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Abstract. The paper discusses various regularity properties for solutions to a scalar,

1-dimensional conservation law with strictly convex flux and integrable source. In turn,

these yield compactness estimates on the solution set. Similar properties are expected

to hold for 2× 2 genuinely nonlinear systems.

1. Introduction. Consider a strictly hyperbolic system of conservation laws in one

space dimension

ut + f(u)x = 0. (1.1)
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434 F. ANCONA ET AL.

It is well known that (1.1) generates a Lipschitz continuous semigroup of entropy weak

solutions [4, 6–8, 10, 12, 15, 23, 28, 31], on a domain of suitably small BV functions. The

later papers [11, 35, 36] constructed a semigroup on a domain of functions with large,

but finite total variation. In essence, these results show that the Cauchy problem has

a unique solution, which depends continuously on the initial data as long as the total

variation remains bounded.

Unfortunately, no general result is known about the global existence of BV solutions

with large data. On one hand, a counterexample by Jenssen shows that, for some strictly

hyperbolic systems, the total variation can blow up in finite time [33]. On the other

hand, no such example is known for any physical system endowed with a strictly convex

entropy. By the analysis in [2], the total variation of approximate solutions constructed

by the Godunov scheme can become arbitrarily large. More recently in [9] an example

was constructed of a piecewise Lipschitz approximate solution to the 2 × 2 system of

isentropic gas dynamics where:

• wave strengths across interactions are the same as in exact solutions,

• rarefaction waves decay, due to genuine nonlinearity,

• the only error is due to slightly wrong wave speeds,

• and yet, the total variation blows up in finite time.

This indicates that there is no fundamental obstruction to the finite time blow-up for

such system. Indeed, the issue of global boundedness vs. finite time blow-up of the total

variation seems to hinge on the particular order in which various waves can interact with

each other.

In view of the above remarks, one may try to study solutions to conservation laws in a

wider space of L1 functions, without restrictions on the total variation. In this direction,

a major goal is to understand under which conditions the semigroup generated by a

system such as (1.1) can be extended to a domain of L∞ functions. At present, this is

known only in the scalar case [19,34], and for some special systems of Temple class [13],

or in triangular form [14]. We remark that, even in the case of 2× 2 systems with initial

data having small oscillation, studied in the classical memoir by Glimm and Lax [29] (see

[5] for a shorter existence proof based on front-tracking approximations) the uniqueness

of solutions remains an elusive open problem.

For 2 × 2 systems, the main tool for constructing weak solutions with large data is

provided by compensated compactness, introduced by DiPerna in his famous paper [27].

While other existence theorems based on compactness rely on quantitative estimates on

the regularity of solutions (say, an a priori bound on a Hölder norm, a Sobolev norm, or

on the total variation), compensated compactness remains like a “black box”. Arguing by

contradiction, one establishes the existence of a solution, but without further information

on its uniqueness or qualitative properties. See [18] for some of the few results in this

direction.

Aim of the present note is to discuss the possible regularity properties of L∞ solutions

to hyperbolic conservation laws (1.1). Two main cases will be considered:

(i) Scalar balance laws with convex flux and integrable source:

ut + f(u)x = g(t, x). (1.2)
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THE REGULARITY OF SOLUTIONS TO BALANCE LAWS 435

(ii) Strictly hyperbolic, genuinely nonlinear 2× 2 hyperbolic systems of conservation

laws. For such systems, choosing coordinates (w1, w2) consisting of Riemann in-

variants, we observe that solutions to the system (1.1) satisfy the nonconservative

system in diagonal form⎧⎨
⎩
w1,t + λ1(w1, w2)w1,x = μ1,

w2,t + λ2(w1, w2)w2,x = μ2,
(1.3)

where μ1, μ2 are bounded measures, concentrated on the set of curves where

w1, w2 have jumps. By genuine nonlinearity, the characteristic speeds satisfy

λ1,w1
> 0, λ2,w2

> 0. We show that, when μ1 = μ2 = 0, solutions to (1.3) can

be constructed so that each component satisfies a one-sided Lipschitz estimate.

This suggests that solutions to (1.3) share similar regularity properties as the

solutions to the scalar balance law (1.2).

The remainder of the paper is organized as follows. In Section 2 we review some

regularity properties of scalar conservation laws with convex flux, and quantitative com-

pactness estimates. The examples presented in Section 3 show that solutions to Burgers’

equation with an integrable source, in spite of their compactness properties, can exhibit

a rather wild behavior. In Section 4 we still consider solutions to a scalar balance law

with strictly convex flux and a source g ∈ L1. Toward an alternative compactness es-

timate, we consider the number N(t) of times that the solution profile u(t, ·) crosses

up or down a given interval [a, b] ∈ R. Some conjectures are discussed, bounding this

number of crossings. Section 5 is concerned with solutions to the 2 × 2 strictly hyper-

bolic, genuinely nonlinear system of conservation laws (1.1). We observe that, working

in Riemann coordinates, it is possible to define an auxiliary flow of piecewise Lipschitz

functions where each component satisfies one-sided Lipschitz decay estimates. In turn,

the entropic solutions to (1.1) can be approximated by periodically adding to this flow a

source term g, globally bounded in L1. This leads to the conjecture that L∞ solutions to

(1.1) may share the same regularity properties as solutions to scalar balance laws with

L1 source.

2. The scalar balance law. In this section we consider a scalar conservation law

ut + f(u)x = 0, (2.1)

where f is a smooth flux. It is well known [19,34] that in this case there exists a semigroup

{St; t ≥ 0} which is contractive in L1(R) and such that, for every initial datum

u(0, ·) = ū ∈ L1(R), (2.2)

the trajectory t �→ u(t) = Stū is the unique entropy weak solution of the Cauchy problem.

2.1. A family of positively invariant domains. Let A be a (possibly multivalued) non-

linear operator generating a contractive semigroup {St; t ≥ 0} on a Banach space X.

As in [21], this means that each trajectory t �→ u(t) = Stū is the limit of a convergent

sequence of Backward Euler approximations for the abstract Cauchy problem

d

dt
u(t) = Au(t), u(0) = ū. (2.3)
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436 F. ANCONA ET AL.

