1	Labelled 15 NO study on N ₂ and N ₂ O formation over Pt-Ba/Al ₂ O ₃ LNT catalysts
2	L. Lietti*, L. Righini, L. Castoldi, N. Artioli, P. Forzatti
3	Dipartimento di Energia, Laboratory of Catalysis and Catalytic Processes and NEMAS, Centre of
4	Excellence, Politecnico di Milano, P.zza L. da Vinci 32, Milano, Italy
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	*to whom correspondence should be addressed.
19	Tel. +39 02 2399 3272
20	Fax. +39 02 7063 8173
21	e-mail: luca.lietti@polimi.it
22	

1 Abstract

2 Mechanistic aspects involved in the formation of N₂ and of N₂O during the reduction of NO, stored nitrates 3 and stored nitrates in the presence of NO are investigated in this work by means of isotopic labeling 4 experiments over a model PtBa/Al₂O₃ NSR catalyst. The reduction of gaseous labeled NO with unlabelled 5 NH₃ leads to the formation of N₂O at low temperature (below 180°C), and of N₂ at high temperature. All N₂ 6 possible isotopes are observed, whereas only labeled molecules have been detected in the case of N₂O. 7 Hence the formation of nitrous oxide involves undissociated NO molecules, whereas that of N₂ can be 8 explained on the basis of the statistical coupling on Pt of ¹⁵N- and ¹⁴N-adatoms. However, due to a slight 9 excess of the mixed ¹⁵N¹⁴N isotope, a SCR-like pathway likely operates as well. 10 The reduction of the stored labelled nitrates is very selective to N_2 and all isotopes are observed, confirming 11 the occurrence of the recombination pathway. However also in this case a SCR-like pathway likely occurs 12 and this explain the abundance of the ¹⁴N¹⁵N species. When the reduction of the stored nitrates is carried out 13 in the presence of NO, NO is preferentially reduced pointing out the higher reactivity of gaseous NO if 14 compared to the nitrates.

- 15
- 16
- 17 Keywords
- 18 Isotopic labelling experiments, PtBa/Al₂O₃ NSR catalysts, NOx Storage-reduction, reduction of nitrates.

1 Introduction

The reduction of NO_x emissions from diesel- and lean burn gasoline-powered vehicles is deeply investigated nowadays in view of the next coming strict regulations which limit the emissions of these pollutants. In fact the Euro VI rules which will be applied starting from 2014 require a drastic reduction of NO_x from the actual value of 0.18 g/km down to 0.08 g/km. To date, the available technologies for the control of NO_x emissions are the urea-SCR technique and the NO_x Storage Reduction (NSR) or Lean NO_x Trap (LNT) system^{1,2,3,4,5,6}; hybrid LNT/SCR systems have also been studied⁷.

8 While the SCR technology requires an external reductant like NH₃ (or an ammonia-precursor like urea),

9 LNTs make use of unburned hydrocarbons or other reductants already present in the exhausts. In fact these

10 catalytic systems work under cycling condition, alternating a long lean phase of about 60–90 s during which

11 NO_x are stored on the catalyst, with a short rich phase of few seconds where the exhaust is deliberately

12 made rich to reduce the trapped NO_x. N₂ is the desired reduction product, but other by-products may be

13 formed (NO, N₂O, NH₃). The NSR catalyst formulations generally consist in a high surface area carrier

14 supporting precious metals (usually Pt, Rh) and NO_x storage components like Ba or K^{8,9}.

15 Mechanistic aspects of the reduction of NO_x stored over NSR catalytic systems have been investigated by

several groups^{10,11,12,13,14}. It has been shown that the reduction of stored nitrates proceeds via a Pt-catalyzed

17 route which does not required the thermal desorption of stored NO_x and where the NO_x ad-species are

18 reduced/decomposed at the Pt sites leading to the formation of the reduction products. When H₂ is used as

19 reducing agent, it has also pointed out that N_2 formation occurs through a two-steps in series molecular

20 pathway involving the fast reaction of nitrates with hydrogen to give ammonia, followed by the slower

reaction of the formed NH₃ with residual stored nitrates to give N₂^{12,13,15,16}. In fact, due to the high reactivity of

H₂ towards nitrates and to the integral nature of the trap, an hydrogen front develops in the trap travelling

23 along the axis. Ammonia formed upon reduction of the stored NO_x reacts with NO_x stored downstream the H₂

front to give nitrogen. Based on these findings, N₂ is thought to be formed upon reaction of ammonia with the
 stored NO_x.

