequality after simple algebraic manipulations that

−
∑
α∈Si

pα log(pα) ≥ −pᾱ log(pᾱ)−

 ∑
α∈Si,α 6=ᾱ

pα

log(
∑

α∈Si,α 6=ᾱ
pα)

 .

Since 1/2 ≥ pᾱ ≥ 1/k and the function −x log(x) − (1 − x) log(1 − x) is
monotonic in [0, 1/2], we have that

h(Xi) ≥ −1/k log(1/k)− (k − 1)/k log((k − 1)/k) = log(k/(k − 1)(k−1)/k).

Summing up we obtain that

H(Γσ) ≥ min(h(X1), . . . , h(Xk)) ≥ log(k/(k − 1)(k−1)/k).

On the other hand, it is easy to check that the set of k points in Zk

Γ := {(2, 1 . . . , 1), (1, 2, 1, . . . , 1), . . . , (1, 1, . . . , 2)}

is such that H(Γσ) = H(Γ) = log(k/(k − 1)(k−1)/k), where σ is the usual
product ordering (2 > 1 in any coordinate).
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It follows from Proposition 3 and Proposition 2 that:

Corollary 1. Let v be a k-tensor and let Γ be its support with respect to the
bases B. If there exists an ordering σ such that H(Γσ) 6= 0, we have that:

srank(v⊗n) ≥ exp(ξk(n+ o(n)).

Due to Corollary 1, we would like to characterize the tensors v whose
support Γ with respect to any bases and ordering satisfies H(Γσ) = 0, and
show that they must be slice. Toward that goal, we first investigate the
entropy of sections of a set Γ, defined as follows. Given Γ ⊆ Zk, I =
{i1, i2, . . . , it} ⊆ [1, k] and x = (x1, x2, . . . , xt), let Mx

I ⊆ Γ be the subset of
elements with xj-th component xij . Let then ΓxI ⊆ Zk−t be the projection
of Mx

I on the coordinates [1, k] \ I.

Lemma 2. Let Γ be a finite subset of Zk and let Pi = πi(Γ). Then
H((ΓxI )σ) = 0 for any I ⊆ [1, k], any x ∈×i∈I Pi and any ordering σ if
and only if Γ =×i∈[1,k] Pi.

Proof. If Γ =×i∈[1,k] Pi, then for any I ⊆ [1, k] and x ∈×i∈I Pi we have
that ΓxI is the cartesian product of Pi such that i 6∈ I. Therefore, ΓxI has a
maximum with respect to any ordering σ, which implies that H((ΓxI )σ) = 0.

Let us suppose Γ is not the cartesian product of the sets Pi. Up to
permutation of the coordinates, this means that there exist x = (x1, . . . , xk)
and z = (z1, x2, . . . , xk) such that z1 and x1 are distinct elements of P1, x ∈ Γ
and z 6∈ Γ. Let us now consider in Γ an element z̄ with π1(z̄) = z1 that
differs from x in the minimum number, say t, of coordinates; since z̄ 6= z 6∈ Γ,
t ≥ 2. We can assume, up to a rearrangement of the coordinates, that z̄ =
(z1, z2, . . . , zt, xt+1, . . . , xk), with zi 6= xi for i ∈ [1, t]. Set x′ = (xt+1, . . . , xk)
and I = [t+ 1, . . . , k]; on the section Γx

′
I , we consider the product ordering

σ on Zt such that in the first coordinate z1 is the largest element and x1

the second largest one, let us write z1 > x1 > . . . , while in the other
coordinates, using the same notation1, x2 > z2 > · · · , · · · , xt > zt > · · · .

Note that (z1, . . . , zt) belongs to (Γx
′
I )σ because no element can majorize

it, since it would need to have some i-th coordinate equal to xi while z̄ differs
from x in the minimum number of coordinates. But (x1, . . . , xt) also belongs
to (Γx

′
I )σ. Since zi 6= xi for i ∈ [1, t], we deduce that H((Γx

′
I )σ) 6= 0

Lemma 3. Let Γ be a finite subset of Zk, let Pi = πi(Γ). Suppose that the
following conditions hold:

� set I = [1, k−d], there exists x = (x1, . . . , xk−d) ∈ P1×· · ·×Pk−d and
an ordering σ with H((ΓxI )σ) 6= 0;

1In the rest of the paper we always use this notation to specify the largest and the
second largest elements of the ordering.
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x1

z1

Figure 1: Graphical representation of Lemma 3 for the case where d = 2.
Coordinates in Ī = [2, k − d], which are fixed to x̄, are omitted.

