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A B S T R A C T

Measures of rates of elastic incompatibilities are developed within an Eulerian framework for
finite-deformation response of anisotropic elastic–inelastic materials. Such framework relies on
the evolution of microstructural vectors. It is emphasized that the rates of incompatibilities,
here denoted as 𝑅𝑖𝑗 , depend on the constitutive equation for the rate of inelasticity. For small
strains and rotations, 𝑅𝑖𝑗 are equal to the negative of the components of the rate of Nye-
Kröner’s dislocation density tensor. In contrast to these small strain components, each 𝑅𝑖𝑗
is invariant under superposed rigid body motions such that it can be used independently in
the constitutive equations to describe the material behavior. Specifically, in this work, 𝑅𝑖𝑗
provide a size-dependent enhancement to hardening that can increase or decrease during
loading history, modeling the generation and annihilation of densities of geometrically necessary
dislocations in metal plasticity. The application to the finite-deformation cyclic torsion of
thin wires demonstrates the potential of this approach and the importance of the constitutive
equation for the plastic spin rate both on the rotations of the microstructural vectors and on
the predicted size-effect.

. Introduction

Finite-deformation total strains are purely kinematic variables that measure deformation from a specified reference configuration
o the current configuration. For example, a material point located at 𝐗 in an arbitrary reference configuration at time 𝑡 = 0 is
eformed to its location 𝐱 in the current configuration at time 𝑡 by a one-to-one mapping

𝐱 = 𝐱(𝐗, 𝑡) (1)

nd the associated deformation gradient 𝐅 is defined by

𝐅 = 𝜕𝐱∕𝜕𝐗 .

y definition, this mapping and the associated deformation gradient characterize a compatible deformation field from the reference
onfiguration to the present configuration. Moreover, from an experimental point of view, Wilkinson et al. (2006) describe
mprovements in the analysis of electron backscatter diffraction (EBSD) patterns, which increase the accuracy of measuring small
otal distortional strains.

One question of compatibility arises when 𝐅 is a specified function of (𝐗, 𝑡) and it is not known if an associated compatible
eformation field with a mapping of the form (1) exits. Yavari (2013) discusses the history of this problem for nonlinear elasticity
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and generalizes the solution for multiply connected regions. Here, attention is confined to simply connected regions for which the
necessary and sufficient condition for a compatible mapping (1) to exist is that

∮𝐶
𝐅d𝐗 = ∫𝑆

Curl(𝐅)𝐍d𝐴 = 𝟎

for all closed paths 𝐶 in the body, where Stoke’s theorem is used to convert the line integral into an integral over the enclosed
surface 𝑆. Moreover, Curl( ) is the curl operator with respect to 𝐗, 𝐍 is the unit normal to 𝑆, right-handed relative to the direction
of integration on 𝐶, and d𝐴 is the reference area element on 𝑆. Assuming sufficient continuity, it follows that

Curl(𝐅) = 𝟎 (2)

at every point in the body.
In the finite-deformation Lagrangian formulation of constitutive equations for elastic–inelastic response, it is typical to use

evolution equations for total and plastic deformation tensors (Bilby et al., 1957; Kröner, 1959; Green and Naghdi, 1965; Lee, 1969).
In this formulation the elastic deformation tensor 𝐅𝑒 can be defined as a function of the total deformation gradient 𝐅 and a plastic
deformation tensor 𝐅𝑝 in the multiplicative form

𝐅𝑒 = 𝐅𝐅−1
𝑝 .

Alternatively, Besseling (1966) proposed an evolution equation for 𝐅𝑒 directly. In these Lagrangian formulations, 𝐅 connects a
reference configuration to the current configuration, 𝐅𝑝 connects a reference configuration to an intermediate configuration, and
𝐅𝑒 connects an intermediate configuration to the current configuration. On this basis, there have been several contributions (see,
e.g., Kröner, 1959; Shizawa and Zbib, 1999; Acharya and Bassani, 2000; Cermelli and Gurtin, 2001; Starkey et al., 2020, and
references therein) aiming at characterizing the incompatibility of the plastic deformation field and using it to model the effect
of densities of geometrically necessary dislocations (GNDs) in metal plasticity (Ashby, 1970). However, Lagrangian formulations
introduce arbitrariness of the choices of the reference and intermediate configurations as well as arbitrariness of the choices of
the total and inelastic deformation measures tensor (Rubin, 2012). Therefore, in the Lagrangian framework, there are a number
of options to discuss incompatibility depending, for instance, on the configuration on which the net Burgers vector is determined
through a definition similar to Eq. with 𝐅 being substituted with either 𝐅𝑝 or 𝐅𝑒 (Cermelli and Gurtin, 2001).

With regard to formulations of large deformation inelasticity, Eckart (1948) clearly states that the two following assumptions in
the understanding of inelasticity are false:

(A1) The existence of a constant relaxed state.
(A2) The principle of relaxability-in-the-large, asserting that the strains in a solid can be completely relaxed by removing all

external loads.

Eckart (1948) also states that ‘‘. . . Saint-Venant’s conditions for the relaxibility-in-the-large are essentially identical with
Riemann’s geometric conditions’’. and ‘‘. . . if a small bit of the matter surrounding 𝑃 is cut out of the larger object, then all strains in
this bit will be relaxed, since it will have no forces acting on it’’. In the review of the origins of multiplicative expressions connecting
total, elastic, and inelastic deformation measures, Sadik and Yavari (2017) note that this comment is similar to comments interpreting
the ‘‘intermediate configuration’’, which is a basis for the multiplicative connections of total, elastic, and plastic deformations
measures in many finite-plasticity theories.

Eckart (1948) seems to be the first one to emphasize that, since stress depends on elastic deformation, an evolution equation for
elastic deformation can be proposed directly in terms of itself, the velocity gradient, and a measure of inelastic deformation rate.
This formulation is Eulerian in the sense that it does not depend on choices of total or plastic deformation tensors, nor on reference
and intermediate configurations. A similar formulation for polymeric liquids is proposed by Leonov (1976). Both formulations are
valid for elastically isotropic response.

An Eulerian formulation of constitutive equations for the elastic–inelastic response of an elastically anisotropic material has been
developed in (Rubin, 1994). This formulation introduces evolution equations for a right-handed triad 𝐦𝑖 of linearly independent
microstructural vectors of the forms

�̇�𝑖 = (𝐋 − 𝐋𝑝)𝐦𝑖 , (3)

where ̇( ) denotes the material time derivative, 𝐋 is the total velocity gradient, and 𝐋𝑝 is a general second-order tensor characterizing
inelastic rate, which requires a constitutive equation. The microstructural vectors 𝐦𝑖 characterize elastic deformations and
orientation changes of anisotropic directions in the material from a zero-stress state. They also determine the Cauchy stress 𝐓 in
the current state. In particular, it is noted that when 𝐋𝑝 vanishes, 𝐦𝑖 deform like material line elements and the theory predicts
anisotropic hyperelastic response. These microstructural vectors 𝐦𝑖 are internal state variables, as defined by Onat (1968), that are
assumed to be measurable in the current state. Specifically, it is assumed that the constitutive equation for stress 𝐓 and the evolution
equations for 𝐦𝑖 can be used to determine 𝐦𝑖 given local measurements of stress, which are known to be quite difficult. It is further
specified that the Eulerian formulation relying on Eq. (3) is phenomenological and general, as it does not refer to any particular
microstructure of the material.

It is emphasized that the Eulerian formulation of constitutive equations requires the constitutive equations to be functions of
the values of state variables in the current state. This differs from an Eulerian representation of quantities in continuum mechanics.

Specifically, the total deformation gradient 𝐅 can be represented either in Lagrangian or in Eulerian forms but it is not admitted as
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a state variable in the Eulerian formulation because it depends on an arbitrary specification of the reference configuration, which
cannot be determined by experiments on the material in its current state for general elastic–inelastic deformations.

Typically, for a uniform homogeneous material, the elastic deformation from a uniform zero-stress state is compatible when the
otal applied deformation is homogeneous. However, inhomogeneous loading, in general, causes residual stresses when the external
oads are removed. These residual stresses indicate that the elastic deformation field is no longer compatible. Thus, compatibility
f the elastic deformation from a uniform zero-stress state is only a very special case of elastic–inelastic response.

The constitutive equation for stress is assumed to be invertible and is restricted so that 𝐦𝑖 are orthonormal when the material
is in a Reference Lattice State (RLS) with zero stress and reference temperature (Rubin, 1994). In the RLS, the metric

𝑚𝑖𝑗 = 𝐦𝑖 ⋅𝐦𝑗 (4)

is equal to the Kronecker delta 𝛿𝑖𝑗 . Consequently, measurements of stress and temperature determine 𝐦𝑖 in the current state, which
are initial conditions for integrating (3) by inverting the constitutive equation for the Cauchy stress. It is emphasized that, in contrast
with total deformations, the elastic deformations and orientations of 𝐦𝑖 are not purely kinematic variables since they depend on a
constitutive equation for the inelastic deformation rate. In Eq. (4) and henceforth, ⋅ denotes the inner product.

Here, it is assumed that 𝐦𝑖 are at least twice continuously differentiable, so jumps in elastic strain gradients, as analyzed for
the linear theory by Fosdick and Royer-Carfagni (2020), are omitted. In this regard, it is noted that, in standard rate-independent
elastic–plastic models with a yield function, imposing a consistency condition causes a discontinuous slope in a stress–strain curve
at the onset of yielding, which is inconsistent with the assumed continuity of 𝐦𝑖. However, viscoplastic models (e.g. Malvern, 1951;
Perzyna, 1963; Bodner and Partom, 1972) and the smooth elastic–inelastic transition model in Hollenstein et al. (2013, 2015),
for both rate-dependent and rate-independent responses, eliminate this discontinuous slope at the onset of yielding. Moreover,
as measurement techniques improved, assumed shock discontinuities in metals were revealed as rapid continuous transition
regions (Johnson and Barker, 1969). Thus, the continuity assumption on 𝐦𝑖 may be physical even in nearly sharp transition regions.

The main objective of this paper is to propose Eulerian rates of elastic incompatibilities, on the basis of necessary and sufficient
conditions for elastic incompatibility developed in Section 3, after fundamental kinematic definitions are provided in Section 2. In
particular, in Section 4, the Eulerian rates of elastic incompatibilities, here denoted as 𝑅𝑖𝑗 , are defined as components of the current
curl of the negative of the inelastic rate tensor relative to the distortional microstructural vectors 𝐦′

𝑖 , which, differently from the
𝐦𝑖, are insensitive to elastic dilatation.

Section 5 presents specific constitutive equations that use 𝑅𝑖𝑗 to predict size-dependent hardening. With respect to the literature
on strain-gradient plasticity (SGP), the proposed theory is a lower-order one, as it does not involve higher-order balance equations
nor higher-order boundary conditions (Niordson and Hutchinson, 2003). Although this surely limits the capability of the proposed
theory, it is enough to reach the objectives of this investigation, which consist of demonstrating the potential of the proposed
𝑅𝑖𝑗 and emphasizing the role of the constitutive equation for the rate of inelasticity, with an accent on the plastic spin rate. In
particular, this important aspect suggests the opportunity to directly use the rates of incompatibilities in constitutive equations for
the time-evolution of the relevant fields such as the hardening variables, instead of time-integrating the rates of incompatibilities to
obtain a primal kinematic variable (i.e., a Nye-Kröner-like tensor, Nye, 1953; Kröner, 1962) to be then employed in the constitutive
equations (Rubin and Bardella, 2023). Again, this issue is typical of the Eulerian formulation of constitutive equations, while in the
large-deformation Lagrangian framework one can directly write a finite Nye-Kröner-like tensor (Cermelli and Gurtin, 2001).