In this setting, the paper [20] introduced a definition of “generalized domain” D for the

generator A, namely

D .
=

{
ū ∈ X; χ(ū)

.
= sup

0<t<1

‖Stū− ū‖
t

< +∞
}
. (2.4)

This consists of all initial data ū for which the trajectory t �→ Stū is globally Lipschitz

continuous. Notice that, for the scalar conservation law (2.1), we have

L1 ∩BV ⊆ D.

Furthermore, it was observed in [3] that a particular class of semigroup generators had

regularizing properties, as in the case of linear analytic semigroups.

Motivated by the theory of fractional powers of sectorial operators [30, 37], together

with (2.4) for 0 < α < 1 we define the intermediate domains

Dα
.
=

{
ū ∈ X; sup

0<t<1
t−α

∥∥Stū− ū‖ < +∞
}
. (2.5)

These contain all the initial data whose trajectories are Hölder continuous with exponent

α. Recalling the definition of χ(ū) at (2.4), one can also consider the domains

D̃α
.
=

{
ū ∈ X; sup

0<t<1
t1−α · χ(Stū) < +∞

}
. (2.6)

It is easy to check that D̃α ⊆ Dα, for any 0 < α < 1. Indeed, if ū ∈ D̃α, there exists a

constant C such that

χ(Stū) ≤ Ctα−1 for all t > 0.

In addition, for every t, s > 0 there holds

‖St+sū− Stū‖ ≤ s · χ(Stū) ≤ s · Ctα−1. (2.7)

Choosing tk = 2−kt, k = 0, 1, 2 . . ., and applying (2.7) with s = tk = 2−kt, we thus

obtain

‖Stū− ū‖ ≤
∑
k≥1

‖Stk−1
ū− Stk ū‖ ≤

∑
k≥1

(2−kt) · C(2−kt)α−1 = tα · C

1− 2−α
.

In connection with the semigroup generated by a conservation law (2.1), we expect

that the definitions (2.5) or (2.6) will identify some interesting, positively invariant sub-

domains.

In the following, we shall assume that the flux function f is strictly convex, so that

f ′′(u) ≥ c > 0 for all u ∈ R. (2.8)

For convenience, in this section we shall consider solutions of (2.1) or (1.2) within the

space of periodic functions, so that u(x+ 1) = u(x) for all x. This comes with the norm

‖u‖L1
per

.
=

∫ 1

0

∣∣u(x)∣∣ dx. (2.9)

Of particular interest is to understand the range of solutions to the balance law (1.2),

where the spatially periodic source term g satisfies∥∥g(t, ·)∥∥
L1

per
≤ C for all t ≥ 0. (2.10)
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We claim that, for every τ > 0, the solution u(τ, ·) to (1.2) lies in an intermediate domain

of the form (2.6), with α = 1/2.

Proposition 2.1. Let the flux function f satisfy (2.8). Consider a spatially periodic

solution u of (1.2), where g satisfies (2.10). Then for every τ > 0 one has u(τ ) ∈ D1/2.

Proof. Let t �→ u(t) be any solution to (1.2), and fix τ > 0. Using (2.10) and the fact

that the scalar conservation law generates a contractive semigroup, for every ε > 0 and

0 < δ < τ we obtain∥∥Sεu(τ )− u(τ )
∥∥
L1

per
≤
∥∥Sεu(τ )− SεSδu(τ − δ)

∥∥
L1

per
+
∥∥SεSδu(τ − δ)− Sδu(τ − δ))

∥∥
L1

per

+
∥∥Sδu(τ − δ)− u(τ )

∥∥
L1

per

≤ Cδ + ε · χ
(
Sδu(τ − δ)

)
+ Cδ. (2.11)

By (2.10) it also follows

‖u(τ − δ)
∥∥
L1

per
≤ ‖ū‖L1

per
+ Cτ. (2.12)

Moreover, if v(x) =
(
Sδu(τ − δ)

)
(x), then v satisfies the one-sided Lipschitz estimate

f ′(v(x))− f ′(v(y)) ≤ x− y

δ
for all x > y. (2.13)

Combining (2.12) with (2.13) we conclude

χ(v) ≤ 2 sup
x∈[0,1]

∣∣f ′(v(x))
∣∣ ≤ 2 sup

{∣∣f ′(ω)
∣∣; |ω| ≤ ‖ū‖L1

per
+ Cτ

}
+

2

δ
≤ C1

δ
, (2.14)

for some constant C1 and all δ ∈]0, 1]. Inserting (2.14) into (2.11) and choosing δ = ε1/2

one obtains the desired estimate:∥∥Sεu(τ )− u(τ )
∥∥
L1

per
≤ Cε1/2 + ε · C1

ε1/2
+ Cε1/2.

�
2.2. Quantitative compactness estimates. Consider again the balance law (1.2), in the

spatially periodic case.

If the flux function f is strictly convex, the semigroup S generated by the conservation

law without source is compact. More precisely, for every τ > 0 and M > 0, the set

Kτ
.
=

{
Sτ ū; ‖ū‖L1

per
≤ M

}
is compact. Indeed, by (2.8), the Oleinik’s one-sided Lipschitz conditions yield

(Sτ ū)(x)− (Sτ ū)(y) ≤ x− y

cτ
for all x < y,

and hence, over the interval x ∈ [0, 1],

Tot.Var.(Sτ ū) ≤ 2

cτ
for all ū.

By the contraction property one has ‖Sτ ū‖L1
per

≤ M . Therefore, for any ε > 0 the set

of functions Kτ ⊂ L1 can be covered by a finite number of balls in L1 with radius ε.
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See [1,26] for more precise quantitative estimates on the number of balls needed for this

covering.

Here we observe that, for solutions to balance laws in L1(R), a relaxed version of the

one-sided Lipschitz condition remains valid, which is equally useful to achieve compact-

ness.