26 In this paper mechanistic aspects involved in the reaction of ammonia with the stored NOx have been

27 addressed. In particular, in a recent study from our group mechanistic aspects involved in the formation of N₂

28 and N₂O during the regeneration of NSR catalysts have been analyzed by the use of labeled ¹⁵NO¹⁷. It has

29 been found that nitrogen formation can be explained by the statistical coupling of ¹⁵N- and ¹⁴N-adatoms

1 originated upon NH₃ and $^{15}NO_x$ decomposition on Pt; however the occurrence of a SCR-like pathway, 2 involving the formation and decomposition of a NH_x-15NO intermediate, has also been suggested. 3 Based on these preliminary findings, in this study we extent such preliminary indications and address new 4 aspects like the presence of NO during the regeneration of the catalysts, as also investigated by Pereda-5 Ayo et al.¹⁸. For this purpose, isotopic labeling experiments have been carried out using unlabeled NH₃ and 6 ¹⁵NO as sources for unlabeled and labeled N-species, respectively. The reactivity of ammonia with stored 7 ¹⁵NO_x, gaseous ¹⁵NO and stored ¹⁵NO_x in the presence of gaseous NO has been investigated with the aim to 8 better clarify mechanistic aspects of the pathways involved in the formation of N2 during regeneration of NSR 9 catalysts.

10

11 Materials and Methods

12 Catalysts preparation and characterization – An homemade Pt-Ba/Al₂O₃ (1/20/100 w/w) catalyst has been prepared by incipient wetness impregnation of a commercial alumina sample (Versal 250 from UOP) 13 14 calcined at 700°C with aqueous solution of dinitro-diammine platinum (Strem Chemicals, 5% Pt in 15 ammonium hydroxide) and subsequently with a solution of Ba acetate (Aldrich, 99%), in line with recipes of 16 Toyota patents¹⁹. Further details on the catalyst preparation and characterization can be found elsewhere ¹⁷. 17 Catalytic tests - Catalytic tests have been performed in a quartz tube micro-reactor (7 mm I.D.) loaded with 18 60 mg of catalyst powder (70-100 μm). A total flow of 100 cm³/min (at 1 atm and 0°C) has been used in the 19 experiments. The reactor outlet was analyzed by a mass spectrometer (Thermostar 200, Pfeiffer), an UV-NO_x analyzer (LIMAS 11HW, ABB) and a micro-gas chromatograph (Agilent 3000A)^{17,Errore. II segnalibro non è} 20 definito.20 21

22 Prior to the catalytic activity runs, the catalyst sample has been conditioned by performing a few

23 storage/regeneration cycles at 350°C (using H₂ as a reductant) until a reproducible behavior was obtained.

After catalyst conditioning, Temperature Programmed Reaction (TPR) of NH₃ + ¹⁵NO, and Temperature

25 Programmed Surface Reaction (TPSR) of labeled nitrates with NH₃ or NH₃ + ¹⁴NO have been performed. In

26 a typical TPR experiment, a flow of 1000 ppm ^{15}NO and 1000 ppm NH_3 in He has been fed to the reactor at

27 40°C and then the temperature has been linearly increased to 400°C at a rate of 10°C/min.

28 In the case of TPSR experiments, labeled nitrates have been adsorbed on the catalyst surface at 350°C by

29 feeding ¹⁵NO (1000 ppm) + 3% v/v O₂ in He. This procedure leads to the formation of nitrate species^{21,22,23}.

1 After the storage a He purge at the same temperature has been carried out to desorb weakly adsorbed NOx

2 species, then the catalyst has been cooled down to 40°C under He flow. The reduction was eventually

3 carried out by admitting NH₃ (1000 ppm), in the absence or in the presence of NO (1000 ppm) in He and

4 heating the catalyst to 400°C.

5 Details about the procedure adopted for the quantification of the reaction products can be found elsewhere¹⁷.

6

7 Results and discussion

8 Adsorption of Nitrates and reduction with H₂

9 As preliminary experiments, the adsorption/reduction with H₂ of both unlabeled and labeled NO has been 10 investigated. Aim of these runs were to point out the reactivity of labeled/unlabeled stored NO_x species in the 11 reduction with H₂. Accordingly NO_x have been stored on the Pt-Ba/Al₂O₃ catalyst at 350°C starting from both 12 unlabeled and labeled NO and the stored species have been reduced with H₂. Figures 1 show the result 13 obtained in a typical storage/reduction cycle carried out with ¹⁵NO, being the results of storage/reduction

14 cycle carried out with unlabeled NO already published in previous work^{10,23}.