One of the key advantages of the direct use of 𝑅𝑖𝑗 in constitutive equations is that the 𝑅𝑖𝑗 components are invariant under
superposed rigid body motions (SRBM), so they can be used independently in the constitutive equations to model the material
behavior under study. For instance, they can be used to define measures of incompatibility allowing for full or partial recovery of
the size-dependent hardening, towards accounting for both the nature of GNDs in metal plasticity (Ashby, 1970) and the dissipation
associated with dislocations’ motion (Needleman, 2024). These concepts are illustrated and discussed through the example of
Section 6, dealing with the size-dependent response of thin metal wires subjected to finite-deformation cyclic torsion. Concluding
remarks are offered in Section 7.

2. The elastic deformation gradient

The position vectors 𝐗 and 𝐱 can be expressed in terms of arbitrary convected coordinates 𝜃𝑖 such that

𝐗 = 𝐗(𝜃𝑖) , 𝐆𝑖 = 𝐗,𝑖 ≡ 𝜕𝐗∕𝜕𝜃𝑖 , 𝐱 = 𝐱(𝜃𝑖, 𝑡) , 𝐠𝑖 = 𝐱,𝑖 ,

where a comma denotes partial differentiation with respect to 𝜃𝑖 and 𝐆𝑖 and 𝐠𝑖 are covariant base vectors in the initial and current
configurations, respectively. Moreover, the contravariant base vectors 𝐆𝑖 are defined by

𝐺1∕2 = 𝐆1 ×𝐆2 ⋅𝐆3 > 0 , 𝐆1 = 𝐺−1∕2𝐆2 ×𝐆3 , 𝐆2 = 𝐺−1∕2𝐆3 ×𝐆1 , 𝐆3 = 𝐺−1∕2𝐆1 ×𝐆2 ,

𝐆𝑖 ⋅𝐆𝑗 = 𝛿𝑗𝑖 , 𝐆𝑗 ⊗𝐆𝑗 = 𝐈 ,
(5)

where × denotes the vector product, 𝛿𝑗𝑖 is the mixed Kronecker delta, and 𝐈 is the second-order identity tensor. The reciprocal vectors
𝐠𝑖 satisfy equations similar to (5) with (𝐺1∕2,𝐆𝑖) substituted by (𝑔1∕2, 𝐠𝑖).

Since the microstructural vectors 𝐦𝑖 in Eq. (3) are linearly independent, they can be defined so that the elastic dilatation 𝐽𝑒 is
positive
𝐽𝑒 = 𝐦1 ×𝐦2 ⋅𝐦3 > 0 . (6)
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Moreover, the notion of elastic compatibility is Lagrangian in the sense that it requires a definition of elastic deformation between
two configurations. Consequently, it is convenient to define the reciprocal vectors 𝐌𝑖 and 𝐦𝑖 in the initial configuration at 𝑡 = 0
nd in the current configuration at time 𝑡, by equations similar to (5). Then, the elastic deformation tensor 𝐅𝑚 between the initial
nd current configurations satisfies the equations

𝐅𝑚 = 𝐦𝑠 ⊗𝐌𝑠 , �̇�𝑚 = (𝐋 − 𝐋𝑝)𝐅𝑚 , 𝐅𝑚(0) = 𝐈 , (7)

here 𝐚⊗𝐛 denotes the tensor product between the two vectors (𝐚,𝐛). In this regard, it is noted that the metric 𝑚𝑖𝑗 in (4) measures
lastic deformations from a zero-stress state, where 𝑚𝑖𝑗 = 𝛿𝑖𝑗 . The tensor 𝐅𝑚 in (7) remains a measure of elastic deformation from
he initial configuration even for a general initial configuration in an initial state with residual stresses.

. Elastic incompatibility

.1. A Nye-Kröner-like tensor

To discuss elastic incompatibility between the initial and current configurations, consider the Nye-Kröner-like elastic tensor
𝑒 (Nye, 1953; Kröner, 1962) relative to the initial configuration that satisfies the equations

𝜶𝑒 ≡ Curl(𝐅𝑚) = −𝐅𝑚,𝑖 ×𝐆𝑖. (8)

his is a two-point tensor that measures elastic incompatibilities from the initial configuration to the current configuration.
oreover, the material time derivative of 𝜶𝑒 is given by

�̇�𝑒 = (𝐋 − 𝐋𝑝)𝜶𝑒 − (𝐋 − 𝐋𝑝),𝑖 𝐅𝑚 ×𝐆𝑖 . (9)

t is noted that, by following Willis (1967), Acharya and Zhang (2015) define a Nye-Kröner-like tensor in terms of the curl of 𝐅−1
𝑒

ith respect to the current configuration, which is used to develop a mesoscopic theory of dislocation mechanics accounting for the
onservation of the net Burgers vector.

.2. A compatible deformation for nonlinear elasticity

A compatible deformation between the initial and current configurations for nonlinear elasticity 𝐅𝑚 can be written in the
lternative form

𝐅𝑚 = 𝐠𝑠 ⊗𝐆𝑠 , (10)

ith 𝐋𝑝 = 𝟎. Therefore, by using the results

𝐠𝑠,𝑖 = 𝐠𝑖,𝑠 , 𝐆𝑘,𝑖 = 𝐆𝑖,𝑘 , 𝐆𝑠,𝑖 = −
(

𝐆𝑠 ⋅𝐆𝑘,𝑖
)

𝐆𝑘 ,

𝐋 = �̇�𝑛 ⊗ 𝐠𝑛 , �̇�𝑛,𝑖 = �̇�𝑖,𝑛 , 𝐠𝑛,𝑖 = −
(

𝐠𝑛 ⋅ 𝐠𝑘,𝑖
)

𝐠𝑘 ,

nd substituting (10) into definition (8), it follows that

𝜶𝑒 = −
[

𝐠𝑠,𝑖 ⊗(𝐆𝑠 ×𝐆𝑖) −
(

𝐆𝑠 ⋅𝐆𝑘,𝑖
)

𝐠𝑠 ⊗ (𝐆𝑘 ×𝐆𝑖)
]

= 𝟎.

oreover, substituting (10) into the definition (9) with 𝐋𝑝 = 𝟎 yields

�̇�𝑒 = 𝐋𝜶𝑒 −
[

�̇�𝑠,𝑖 −
(

𝐠𝑛 ⋅ 𝐠𝑠,𝑖
)

�̇�𝑛
]

⊗𝐆𝑠 ×𝐆𝑖 = 𝟎 .

ssuming sufficient continuity, this shows that a compatible nonlinear elastic deformation remains compatible.

. Eulerian rates of elastic incompatibilities for elastic–inelastic response

In order to motivate expressions for Eulerian rates of elastic incompatibilities for elastic–inelastic response, Eq. (9) is evaluated
n the initial configuration, which is taken as the current configuration, with (𝐅𝑚 = 𝐈) and (𝐆𝑖 = 𝐠𝑖), to obtain

𝜶𝑒 = Curl(𝐅𝑚) = 𝟎 , �̇�𝑒 =
̇Curl(𝐅𝑚) = −curl(𝐋𝑝) ,

here use has been made of the fact that curl(𝐋) = 𝟎. From the result of previous Section 3.2, this implies that −curl(𝐋𝑝) is a second-
rder tensor measuring the evolution of the elastic incompatibility. This suggests defining the Eulerian rates of elastic incompatibility
𝑖𝑗 for finite deformations by the equations

𝑅𝑖𝑗 = −curl(𝐋𝑝) ⋅ (𝐦′
𝑖 ⊗𝐦′

𝑗 ) , (11)

here the distortional microstructural vectors 𝐦′
𝑖 satisfy the equations

𝐦′
𝑖 = 𝐽−1∕3

𝑒 𝐦𝑖 , �̇�′
𝑖 = (𝐋′′ − 𝐋′′

𝑝 )𝐦
′
𝑖 . (12)

ere and henceforth, ( )′′ denotes the deviatoric part of a tensor, as

𝐋′′ = 𝐋 − 1 tr(𝐋)𝐈 , (13)

3
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where tr(𝐀) = 𝐀 ⋅ 𝐈 denotes the trace of the second-order tensor 𝐀. Also, the inner product between two second-order tensors 𝐀 and
𝐁 is such that 𝐀 ⋅ 𝐁 = tr(𝐀𝐁𝑇 ). Moreover, taking the material derivative of (6) yields

�̇�𝑒
𝐽𝑒

= �̇�𝑗 ⋅𝐦𝑗 = tr(𝐋 − 𝐋𝑝) = tr(𝐃 − 𝐃𝑝) , 𝐃 = 1
2
(𝐋 + 𝐋𝑇 ) , 𝐃𝑝 =

1
2
(𝐋𝑝 + 𝐋𝑇

𝑝 ) , (14)

where 𝐃 and 𝐃𝑝 are the total and the inelastic deformation rates, respectively. Moreover, for isochoric inelasticity

tr(𝐋𝑝) = tr(𝐃𝑝) = 0 . (15)

Next, using this result and the conservation of mass, the elastic dilatation can be rewritten in the form

𝐽𝑒 =
𝜌𝑧
𝜌

, (16)

where 𝜌 is the current mass density and 𝜌𝑧 is its constant zero-stress value.
It is emphasized that the Nye-Kröner-like tensor in (8) measures incompatible deformations between the initial and current

configurations, such as it is dependent on the choice of the initial configuration. In contrast, 𝑅𝑖𝑗 in Eq. (11) are Eulerian rates of
elastic incompatibilities that are independent of arbitrary choices of reference and intermediate configurations as well as total and
plastic deformation measures. Consequently, 𝑅𝑖𝑗 can be used in an Eulerian formulation of constitutive equations (Rubin, 2012,
2021). Moreover, it is observed that 𝑅𝑖𝑗 are highly nonlinear fields because they are quadratic in 𝐦′

𝑖 , which depend on the loading
history, as well as on 𝐋𝑝.

4.1. Invariance under superposed rigid body motions

Under SRBM the quantities (𝐦𝑖,𝐦𝑖,𝐋𝑝, 𝐠𝑗 , 𝐠𝑗 ) transform to (𝐦+
𝑖 , 𝐦𝑖+, 𝐋+

𝑝 , 𝐠+𝑗 , 𝐠𝑗+), respectively, such that

𝐦+
𝑖 = 𝐐𝐦𝑖 , 𝐦𝑖+ = 𝐐𝐦𝑖 , 𝐋+

𝑝 = 𝐐𝐋𝑝𝐐𝑇 , 𝐠+𝑗 = 𝐐𝐠𝑗 , 𝐠𝑗+ = 𝐐𝐠𝑗 , (17)

here 𝐐(𝑡) is a proper orthogonal second-order tensor, function of time only,

𝐐𝐐𝑇 = 𝐈 , det(𝐐) = +1 . (18)

hen, using these expressions and the results in Appendix A, it follows that

𝐅+
𝑚 = 𝐐𝐅𝑚 , curl+(𝐋+

𝑝 ) = 𝐐 curl(𝐋𝑝)𝐐𝑇 ,

so each component of the Eulerian rates of elastic incompatibilities 𝑅𝑖𝑗 in (11) is invariant under SRBM

𝑅+
𝑖𝑗 = −curl+(𝐋+

𝑝 ) ⋅ (𝐦
′+
𝑖 ⊗𝐦′+

𝑗 ) = 𝑅𝑖𝑗 . (19)

Thus, anisotropic constitutive equations can be arbitrary functions of 𝑅𝑖𝑗 .