Proposition 2.2. Let u = u(t, x) be a solution to the balance law (1.2), assuming that

f ′′(u) ≥ c > 0,
∥∥g(t, ·)∥∥

L1(R)
≤ C, (2.15)

for all u, t. Then, for every T > 0 and ε > 0, there exists a subset Vε ⊂ R, with

meas(Vε) ≤ Cε1/2, (2.16)

such that

u(T, y)− u(T, x) ≤ 2ε1/2 +
y − x

cε
for all x, y /∈ Vε, x < y. (2.17)

Proof. Given T > ε > 0, let v be the solution to the conservation law without source

vt + f(v)x = 0, v(T − ε, x) = u(T − ε, x). (2.18)

The second inequality in (2.15) implies

‖v(T )− u(T )‖L1 ≤ Cε. (2.19)

Calling

Vε =
{
x ∈ R;

∣∣v(T, x)− u(T, x)
∣∣ > ε1/2

}
,

by (2.19) it follows (2.16).

Next, for x, y /∈ Vε, x < y, by Oleinik’s inequality and the triangle inequality we

conclude

u(T, y)− u(T, x) ≤ 2ε+ v(T, y)− v(T, x) ≤ 2ε1/2 +
y − x

cε
.

�

3. Examples of solutions to scalar balance laws. Throughout this section we

consider Burgers’ equation with an integrable source term:

ut +

(
u2

2

)
x

= g(t, x), u(0, x) = ū(x) ∈ L1(R). (3.1)

As remarked earlier, relying on Oleinik’s inequalities one obtains good compactness es-

timates on the set of all solutions. Yet, the examples collected in this section show that

these solutions can be quite wild.

Example 3.1. We start with an elementary example showing that the total variation

of a solution to (3.1) can be infinite for all times t ≥ 0. Consider the constant in time

function

u(t, x) =

⎧⎨
⎩
x sin 1

x if |x| ≤ 1
π ,

0 otherwise.
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This is a stationary solution, with unbounded variation, of

ut + uux = g(x) =

⎧⎨
⎩
x sin2 1

x − sin 1
x cos 1

x if |x| ≤ 1
π ,

0 otherwise.
(3.2)

Notice that here the source term g(·) has bounded L1 norm. We remark that (3.2) can

be equivalently written as a conservation law with a Lipschitz continuous flux depending

also on the space variable x, namely

ut +

(
u2

2
−G(x)

)
x

= 0, G(x)
.
=

∫ x

0

g(y) dy.

Example 3.2. Using a bounded source g, we can also construct a solution with zero

initial data and such that, at time T = 1, it oscillates infinitely many times between 0

and 1/2 (see Fig. 1).

Choose a source g = g(t, x) such that, at time t1 = 1/2, the solution to (3.1) is the

tent function

u
(1
2
, x

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2x if x ∈
[
0, 14

]
,

1− 2x if x ∈
[
1
4 ,

1
2

]
,

0 otherwise.

(3.3)

Notice that, if no source is applied for t > 1
2 , this solution of Burgers’ equation with

initial data (3.3) remains continuous up to time t = 1.

Similarly, during the time interval

Ik = [tk−1, tk], tk = 1− 2−k,

we use the source g to construct an additional spike on the interval x ∈ Ik. Namely

u(tk, x) = min
{
2(x− tk−1), 2(tk − x)

}
x ∈ [tk−1, tk].

Notice that, if no source is applied for t ∈ [tk, 1], this solution remains continuous up to

time t = 1.

1/2

x

u(1,x)

u(    ,x)

u(    ,x)3/4

1/2

x1

1_
2

3_
4

1_
2

x

1/2 1/2

Fig. 1. The solution to (3.1) constructed in Example 3.2, which has
unbounded oscillation at time t = 1.
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Performing the same construction for all k ≥ 1, at time t = 1, the solution satisfies

u(1, tk−) = 1/2, u(1, tk+) = 0, for all k ≥ 1.

Notice, however, that the number of oscillations between 0 and 1/2 in infinite only at

the particular time t = 1.

Example 3.3. Given ε > 0, there exists a positive source function g ∈ L1
(
R+ × R

)
with

∥∥g∥∥
L1 ≤ ε, such that the solution to (3.1) with zero initial data satisfies the following

property. For every point (τ, y) with rational coordinates and with τ > 0, one has

lim
x→y−

u(τ, x) = +∞. (3.4)

The construction will be given in three steps.

1. Following [16], we first construct a function g such that the solution of (3.1) with

zero initial data blows up at the point (τ, y) = (1, 1). Define the source function

g(t, x) =

⎧⎪⎨
⎪⎩

1
1−t if x ∈ [a(t), b(t)] and 0 < t < 1,

0 if x /∈ [a(t), b(t)] or if t ≥ 1,

. (3.5)

where, for 0 < t < 1,

a(t)
.
=

∫ t

0

| ln(1− s)|ds = t+ (1− t) ln(1− t), b(t)
.
= 1 + (1− t) ln(1− t).

Since b(t) − a(t) = 1 − t, it is clear that ‖g(t, ·)‖L1 = 1 for t < 1. For 0 ≤ t < 1, the

solution of (3.1), shown in Fig. 2, left, satisfies

u(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

| ln(1− t)| if x ∈ [a(t), b(t)],

1−x
1−t , if x ∈ [b(t), 1],

0 if x /∈ [0, 1].

1

1

t

x100

P

−ln(1−t)

a(t) b(t)

u(t,x)

u

x

g

Fig. 2. Constructing a solution of Burgers’ equation with source,
that blows up in finite time. Left: the profile of u(t, ·) at some time
0 < t < 1. Right: sketch of the characteristics in the t-x plane. Here
P = (1, 1) is the blow up point.
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Note that, for t ∈ [0, 1[, we have

ux(t, x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
≥ 0 if 0 < x < a(t),

= 0 if a(t) < x < b(t),

≥ − 1
1−t if b(t) < x < 1,

hence no shock is formed for t < 1. The L∞ norm of this solution blows up as t → 1−.

Moreover, at time t = 1 one has

‖u(1, ·)‖L1 = 1, lim
x→1−

u(1, x) = +∞. (3.6)

2. Next, consider any point (τ, y) ∈]0, T ]× R and any n ≥ 1. We construct a source

gn with ‖gn‖L1 ≤ 2−nε and such that the corresponding solution to (3.1) blows up at

the point (τ, y). Choose δ = min{τ, 2−nε}. Then consider the rescaled function

un(t, x) =

⎧⎨
⎩
0 if t /∈]τ − δ, τ [,

u
(

t−(τ−δ)
δ , x−(y−δ)

δ

)
if t ∈]τ − δ, τ [.