15 In the case of NO_x storage from labeled ¹⁵NO (Figure 1), an initial complete ¹⁵NO uptake is observed,

16 followed by ¹⁵NO and ¹⁵NO₂ evolution. On the basis of previous FTIR studies on the unlabeled NO_x

17 adsorption accomplished under both *in situ* and *operando* conditions^{22,23}, nitrate ad-species are formed at

18 this temperature. The reduction of the stored ¹⁵NO_x with H₂ (right panel of Figure 1) leads to the initial

19 evolution of ¹⁵N₂, followed by labeled ammonia. This is expected according to the H₂ front model discussed

20 above, with nitrogen originating upon reaction of ammonia with NO_x stored downstream the H₂ front^{12,15,16}.

21 These results match those obtained in the case of NO/O₂, as expected, with the evolution of the unlabeled

species instead of that of labeled molecules. Notably, the runs with labeled molecules also served for the

23 calibration of labeled N₂ and NH₃ under the hypothesis that identical concentrations have been obtained in

24 the two experiments.

2 Fig.1 Adsorption of labeled ¹⁵NO 350°C by imposing a rectangular step feed of ¹⁵NO (1000 ppm) in flowing He + 3% v/v

3 4

1

O2 on Pt-Ba/Al2O3 catalyst

5 Reactivity of NH₃ with gaseous ¹⁵NO and labeled nitrates

6 In order to compare the reactivity of ammonia with gaseous ¹⁵NO and with labeled nitrates ad-species, NH₃-7 TPR and NH₃-TPSR have been carried out and results are shown in Figures 2 A and 2 B (NH₃-TPR and 8 NH₃-TPSR, respectively). 9 During the NH₃-TPR (Fig. 2A), a desorption of ammonia is observed at the beginning of the heating ramp. 10 Then, the NH₃ concentration decreases due to the reaction with gaseous ¹⁵NO. The onset temperature of the 11 reaction is near 100-120°C, as pointed out by the evolution of the reaction products and by the consumption of NO. The formation of only labeled species like ¹⁵N₂O, ¹⁵N¹⁴N and minor amounts of ¹⁵N¹⁴NO are initially 12 13 observed. Near 160°C, in correspondence with the complete consumption of NO, a drop in the concentration 14 of nitrous oxides is observed and the reaction is very selective towards N2. The concentration of ammonia is 15 near 400 ppm and, together with the complete consumption of NO, is in line with the stoichiometry of the 16 following reaction: $6 \text{ NO} + 4 \text{ NH}_3 \rightarrow 5 \text{ N}_2 + 6 \text{ H}_2\text{O}$ 17 (1)

18 Accordingly these results indicate that the reaction is poorly selective to N_2 at low temperatures, in the 19 presence of gaseous NO; above the temperature at which complete NO consumption is observed (160 °C) 20 the reaction becomes very selective to N₂. Concerning the isotopic distribution, only labeled nitrous oxide molecules have been observed (i.e. both single- ¹⁵NNO and double-labeled ¹⁵N₂O), whereas all N₂ isotopes 21 22 have been detected with abundance of the single labeled ¹⁵N¹⁴N species.

Fig.2 - (A) TPR run with NH₃ (1000 ppm) and ¹⁵NO (1000 ppm) in He from 40 to 400°C, 10°C/min; (B) TPSR run with NH₃ (1000ppm) from 40 to 400°C, 10°C/min, after ¹⁵NO_x adsorption at 350°C of 1000 ppm ¹⁵NO + O₂ 3% v/v in He, over Pt-Ba/Al₂O₃ catalyst

5

Figure 2B shows the results obtained when ammonia is contacted with stored NO_x instead of gaseous NO
(NH₃-TPSR). Labeled nitrates have been stored onto the catalyst surface in this case. As already discussed
in a previous work¹⁷, after an initial desorption ammonia consumption is observed accompanied by the
evolution of N₂. The onset of the reaction can be set above 150 °C where N₂ evolution is seen. Notably, no
N₂O formation is observed in this case; accordingly, in line with previous literature reports, the reduction of

11 nitrates with ammonia is very selective towards $N_2^{12,13,15,16}$.