� for any I ′ ⊂ I and for any ordering α, H((Γx
′
I′ )α) = 0 where x′ is the

restriction of x on I ′.

Then set x̄ = (x2, . . . , xk−d) the restriction of x on Ī = [2, k − d], we have

that (ΓxI )σ ⊆ Γ
(z1,x̄)
I for any z1 ∈ P1.

Proof. If |P1| = 1 the statement is trivial, so let z1 ∈ P1 be different from
x1.

First of all we prove that Γ
(z1,x̄)
I is not empty. Let us consider an element

z ∈ P1 × · · · × Pk−d with π1(z) = z1 and non empty ΓzI which differs from
x in the minimum number of coordinates. We would like to prove that
z = (z1, x̄). We can assume, up to a rearrangement of the coordinates, that
z = (z1, z2, . . . , zt, xt+1, . . . , xk−d) where xi 6= zi for any i ∈ [1, t]. We set
x′ = (xt+1, . . . , xk−d) and I ′ = [t + 1, d]. Let α be the ordering on Γx

′
I′ that

coincide with σ on Pk−d+1×· · ·×Pk and such that (see footnote 1) z1 > x1 >
· · · , x2 > z2 > · · · , . . . , xt > zt > · · · . We have that {(z1, . . . , zt)}× (ΓzI)σ ⊆
(Γx

′
I′ )α because no element can majorize it, since it would need to have some

i-th coordinate equal to xi while z differs from x in the minimum number

of coordinates. In the case t ≥ 2, Γ
(z1,x̄)
I would be empty and hence we

also have that {(x1, . . . , xt)} × (ΓxI )σ ⊆ (Γx
′
I′ )α. Since H((ΓxI )σ) 6= 0, for

t ≥ 2 none of the last d coordinates of points in (Γx
′
I′ )α is constant. Also

none of the first t coordinates would be constant because xi 6= zi for any
i ∈ [1, t] and this would imply H((Γx

′
I′ )α) 6= 0. Since instead, H((Γx

′
I′ )α) = 0

we necessarily have that t = 1, x′ = x̄ = (x2, . . . , xk−d), z = (z1, x̄) and

Γ
(z1,x̄)
I 6= ∅.

Let now consider β1 to be an ordering on Z such that x1 > z1 > · · · .
Then consider over Zd+1 the product ordering β = β1 × σ. Note that any
element in {x1}× (ΓxI )σ is also in (Γx̄

Ī
)β, since it cannot be majorized by any

other one. So, the assumptions H((ΓxI )σ) 6= 0 and H(Γβ) = 0 imply that
indeed (Γx̄

Ī
)β = {x1}× (ΓxI )σ. We now swap x1 and z1; let γ1 be an ordering

on Z such that z1 > x1 > · · · , and set similarly γ = γ1 × σ. Now, for any
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y ∈ (ΓxI )σ, we note that (x1, y) /∈ (Γx̄
Ī
)γ if and only if (z1, y) ∈ (Γx̄

Ī
)γ , for no

other element can majorize it. So, either (z1, y) ∈ (Γx̄
Ī
)γ or (x1, y) ∈ (Γx̄

Ī
)γ .

Since H((ΓxI )σ) 6= 0, none of the last d coordinates of points in (Γx̄
Ī
)γ is

constant. Hence, H((Γx̄
Ī
)γ) = 0 implies that the first coordinate is constant

in (Γx̄
Ī
)γ . But, since Γ

(z1,x̄)
I is not empty, (Γx̄

Ī
)γ must contain some points

in {z1} × Γ
(z1,x̄)
I , in particular all points in {z1} × (Γ

(z1,x̄)
I )σ. So, (Γx̄

Ī
)γ ⊆

{x1} × Γ
(z1,x̄)
I and any y ∈ (ΓxI )σ is also contained in Γ

(z1,x̄)
I .