(3.7)

Notice that we are shifting the blow up point P = (1, 1) of u to the blow up point

Pn = (τ, y) of un. The function un satisfies the balance law

ut +

(
u2

2

)
x

= gn,

where

gn(t, x)
.
=

⎧⎨
⎩
0 if t /∈]τ − δ, τ [,

1
δ g

(
t−(τ−δ)

δ , x−(y−δ)
δ

)
if t ∈]τ − δ, τ [.

(3.8)

This yields

‖gn‖L1 = δ · ‖g‖L1 = δ.

3. We now arrange all rational points inside ]0, T ]×R into a sequence Pn = (tn, xn).

For each n ≥ 1, consider the source function gn defined as in (3.8), with (τ, y) replaced

by (tn, xn). We then define the source

G(t, x)
.
=

∑
n≥1

gn(t, x).

This implies

‖G‖L1 =
∑
n≥1

‖gn‖L1 ≤
∑
n≥1

2−nε ≤ ε.

Calling U = U(t, x) the solution to

Ut +

(
U2

2

)
x

= G(t, x), U(0, x) = 0,

since gn ≤ G for every n, by a comparison argument we conclude

un(t, x) ≤ U(t, x)

for every t, x, n. In particular (3.4) holds at every rational point (τ, y). �
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4. Regularity of solutions to scalar balance laws. As shown by the previous

examples, for a source term g satisfying only an integral bound, solutions to the balance

law (1.2) can be highly irregular. Yet, if the flux function f is strictly convex, the oscilla-

tions produced by the source term do not prevent compactness estimates. In particular,

any weakly convergent sequence of solutions un ⇀ u is also strongly convergent.

One wonders what kind of uniform regularity properties can be proved for these solu-

tions. Proposition 2.2 provides a simple result in this direction. Comparing the solutions

u of the balance law (1.2) with the solution v of the homogeneous problem (2.18), for any

given ε > 0 one can change the profile u(t, ·) by an amount O(1) · ε in the L1 distance,

and obtain a function v ∈ L1(R) that satisfies Oleinik’s one-sided Lipschitz estimates

v(y)− v(x) ≤ y − x

ε
for all x < y.

An alternative, more direct way to measure the regularity of these solutions is to quantify

the amount of oscillations. More precisely, consider any interval [a, b], and denote by

N = N[a,b](t) the number of times that the function x �→ u(t, x) crosses the interval

[a, b]. That means: there exist x1 < x2 < · · · < x2N such that⎧⎨
⎩
u(t, xk) ≤ a for k odd,

u(t, xk) ≥ b for k even.
.

As shown in Example 3.2, at a fixed time τ this number of crossings may well be infinite.

However, Conjecture 4.1 comes to mind.

Conjecture 4.1. Assume that the flux f is strictly convex, so that (2.8) holds. Then

there exists a constant C such that, for any solution u = u(t, x) to (1.2), with initial data

ū ∈ L1(R) and integrable source g ∈ L1(R+ × R), one has∫ +∞

0

N[a,b](t) dt ≤ C · ‖ū‖L1 + ‖g‖L1

(b− a)2
. (4.1)

A few remarks are in order.

(i) In the special case g = 0, Oleinik’s estimate would yield N[a,b](t) ≤ O(1) · t−1,

which is not useful to achieve (4.1).

(ii) Without loss of generality, one can assume ū = 0.

(iii) For simplicity, one can consider Burgers’ equation (3.1), with zero initial data.

In this case, by a rescaling of coordinates, it suffices to prove the inequality for

a = −1, b = 1. The bound (4.1) thus takes the simpler form∫ +∞

0

N[−1,1](t) dt ≤ C‖g‖L1 . (4.2)

A simpler estimate, apparently related to the previous one, is:

Conjecture 4.2. Let u = u(t, x) be the solution to Burgers’ equation (3.1) with zero

initial data and an integrable source term g. Then

meas

({
t > 0; ess-sup

x∈R

u(t, x) ≥ 1
})

≤ C‖g‖L1 , (4.3)

for some constant C independent of g.
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1/2

1

x

u(t,x)

u

t/2

g

Fig. 3. A source of size
∥
∥g(t, ·)

∥
∥
L1 ≤ 1

8
, located behind the shock,

suffices to maintain the supremum supx∈R u(t, x) = 1 for all times

t > 0.

Example 4.3. As shown in Fig. 3, consider the function

u(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x /∈
[
0, t

2 + ε
]
,

x
t if x ∈

[
0, t

2

]
,

1
2 + x−t/2

2ε if x ∈
[
t
2 ,

t
2 + ε

]
.

(4.4)

This is a solution to the balance law (3.1), with

g(t, x) = ut + uux =

⎧⎪⎨
⎪⎩
0 if x /∈

[
t
2 ,

t
2 + ε

]
,

x−t/2
2ε · 1

2ε if x ∈
[
t
2 ,

t
2 + ε

]
.

Notice that here
∥∥g(t, ·)∥∥

L1 = 1/8 for every t > 0. Therefore, a source of strength∥∥g(t, ·)∥∥
L1 ≤ 1

8 suffices to sustain one oscillation across the interval [0, 1]. This indicates

that the constant C in (4.3) cannot be smaller than 8.

Example 4.4. To appreciate the subtleties involved in the analysis of Conjecture 4.2

we observe that, if the flux f(u) = u2/2 is replaced by a piecewise affine flux as in [22],

then the estimate (4.3) cannot hold. To construct a counterexample, let us partition the

interval [0, 1] into n equal subintervals, inserting the points sk = k/n, k = 0, 1, . . . , n.

Call fn the piecewise affine flux function which coincides with f at every point sk, and

let

λk
.
=

sk + sk−1

2
=

2k − 1

2n

be the speed of a jump connecting the states sk−1 and sk.