12 The consumption of ammonia (0.6 mmol/ g_{cat}) and the formation of N₂ (0.5 mmol/ g_{cat}) roughly obey to the

13 stoichiometry of reaction (2):

14 3 Ba(NO₃)₂ + 10 NH₃ \rightarrow 8 N₂ + 3 BaO + 15 H₂O (2)

15 in line with the presence of nitrates on the catalyst surface. Concerning the isotopic distribution, all nitrogen

- 16 isotopes have been observed, with overall abundance of the unlabeled $^{14}\text{N}_2$ and the single labeled $^{15}\text{N}^{14}\text{N}$
- 17 (respectively 44% and 37%).
- 18 The comparison between the NH₃-TPR and -TPSR runs points out the different onset temperature of the
- 19 gaseous and stored NO_x. In fact the reaction between ammonia and the stored nitrates starts at higher
- 20 temperature if compared to the reaction with gas-phase NO (150°C vs 100°C), indicating the higher reactivity

of gaseous NO with respect to the adsorbed NOx species. Also, the reduction of the stored nitrates is very
 selective to N₂.

3

4 Reactivity of stored ¹⁵nitrates in the presence of NO

5 The reactivity of the stored nitrates with NH₃ in the presence of gas-phase NO has also been investigated. In 6 this case nitrates have been stored onto the catalyst surface starting from labeled ¹⁵NO and a NH₃-TPSR 7 experiment has been carried out in the presence NO in the gas phase. The results are shown in Figure 3 B 8 where they are compared to a similar experiment carried out in the absence of adsorbed nitrates (Figure 3 A, 9 NH₃-TPR).

10 The run carried out in the absence of adsorbed nitrates (Figure 3 A) parallel the analogous experiment 11 carried out with labeled NO and displayed in Figure 2 A, confirming that the reactivity of unlabeled and 12 labeled NO is the same. In fact the reaction between NH₃ and NO is seen above 100°C with formation of 13 N₂O and of N₂; above 170°C where complete consumption of NO is observed, a drop in the concentration of 14 N₂O is observed and the reaction is completely selective to N₂. The consumption of ammonia is not complete 15 due to the excess of inlet ammonia concentration with respect to the stoichiometry of reaction (1). 16 In the case of NH₃+NO-TPSR (Figure 3 B), the desorption of ammonia is observed at first, and then it is 17 consumed along with gaseous NO. Formation of reaction products is monitored starting from 120°C with 18 evolution of unlabeled molecules only, i.e. ¹⁴N₂O and ¹⁴N₂. This indicates that at low temperatures only 19 gaseous NO is involved in the reaction with NH₃. Near 180°C the concentration of gaseous ¹⁴NO and ¹⁴N₂O 20 drops to zero, the concentration of unlabeled N₂ further increases and simultaneously the production of single and double labeled N₂ (i.e. ${}^{14}N{}^{15}N$ and ${}^{15}N{}_{2}$) is observed. No significant formation of either single 21 labeled ¹⁴N¹⁵NO or double labeled ¹⁵N₂O is detected. 22

23 Notably, at temperature higher than 375°C, the concentration of labeled N₂ isotopes drop to zero and NH₃ 24 evolution is observed. Since the stored nitrates are the only source of labeled ¹⁵N atoms, this indicates that 25 above 375°C the surface has been cleaned from the nitrates and the reaction involves gaseous NO only. 26 Comparing the NH₃+NO-TPSR run (Figure 3B) with the NH₃-TPSR (Figure 2B) it clearly appears that the 27 formation of N₂O is related to the presence of gaseous NO, since no N₂O is observed in the reduction of the 28 stored nitrates in the absence of gaseous NO. The results also confirm the lower reactivity of the stored 29 nitrates if compared to gas-phase NO. Notably, the reactivity of NH₃ with gaseous NO seems to be slightly 30 inhibited by the presence of the stored nitrates. In fact, the reaction onset of the NH₃ + NO reaction is seen

- 1 near 100°C in the absence of stored nitrates (Figure 3 A), and near 120°C in the presence of the surface
- 2 nitrates (Figure 3B).