4.2. Identification of 𝑅𝑖𝑗 with the negative rate of Nye-Kröner tensor for small strains and rotations

For small elastic deformations the vectors 𝐦𝑖 and their reciprocals 𝐦𝑗 can be expressed in the forms

𝐦𝑖 = (𝐈 +𝐇𝑒)𝐞𝑖 , 𝐦𝑗 = (𝐈 −𝐇𝑒)𝑇 𝐞𝑗 ,

where 𝐇𝑒 is the small deformation elastic tensor, which can include both an elastic strain and an elastic rotation, and 𝐞𝑖 is a fixed
orthonormal triad of vectors. Moreover, the plastic tensor 𝐇𝑝, which in general also includes a plastic strain and a plastic rotation,
is defined by

𝐇𝑝 = 𝐇 −𝐇𝑒 ,

where 𝐇 is the total displacement gradient. Thus, the evolution Eq. (3) is approximated by

�̇�𝑖 = (�̇� − �̇�𝑝)𝐞𝑖 , 𝐋𝑝 = �̇�𝑝 .

Also, the evolution Eq. (11) is approximated by

𝑅𝑖𝑗 = −curl(�̇�𝑝) ⋅ (𝐞𝑖 ⊗ 𝐞𝑗 ) = −(�̇�𝑝,𝑠 ×𝐞𝑠) ⋅ (𝐞𝑖 ⊗ 𝐞𝑗 ) = −(�̇�𝑝
𝑚𝑛,𝑠 𝐞𝑚 ⊗ 𝐞𝑠 × 𝐞𝑛) ⋅ (𝐞𝑖 ⊗ 𝐞𝑗 ) = −�̇�𝑝

𝑖𝑛,𝑠 𝜀𝑠𝑛𝑗 ,

𝐻𝑝
𝑖𝑗 = 𝐇𝑝 ⋅ (𝐞𝑖 ⊗ 𝐞𝑗 ) , 𝜀𝑠𝑛𝑗 = 𝐞𝑠 × 𝐞𝑛 ⋅ 𝐞𝑗 ,

which shows that 𝑅𝑖𝑗 is consistent with the negative of the time derivative of the Nye-Kröner tensor (Nye, 1953; Kröner, 1962), the
latter being a measure of densities of GNDs that can be adopted to model size-effects in metal plasticity at the microscale (Ashby,
1970; Fleck and Hutchinson, 1997; Arsenlis and Parks, 1999). In particular, it can be shown that there are three rates of
incompatibilities due to densities of screw dislocations characterized by

{

𝑅11 , 𝑅22 , 𝑅33
}

, (20)

and six rates of incompatibilities due to densities of edge dislocations characterized by
{ }

(21)
𝑅12 , 𝑅13 , 𝑅21 , 𝑅23 , 𝑅31 , 𝑅32 .
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5. A constitutive theory including elastic incompatibilities

5.1. The rate of material dissipation

In the purely mechanical theory the rate of material dissipation  is given by

 = 𝐓 ⋅ 𝐃 − 𝜌�̇� ≥ 0 , (22)

where 𝐓 is the symmetric Cauchy stress and 𝛴 is the strain energy function per unit mass.

5.2. Constitutive equations for general anisotropic elastic–inelastic response

The elastic distortional deformation metric 𝑚′
𝑖𝑗 is defined as

𝑚′
𝑖𝑗 = 𝐦′

𝑖 ⋅𝐦
′
𝑗

and satisfies the equation

�̇�′
𝑖𝑗 = 2(𝐦′

𝑖 ⊗𝐦′
𝑗 −

𝑚′
𝑖𝑗

3
𝐈) ⋅ (𝐃 − 𝐃′′

𝑝 ) .

Then, taking the strain energy 𝛴 in the form

𝛴 = 𝛴(𝐽𝑒, 𝑚′
𝑖𝑗 )

nd specifying the stress 𝐓 by

𝐓 = −𝑝𝐈 + 𝐓′′ , 𝑝 = −𝜌𝐽𝑒
𝜕𝛴
𝜕𝐽𝑒

, 𝐓′′ = 2𝜌 𝜕𝛴
𝜕𝑚′

𝑖𝑗
(𝐦′

𝑖 ⊗𝐦′
𝑗 −

𝑚′
𝑖𝑗

3
𝐈) , (23)

he rate of material dissipation (22) for isochoric inelasticity (12)–(15) requires

 = 𝐓′′ ⋅ 𝐃𝑝 ≥ 0 . (24)

lso, the strain energy function is restricted so that 𝐽𝑒 = 1 and 𝑚′
𝑖𝑗 = 𝛿𝑖𝑗 are consistent with a zero-stress state

𝛴(1, 𝛿𝑖𝑗 ) = 0 , 𝜕𝛴
𝜕𝐽𝑒

(1, 𝛿𝑖𝑗 ) = 0 , 𝜌𝑧
𝜕𝛴
𝜕𝑚′

𝑖𝑗
(1, 𝛿𝑖𝑗 ) =

1
2
𝜇𝛿𝑖𝑗 ,

here 𝜇 is the zero-stress shear modulus in the isotropic case, otherwise 𝜇 can be one of the shear moduli characterizing the material
nisotropy.

.3. Constitutive equations for elastically isotropic elastic–inelastic response

.3.1. The rate of inelasticity
For elastically isotropic response, the symmetric elastic distortional deformation 𝐁′

𝑒 is defined by

𝐁′
𝑒 = 𝐦′

𝑠 ⊗𝐦′
𝑠 , 𝐁′−1

𝑒 = 𝐦𝑠′ ⊗𝐦𝑠′ . (25)

sing the evolution Eq. (3), taking the time derivative of (25), and ensuring that 𝐁′
𝑒 remains unimodular (�̇�′

𝑒 ⋅ 𝐁
′−1
𝑒 = 0) yields

�̇�′
𝑒 = 𝐋′′𝐁′

𝑒 + 𝐁′
𝑒𝐋

′′𝑇 − 𝛤𝐀𝑝 , 𝛤𝐀𝑝 = 𝐋𝑝𝐁′
𝑒 + 𝐁′

𝑒𝐋
𝑇
𝑝 , 𝐋𝑝 = 𝐋′′

𝑝 ,

here the function 𝛤 ≥ 0 controls the rate of inelasticity. Moreover, 𝐋′′
𝑝 is specified by

𝐋′′
𝑝 = 𝐃′′

𝑝 +𝐖𝑝 , 𝐃′′
𝑝 = 𝛤

2
(

𝐈 −
3𝐁′−1

𝑒

tr(𝐁′−1
𝑒 )

)

, 𝐖𝑝 =
1
2
(𝐋𝑝 − 𝐋𝑇

𝑝 ) , (26)

where 𝐖𝑝 is the inelastic spin rate. It then can be shown that

𝛤𝐀𝑝 = 𝛤
(

𝐁′
𝑒 −

3𝐈
tr(𝐁′−1

𝑒 )
)

+𝐖𝑝𝐁′
𝑒 + 𝐁′

𝑒𝐖
𝑇
𝑝 ,

which reduces to the form proposed in (Rubin and Attia, 1996) in the absence of inelastic spin. Also, in the absence of inelasticity,
the evolution equation for 𝐁′

𝑒 causes it to be equal to the unimodular part 𝐁′ of the left Cauchy–Green deformation tensor for all
states if 𝐁′

𝑒 = 𝐁′ in any state.
Next, the inelastic spin is taken in the form proposed in (Lee and Rubin, 2021)

𝐖𝑝 = 𝛺12(𝐦1′ ⊗𝐦2′ −𝐦2′ ⊗𝐦1′) +𝛺31(𝐦3′ ⊗𝐦1′ −𝐦1′ ⊗𝐦3′) +𝛺23(𝐦2′ ⊗𝐦3′ −𝐦3′ ⊗𝐦2′) ,

𝛺12 = �̄�12𝜒12𝐃′′
𝑝 ⋅ (𝐦′

1 ⊗𝐦′
2) = �̄�12𝜒12

𝛤
2
𝑚′
12 ,

𝛺31 = �̄�31𝜒31𝐃′′
𝑝 ⋅ (𝐦′

3 ⊗𝐦′
1) = �̄�31𝜒31

𝛤
2
𝑚′
31 ,

𝛺 = �̄� 𝜒 𝐃′′ ⋅ (𝐦′ ⊗𝐦′ ) = �̄� 𝜒 𝛤 𝑚′ ,

(27)
23 23 23 𝑝 2 3 23 23 2 23
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where �̄�12, �̄�31, �̄�23 are material constants controlling the rates of inelastic spin, and the functions 𝜒12, 𝜒31, 𝜒23 are written in the
forms

𝜒12 =
2
𝜋
tan−1

(
𝑚′
22 − 𝑚′

11

2𝑚′
12

)

, 𝜒31 =
2
𝜋
tan−1

(
𝑚′
33 − 𝑚′

11

2𝑚′
13

)

, 𝜒23 =
2
𝜋
tan−1

(
𝑚′
33−𝑚

′
22

2𝑚′
23

)

. (28)

Note that in Eq. (28) the sign of 𝜒31 has been changed relative to that in (Lee and Rubin, 2021). More importantly, in (Lee and
Rubin, 2021) it has been shown that the form in Eqs. (27)–(28) for the inelastic spin rate can be calibrated to reproduce measured
data for the orientation change of the principal directions of orthotropy for uniaxial stress loading at different angles relative to the
rolling direction in sheet metal forming. The results of Section 6 demonstrate that inelastic spin plays a crucial role in determining
the incompatibility of the elastic field, thus confirming previous findings in studies relying on Gurtin-type higher-order SGP theories
(see, e.g., Bardella, 2009, comparing crystal and phenomenological SGPs, and Bardella and Panteghini, 2015, focusing on torsion).
In contrast with the independent constitutive Eqs. (26) and (27) for 𝐃′′

𝑝 and 𝐖𝑝, respectively, in crystal plasticity the constitutive
equation for 𝐋𝑝 directly determines both 𝐃′′

𝑝 and 𝐖𝑝, as shown in Appendix B.
By using Eqs. (26) and (27), the evolution Eqs. (12) can be rewritten in the forms

�̇�′
1 = 𝐋′′𝐦′

1 −
𝛤
2
(

𝐦′
1 −

3𝐦1′

tr(𝐁′−1
𝑒 )

)

+𝛺12𝐦2′ −𝛺31𝐦3′ ,

�̇�′
2 = 𝐋′′𝐦′

2 −
𝛤
2
(

𝐦′
2 −

3𝐦2′

tr(𝐁′−1
𝑒 )

)

−𝛺12𝐦1′ +𝛺23𝐦3′ ,

�̇�′
3 = 𝐋′′𝐦′

3 −
𝛤
2
(

𝐦′
3 −

3𝐦3′

tr(𝐁′−1
𝑒 )

)

+𝛺31𝐦1′ −𝛺23𝐦2′ .