Let ε > 0 be given. We shall construct a solution to

ut + fn(u)x = g(t, x), u(0, x) = 0, (4.5)

with

‖g‖L1 < ε, meas

({
t ∈ [0, 1]; ess-sup

x∈R

u(t, x) = 1
})

> 1− ε. (4.6)
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k−1

k

kv

v

λ

v

λ

2

1

2λ

1

v
1/n

x

x

restarting

1/n
λk−1

Fig. 4. The functions vk constructed in Example 4.4. The support
of vk is an interval that shifts in time with speed λk > λk−1. There-
fore, at certain times τk, k = 1, . . . , Nk, the support of vk(t, ·) will
touch the boundary of the support of vk−1. When this happens, the
function vk must be restarted.

1. As a first step, we construct a piecewise constant function v = v(t, x) taking

values inside the discrete set {k/n; k = 0, 1, . . . , n}, such that, for a suitable partition

0 = t0 < t1 < t2 < · · · < tN = 1, there holds:

(i) Restricted to each time interval I� = [t�−1, t�[ the function v provides a solution to

the conservation law

vt + fn(v)x = 0.

(ii) The changes in the function v(t, ·) at the restarting times t� satisfy

N∑
�=1

∥∥v(t�, ·)− v(t�−, ·)
∥∥
L1 < ε. (4.7)

The solution v is defined as a sum:

v(t, x) =
n∑

k=1

vk(t, x), (4.8)

where the functions vk : [0, 1]× R �→ {0, n−1} satisfy

0 ≤ vn(t, x) ≤ vn−1(t, x) ≤ · · · ≤ v2(t, x) ≤ v1(t, x) ≤ 1

n
. (4.9)

Denoting by χ
J
the characteristic function of the set J ⊂ R, the functions vk are defined

inductively as follows.

(i) The function v1 is a step function traveling with speed λ1, namely

v1(t, x) =
1

n
χ
[λ1t, λ1t+ε1]

(x),

for some ε1 < ε.

(ii) The function v2 has the form

v2(t, x) =
1

n
χ
[α2j+λ2t, α2j+λ2t+ε2]

(x), t ∈ I2j , j = 1, 2, . . . , N2,

for some ε2 << ε1. Here the intervals I2j and the constants α2j are chosen in order

to satisfy the inequality v2(t, x) ≤ v1(t, x) for all t, x.
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(iii) By induction, assume that vk−1 has been constructed. We then choose εk << εk−1

and let vk be a function of the form

vk(t, x) =
1

n
χ
[αkj+λkt, αkj+λ1t+εk]

(x), t ∈ Ikj , j = 1, 2, . . . , Nk.

Here the intervals Ikj and the constants αkj are chosen in order to satisfy the

inequality vk(t, x) ≤ vk−1(t, x) for all t, x.

We now estimate the total amount of source needed to achieve the above function

v =
∑

k vk.

• The construction of v1 requires a source of total size 1
nε1. We choose ε1 < ε.

• The construction of v2 requires a source of size 1
nε2 ·N2. Here N2 depends only on

ε0. We choose ε2 < ε
N2

• In general, the construction of vk requires a source of size 1
nεk ·Nk. Here Nk depends

only on εk−1 and Nk−1. We choose εk < ε
Nk

.

The total amount of source required is estimated by

ε1
n

+
ε2N2

n
+ · · ·+ εnNn

n
<

ε

n
+

ε

n
+ · · ·+ ε

n
= ε.

2. In view of (4.7), the function v provides a solution to (4.5) where the source term

g is replaced by a measure μ of total mass |μ|
(
[0, 1]× R

)
< ε, concentrated at the times

t�. By approximating μ with an L1 function g having the same global bound, we obtain

a solution u of (4.5), for which (4.6) holds. This shows that Conjecture 4.2 cannot hold

for a piecewise affine flux.

We remark that, in the above example, the sets where u(t, x) = 1 are extremely small.

In fact, as n → ∞, even the sets where u(t, x) ≥ 1/2 have measure which approaches

zero.

5. Decay of solutions to a diagonal hyperbolic system. Our ultimate goal is to

gain some insight on the regularity of L1 solutions to a 2×2 strictly hyperbolic system of

conservation laws (1.1), without restrictions on the total variation. Call λ1(u), λ2(u) the

characteristic speeds, i.e., the eigenvalues of the Jacobian matrix Df(u). Working with

a set of Riemann coordinates w = (w1, w2), smooth solutions to (1.1) can be obtained

by solving the hyperbolic system in (nonconservative) diagonal form⎧⎨
⎩
w1,t + λ1(w1, w2)w1,x = 0,

w2,t + λ2(w1, w2)w2,x = 0.
(5.1)

We consider solutions to (5.1) on a domain of bounded L1 functions, namely

D .
=

{
w ∈ L1(R;R2);

(
w1(x), w2(x)

)
∈ [a1, b1]× [a2, b2] for all x ∈ R

}
. (5.2)

Throughout the following, we shall assume

(A1) The characteristic speeds λ1, λ2 are C2 in an open domain Ω ⊃ [a1, b1]× [a2, b2].

For every (w1, w2) ∈ Ω one has

λ1(w1, w2) ≤ −δ0 < 0 < δ0 ≤ λ2(w1, w2). (5.3)
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In addition, genuine nonlinearity holds:

∂

∂w1
λ1(w1, w2) ≥ κ > 0,

∂

∂w2
λ2(w1, w2) ≥ κ > 0. (5.4)

(A2) As (w1, w2) range in the domain Ω, the other two partial derivatives ∂
∂w2

λ1 and
∂

∂w1
λ2 have a constant sign.

It will be convenient to work within the set of functions (see Fig. 5)⎧⎨
⎩
F .

=
{
u ∈ L1(R); u is piecewise Lipschitz continuous with finitely many

downward jumps, ux(x) ≥ 0 for a.e. x ∈ R

}
.

(5.5)

x

u(x)

Fig. 5. A function u in the class F , as defined at (5.5).

To introduce a concept of “solution” for the nonconservative system (5.1), in the case

of functions w = (w1, w2) with both components in F , one needs to assign the speed of

downward jumps. This can be defined in terms of a nonconservative product [17,24,25].