3

7

Fig.3 - (A) TPR run with NH₃ (1000 ppm) and NO (1000 ppm) in He from 40 to 400°C, 10°C/min; (B) TPSR run with NH₃
 (1000ppm) + NO (1000ppm) from 40 to 400°C, 10°C/min, after ¹⁵NO_x adsorption at 350°C of 1000 ppm ¹⁵NO + O₂ 3%
 v/v in He, over Pt-Ba/Al₂O₃ catalyst

8 Pathways for N₂ and N₂O formation

9 The results of NH₃-TPR and –TPSR reported above point out that nitrates stored onto the Pt-Ba/Al₂O₃ LNT

10 catalyst are selectively reduced by NH_3 to N_2 , whereas the presence of gas-phase NO leads to a significant

11 formation of N₂O at low temperature. However when NO is fully consumed, the reaction becomes very

12 selective to N₂. Gas-phase NO is also slightly more reactive than the stored nitrates, as pointed out by the

13 comparison of the temperature onset for the NH₃-TPR and –TPSR reaction (100-120 °C vs. 160 °C).

14 Concerning N₂ formation, the evolution of all types of nitrogen isotopes (the single labeled ¹⁵N¹⁴N species,

15 and the double labeled ¹⁵N₂ and ¹⁴N₂ molecules) has been observed in the experiments with labeled NO or

16 labeled nitrates. This clearly points out the occurrence, in the formation of nitrogen, of self-coupling reactions

17 of unlabeled and labeled N-species, and from the coupling of labeled and unlabeled species as well. On the

- 18 other hand, labeled N₂O molecules have been detected when labeled NO is used, and unlabeled N₂O
- 19 starting from ¹⁴NO. This clearly indicates that gaseous NO is involved in N_2O formation.
- 20 A schematic pathway for the formation of nitrogen and nitrous oxide during the reduction by NH₃ of gaseous
- ¹⁵NO and labeled nitrates adsorbed over Pt-Ba/Al₂O₃ is displayed in Figure 4. In the presence of ammonia at

1 sufficiently high temperatures, the Pt sites become reduced and this is the driving force for the onset of the 2 reduction process of gaseous ¹⁵NO and/or of the stored ¹⁵NO_x. Figure 4 depicts NO_x species located on Ba 3 sites near Pt, but the same figure applies for NOx stored on Ba sites far away from Pt when the migration 4 (surface diffusion) of the stored ¹⁵NO_x towards the reduced Pt sites is considered²⁴. The ¹⁵NO_x species are 5 hence decomposed at the reduced Pt sites with formation of a pool of O- and ¹⁵N-adatoms. These latter 6 react with N-adspecies derived from NH₃ decomposition onto the Pt sites, eventually leading to the formation 7 of the various N₂ isotopes ^{6,11,25, 26, 27, 28, 29} whose abundance is expected to be determined by the surface 8 concentration on ¹⁴N- and ¹⁵N-adatoms (statistical recombination).

9 10

Fig.7 Reaction pathway for ¹⁵NO_x reduction over Pt–Ba/Al₂O₃ catalyst

11

12 As a matter of facts, in the reduction of gas-phase ¹⁵NO with NH₃ in the absence of oxygen (Figure 2 A), where the reaction proceeds according to the stoichiometry of reaction (1), the expected statistical nitrogen 13 isotope distribution based on the stoichiometry of the reaction is ${}^{14}N^{15}N/{}^{15}N_2/{}^{14}N_2 = 48/36/16$, which is 14 15 reasonably close to the measured average N₂ isotope distribution of the run in Figure 2 A at temperatures 16 above 180°C ($^{14}N^{15}N/^{15}N_2/^{14}N_2 \approx 57/29/14$), although a slight excess of the single labeled isotope is 17 observed. In fact N₂ formation might involve a different pathway as well, i.e. the coupling of NO- and NH₃-18 derived intermediates (SCR pathway), as suggested by Kondratenko and Baerns²⁵, and leading to the 19 selective formation of the single labeled nitrogen molecule (¹⁵NN). The presence of significant amounts of 20 both the double labeled and of the unlabeled N₂ isotopes and the observation that the observed isotopic

distribution is reasonably close to that expected from the statistical recombination clearly rules out the SCR
 pathway as unique route for N₂ formation, although its contribution is also likely.