(29)

5.3.2. A specific constitutive equation for the strain energy and stress
For elastically isotropic metals, 𝛴 is specified by

𝜌𝑧𝛴 = 𝑘
[

𝐽𝑒 − 1 − ln(𝐽𝑒)
]

+ 1
2
𝜇[tr(𝐁′

𝑒) − 3] , (30)

here 𝑘 is the zero-stress bulk modulus. In addition, using (16) and (25), the stress in Eq. (23) becomes

𝑝 = 𝑘
( 1
𝐽𝑒

− 1
)

, 𝐓′′ = 𝐽−1
𝑒 𝜇𝐁′′

𝑒 , (31)

with the associated material dissipation

 = 1
2
𝐽−1
𝑒 𝜇𝛤 tr(𝐀𝑝) ≥ 0 ,

hich is automatically satisfied since tr(𝐀𝑝) ≥ 0 (Rubin and Attia, 1996).

5.4. A smooth elastic–inelastic transition with length-dependent isotropic and directional hardening

A simple form of the smooth elastic–inelastic transition model for rate-independent response developed in Hollenstein et al.
(2013, 2015) specifies 𝛤 in (27) as

𝛤 = 𝑏1�̇�⟨𝑔⟩ , �̇� =
√

2∕3|𝐃′′
| , 𝑔 = 1 −

𝑦
𝛾𝑒

, 𝛾𝑒 =
√

3∕8|𝐁′′
𝑒 | , (32)

here 𝑏1 > 0 is a material parameter, �̇� is the equivalent total distortional deformation rate, 𝑔 is a yield function, |( )| ≡
√

( ) ⋅ ( )
ndicates the modulus, 𝑦 is a hardening variable, 𝛾𝑒 is a measure of elastic distortional deformation, and the Macaulay brackets are
efined by

⟨𝑥⟩ = max(𝑥, 0) .

his model characterizes a smooth elastic–inelastic transition with overstress, where the transition becomes sharper and the amount
f overstress becomes smaller with increasing 𝑏1.

.4.1. Isotropic hardening, including size-dependence
Since 𝑅𝑖𝑗 are invariant under SRBM, it is possible to establish a function of these components to obtain a field that can be used

to enhance the hardening. Among several possibilities, this work considers the scalar field 𝜉 defined by the evolution equation

�̇� = 𝓁
3
∑

𝑖=1

3
∑

𝑗=1
𝑅𝑖𝑗 , (33)

where 𝓁 ≥ 0 is a characteristic material length. The variable 𝜉 increases due to generation of defects while it decreases due to
annihilation of defects.

In addition, consider a history-dependent hardening parameter 𝑌 defined by the evolution equations

̇ ̇ ̇ [ ] −|𝜉| 𝑛𝑅 (34)
𝑌 = 𝑌𝐻 + 𝑌𝓁 , 𝑌𝐻 = 𝛤𝑚𝐻 (𝑌𝐻𝑠 − 𝑌𝐻 ) , 𝑌𝓁 = |𝜉| 𝑚𝓁⟨𝑌𝑅 − 𝑌𝓁⟩ − 𝑚𝑟⟨𝑌𝓁 − 𝑌𝑅⟩ , 𝑌𝑅 = 𝑌𝑅𝑠 (1 − 10 ) ,
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along with annealed initial conditions

𝑌𝐻 (𝑡 = 0) = 𝑌𝐻0≥ 0 , 𝑌𝓁(𝑡 = 0) = 0 . (35)

In Eq. (34), the constant 𝑚𝐻 ≥ 0 controls the rate of monotonic increase of size-independent hardening 𝑌𝐻 , from the initial value
𝑌𝐻0 towards its saturated value 𝑌𝐻𝑠. In contrast, the size-dependent hardening variable 𝑌𝓁 can increase or decrease towards its
saturated value 𝑌𝑅, which is a function of |𝜉|, with a maximum value of 𝑌𝑅𝑠. Also, the constant 𝑚𝓁 ≥ 0 controls the rate of increase
of 𝑌𝓁 , 𝑚𝑟 ≥ 0 controls the rate of decrease in 𝑌𝓁 due to annihilation of defects, and 𝑛𝑅 ≥ 0 controls the shape of the function 𝑌𝑅,
that is, the orders of magnitude of size displaying an appreciable size-effect. Note that for 𝑚𝑟 = 𝑚𝓁 the third relation in Eq. (34)
becomes �̇�𝓁 = |�̇�|𝑚𝓁(𝑌𝑅 − 𝑌𝓁).

This direct use of 𝜉 to determine size-dependent hardening parameters that increase the resistance to inelastic flow is very
different from the use of the Nye-Kröner-like tensor in the Eulerian formulation of Rubin and Bardella (2023), such tensor being
determined by integrating an evolution equation and being used to define a recoverable higher-order stress as in Gurtin (2004), in
which, additionally, dissipative and energetic contributions due to the plastic spin were introduced for the first time in small-strain
phenomenological SGP. With regard to the treatment of the plastic flow gradients, the present formulation is philosophically close to
that proposed in Bassani (2001), where, however, computations are restricted to small deformations and the plastic spin is neglected.

Finally, it is noted that, in contrast with the higher-order SGP theories adopting a non-incremental treatment of dissipative strain
gradients, which have been developed in the literature since the pioneering contribution of Gudmundson (2004), in the SGP model
proposed in this work the onset of yielding is size-independent. However, the employed smooth elastic–plastic transition model
leads to the prediction of some strengthening (that is, an increase of the apparent yield stress with diminishing size) since the rate
of plasticity vanishes at the onset of yielding. This allows the size-dependent hardening to begin to influence the response before
plasticity is observable in the stress–strain curve (Rubin and Bardella, 2023). It is believed that this is physically more reliable than
the prediction of strengthening precisely at the onset of yielding, when plasticity is still absent, that has been ascribed to complicated
mathematics (Chiricotto et al., 2016) within the context of non-incremental SGP theories, which also feature other drawbacks (Fleck
et al., 2014; Bardella and Panteghini, 2015).

5.4.2. Directional hardening coupled with the (size-dependent) isotropic hardening
Motivated by the work in Bodner (1985) and Chan et al. (1988) the Bauschinger effect is modeled by introducing a symmetric

directional hardening matrix 𝛽𝑖𝑗 , a unit matrix 𝑈𝑖𝑗 , and a scalar measure 𝛽 of directional hardening by the equations

�̇�𝑖𝑗 = 𝑚𝛽𝛤 (𝛽𝑠𝑈𝑖𝑗 − 𝛽𝑖𝑗 ) , 𝐔 =
𝐁′′
𝑒

|𝐁′′
𝑒 |

, 𝑈𝑖𝑗 = 𝐔 ⋅ (𝐦′
𝑖 ⊗𝐦′

𝑗 ) , 𝑈 𝑖𝑗 = 𝐔 ⋅ (𝐦𝑖′ ⊗𝐦𝑗′) , 𝛽 = 𝜷 ⋅ 𝐔 = 𝛽𝑖𝑗𝑈
𝑖𝑗 , (36)

uch that 𝜷 = 𝛽𝑖𝑗𝐦𝑖′ ⊗𝐦𝑗′ and 𝛽𝑖𝑗 = 𝜷 ⋅ (𝐦′
𝑖 ⊗𝐦′

𝑗 ). Here, the material parameter 𝑚𝛽 ≥ 0 controls the rate at which 𝛽𝑖𝑗 approaches
the matrix 𝛽𝑠𝑈𝑖𝑗 . Since 𝐔 has unit modulus, it follows that for monotonic proportional loading 𝛽 approaches its saturated value 𝛽𝑠.

Then, the Bauschinger effect is modeled by specifying the yield value 𝑦 in (32) in the form

𝑦 = 𝑌 (1 + 𝛽) . (37)

or proportional loading, 𝑈𝑖𝑗 is constant during loading and it changes sign during reverse loading. Since 𝛽𝑖𝑗 is constant during
lastic response with 𝛤 = 0, the value of 𝛽 changes sign during reverse loading when 𝐁′′

𝑒 = 𝟎 and the effective yield value changes
rom 𝑦 = 𝑌 (1+ |𝛽|) to 𝑦 = 𝑌 (1− |𝛽|), which reduces the effective yield value during reverse loading, modeling the Bauschinger effect.
oreover, to ensure that 𝑦 remains positive, 𝛽𝑠 is limited to the range 𝛽𝑠 ∈ [0, 1).

6. Application: finite cyclic torsion of thin metal wires

The torsion of polycrystalline metal wires in the size range spanning from tens of nanometers to tens of micrometers is
a benchmark that has been extensively used in the literature both to investigate size-effects experimentally, since the pivotal
contribution (Fleck et al., 1994) to most recent efforts exploring cyclic loading (Liu et al., 2013), and to unveil the capabilities of
SGP theories, by considering lower-order theories (Bassani, 2001; Hwang et al., 2003) and higher-order ones (see, e.g., Panteghini
and Bardella, 2020, and references therein). Within the context of lower-order SGP theories applied to the homogenized wire where
lattice and grain details are neglected, as considered here, the torsion benchmark has the advantage that it does not need higher-order
boundary conditions to trigger gradients of plastic flow. Moreover, lower-order SGP applied to torsion allows plasticity to freely
develop at the external surface, that is consistent with the most common situation in which dislocations can exit the wire when
they reach its boundary. This may not be the case if the wire surface is passivated.

6.1. Kinematics

Consider an elastically isotropic solid circular cylinder with constant outer radius 𝑎 experiencing cyclic torsional loading. The
ylindrical polar base vectors (𝐞𝑟, 𝐞𝜃 , 𝐞𝑧) are defined relative to the fixed orthonormal triad of vectors 𝐞𝑖 by the expressions

𝐞𝑟 = cos(�̂�)𝐞1 + sin(�̂�)𝐞2 , 𝐞𝜃 = − sin(�̂�)𝐞1 + cos(�̂�)𝐞2 , 𝐞𝑧 = 𝐞3 , �̂� = 𝜃 + 𝜅𝑧 ,

where 𝜅(𝑡) is the torsional twist. Also, the current location 𝐱 of a material point is given by

̂ 1 2 ̂ 3 (38)
𝐱 = 𝑟𝐞𝑟(𝜃) + 𝑧𝐞𝑧 , 𝜃 = 𝑟 , 𝜃 = 𝜃(𝜃) , 𝜃 = 𝑧 ,

8 
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where 𝜃𝑖 are convected coordinates. Note that the kinematics in Eq. (38) assumes the absence of motion along the radial coordinate.1
Since the main objective of this example is to examine the Eulerian rates of elastic incompatibilities 𝑅𝑖𝑗 in (11), it is assumed that
a body force, which will be more precisely specified later, is applied to satisfy the equilibrium equation. It then follows that the
covariant base vectors 𝐠𝑖 and the contravariant base vectors 𝐠𝑖 are specified by

𝐠1 = 𝐱,1 = 𝐞𝑟 , 𝐠2 = 𝐱,2 = 𝑟𝐞𝜃 , 𝐠3 = 𝐱,3 = 𝑟𝜅𝐞𝜃 + 𝐞𝑧 , 𝑔1∕2 = 𝐠1 × 𝐠2 ⋅ 𝐠3 = 𝑟 ,

𝐠1 = 𝑔−1∕2𝐠2 × 𝐠3 = 𝐞𝑟 , 𝐠2 = 𝑔−1∕2𝐠3 × 𝐠1 =
1
𝑟
𝐞𝜃 − 𝜅𝐞𝑧 , 𝐠3 = 𝑔−1∕2𝐠1 × 𝐠2 = 𝐞𝑧 .