For example, one could require these speeds to be the average values:

λ1(w
−
1 , w

+
1 , w2)

.
=

∫ w−
1

w+
1

λ1(s, w2) ds,

w−
1 − w+

1

, λ2(w1, w
−
2 , w

+
2 )

.
=

∫ w−
2

w+
2

λ2(w1, s)ds

w−
2 − w+

2

.

(5.6)

For our purpose, however, it will be convenient to directly introduce two additional

functions, prescribing the speed of the jumps:

Λ1(w
−
1 , w

+
1 , w2), Λ2(w

−
2 , w

+
2 , w1). (5.7)

We shall assume that Λ1,Λ2 depend smoothly on all variables. Moreover, for w+
i < w−

i ,

these speeds should satisfy

λ1(w
+
1 , w2) ≤ Λ1(w

−
1 , w

+
1 , w2) ≤ λ1(w

−
1 , w2),

λ2(w1, w
+
2 ) ≤ Λ2(w1, w

−
2 , w

+
2 ) ≤ λ2(w

−
1 , w2).

(5.8)

∣∣∣Λ1(w
−
1 , w

+
1 , w2)− λ1(w

−
1 , w

+
1 , w2)

∣∣∣ ≤ κ|w+
1 − w−

1 |2,∣∣∣Λ2(w
−
2 , w

+
2 , w1)− λ2(w

−
2 , w

+
2 , w1)

∣∣∣ ≤ κ|w+
2 − w−

2 |2.
(5.9)

Licensed to University Degli Studi di Brescia. Prepared on Mon Dec  2 08:26:34 EST 2024 for download from IP 192.167.23.210.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE REGULARITY OF SOLUTIONS TO BALANCE LAWS 447

Definition 5.1. Let the jumps speeds Λi in (5.7) be given. A piecewise Lipschitz

function w = w(t, x), with wi(t, ·) ∈ F for every t ∈ [0, T ], i = 1, 2, is called a gen-

eralized solution to the hyperbolic system (5.1) if the following holds. Consider the

limits

w±
i (t, x) = lim

y→x±
wi(t, y)

which are well defined because wi ∈ F . Then the domain ]0, T [×R can be decomposed

as

]0, T [×R = V ∪
(⋃

j

γ1j

)
∪
(⋃

j

γ2j

)
∪ J, (5.10)

where

(i) V is an open set where w is continuous. The equations (5.1) are satisfied a.e. on

this set.

(ii) Each γ1j :]t−j , t
+
j [�→ R is a Lipschitz curve where a downward 1-jump occurs.

Namely, w+
1 < w−

1 , w
+
2 = w−

2 . The speed of this curve is γ̇ij(t) = Λ1(w
−
1 , w

+
1 , w2).

Similarly, each γ2j :]τ−j , τ+j [�→ R is a Lipschitz curve where a downward 2-

jump occurs. Namely, w+
1 = w−

1 , w
+
2 < w−

2 . The speed of this curve is γ̇2j(t) =

Λ2(w1, w
−
2 , w

+
2 ).

(iii) The set J consist of finitely many points, where two or more jumps interact.

Given initial data

wi(0, x) = wi(x) ∈ [ai, bi], i = 1, 2, x ∈ R, (5.11)

in the class of piecewise Lipschitz functions F , generalized solutions to (5.1) are easily

constructed.

Proposition 5.1. Let the system (5.1) satisfy (A1), and consider initial data (5.11)

with w1, w2 ∈ F . Then the Cauchy problem has a unique generalized solution, with

components wi(t, ·) ∈ F for all t > 0.

Proof.

1. The construction of local solutions within the class of piecewise Lipschitz functions

with downward jumps is a straightforward task. It can be accomplished by solving the

system (1.3) in the regions where the functions w1, w2 are Lipschitz, then locating the

positions of the finitely many downward jumps, using the ODE determined by the speeds

Λ1,Λ2. In view of (5.11), is clear that the components satisfy wi(t, x) ∈ [ai, bi] for all

t, x.

2. We now check that the components of the solution remain in F . To show that

w1,x(t, x) ≥ 0 for all t, x, we differentiate the first equation in (5.1) and obtain

w1,xt + λ1(w1, w2)w1,xx = −λ1,w1
w2

1,x − λ1,w2
w1,xw2,x. (5.12)

Along a characteristic t �→ x(t) with ẋ = λ1

(
w(t, x)

)
, this implies

d

dt
w1,x(t, x(t)) ≥ −Cw1,x

(
t, x(t)

)
, (5.13)
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for some constant C. At a time τ when this characteristic crosses a 2-jump with speed

Λ2, the gradients w±
1,x = w1,x

(
τ±, x(τ±)

)
before and after the crossing are related by

w+
1,x

w−
1,x

=
Λ2 − λ−

1

Λ2 − λ+
1

. (5.14)

Here λ±
1 denote the 1-characteristic speed before and after the crossing. Combining (5.12)

with (5.14), we conclude that w1,x(t, x(t)) ≥ 0 at all times t ≥ 0. As a consequence, no

new jumps ever develop, and the components of the solution remain in F .

3. Finally, we observe that two jumps of opposite families simply cross each other

without changing strength. Two jumps of the same family join together in a single jump.

As a consequence, the total number of jumps can only decrease, and the total number

of interactions between jumps is finite. The solution can thus be constructed globally in

time, in a finite number of steps.

�
5.1. Decay of positive gradients. In this subsection, we wish to prove that the positive

gradients of the components: w1,x, w2,x satisfy an Oleinik-type decay estimate, provided

that the jump speeds Λi at (5.7) are suitably chosen.

Theorem 5.2. Let the characteristic speeds satisfy the assumptions (A1)–(A2). Then

it is possible to choose jump speeds Λ1,Λ2 as in (5.8)–(5.9), such that, for some constant

C > 0, the following holds. For every piecewise Lipschitz solution w = (w1, w2) of (5.1)

with components w1, w2 ∈ F , one has the decay estimates

wi(t, x2)− wi(t, x1)

x2 − x1
≤ C

t
for all t > 0, x1 < x2, i = 1, 2. (5.15)

Proof. 1. As a first step, consider any Lipschitz solution of (5.1), without jumps.