3 Similar conclusion can also be derived for the reduction of the stored labeled nitrates (NH₃-TPSR), Figure 3 4 B. Also in this case the formation of only the mixed ¹⁴N¹⁵N species is not possible in view of the 5 stoichiometric ratio between the ¹⁴N- and ¹⁵N-containing reactants (reaction (2)), and the formation of the 6 double labeled ¹⁴N₂ isotope is expected. As a matter of fact, the NH₃-TPSR of nitrates (Figure 2 B) has led to 7 the formation of all the possible N₂ isotopes, with an average ${}^{14}N^{15}N^{14}N^{15}N_2$ isotopic distributions near 8 37/44/19. The presence of the double labeled N₂ isotope points out to the occurrence of a self-coupling 9 reaction of NO_x-derived intermediates, again ruling out the occurrence of a SCR pathway as unique pathway 10 for N₂ formation. However, as pointed out in a previous work¹⁷, the reduction of nitrites (instead of nitrates) 11 gives initially the selective formation of the mixed ¹⁵N¹⁴N isotope, in line with the occurrence of a SCR-like 12 pathway. Hence, also in the case of nitrates the occurrence of a SCR-like pathways is also likely in 13 explaining the abundance of the ¹⁴N¹⁵N species.

The results obtained in the reduction of both the stored nitrates and NO (Figure 3 B) pointed out the greater reactivity of gaseous NO if compared to stored NO_x. Apparently, stored nitrates are reduced by ammonia left from the reaction with NO (the inlet NH₃ concentration exceeds the stoichiometry of reaction (1)) and the relative concentrations of the ¹⁵NN and ¹⁵N₂ isotopes resemble those observed in the absence of NO (Figure 2B), with ¹⁵NN prevailing over ¹⁵N₂ (the high unlabeled N₂ concentration comes from the NH₃ + NO reaction). Hence nitrogen formation upon reduction of the stored NO_x is apparently not altered by the concomitant reduction of gas-phase unlabeled NO.

21 Concerning the formation of N₂O, negligible amounts of nitrous oxide have been observed during the TPSR 22 with adsorbed nitrates (Figure 2 B), whereas relevant quantities of N₂O have been detected in the runs in the 23 presence of NO (Figures 2 A and 3). The data converge in indicating that N₂O formation involve the presence of gaseous NO: in the NH₃ +¹⁵NO reaction, the formation of only labeled N₂O molecules has been 24 25 observed, whereas in the NH₃ + NO reaction in the presence of labeled stored nitrates no formation of 26 labeled N₂O has been observed. This is in line with literature proposals^{,30} indicating that nitrous oxide 27 formation involves either the coupling of two adsorbed NO molecules or the recombination of an adsorbed 28 NO molecule with an adsorbed NH_x fragment.

Notably, nitrous oxide formation is strongly affected by temperature: in fact above 180 °C N₂O formation
 becomes negligible. It is suggested that at high temperatures NO dissociation is favored since Pt is kept in a

reduced state by ammonia, and this prevents N₂O formation due to the lack of molecularly adsorbed NO
species. However, the possibility that N₂O is decomposed to N₂ and O₂ over reduced Pt sites is also likely,
as suggested by Cant et al.³¹. This route may contribute only to the formation of labelled N₂ molecules in the
experiment of Figure 2 A and of unlabeled N₂ in Figure 3 B in view of the fact that N₂O reduction does not
involve the cleavage of the N-N bond³¹.

6

7 Conclusions.

8 In this paper mechanistic aspects involved in the formation of N₂ and N₂O during the reduction with ammonia
9 of gaseous NO and of NO_x stored over a model Pt-Ba/Al₂O₃ NSR catalyst have been investigated by means
10 of isotopic labeling experiments.

11 The reduction of gaseous labeled NO with unlabelled NH₃ leads to the formation of N₂O at low temperature 12 (below 180°C), and of N₂ at high temperature. The presence of all possible isotopes has been observed in the case of N₂ ($^{15}N_2$, $^{14}N_2$ and the mixed $^{15}N^{14}N$ molecule), whereas only labeled molecules have been 13 14 detected in the case of N₂O. Based on the chemistry for the NO and NH₃ reaction on Pt-based catalysts, it 15 has been suggested that nitrous oxide formation involves either the coupling of two adsorbed NO molecules 16 or the recombination of an adsorbed NO molecule with an adsorbed NH_x fragment. On the other hand, the 17 observed N₂ product distribution can be explained on the basis of the statistical coupling of ¹⁵N- and ¹⁴N-18 adatoms originated upon NH₃ and NO_x decomposition on Pt. However, the slight excess of the mixed ¹⁵N¹⁴N 19 molecule suggests that SCR-like pathway operates as well in the reduction process. Indeed, in the case of 20 NH₃-SCR reaction, it has been shown that the reaction between unlabeled ammonia (¹⁴NH₃) and labeled NO (¹⁵NO) leads to the selective formation of the single-labeled nitrogen molecule (¹⁵N¹⁴N)¹⁷, indicating that one 21 22 N-atom comes from ammonia and the other from NO, as in the present case.