(39)

oreover, the associated velocity 𝐯, velocity gradient 𝐋, and equivalent distortional deformation rate �̇� are given by

𝐯 = �̇� = 𝑟𝑧�̇�𝐞𝜃 ,

𝐋 = �̇�𝑖 ⊗ 𝐠𝑖 = 𝑧�̇�𝐞𝜃 ⊗ 𝐞𝑟 − 𝑟𝑧�̇�𝐞𝑟 ⊗
( 1
𝑟
𝐞𝜃 − 𝜅𝐞𝑧

)

+
(

𝑟�̇�𝐞𝜃 − 𝑟𝑧𝜅�̇�𝐞𝑟
)

⊗ 𝐞𝑧

= 𝑧�̇�(−𝐞𝑟 ⊗ 𝐞𝜃 + 𝐞𝜃 ⊗ 𝐞𝑟) + 𝑟�̇�(𝐞𝜃 ⊗ 𝐞𝑧) , �̇� =
𝑟|�̇�|
√

3
.

(40)

6.2. Purely elastic response and its compatibility

In the absence of plasticity (𝐋𝑝 = 𝟎) the evolution Eq. (3) is solved subject to the initial conditions

𝐦1 = 𝐄𝑟 , 𝐦2 = 𝐄𝜃 , 𝐦3 = 𝐄𝑧 = 𝐞𝑧 for 𝜅 = 0 ,

here 𝐄𝑟 = 𝐞𝑟(𝜅 = 0) and 𝐄𝜃 = 𝐞𝜃(𝜅 = 0). These initial conditions can be conveniently selected because the initial state is assumed
o be a zero-stress state. Then, the elastic solution of (3) is given by

𝐦1 = 𝐞𝑟 , 𝐦2 = 𝐞𝜃 , 𝐦3 = 𝑟𝜅𝐞𝜃 + 𝐞𝑧 ,
𝐦1 = 𝐞𝑟 , 𝐦2 = 𝐞𝜃 − 𝑟𝜅𝐞𝑧 , 𝐦3 = 𝐞𝑧 .

(41)

lso, the reciprocal vectors 𝐌𝑖 are given by

𝐌1 = 𝐄𝑟 , 𝐌2 = 𝐄𝜃 , 𝐌3 = 𝐄𝑧 ,

o 𝐅𝑚 in Eq. (7) becomes

𝐅𝑚 = 𝐦1 ⊗ 𝐄𝑟 +𝐦2 ⊗ 𝐄𝜃 +𝐦3 ⊗ 𝐄𝑧 = 𝐞𝑟 ⊗ 𝐄𝑟 + 𝐞𝜃 ⊗ 𝐄𝜃 +
(

𝑟𝜅𝐞𝜃 + 𝐞𝑧
)

⊗ 𝐄𝑧 , �̇�𝑚 = 𝐋𝐅𝑚 , 𝐅𝑚(𝜅 = 0) = 𝐈 .

ext, from Eq. (39) it follows that

𝐆1 = 𝐄𝑟 , 𝐆2 = 1
𝑟
𝐄𝜃 , 𝐆3 = 𝐄𝑧 , (42)

so that, with the help of Eqs. (38) and (43), one has

Curl(𝐅𝑚) = −
𝐅𝑚
𝜕𝑟

× 𝐄𝑟 −
𝐅𝑚
𝜕𝜃

× 1
𝑟
𝐄𝜃 −

𝐅𝑚
𝜕𝑧

× 𝐄𝑧 . (43)

In addition,
𝜕𝐅𝑚
𝜕𝑟

= 𝜅𝐞𝜃 ⊗ 𝐄𝑧 ,

𝜕𝐅𝑚
𝜕𝜃

= 𝐞𝜃 ⊗ 𝐄𝑟 + 𝐞𝑟 ⊗ 𝐄𝜃 − 𝐞𝑟 ⊗ 𝐄𝜃 − 𝐞𝜃 ⊗ 𝐄𝑟 − 𝑟𝜅𝐞𝑟 ⊗ 𝐄𝑧 ,

𝜕𝐅𝑚
𝜕𝑧

= 𝜅𝐞𝜃 ⊗ 𝐄𝑟 − 𝜅𝐞𝑟 ⊗ 𝐄𝜃 − 𝑟𝜅2𝐞𝑟 ⊗ 𝐄𝑧 ,

o that

Curl(𝐅𝑚) = −𝜅𝐞𝜃 ⊗ 𝐄𝜃 −
1
𝑟
(

𝐞𝜃 ⊗ 𝐄𝑧 − 𝐞𝜃 ⊗ 𝐄𝑧 + 𝑟𝜅𝐞𝑟 ⊗ 𝐄𝑟
)

−
(

−𝜅𝐞𝜃 ⊗ 𝐄𝜃 − 𝜅𝐞𝑟 ⊗ 𝐄𝑟
)

= 𝟎 .

6.3. Elastoplastic response

Since 𝐋 and 𝐋𝑝 are deviatoric tensors, 𝐦′
𝑖 = 𝐦𝑖 and 𝐽𝑒 = 1, and it can be shown that for this torsion problem

𝐦1 = 𝑚1𝑟𝐞𝑟 , 𝐦2 = 𝑚2𝜃𝐞𝜃 + 𝑚2𝑧𝐞𝑧 , 𝐦3 = 𝑚3𝜃𝐞𝜃 + 𝑚3𝑧𝐞𝑧 ,
𝐦1 = (𝑚2𝜃𝑚3𝑧 − 𝑚2𝑧𝑚3𝜃)𝐞𝑟 , 𝐦2 = 𝑚1𝑟𝑚3𝑧𝐞𝜃 − 𝑚1𝑟𝑚3𝜃𝐞𝑧 , 𝐦3 = −𝑚1𝑟𝑚2𝑧𝐞𝜃 + 𝑚1𝑟𝑚2𝜃𝐞𝑧 ,
𝐽𝑒 = 𝑚1𝑟(𝑚2𝜃𝑚3𝑧 − 𝑚2𝑧𝑚3𝜃) = 1 .

(44)

1 Hwang et al. (2003) deal with finite torsion, within a lower-order mechanism-based SGP (Huang et al., 2000), by allowing for richer kinematics, including
otion along the radial direction. However, Hwang et al. (2003) consider a Lagrangian finite-deformation framework and neglect distinction between elasticity
nd plasticity in a deformation theory of plasticity, modeling monotonic proportional loading only.
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with 𝐁′
𝑒 and 𝐁′−1

𝑒 expressed in the forms (25). Therefore, with the help of Eq. (25), the matrix of components of 𝐁′
𝑒 with respect to

the base (𝐞𝑟, 𝐞𝜃 , 𝐞𝑧) become

𝐁′
𝑒 =

⎡

⎢

⎢

⎢

⎣

𝑚2
1𝑟 0 0

0 𝑚2
2𝜃 + 𝑚2

3𝜃 𝑚2𝜃𝑚2𝑧 + 𝑚3𝜃𝑚3𝑧

0 𝑚2𝜃𝑚2𝑧 + 𝑚3𝜃𝑚3𝑧 𝑚2
2𝑧 + 𝑚2

3𝑧

⎤

⎥

⎥

⎥

⎦

(45)

This form of 𝐁′
𝑒 indicates that 𝑇𝑟𝜃 = 𝑇𝑟𝑧 = 0. Moreover, since the stress components are independent of 𝜃 and 𝑧, the components

𝑏𝑟, 𝑏𝜃 , 𝑏𝑧 of the body force per unit mass needed to satisfy equilibrium can be determined by

𝜌𝑧𝑏𝑟 = −
( 𝜕𝑇𝑟𝑟

𝜕𝑟
+

𝑇𝑟𝑟 − 𝑇𝜃𝜃
𝑟

)

, 𝑏𝜃 = 𝑏𝑧 = 0 .

Alternatively, the material can be modeled as incompressible and the pressure can be determined by solving this equation with
𝑏𝑟 = 0.

In addition, since

𝐦1 ⋅𝐦2 = 𝐦1 ⋅𝐦3 = 0 , 𝐦2 ⋅𝐦3 = 𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧 ,

it follows from (27) that the plastic spins 𝛺12, 𝛺31 vanish and

𝛤 =
𝑏1
√

3
|�̇�| 𝑟⟨𝑔⟩ , 𝛺23 =

𝑏1
2
√

3
|�̇�| 𝑟⟨𝑔⟩�̄�23𝜒23(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧) , 𝜒23 =

2
𝜋
tan−1

[𝑚2
3𝜃 + 𝑚2

3𝑧 − 𝑚2
2𝜃 − 𝑚2

2𝑧
2(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧)

]

. (46)

Moreover, for this case (27) can be rewritten as

𝐋𝑝 =
𝛤
2
[

𝐈 −
3𝐁′−1

𝑒

tr(𝐁′−1
𝑒 )

+ �̄�23𝜒23𝐦2 ⋅𝐦3(𝐦2 ⊗𝐦2 −𝐦3 ⊗𝐦3)
]

,

where

tr(𝐁′−1
𝑒 ) = 𝑚−2

1𝑟 + 𝑚2
1𝑟(𝑚

2
2𝜃 + 𝑚2

2𝑧 + 𝑚2
3𝜃 + 𝑚2

3𝑧) (47)

and

𝐦2 ⊗𝐦2 −𝐦3 ⊗𝐦3 = 𝑚2
1𝑟(𝐞𝜃 ⊗ 𝐞𝑧 − 𝐞𝑧 ⊗ 𝐞𝜃) .

Therefore, the non-vanishing components of 𝐋𝑝 relative to the cylindrical polar base vectors are given by

𝐿𝑝𝑟𝑟 =
𝛤
2
(

1 − 3
tr(𝐁′−1

𝑒 )
𝑚−2
1𝑟
)

,

𝐿𝑝𝜃𝜃 = 𝛤
2
[

1 − 3
tr(𝐁′−1

𝑒 )
𝑚2
1𝑟(𝑚

2
2𝑧 + 𝑚2

3𝑧)
]

,

𝐿𝑝𝑧𝑧 =
𝛤
2
[

1 − 3
tr(𝐁′−1

𝑒 )
𝑚2
1𝑟(𝑚

2
2𝜃 + 𝑚2

3𝜃)
]

,

𝐿𝑝𝜃𝑧 =
𝛤
2
𝑚2
1𝑟
[ 3
tr(𝐁′−1

𝑒 )
(𝑚2𝜃𝑚2𝑧 + 𝑚3𝜃𝑚3𝑧) + �̄�23𝜒23(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧)

]

,

𝐿𝑝𝑧𝜃 = 𝛤
2
𝑚2
1𝑟
[ 3
tr(𝐁′−1

𝑒 )
(𝑚2𝜃𝑚2𝑧 + 𝑚3𝜃𝑚3𝑧) − �̄�23𝜒23(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧)

]

.