Differentiating the second equation w.r.t. x, we obtain

w2,xt + λ2(w1, w2)w2,xx = −λ2,w1
w1,xw2,x − λ2,w2

w2
2,x. (5.16)

In particular, if t �→ x(t) is a 2-characteristic (see Fig. 6, left), so that

ẋ = λ2

(
w1(t, x), w2(t, x)

)
, (5.17)

we find
d

dt
w2,x

(
t, x(t)

)
= −λ2,w1

w1,xw2,x − λ2,w2
w2

2,x. (5.18)

Observing that

w2

(
t, x(t)

)
= w2 (5.19)

is a constant, while

d

dt
w1

(
t, x(t)

)
=

[
λ2(w1, w2)− λ1(w1, w2)

]
w1,x, (5.20)

from (5.18) one obtains

d

dt
w2,x

(
t, x(t)

)
= − λ2,w1

λ2 − λ1
·
(

d

dt
w1

(
t, x(t)

))
w2,x − λ2,w2

w2
2,x. (5.21)
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y(t)
x(t)

x(t) x(t)

x

t

x

t

x

t

Fig. 6. Left: a 2-characteristic x(t), crossing a family of 1-charac-
teristics. Center: a 2-characteristic x(t), crossing a family of
1-rarefactions and a 1-shock. Right: an approximate configura-
tion, where the 1-shock is replaced by 1-compressions. By slightly

changing the speed Λ1 assigned to the jump at y(·), the derivative
w2,x

(
t, x(t)

)
will be smaller than in the case of smooth compression

waves.

Setting z(t)
.
= w2,x

(
t, x(t)

)
, we thus obtain the ODE

ż(t) = − λ2,w1

λ2 − λ1
·
(

d

dt
w1

(
t, x(t)

))
z(t)− λ2,w2

z2(t). (5.22)

To integrate (5.22), we introduce the function

Φ(w1, w2)
.
= −

∫ w1

0

λ2,w1
(s, w2)

λ2(s, w2)− λ1(s, w2)
ds. (5.23)

Since w2

(
t, x(t)

)
= w2 is constant in time, we can write (5.22) in the form

ż(t) =
d

dt
Φ
(
w1(t, x(t)), w2

)
z(t)− λ2,w2

(
w1(t, x(t)), w2

)
z2(t) (5.24)

≤ d

dt
Φ
(
w1(t, x(t)), w2

)
z(t)− κz2(t). (5.25)

2. Assume that z(0) > 0 and set φ(t)
.
= Φ

(
w1(t, x(t)), w2

)
. From (5.25) it follows

ż ≤ φ̇z − κz2,
d

dt

(
1

z
eφ
)

≥ κeφ,

eφ(t)

z(t)
≥ eφ(0)

z(0)
+ κ

∫ t

0

eφ(τ)dτ ≥ κ

∫ t

0

eφ(τ)dτ.

Therefore

z(t) ≤ eφ(t)

κ
∫ t

0
eφ(τ)dτ

. (5.26)

Let Φ− and Φ+ be respectively a lower and an upper bound for the function Φ defined

at (5.23). In particular, Φ
(
w1(t, x(t)), w2

)
∈ [Φ−,Φ+]. By (5.26) it now follows

z(t) ≤ eΦ
+−Φ−

κt
for all t > 0. (5.27)
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3. Next, assume that w1 is only piecewise Lipschitz, with downward jumps. We

compute the change in w2,x(t, x(t)) along a characteristic in two cases:

(i) The 2-characteristic crosses a single 1-shock, with left and right states (w−
1 , w2),

(w+
1 , w2), as in Fig. 6, center. If this shock travels with speed Λ1, the gradients

before and after the interaction are computed by

w+
2,x

w−
2,x

=
λ2(w

−
1 , w2)− Λ1

λ2(w
+
1 , w2)− Λ1

. (5.28)

(ii) The 2-characteristic crosses a family of 1-compressions, joining the same left and

right states, as shown in Fig. 6, right. In this case, according to (5.21), the gradients

w−
2,x, w

+
2,x before and after the crossing are related by the ODE

dz

ds
= − λ2,w1

(s, w2)

λ2(s, w2)− λ1(s, w2)
z(s), z(w−

1 ) = w−
2,x, z(w+

1 ) = w+
2,x. (5.29)

To compare the two above expressions, consider the middle point

ŵ1
.
=

w−
1 + w+

1

2
,

and assume that the shock speed is precisely the characteristic speed at this middle point:

Λ1
.
= λ1(ŵ1, w2) =

1

w−
1 − w+

1

∫ w−
1

w+
1

λ1(s, w2) ds+O(1) · (w−
1 − w+

1 )
2. (5.30)

Since the map w−
2,x �→ w+

2,x is linear, without loss of generality, we can assume w−
2,x = 1.

We wish to compute the difference between the two values for w+
2,x determined by (5.28)

and (5.29), respectively.

Integrating (5.29) one obtains

ln z(s)

∣∣∣∣
w+

1

w−
1

= lnw+
2,x =

∫ w−
1

w+
1

λ2,w1
(s,w2)

λ2(s,w2)−λ1(s,w2)
ds

=
λ2,w1

(ŵ1,w2)

λ2(ŵ1,w2)−λ1(ŵ1,w2)
· (w−

1 − w+
1 ) +O(1) · (w−

1 − w+
1 )

3.

(5.31)

Notice that the last equality is trivially true because the integrand is a smooth function.

On the other hand, from (5.28) it follows

lnw+
2,x = ln

(
λ2(w

−
1 , w2)− Λ1

)
− ln

(
λ2(w

+
1 , w2)− Λ1

)
=

∫ w−
1

w+
1

λ2,w1
(s,w2)

λ2(s,w2)−Λ1
ds

=
λ2,w1

(ŵ1,w2)

λ2(ŵ1,w2)−λ1(ŵ1,w2)
· (w−

1 − w+
1 ) +O(1) · (w−

1 − w+
1 )

3.

(5.32)

Comparing the two expressions for w+
2,x in (5.31) and (5.32) we see that they only

differ for an infinitesimal of order O(1) · (w−
1 − w+

1 )
3. Hence, by changing the shock

speed Λ1 by an amount O(1) · (w−
1 − w+

1 )
2, we can render the value in (5.28) smaller

than the one determined by (5.29).