As opposite to the $NH_3 + NO$ reaction, the reduction of the stored labelled nitrates with unlabelled NH_3 leads to the selective formation of N_2 , and again the presence of all possible isotopes has been observed. The observed product distribution can be explained on the basis of the statistical coupling of ¹⁵N- and ¹⁴N-

adatoms originated upon NH₃ and NO_x decomposition on Pt, but the occurrence of a SCR pathway is also
likely.

Finally, the absence of N₂O in this case points out the lack of any significant NO release at low temperatures: in fact when the reduction of the labeled stored NO_x is carried out in the presence of unlabeled gaseous NO,

- unlabeled N₂O formation is greatly enhanced. Besides, gaseous NO shows a higher reactivity if compared to
- the stored NO_x in the reduction with ammonia.

1 References

(1) Johnson, T.V. Diesel Emission Review. SAE Int. J. of Engines , 2011. 4, 143

(²) Granger, P.; Parvulescu, V. I.Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies, 2011, 111, 3155

(³) Baiker, R.S. NO_x Storage-reduction catalysis: From mechanism and materials properties to storage-reduction performance. Chem. Rev. 2009, 109, 4054

(⁴) Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tateishi, S.; Kasahara K. The new concept 3-way catalyst for automotive lean-burn engine: NO_x storage and reduction catalyst. Catal. Today 1996, 27, 63.

(⁵) Epling, W.; Campbell, L.; Yezerets, A.; Currier, N.; Parks, J. Overview of the Fundamental Reactions and Degradation Mechanism of NOx Storage/Reduction Catalysts. Catal. Rev. Sci. Eng. 2004, 46, 163

(⁶) Miyoshi, N.; Matsumoto, S.; Katoh, K.; Tanaka, T.; Harada, J.; Takahashi, N.; Yokota, K.; Sugiura, M.; Kasahara, K. Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines. SAE Technical Paper 950809. 1995

(⁷) Castoldi, L.; Bonzi, R.; Lietti, L.; Forzatti, P. Catalytic behaviour of hybrid LNT/SCR systems: Reactivity and in situ FTIR study. J. Catal. 2011, 1, 128

(8) Toops, T.J.; Smith, D.B; Partridge, W.P.; NO_x adsorption on Pt/K/Al₂O₃. Cat.Tod.2008, 114, 112

(⁹) Konsolakis, M.; Yentekakis, I.V. Strong Promotional effects of Li, K, Rb and Cs on the Pt-catalysed reduction of NO by propene. Appl. Catal. B. 2001, 29, 103

(¹⁰) Nova, I.; Lietti, L.; Castoldi, L.; Tronconi, E.; Forzatti, P. New Insights in the NO_x Reduction Mechanism with H₂ over Pt-Ba/γ-Al₂O₃ Lean NO_x Trap Catalysts under near-isothermal Conditions J. Catal. 2006, 239, 244

(¹¹) Breen, J.P.; Burch, R.; Fontaine-Gautrelet, C.; Hardacre, C.; Rioche, C. Insight into the key aspects of the regeneration process in the NO_x storage reduction (NSR) reaction probed using fast transient kinetics coupled with isotopically labelled ¹⁵NO over Pt and Rh-containing Ba/Al₂O₃ catalysts. Appl. Catal. B Env.2008, 81, 150

(¹²) Lietti, L.; Nova, I.; Forzatti, P. Role of Ammonia in the Reduction by Hydrogen of NO_x Stored over Pt-Ba/Al₂O₃ Lean NO_x trap Catalysts. J. Catal. 2008, 257, 270

(¹³) Cumaranatunge, L.; Mulla, S.S.; Yezerets, A; Currier, N.W.; Delgass, W.N.; Ribeiro, F.H. Ammonia is a hydrogen carrier in the regeneration of Pt/BaO/Al₂O₃ NO_x traps with H₂, J. Catal. 2007, 246, 29