(48)

Furthermore,

�̇�𝑖 = �̇�
[

( 𝜕𝑚𝑖𝑟
𝜕𝜅

− 𝑧𝑚𝑖𝜃
)

𝐞𝑟 +
( 𝜕𝑚𝑖𝜃

𝜕𝜅
+ 𝑧𝑚𝑖𝑟

)

𝐞𝜃 +
𝜕𝑚𝑖𝑧
𝜕𝜅

𝐞𝑧
]

, (49)

so the non-trivial evolution Eqs. (29) require
𝜕𝑚1𝑟
𝜕𝜅

= −𝑟 �̇�
|�̇�|

𝑏1
2
√

3
⟨𝑔⟩

(

𝑚1𝑟 −
3

𝑚1𝑟tr(𝐁′−1
𝑒 )

)

,

𝜕𝑚2𝜃
𝜕𝜅

= 𝑟
{

𝑚2𝑧 −
�̇�
|�̇�|

𝑏1
2
√

3
⟨𝑔⟩

[

𝑚2𝜃 −
3𝑚1𝑟𝑚3𝑧

tr(𝐁′−1
𝑒 )

+ �̄�23𝜒23(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧)𝑚1𝑟𝑚2𝑧

]}

,

𝜕𝑚2𝑧
𝜕𝜅

= −𝑟 �̇�
|�̇�|

𝑏1
2
√

3
⟨𝑔⟩

[

𝑚2𝑧 +
3𝑚1𝑟𝑚3𝜃

tr(𝐁′−1
𝑒 )

− �̄�23𝜒23(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧)𝑚1𝑟𝑚2𝜃

]

,

𝜕𝑚3𝜃
𝜕𝜅

= 𝑟
{

𝑚3𝑧 −
�̇�
|�̇�|

𝑏1
2
√

3
⟨𝑔⟩

[

𝑚3𝜃 +
3𝑚1𝑟𝑚2𝑧

tr(𝐁′−1
𝑒 )

+ �̄�23𝜒23(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧)𝑚1𝑟𝑚3𝑧

]}

,

𝜕𝑚3𝑧
𝜕𝜅

= −𝑟 �̇�
|�̇�|

𝑏1
2
√

3
⟨𝑔⟩

[

𝑚3𝑧 −
3𝑚1𝑟𝑚2𝜃

tr(𝐁′−1
𝑒 )

− �̄�23𝜒23(𝑚2𝜃𝑚3𝜃 + 𝑚2𝑧𝑚3𝑧)𝑚1𝑟𝑚3𝜃

]

,

(50)

which are consistent with 𝐽𝑒 = 1 in Eq. (44). These equations are integrated subject to the initial conditions

(51)
𝜅(0) = 0 , 𝑚1𝑟(𝑟, 0) = 1 , 𝑚2𝜃(𝑟, 0) = 1 , 𝑚2𝑧(𝑟, 0) = 0 , 𝑚3𝜃(𝑟, 0) = 0 , 𝑚3𝑧(𝑟, 0) = 1 .
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For small elastic deformations the triad 𝐦′
𝑖 remains nearly orthonormal. Consequently, to examine the counterclockwise rotation of

𝐦′
2 and 𝐦′

3 about the axis 𝐦′
1, it is convenient to define the average angle 𝜃23, such that

𝜃23 =
1
2
[

tan−1
(𝑚2𝑧
𝑚2𝜃

)

− tan−1
(𝑚3𝜃
𝑚3𝑧

)]

. (52)

It follows from Eq. (50) that for monotonic loading with �̇� > 0 the initial elastic response causes 𝜃23 to decrease, which represents
a clockwise rotation of the triad 𝐦′

𝑖 about the 𝐦′
1 axis. The influence of �̄�23 on the rotation of the triad will be discussed later with

reference to Fig. 7.
For later reference, it is convenient to also define the difference of the counterclockwise rotations of 𝐦′

2 and 𝐦′
3 about the axis

𝐦′
1

𝛥𝜃23 = tan−1
(𝑚2𝑧
𝑚2𝜃

)

+ tan−1
(𝑚3𝜃
𝑚3𝑧

)

. (53)

To evaluate the elastic incompatibility measures in Eq. (11) it can be shown that

𝐋𝑝 = 𝐿𝑝𝑟𝑟𝐞𝑟 ⊗ 𝐞𝑟 + 𝐿𝑝𝜃𝜃(𝐞𝜃 ⊗ 𝐞𝜃) + 𝐿𝑝𝜃𝑧(𝐞𝜃 ⊗ 𝐞𝑧) + 𝐿𝑝𝑧𝜃(𝐞𝑧 ⊗ 𝐞𝜃) + 𝐿𝑝𝑧𝑧(𝐞𝑧 ⊗ 𝐞𝑧) ,

curl(𝐋𝑝) = −
𝜕𝐋𝑝

𝜕𝑟
× 𝐞𝑟 −

𝜕𝐋𝑝

𝜕𝜃
×
(1
𝑟
𝐞𝜃 − 𝜅𝐞𝑧

)

−
𝜕𝐋𝑝

𝜕𝑧
× 𝐞𝑧 ,

(54)

where the components are functions of (𝑟, 𝜅). It then follows that

curl(𝐋𝑝) = −
𝐿𝑝𝜃𝑧

𝑟
(𝐞𝑟 ⊗ 𝐞𝑟) −

𝜕𝐿𝑝𝜃𝑧

𝜕𝑟
(𝐞𝜃 ⊗ 𝐞𝜃) +

(
𝜕𝐿𝑝𝜃𝜃

𝜕𝑟
+

𝐿𝑝𝜃𝜃 − 𝐿𝑝𝑟𝑟

𝑟
)

(𝐞𝜃 ⊗ 𝐞𝑧)

−
𝜕𝐿𝑝𝑧𝑧

𝜕𝑟
(𝐞𝑧 ⊗ 𝐞𝜃) +

(
𝜕𝐿𝑝𝑧𝜃

𝜕𝑟
+

𝐿𝑝𝑧𝜃

𝑟
)

(𝐞𝑧 ⊗ 𝐞𝑧) ,
(55)

where the diagonal terms, due to 𝐿𝑝𝜃𝑧 and 𝐿𝑝𝑧𝜃 , are the sole non-vanishing contributions to curl(𝐋𝑝) under small strains and
otations (Bardella and Panteghini, 2015). Since the deformation is isochoric with 𝐽𝑒 = 1, the stress 𝐓 in (31) is deviatoric. Also,
sing Eqs. (11), (44), and (55) it can be shown that the non-vanishing components of 𝑅𝑖𝑗 are

𝑅11 =
𝐿𝑝𝜃𝑧

𝑟
𝑚2
1𝑟 ,

𝑅22 =
𝜕𝐿𝑝𝜃𝑧

𝜕𝑟
𝑚2
2𝜃 −

(
𝜕𝐿𝑝𝜃𝜃

𝜕𝑟
+

𝐿𝑝𝜃𝜃 − 𝐿𝑝𝑟𝑟

𝑟
)

𝑚2𝜃𝑚2𝑧 +
𝜕𝐿𝑝𝑧𝑧

𝜕𝑟
𝑚2𝜃𝑚2𝑧 −

(
𝜕𝐿𝑝𝑧𝜃

𝜕𝑟
+

𝐿𝑝𝑧𝜃

𝑟
)

𝑚2
2𝑧 ,

𝑅33 =
𝜕𝐿𝑝𝜃𝑧

𝜕𝑟
𝑚2
3𝜃 −

(
𝜕𝐿𝑝𝜃𝜃

𝜕𝑟
+

𝐿𝑝𝜃𝜃 − 𝐿𝑝𝑟𝑟

𝑟
)

𝑚3𝜃𝑚3𝑧 +
𝜕𝐿𝑝𝑧𝑧

𝜕𝑟
𝑚3𝜃𝑚3𝑧 −

(
𝜕𝐿𝑝𝑧𝜃

𝜕𝑟
+

𝐿𝑝𝑧𝜃

𝑟
)

𝑚2
3𝑧 ,

𝑅23 =
𝜕𝐿𝑝𝜃𝑧

𝜕𝑟
𝑚2𝜃𝑚3𝜃 −

(
𝜕𝐿𝑝𝜃𝜃

𝜕𝑟
+

𝐿𝑝𝜃𝜃 − 𝐿𝑝𝑟𝑟

𝑟
)

𝑚2𝜃𝑚3𝑧 +
𝜕𝐿𝑝𝑧𝑧

𝜕𝑟
𝑚2𝑧𝑚3𝜃 −

(
𝜕𝐿𝑝𝑧𝜃

𝜕𝑟
+

𝐿𝑝𝑧𝜃

𝑟
)

𝑚2𝑧𝑚3𝑧 ,

𝑅32 =
𝜕𝐿𝑝𝜃𝑧

𝜕𝑟
𝑚2𝜃𝑚3𝜃 −

(
𝜕𝐿𝑝𝜃𝜃

𝜕𝑟
+

𝐿𝑝𝜃𝜃 − 𝐿𝑝𝑟𝑟

𝑟
)

𝑚2𝑧𝑚3𝜃 +
𝜕𝐿𝑝𝑧𝑧

𝜕𝑟
𝑚2𝜃𝑚3𝑧 −

(
𝜕𝐿𝑝𝑧𝜃

𝜕𝑟
+

𝐿𝑝𝑧𝜃

𝑟
)

𝑚2𝑧𝑚3𝑧 .

(56)

To better understand the influence of the plastic spin, it is noted from Eq. (56) that
3
∑

𝑖=1

3
∑

𝑖=𝑗
𝑅𝑖𝑗 =

𝐿𝑝𝜃𝑧

𝑟
𝑚2
1𝑟 +

𝜕𝐿𝑝𝜃𝑧

𝜕𝑟
(𝑚2𝜃 + 𝑚3𝜃)2 −

(
𝜕𝐿𝑝𝑧𝜃

𝜕𝑟
+

𝐿𝑝𝑧𝜃

𝑟
)

(𝑚2𝑧 + 𝑚3𝑧)2 + 𝑓 (𝐿𝑝𝑟𝑟, 𝐿𝑝𝜃𝜃 , 𝐿𝑝𝑧𝑧) ,

where, for the purpose of this discussion, there is no need to explicitly record the lengthy function 𝑓 (𝐿𝑝𝑟𝑟, 𝐿𝑝𝜃𝜃 , 𝐿𝑝𝑧𝑧). Next, using
the approximation of small strains and rotations, this expression for the torsion problem reduces to

3
∑

𝑖=1

3
∑

𝑖=𝑗
𝑅𝑖𝑗 =

𝐿𝑝𝜃𝑧 − 𝐿𝑝𝑧𝜃

𝑟
+

𝜕(𝐿𝑝𝜃𝑧 − 𝐿𝑝𝑧𝜃)
𝜕𝑟

= 2
(
𝑊𝑝𝜃𝑧

𝑟
+

𝜕𝑊𝑝𝜃𝑧

𝜕𝑟
)

, (57)

which depends on the plastic spin rate only, in agreement with (Bardella and Panteghini, 2015). It is remarked that, for clarity, the
full finite-deformation equations will be solved in all the following simulations.

6.4. Results and discussion

The size-effect in torsion can be displayed by plotting the normalized torque 𝑄∕𝑎3 as a function of the non-dimensional twist
𝜅𝑎, also representing the outer surface shear strain, where

𝑄 = 2𝜋𝜇 ∫

𝑎

0
𝐵𝑒𝜃𝑧𝑟

2d𝑟 . (58)

6.4.1. Numerical solution
The torsion problem has been solved with the commercial software Mathematica® using the NDSolve function, where the

values of the time-integration parameters AccuracyGoal and PrecisionGoal are specified to be equal and are here denoted
as NDSGoal. In most of the following simulations, NDSGoal has been set equal to 13, although NDSGoal=10 is enough to obtain
adequate accuracy for several fields of interest in most analyses.
11 
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Fig. 1. Large-deformation torsion of oxygen free electronic grade (OFE) copper at room temperature: comparison, in terms of the surface shear stress 𝑇𝜃𝑧(𝑟 = 𝑎),
a) between experimental data of Stout and Rollett (1990) (hollow black circles), taken from (Bodner and Rubin, 1994), and simulations of size-independent
lasticity (𝓁 = 0). Figure (b) includes simulations of cyclic loading.