�
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6. Approximate solutions to the system of conservation laws. By the previous

analysis, one can construct a dense set of generalized solutions to the nonconservative

system (5.1) which are piecewise Lipschitz with finitely many jumps. These have very

similar properties as the solutions to a scalar conservation law with strictly convex flux.

If shock and rarefaction curves for (1.1) do not coincide, in the presence of jumps these

generalized solutions cannot be entropy-admissible weak solutions to the original 2 × 2

system of conservation laws (1.1). We remark, however, that the difference is of third

order w.r.t. the size σ = w−
i − w+

i of the jumps. More precisely (see Fig. 7), consider a

jump in the first Riemann coordinate.

• Let w− = (w−
1 , w2), w

+ = (w+
1 , w2), with w+

1 < w−
1 be the left and right states

for a 1-jump in the Riemann coordinates. Let u− = u(w−
1 , w2), u

+ = u(w+
1 , w2)

be the corresponding values of the conserved variables. Let u = u(t, x) be the

exact solution of the Riemann problem for (1.1), with left and right states u−, u+.

Going back to Riemann coordinates, this yields a function wexact(t, x).

• Next, call wdiag(t, x) the solution to the diagonal, nonconservative system (5.1),

consisting of a single jump traveling with speed Λ1, namely

wdiag(t, x) =

⎧⎨
⎩
(w−

1 , w2) if x < tΛ1(w
−
1 , w

+
1 , w2),

(w+
1 , w2) if x > tΛ1(w

−
1 , w

+
1 , w2).

(6.1)

Recalling that shock and rarefaction curves have a second order tangency [7, 23, 31], by

the assumption (5.9) on the wave speed we conclude that the difference has size

1

t

∫ ∣∣wexact(t, x)− wdiag(t, x)
∣∣ dx = O(1) · |w+

1 − w−
1 |3. (6.2)

Fig. 7. Two ways for solving a Riemann problem where the initial

data contain a single jump in the coordinate w1. The function wdiag

consists of a single jump traveling with speed Λ1 as in (6.1). The
function wexact is the exact solution to the conservation law (1.1),
written in Riemann coordinates (w1, w2). For every t > 0, the L1

difference between the two solutions is O(1) · |w+ − w−|3t.
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This suggests a possible way to construct approximate solutions to the Cauchy problem

for the 2× 2 system of conservation laws

ut + f(u)x = 0, u(0, x) = ū(x). (6.3)

Fix ε > 0, and define the times tk = kε, k = 0, 1, 2, . . ..

Choose an initial datum with ‖u0−ū‖L1 ≤ ε and such that the corresponding Riemann

coordinates w1,0, w2,0 lie inside F .

By induction on k, assume that uk = u(tk, ·) has been constructed, in such a way that

the corresponding Riemann coordinates satisfy w1,k, w2,k ∈ F .

For t ∈ [tk, tk+1[, let w(t, ·) be the generalized solution to the diagonal system (5.1),

with initial data

w(tk, x) = wk(x).

By Proposition 5.1, this will be a piecewise Lipschitz function, with components wi(t, ·) ∈
F , i = 1, 2.

If this generalized solution contains jumps, then it will not be a solution to the original

problem (6.3). We thus need to add a source to account for this difference. To fix ideas,

for τ ∈ [tk, tk+1[, let xα(τ ), α ∈ {1, . . . , N} be the locations of these jumps, and let

w−
α (τ ), w

+
α (τ ) ∈ R

2 be the left and right values of the corresponding Riemann coordinates.

As in (6.2), we consider the two different ways to solve the Riemann problem with data(
w−

α (τ ), w
+
α (τ )

)
, and define the vector

vα(τ )
.
=

1

t

∫ [
wexact(t, x)− wdiag(t, x)

]
dx ∈ R

2. (6.4)

Note that, by the self-similarity of the solutions to the Riemann problem, the right hand

side does not depend on t. In turn, this yields a vector measure μ, concentrating a mass

vα at each point xα. More precisely, for every continuous function ϕ : [tk, tk+1]×R �→ R,∫
ϕdμ =

∑
α

∫
ϕ
(
τ, xα(τ )

)
vα(τ ) dτ. (6.5)

To compensate for this error, at the terminal time tk+1 we perform a restarting pro-

cedure, and define

w(tk+1, x)
.
= w(tk+1−, x) + gk(x), (6.6)

where gk : R �→ R
2 is a piecewise Lipschitz function, with components in F , which

approximates the integral of the measure μ over the interval [tk, tk+1[. For example, we

could require ∣∣∣∣∣
∫

gk(x)φ(x) dx−
∑
α

∫ tk+1

tk

φ
(
xα(τ )

)
vα(τ ) dτ

∣∣∣∣∣ < ε (6.7)

for every Lipschitz continuous test function φ with Lipschitz constant Lip(φ) ≤ ε−1. As-

suming that w(tk+1, ·) remains in the domain D at (5.2) where the Riemann coordinates

are defined (see [32] for a general result on positive domain invariance) the induction can

then be continued.

Licensed to University Degli Studi di Brescia. Prepared on Mon Dec  2 08:26:34 EST 2024 for download from IP 192.167.23.210.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE REGULARITY OF SOLUTIONS TO BALANCE LAWS 453

In Riemann coordinates, we thus construct a solution to (5.1) with sources added at

the discrete set of times t1, t2, . . . Since the sum of the cubes of the shock strengths can be

controlled by the decrease of a strictly convex entropy, the total strength of the sources

is uniformly bounded: ∑
k

‖gk‖L1 ≤ C.

In view of the strong regularizing properties (5.15) of the homogeneous system (5.1),

one may conjecture that all these approximate solutions will enjoy the same regularity

properties discussed in the previous sections for scalar balance laws with an integrable

source.

A proof of this fact, however, is far from straightforward. The main difficulty stems

from the fact that the system (5.1) is not conservative and does not generate a contractive

semigroup. On the positive side, we observe that the measure μ at (6.5), accounting for

entropy dissipation, is absolutely continuous w.r.t. 1-dimensional Hausdorff measure.

Using the strict hyperbolicity assumption (5.3), one can show that all source functions

gk are bounded in L∞.
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