Lemma 4. Let v be a k-tensor and let ΓB be its support with respect to the
bases B = {B1, . . . , Bk}. Let us suppose that there exist xi, zi in πi(ΓB) and
y ∈ (ΓB)xii ∩ (ΓB)zii . Then there exist bases B′ = {B′1, . . . , B′k} such that:

� for any j ∈ [1, k] the size of B′j is the same of that of Bj;

� (ΓB)xii = (ΓB′)xii ;

� y 6∈ (ΓB′)zii .

Proof. We assume, without loss of generality, that i = 1 and we set y =
(y2, . . . , yk). As usual we have the following expression for v:

v =
∑

(s1,...,sk)∈ΓB

cs1,s2...,skb1,s1 ⊗ · · · ⊗ bk,sk

where all coefficients are non-zero.
Now we would like to proceed with the Gaussian elimination with re-

spect to the basis B1 = (b1,j |j ∈ Sj). We consider the vectors b′1,x1 =
cx1,y2...,ykb1,x1+cz1,y2...,ykb1,z1 and b′1,z1 = b1,z1 and we setB′ = (B\{b1,x1 , b1,z1})∪
{b′1,x1 , b

′
1,z1
}. Then we have the following expression for v:

v =
∑

(s1,...,sk)∈ΓB′

c′s1,s2...,skb1,s1 ⊗ · · · ⊗ bk,sk

where all coefficients are non-zero. We have that:

c′x1,s2...,sk = cx1,s2...,sk/cx1,y2...,yk .

Therefore (ΓB′)x11 = (ΓB)x11 . Similarly we have that:

c′z1,s2...,sk = cz1,s2...,sk + cx1,s2...,sk(−cz1,y2...,yk/cx1,y2...,yk)

and hence

c′z1,y2...,yk = cz1,y2...,yk + cx1,y2...,yk(−cz1,y2...,yk/cx1,y2...,yk) = 0.

This means that y 6∈ (ΓB′)z11 . Therefore we have found bases B′ such that
for any j ∈ [1, k] the size of B′j is the same of that of Bj , (ΓB′)x11 = (ΓB)x11

and y 6∈ (ΓB′)z11 .
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As a consequence of the previous lemmas we can now prove the following
proposition.

Proposition 4. Let v be a k-tensor that is not a slice. Then there exist
bases B and an ordering σ such that, denoted by Γ the support of v respect
to B, we have that H(Γσ) 6= 0.

Proof. We first note that we can choose among the bases B = {B1, . . . , Bk}
with minimal |B| =

∑k
j=1 |Bj | one for which there exists a section with

non-zero entropy. Indeed, because of Lemma 4 we can choose a basis for
the which the support Γ is not the cartesian product of the sets Pi = πi(Γ).
Therefore, according to Lemma 2, we can assume that there exist a section,
say ΓxI , and an ordering σ with H((ΓxI )σ) 6= 0. Among such bases with
minimum |B|, we choose bases B, an I and an x so that the dimension d of
ΓxI is the maximal one.

Let us suppose, by contradiction, that d < k. Up to a permutation of
the coordinates we can assume I = [1, k − d] and write x = (x1, . . . , xk−d).
Since v is not a slice, there exist z1 distinct from x1 in P1. Set z =
(z1, x2, . . . , xk−d). Let also Ī = [2, k − d] and x̄ = (x2, . . . , xk−d). Ap-

plying then Lemma 3 to the section Γx̄
Ī

we deduce that (ΓxI )σ ⊆ Γ
(z1,x̄)
I = ΓzI .