The numerical integration has been performed by integrating over both 𝜅 and 𝑟 in order to conveniently obtain the required
erivatives with respect to 𝑟. Therefore, NDSolve has been employed as a solver for partial differential equations. Moreover,
o solve the problem for cyclic loading, the applied twist has been specified as a function of time 𝑡, 𝜅(𝑡). Different functions
(𝑡), such as piecewise linear and sinusoidal, have been tested to check the solution accuracy. In the absence of size-dependent
ardening, the problem could be solved, also under cyclic loading, by integrating directly in 𝜅, i.e. without introducing time, and
ven by adopting, instead of NDSolve, the function ParametricNDSolve, which allows for the solution of a system of ordinary
ifferential equations by introducing 𝑟 as a parameter. The consistency of the results obtained from all these tests ensure their
ccuracy. However, because of the high nonlinearity of the problem, in some analyses, the field 𝜉 turns out to be affected by some
naccuracies in an annular region near the outer boundary. These inaccuracies seem to be non-monotonic for changes in the material
arameters entering the evolution equation for 𝜉, especially for thin wires. They typically show up after the second loading reversal
nd, then, they may even cause unphysical solutions. To avoid such inaccuracies, the boundary value problem has been solved for
ictitious larger wires, typically of radius �̃� = 1.3𝑎, while the results and, in particular, the computation of the torque (58), have been
imited to the region 𝑟 ∈ [0, 𝑎]. By trying different combinations of domain size �̃�, material parameters, and integration parameters,
his procedure has been tested to provide reliable results.

.4.2. Size-independent plasticity
Size-independent plasticity including both isotropic and directional hardening can be obtained by specifying 𝓁=0. Unless

otherwise stated, for all simulations, the size-independent material constants, obtained by fitting the experimental data of Stout
and Rollett (1990), as illustrated in Fig. 1, are specified by

𝜇 = 44GPa , 𝑏1 = 3000 , 𝑚𝐻 = 1.8 × 10−3 , 𝑌𝐻0 = 10−5 , 𝑌𝐻𝑠 = 3 × 10−3 , 𝑚𝛽 = 0.02 , 𝛽𝑠 = 0.6 , �̄�23 = 2.5 .

Note that this torsion problem is independent of the bulk modulus 𝑘 introduced in Eq. (30). Fig. 1 also shows the behavior predicted
under cyclic loading due to the selected hardening parameters and the negligible effect of the plastic spin rate on the stress response
for size-independent plasticity (𝓁=0).

.4.3. Size-dependent plasticity
Unless otherwise stated, the material constants 𝑚𝓁 , 𝑚𝑟, 𝑌𝑅𝑠, 𝑛𝑅 controlling the size-dependence are specified by

𝑚𝓁 = 15. , 𝑚𝑟 = 1. , 𝑌𝑅𝑠 = 3 × 10−3 , 𝑛𝑅 = 0.3 . (59)

he material length scale 𝓁 will be varied within 𝑎∕𝓁 ∈ [1,∞) to illustrate the predicted size-effect, although, when focusing on the
eatures of the fields related to the inclusion of plastic rate gradients in the modeling, only the ‘‘strongest wire’’ 𝑎∕𝓁 = 1 will be

considered.
The small ratio 𝑚𝑟∕𝑚𝓁 in Eq. (59) indicates that the rate of recovery of hardening in (34) is set to be much smaller than the rate

f increase of hardening. This may be consistent with the behavior of densities of GNDs that, after piling up at grain boundaries
nder monotonic loading, may find it more difficult to annihilate because of the contextual development of forest dislocations, or

ther substructures of dislocations.

12 
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Fig. 2. Normalized torque vs non-dimensional twist: Comparison of the predictions at different wire radii under cyclic loading.

Fig. 2 shows the predictions for the normalized torque as a function of the non-dimensional twist 𝜅𝑎, at variable wire radii. The
ain result shown in this figure is that the proposed model can predict a significant size-dependent hardening effect with increase

n strength for reduction in the wire radius. The parameter 𝑛𝑅 = 0.3 has been selected so that the behavior for 𝑎∕𝓁 = 103 is very
close to size-independent plasticity (i.e., 𝑎∕𝓁 → ∞). Given both the purposes of this investigation and the lack of experimental data
for the finite-deformation torsion of thin wires under cyclic loading, fitting the size-effect of real samples is left for future studies.
However, it is here emphasized that the proposed model exhibits the potential to predict the known behavior of metals at sizes
where densities of GNDs affect the response (Fleck et al., 1994; Greer and De Hosson, 2011; Liu et al., 2013).

Moreover, the results in Fig. 2 for the thinnest wire (𝑎∕𝓁 = 1) show a mild drop in strength, occurring near the points where
reverse loading causes 𝜅𝑎 = 0, due to annihilation of defects. These drops are due to the decrease in size-dependent hardening
ensuing from the decrease of 𝜉, which is illustrated in Fig. 3. For the sake of clarity, some of the results are plotted as functions of
the monotonically increasing loading parameter

𝜅mon = ∫

𝑡

0
|�̇�|d𝑡 . (60)

Therefore, for the cycle considered in the simulations illustrated next, in which 𝜅𝑎 ∈ [0, 0.5] ∪ [0.5,−0.5] ∪ [−0.5, 0.5], Eq. (60) yields
𝜅mon𝑎 ∈ [0, 2.5].

Fig. 3 shows the crucial dependence of 𝜉 on �̄�23, along with the mild dependence of 𝜉 on 𝑟. Correspondingly, as documented in
Fig. 4, which focuses on 𝑟 = 𝑎 only, 𝑌𝑅 is very much dependent on �̄�23 while it is almost unaffected by 𝑚𝑟, see Eq. (34). Instead, 𝑚𝑟
has an enormous influence on 𝑌𝓁 . Fig. 4 reports results for �̄�23 ≥ 0 only, because the sign of �̄�23 has a minimal influence on 𝑌𝑅 and
𝑌𝓁 for the sets of parameters explored in this investigation, as shown later in discussing the results plotted in Fig. 6. Moreover, from
Fig. 3 it is observed that when 𝜅 and �̄�23 have opposite signs 𝜉 may decrease with increasing 𝑟, and this behavior is consistent for
all the chosen sets of data. In general, the plastic spin rate introduces a directionality in the model (i.e., for a given set of material
parameters, changing the sign of the loading history 𝜅(𝑡) also changes the magnitude of some fields of interest); however, this effect
disappears for the size-independent response (𝓁 = 0).

The dependence of the normalized torque on the rate of hardening recovery, controlled by 𝑚𝑟 in (34), is illustrated in Fig. 5. The
parameter 𝑚𝑟 influences the drop in yield strength, occurring for small 𝑎∕𝓁, near the points where reverse loading causes 𝜅𝑎 = 0.
Specifically, on the one hand, if a fast recovery is allowed (𝑚𝑟 = 𝑚𝓁) the effect of decreasing |𝜉| has a large influence on the torque,
leading to ‘‘bumps’’ in the torque vs twist curve; on the other hand, hampering hardening recovery by setting 𝑚𝑟 = 0 eliminates
this effect. Comparison of Figs. 3, 4, and 5 clearly indicates that the drops in yield strength in Fig. 5 are due to the recovery
13 
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Fig. 3. 𝜉 for different �̄�23 and 𝑟 in terms of 𝜅mon in Eq. (60), under cyclic loading, for 𝑎∕𝓁 = 1 and 𝑚𝑟=1 .

f the size-dependent parameter 𝜉. These drops in strength may cause instabilities that are not investigated here. However, it is
bserved that, in the literature on microscale metal plasticity, these drops, often referred to as ‘‘inflection points’’, are found, both
xperimentally and through modeling (Stoltz and Pelloux, 1976; Taillard and Pineau, 1982; Proudhon et al., 2008; Kiener et al.,
010; Wulfinghoff et al., 2015; El-Naaman et al., 2019; Reynolds and Baxter, 2000), mostly when cycling loads change sign, as in the
resent simulations. Also, these inflection points are associated with annihilation of GNDs via the ‘‘KIII’’ hardening of Asaro (1975)
efined in crystal plasticity through the concept by which the last dislocation piling up in high-density GND regions is the first one
o leave the pileup upon loading reversal; if this is the dominant mechanism, as in a specific regime of single-crystal plasticity under
ingle slip, the inflection points are observed also for small deformations.

Fig. 6 shows the predictions for the normalized torque as a function of �̄�23. This dependence is particularly interesting because
the plastic spin rate, through �̄�23 in this benchmark, has an enormous influence on the rates of incompatibilities, and thus on 𝜉.
It is first noted that changing sign to �̄�23 has negligible influence on the torque. Second, the two curves for 𝑎∕𝓁 = 1 with �̄�23 = 0
and 𝑎∕𝓁 → ∞ are almost superposed, during the first loading branch, up to 𝜅𝑎 ≈ 0.12. On the one hand, this is consistent with
the discussion about Eq. (57), indicating that in the absence of plastic spin rate the torsion response is size-independent under
small strains and rotations. On the other hand, the noticeable divergence in Fig. 6 of these two curves after 𝜅𝑎 ≈ 0.12 indicates an
interesting size-effect induced by finite deformations, even with zero plastic spin. Also, the curve for �̄�23 = 0 (and 𝑎∕𝓁 = 1) exhibits
some mild changes of curvature due to the recovery of 𝜉, as seen in Fig. 3.

Finally, Fig. 7 shows the dependence of the average angle 𝜃23, as defined in Eq. (52), on the plastic spin rate through the
parameter �̄�23. From this figure it has been numerically observed that the function 𝜃23 has the symmetry

𝜃23(𝜅𝑎, �̄�23) ≈ −𝜃23(−𝜅𝑎,−�̄�23) ,

with 𝜃23 displaying a reversible behavior with respect to 𝜅𝑎. Also, it is observed that the clockwise rotation of the triad is retarded
when �̄�23 and 𝜅 have the same signs and is enhanced when they have opposite signs. It is remarked that the difference in rotation
𝛥𝜃23 in (53) is related to the elastic deformations characterized by the microstructural vectors 𝐦𝑖; thus, 𝛥𝜃23 exhibits a behavior
similar to that of the shear stress 𝑇𝜃𝑧, the latter mirroring the behavior of the torque.

7. Concluding remarks

This investigation develops Eulerian rates of elastic incompatibilities, denoted as 𝑅𝑖𝑗 , for anisotropic elastic–inelastic materials.

This Eulerian framework does not use Lagrangian tensors such as the elastic and plastic deformation tensors. Also, it relies on an
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Fig. 4. Normalized 𝑌𝑅 (solid lines, with marks when overlapping) and 𝑌𝓁 (thick dotted lines) for 𝑟 = 𝑎 and different 𝑚𝑟 and �̄�23 in terms of 𝜅mon in Eq. (60),
under cyclic loading, for 𝑎∕𝓁 = 1 and 𝑚𝓁 = 15.

evolution equation, involving the rate of inelastic deformation 𝐋𝑝, for the motion of three linearly independent microstructural
vectors 𝐦𝑖 characterizing elastic deformations and orientation changes of anisotropic directions in the material relative to a
zero-stress state (Rubin, 1994).