(¹⁴) Bhatia, D.; Harold, M. P.; Balakotaiah, V. Modeling the effect of Pt dispersion and temperature during anaerobic regeneration of a lean NO_x trap catalyst, Cat.Tod. 2010, 151, 314

(¹⁵) Nova, I.; Lietti, L.; Forzatti, P. Mechanistic Aspects of the Reduction of Stored NO_x over Pt-Ba/Al₂O₃ Lean NO_x Trap Systems. Catal. Today 2008, 136, 128

- (¹⁶) Forzatti, P.; Lietti, L.; Nova, I. On Board Catalytic NO_x Control: Mechanistic Aspects of the Regeneration of Lean NO_x Traps with H₂. Energy. Environ. Sci. 2008, 1, 236
- (17) L. Lietti, N. Artioli, L. Righini, L. Castoldi, P. Forzatti, Ind. Eng. Chem. Res. 2012, 51, 7597
- (18) B. Pereda-Ayo, J.R. González-Velasco, R. Burch, C. Hardacre, S. Chansai J. Catal. 2012, 285, 177
- (19) N. Miyoshi, T. Tanizawa, K. Kasahara, S. Tateishi, European Patent Application 0 669 157 A1, 1995

(²⁰) Nova, I.; Castoldi, L; Prinetto, F.; Dal Santo, V.; Lietti, L.; Tronconi, E.; Forzatti, P.; Ghiotti, G.;. Psaro, R.; Recchia, S. NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and reactivity study. Top. Catal. 2004, 30/31, 181

(²¹) Prinetto, F.; Ghiotti, G.; Nova, I.; Castoldi, L.; Lietti, L.; tronconi, E.; Forzatti, P. In situ Ft-IR and reactivity study of NO_x storage over Pt–Ba/γ-Al₂O₃ catalysts. Phys. Chem. Chem. Phys. 2003, 5, 4428

(²²) Nova, I.; Castoldi L.; Lietti L.; Tronconi, E.; Forzatti, P.; Prinetto, F.; Ghiotti, G. NO_X adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments. J. Catal 2004, 222, 377

(²³) Lietti, L.; Daturi, M.; Blasin-Aubé, V.; Ghiotti, G.; Prinetto, F.; Forzatti, P. Relevance of nitrite route in the NO_x adsorption mechanism over Pt-Ba/Al₂O₃, NSR catalysts investigated by FT-IR operando spectroscopy. Chem Cat. Chem. 2012, 4, 55

(²⁴) Kumar, A.; Harold, M.P.; Balakotaiah, V. Isotopic studies of NO_X storage and reduction on Pt/BaO/Al₂O₃ catalyst using temporal analysis of products. J.Catal. 2010, 270, 214

(²⁵) Kondraratenko, V. A.; Baerns, M. Mechanistic insights into the formation of N₂O and N₂ in NO reduction by NH₃ over a polycrystalline platinum catalyst. Appl. Catal. B, 2007, 70, 111

(²⁶) Van Tol, M.F.H.; Siera, J.; Cobden, P.D.; Nieuwenhuys, B.E. Oscillatory behaviour of the reduction of NO by H₂ over Rh. Surface Sci., 1992, 274, 63

(²⁷) Nova, I.; Castoldi, L. ; Lietti, L.; Tronconi, E.; Forzatti, P.; Prinetto, F.; Ghiotti, G. The Pt-Ba interaction in Lean NO_x Trap systems. SAE Technical Paper 2005-01-1085

(²⁸) Nova, I.; Castoldi, L.; Lietti, L.; Tronconi, E.; Forzatti, P. A Low Temperature Pathway Operating the Reduction of Stored Nitrates in Pt-Ba/Al₂O₃ Lean NO_x Trap Systems. SAE Technical Paper 2006-01-1368

(²⁹) Perez-Ramirez, J.; Kondratenko, E.V.; Kondratenko, V.A.; Baerns, M. Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: Secondary interactions of NH₃ and NO. J.Catal. 2005, 229, 303

(³⁰) Burch, R.; Shestov, A. A.; Sullivan J. A. A Steady-State Isotopic Transient Kinetic Analysis of the NO/O₂/H₂ Reaction over Pt/SiO₂ Catalysts. J. Cat. 1999, 188, 69

(³¹) Cant, N.W; Chambers, D.C.; Liu, I.O.Y. The reduction of ¹⁵N¹⁴NO by CO and by H₂ over Rh/SiO₂: a test of a mechanistic proposal. J. Catal. 2011, 278, 162