Therefore, given y ∈ (ΓxI )σ, we have that y ∈ ΓxI ∩ ΓzI or, equivalently,
(x̄, y) ∈ Γx11 ∩ Γz11 . Therefore, as a consequence of Lemma 4, there exists
bases B′ = {B′1, . . . , B′k} such that, denoted by ΓB′ the support of v respect
to B′:

1) for any j ∈ [1, k] the size of B′j is the same of that of Bj and hence
|B′| = |B|;

2) Γx11 = (ΓB′)x11 and hence ΓxI = (ΓB′)xI ;

3) (x̄, y) 6∈ (ΓB′)z11 that is y 6∈ (ΓB′)zI .

Because of 2), if we consider the ordering σ defined above, we still have
that H(((ΓB′)xI )σ) 6= 0 and, because of the maximality of d, we have that
H(((ΓB′)x

′
I′ )α) = 0 for any I ′ ⊂ I and for any ordering α, where x′ is the

restriction of x on I ′. Due to the minimality of |B| = |B′|, z1 ∈ π1(ΓB′)
otherwise, using the notation of Lemma 4, we could omit b1,z1 from B′

obtaining a smaller bases. Now we can apply again Lemma 3 to the section
(ΓB′)x̄

Ī
obtaining that ((ΓB′)xI )σ ⊆ (ΓB′)zI . But this is in contradiction with

3) because y is in (ΓxI )σ = ((ΓB′)xI )σ but not in (ΓB′)zI . It follows that d = k
and hence there exist bases B and an ordering σ such that, denoted by Γ
the support of v respect to B, we have that H(Γσ) 6= 0.

Combined with Corollary 1, Proposition 4 proves Theorem 1.
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3 On variations of the method

As mentioned in the introduction, our study was initially motivated by the
trifference problem. An immediate consequence of our result is that one
cannot hope to derive bounds smaller than 1.889n on the size of trifferent
sets by applying the slice rank method in a straight-forward way, that is
using a 3-tensor which is a tensor power and whose coordinates are indexed
by elements of Fn3 as done for the capset problem.

However, this does not imply that the slice rank method cannot be used
at all by means of more elaborate applications. We show that, for example,
one can actually prove a bound of 3n/2 ≈ 1.732n on the size of trifferent sets
using the polynomial method with just 2-tensors whose rows and columns are
indexed by pairs of distinct sequences (an instance of the slice rank method
which boils down to the original method of Haemers [6] for bounding the
graph capacity). Of course this is way worse than the best known bound of
2(3/2)n mentioned in the introduction, but is suffices to show that the gap
proved for k-tensors should never be interpreted to mean that no use can
be made in general of the slice rank method for a given problem.

Let A ⊂ {1, ω, ω2}n be a trifferent set, where ω = ei2π/3. Let for sim-
plicity A(2) be the set of |A|(|A| − 1)/2 unordered pairs of distinct elements
of A.

For (x, y) ∈ A(2), consider the function fx,y : A(2) → C defined by

fx,y(z, t) =

n∏
i=1

(xi + yi + zi)(xi + yi + ti) .

If (x, y) = (z, t), then

fx,y(z, t) =
n∏
i=1

(2xi + yi)(xi + 2yi)

6= 0.

If (x, y) 6= (z, t) then either (x, y, z) or (x, y, t) is a trifferent triplet and
hence either (xi + yi + zi) = 0 for some i or (xi + yi + ti) = 0 for some i. So

fx,y(z, t) = 0 , (z, t) 6= (x, y) .

This implies that the functions fx,y with (x, y) ∈ A(2) are linearly indepen-
dent, because if ∑

x,y

ax,yfx,y = 0

then computing the left hand side on (z, t) we find az,t = 0.
But we can write

fx,y(z, t) =

n∏
i=1

((xi + yi)
2 + (xi + yi)(zi + ti) + ziti) ,

10



which can be expanded as the sum of 3n terms of the form

c
n∏
i1

(zi + ti)
αi(ziti)

βi

with αi, βi ∈ {0, 1}, α1 + βi ≤ 1. So, the functions fx,y live in a space of
dimension at most 3n. This implies that asymptotically

|A| ≤ (
√

3 + o(1))n

≈ (1.7321)n.

Note that the above procedure can be interpreted as an instance of the
standard polynomial method but also as an instance of the slice rank method
which, when applied to 2-tensors, is essentially equivalent to the original
method of Haemers [6].
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