Within this Eulerian framework, necessary and sufficient conditions for incremental incompatibilities are shown to imply that
𝑅𝑖𝑗 must be based on the curl of the inelastic rate to be evaluated in the current configuration, curl(𝐋𝑝). Specifically, 𝑅𝑖𝑗 are the
components of the negative of curl(𝐋𝑝) relative to the distortional microstructural vectors 𝐦′

𝑖 . As such, 𝑅𝑖𝑗 are highly nonlinear
fields that for small strains and rotations particularize to the negative of the rate of the Nye-Kröner dislocation density tensor. Most
importantly, each component of 𝑅𝑖𝑗 is invariant under superposed rigid body motions (SRBM) so it can be used independently in
constitutive equations for material behavior. It is emphasized that, in turn, 𝑅𝑖𝑗 depend on the constitutive equation for 𝐋𝑝, such that
𝑅𝑖𝑗 are not purely kinematical quantities, and, in particular, they may strongly depend on the constitutive equation for the inelastic
spin rate 𝐖𝑝. Also, the direct use of 𝑅𝑖𝑗 into constitutive equations seems to be quite natural within the Eulerian framework,
in contrast with theories in which quantities such as curl(𝐋𝑝) are included in evolution equations in the attempt to define finite
kinematic quantities (see, e.g., Rubin and Bardella, 2023 for a proposal regarding a Nye-Kröner-like tensor).

As an example of the use of the foregoing features of 𝑅𝑖𝑗 , a constitutive theory for isotropically elastic materials is developed
featuring a contribution to hardening that is size-dependent through a scalar field 𝜉 defined in terms of 𝑅𝑖𝑗 , resulting in a lower-
order theory of strain gradient plasticity (SGP, Bassani, 2001; Niordson and Hutchinson, 2003). To this purpose, after specializing
the anisotropic theory relying on the microstructural vectors to the case of isotropic elasticity, the framework in (Rubin and Attia,
1996) is extended to account for 𝐖𝑝. Then, in the spirit of modeling small-scale metal plasticity with size-dependence due to the
behavior of densities of geometrically necessary dislocations (GNDs, Ashby, 1970), 𝜉 is constructed by simply summing up all the
components of 𝑅𝑖𝑗 , allowing for generation and annihilation of defects of opposite sign, and by multiplying this sum by a material
length scale parameter, 𝓁.

Specifically, the proposed elastoplasticity is rate-independent and characterized by a smooth elastic–inelastic transition (Hol-
lenstein et al., 2013, 2015), where there are three contributions to hardening, all characterized by variables that saturate. The
isotropic hardening consists of a conventional contribution and a size-dependent contribution, the latter allowing, through 𝜉, for
both an increase and a decrease in hardening due to generation and annihilation, respectively, of defects. Increase and decrease of

size-dependent hardening are governed by two independent parameters that permit tuning the material behavior and investigating
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Fig. 5. Normalized torque vs non-dimensional twist: Comparison of the predictions at different 𝑚𝑟 under cyclic loading. Unless otherwise specified, 𝑎∕𝓁=1.

the influence of the field 𝜉 on this hardening process, which depends on the loading history. The third contribution to the hardening
s a directional hardening that follows Bodner (1985) and is coupled with both contributions to the isotropic hardening, thus
roviding the capability to model a size-dependent Bauschinger effect under complicated cyclic loading. The coupling of the smooth
lastic–plastic transition with the size-dependent hardening allows for the prediction of an increase of the apparent yield stress with

diminishing size (Rubin and Bardella, 2023).
The constitutive equation for the plastic spin 𝐖𝑝 is taken from (Lee and Rubin, 2021), for its demonstrated capability of

reproducing experimental data for the orientation change of the principal directions of orthotropy for uniaxial stress loading at
different angles relative to the rolling direction in sheet metal forming.

The developed plasticity theory is applied to large-deformation torsion of thin metal wires subjected to cyclic loading. First, the
material parameters governing the size-independent part of the model are calibrated by fitting the results of Stout and Rollett (1990)
for oxygen free electronic grade copper at room temperature under monotonic torque up to an outer surface shear strain of about
5. Then, the size-dependent results of this benchmark problem demonstrate the potential of using 𝑅𝑖𝑗 directly in the constitutive
equations. In particular, the obtained predictions display size-dependent results in qualitative agreement with known experimental
behavior (Fleck et al., 1994; Greer and De Hosson, 2011; Liu et al., 2013), the capability of modeling generation and annihilation
of densities of dislocations, and the crucial effect of the material parameter governing the plastic spin rate, in agreement with the
literature on SGP (Gurtin, 2004; Bardella, 2009; Panteghini and Bardella, 2020). The torsion simulations also show the importance
of the finite deformations. This is appreciated by considering that, for small strains and rotations, the adopted form of 𝜉 depends
on the plastic spin rate only, and not on the plastic strain rate, according to Bardella and Panteghini (2015). Hence, by setting
the plastic spin rate to zero, it is observed that the prediction for a very thin wire (of radius equal to the material length scale 𝓁)
is almost identical to that for size-independent plasticity up to a surface shear strain of about 0.1, after which the size-dependent
response becomes much stronger because finite-deformation effects allow the plastic strain rate to significantly influence 𝜉.

In future work it will be very interesting to examine the use of the proposed rates of elastic incompatibilities 𝑅𝑖𝑗 for hardening
in crystal plasticity, whose basis is provided in Appendix B with the definition of 𝐋𝑝 in terms of the microstructural vectors.
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Fig. 6. Normalized torque vs non-dimensional twist: Comparison of the predictions at different �̄�23 under cyclic loading, for 𝑚𝑟 = 1. Unless otherwise specified,
𝑎∕𝓁 = 1.
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Appendix A. Invariance under superposed rigid body motions of curl(𝐋𝒑)

Under SRBM, 𝐱 and 𝑡 transform to their superposed values 𝐱+ and 𝑡+ according to

𝐱+ = 𝐜(𝑡) +𝐐(𝑡)𝐱 , 𝑡+ = 𝑡 + 𝑐 ,

where 𝑐 is an arbitrary constant shift in time, 𝐜 is a arbitrary vector function of time only which characterizes superposed translation,
and 𝐐 in (18) characterizes superposed rotation. Also, 𝐋𝑝 transforms to 𝐋+

𝑝 and, for arbitrary convected coordinates, (𝐠𝑗 , 𝐠𝑗 ) transform
to (𝐠+𝑗 , 𝐠

𝑗+), such as

𝐋+
𝑝 = 𝐐𝐋𝑝𝐐𝑇 , 𝐠+𝑗 = 𝐐𝐠𝑗 , 𝐠𝑗+ = 𝐐𝐠𝑗 ,

so that

curl(𝐋𝑝) = −𝐋𝑝,𝑗 ×𝐠𝑗 = −(𝜕𝐋𝑝∕𝜕𝐱)𝐠𝑗 × 𝐠𝑗 , curl+(𝐋+
𝑝 ) = −(𝜕𝐋+

𝑝 ∕𝜕𝐱)(𝜕𝐱∕𝜕𝐱
+)𝐠+𝑗 × 𝐠𝑗+ = −[𝜕(𝐐𝐋𝑝𝐐𝑇 )∕𝜕𝐱]𝐐𝑇 (𝐐𝐠𝑗 ×𝐐𝐠𝑗 ) .

ext, using the results that
𝑇 𝑗 −𝑇 𝑗 𝑗 𝑇
𝜕(𝐐𝐋𝑝𝐐 )∕𝜕𝐱 = 𝐐(𝜕𝐋𝑝∕𝜕𝐱)𝐐 , 𝐐𝐠𝑗 ×𝐐𝐠 = det(𝐐)𝐐 (𝐠𝑗 × 𝐠 ) = (𝐠𝑗 × 𝐠 )𝐐 ,
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Fig. 7. The average rotation angle 𝜃23 (52) in degrees for 𝑟 = 𝑎 for different �̄�23 and cyclic loading with 𝜅𝑎 ∈ [0, 0.5] ∪ [0.5,−0.5] ∪ [−0.5, 0.5].

it follows that

curl+(𝐋+
𝑝 ) = 𝐐 curl(𝐋𝑝)𝐐𝑇 ,

which is used to confirm the validity of (19).

Appendix B. The plastic rate in crystal plasticity

Crystal plasticity models rely on a finite number 𝑁 of slip systems in the crystal, each system 𝐼 being able to develop a plastic
slip rate 𝐼𝛤 and characterized by a plane with unit normal 𝐼𝐧 and unit slip direction 𝐼 𝐬 in that plane (e.g. Rice, 1971). Therefore,
the plastic rate 𝐋𝑝 is assumed in the form

𝐋𝑝 =
𝑁
∑

𝐼=1
𝐼𝛤 𝐼 𝐬⊗𝐼 𝐧 . (B.1)

Since 𝐼 𝐬 ⋅𝐼 𝐧 = 0, Eq. (B.1) for 𝐋𝑝 is applicable to isochoric metal plasticity, being consistent with (15). Also, 𝑁 and the relative
orientations of the slip systems depend on the metal crystallography (see, e.g., Hull and Bacon, 2001, and references therein).

In the Eulerian framework, the elastic distortional microstructural vectors 𝐦′
𝑖 in Eq. (12) are used to model crystal plasticity, by

specifying (Rubin, 2021, Section 5.13)

𝐼𝐧 = 𝐼𝑛𝑖𝐦𝑖′

|𝐼𝑛𝑗𝐦𝑗′
|

, 𝐼 𝐬 =
𝐼𝑠𝑖𝐦′

𝑖

|𝐼𝑠𝑗𝐦′
𝑗 |

, 𝐼𝑛𝑖𝐼𝑛𝑖 = 1 , 𝐼𝑠
𝑖
𝐼𝑠

𝑖 = 1 , 𝐼𝑛𝑖𝐼𝑠
𝑖 = 0 , (B.2)

where there is no sum on the repeated index 𝐼 and the components 𝐼𝑛𝑖 of 𝐼𝐧 and the components 𝐼𝑠𝑖 of 𝐼 𝐬 are constants that are
efined in a zero-stress state, where 𝐦′

𝑖 = 𝐦𝑖′ are orthonormal unit vectors.
Eq. (B.2) simply states that the crystallographic directions follow the crystal lattice, which is subject to elastic deformation.
In contrast to Eq. (27), in the framework of crystal plasticity the plastic spin rate directly comes from Eqs. (26) and (B.1), such

s it has the form

𝐖𝑝 =
𝑁
∑ 𝐼𝛤 (𝐼 𝐬⊗ 𝐼𝐧 − 𝐼𝐧⊗ 𝐼 𝐬). (B.3)

𝐼=1 2
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Each plastic slip rate 𝐼𝛤 in (B.1) typically is a function of history-dependent variables that may have forms similar to that of the
function in Eq. (32). Incorporating the smooth elastic–plastic transition has the advantage of avoiding the non-uniqueness in the

ctivation of slip systems that is typical of rate-independent crystal plasticity based on conventional consistency conditions (Gambin,
992; Forest and Rubin, 2016). Finally, this crystal plasticity formulation is properly invariant under SRBM if 𝐼𝛤 are unaffected by

SRBM, i.e. 𝐼𝛤+ = 𝐼𝛤 .

Data availability

We will share the Mathematica code upon reasonable request.
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