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ABSTRACT

Ultrasonic vocalizations (USVs) analysis represents a fundamental tool to study animal communication. It can be used to
perform a behavioral investigation of mice for ethological studies and in the field of neuroscience and neuropharmacology. The
USVs are usually recorded with a microphone sensitive to ultrasound frequencies and then processed by specific software,
which help the operator to identify and characterize different families of calls. Recently, many automated systems have been
proposed for automatically performing both the detection and the classification of the USVs. Of course, the USV segmentation
represents the crucial step for the general framework, since the quality of the call processing strictly depends on how accurately
the call itself has been previously detected. In this paper, we investigate the performance of three supervised deep learning
methods for automated USV segmentation: an Auto-Encoder Neural Network (AE), a U-NET Neural Network (UNET) and
a Recurrent Neural Network (RNN). The proposed models receive as input the spectrogram associated with the recorded
audio track and return as output the regions in which the USV calls have been detected. To evaluate the performance of
the models, we have built a dataset by recording several audio tracks and manually segmenting the corresponding USV
spectrograms generated with the Avisoft software, producing in this way the ground-truth (GT) used for training. All three
proposed architectures demonstrated precision and recall scores exceeding 90%, with UNET and AE achieving values above
95%, surpassing other state-of-the-art methods that were considered for comparison in this study. Additionally, the evaluation
was extended to an external dataset, where UNET once again exhibited the highest performance. We suggest that our
experimental results may represent a valuable benchmark for future works.

Introduction
Mice produce ultrasonic vocalizations (USVs) with a frequency from 30 kHz to 110 kHz to communicate one another during
their lifespan1. In particular, pups emit USVs during separation from the mother and the littermates to induce maternal
caregiving behavior2, 3. Also juvenile mice vocalize, especially during play and social interaction4, 5. In addition, adult mice
emit USVs in social context such as courtship, mating and social investigation. The better described adult USVs are those
produced during male-female interactions with an important role in social/sexual behaviors6. Also female mice emit USVs
when they interact with other females, usually associated with a high level of social investigation of the female stimulus to
establish affiliative relationships7, 8.

Recently, the relevance of USVs has been consolidated as a valid tool for behavioral analysis of mice in both the context of
ethological studies and in the field of brain pathologies, especially those characterized by deficit in communication such as
neurodevelopmental disorders (NDDs) and in particular autism spectrum disorders (ASD)9–11. Altered calling pattern are found
in several mouse models of NDDs and ASD12, 13. So, USVs study can be used as a useful tool to analyze the mechanisms at the
basis of these neuropsychiatric disorders and to test the effects of pharmacological treatments for these pathologies14.

USVs can be acquired with an ultrasound sensitive microphone and later analyzed on the basis of quantitative parameters
using specific softwares (e.g., SASLab by Avisoft Bioacoustics, Metris Sonotrack and Noldus UltraVox XT). Unlike the
quantitative analysis of the USVs, which is carried out automatically by the software, the qualitative analysis is more complex
and often still requires the intervention of the operator (manual analysis). Ultrasonic calls can be classified based on different
criteria. For examples, Scattoni’s classification, that is one of the most used, is based on internal sound frequency changes,
duration and shape in time-frequency domain, and it is composed of 10 categories of calls such as: complex, harmonics,
two-syllables, upward, downward, flat, chevron, short, composite and frequency steps9. In the literature, other methods of
qualitative classification have been proposed and each one uses different types of calls15, 16. In all cases, these systems require a
manual classification of calls that is highly time-consuming and is also operator-dependent (high variability).

Interestingly, in the last five years some automated classification systems have been developed. They can be distinguished



between two groups based on the approach adopted for their implementation. Indeed, some schemes employ pure signal
processing methods, which rely explicitly on the acoustic parameters of the recordings17–20. Other systems, instead, exploit
machine learning algorithms and neural networks for a faster and objective identification of spectrogram features and also a
standardization of USVs analysis in comparison of the manual classification of calls21–25.

Independently of the approach, the classification performance of an automated classification system is strongly affected
by its ability of initially segmenting with high precision all the USVs present in the recording, namely, detecting the time
frames that enclose the start and the end of a vocalization. Thus, the USV segmentation represents a crucial step for the general
framework, and the more it is accurate, the more the following processing steps are reliable. Even if the aforementioned systems
have achieved remarkable results, no deep research investigation involving the newest deep learning methods has been carried
out for this task.

In this paper, we investigate the performance of different supervised deep learning algorithms for automated USVs
segmentation. In particular, we design and compare the performance of 3 distinct architectures, which represent three popular
methods for segmentation task: an Auto-Encoder Neural Network26 (AE), a U-NET Neural Network27 (UNET) and a Recurrent
Neural Network28 (RNN). By comparing these three methods, we can gain a direct insight into the achievable performance in
the field of USV segmentation. They generally allow to exploit both temporal correlation of audio signals (in particular, the
RNN) and spatial correlation of images (in particular, the AE and the UNET). This fact leads them to be particularly suitable
for working on 2-D spectrograms, as in this work. The final configuration of the proposed architectures has been chosen with
the objective of reaching significant results and, at the same time, guaranteeing a particularly low computational complexity.

We carry out extensive experiments to accurately evaluate the performance of the proposed systems. For the assessment, we
adopt the Intersection over Union (IoU) metric, which calculates the overlap between the predicted USV and the ground truth
USV, normalized by the total area covered by the two segmentations. Since our goal is to detect objects - specifically, USV
calls - such metric is the most appropriate for evaluating the segmentation effectiveness of a method.

Furthermore, our analysis includes a comparison with various software tools used for USV segmentation in mice. These
include DeepSqueak22 and HybridMouse25, which employ deep learning methods, as well as A-MUD18 and USVSEG19,
which rely on traditional signal processing techniques. We will show that our proposed methods offer superior segmentation
performance, even though they require less complexity and do not necessitate any parameter settings. The comparison is
performed on both our dataset, which has been constructed by capturing multiple audio tracks and manually segmenting
the corresponding USV spectrograms generated using Avisoft software, and an external dataset. Our results represent a
valuable benchmark for future works and the analysis model is freely available to all researchers working in the field of mice
communication analysis. We have also publicly shared our dataset, which includes both our recorded audio tracks and experts’
annotations.

Materials
Animals
40 control wild-type (WT) pups (B6;129PF2) and 39 NF-κB p50 knock-out (KO) pups (B6;129P2-Nfκb 1tm 1 Bal/J) have
been used for our experiment. These animals have been obtained by mating of WT and KO mice breeders purchased from
The Jackson laboratories (Bar Harbor, ME, USA) and housed in standard cages in our animal facility kept at 23± 2◦C of
temperature and 55±15% of humidity in a 12 hours light/dark cycle with food and water ad libitum. Behavioral procedures
have been performed according to the ARRIVE guidelines and European Communities Council Directive guidelines (CEE N◦

86/609), and approved by the Animal Welfare Body (OPBA) of the University of Brescia and by the Italian Ministry of Health.

Maternal separation-induced USVs recording
Each pup has been separated from the mother and the litter and then introduced into an empty glass container for 3 minutes. An
ultrasound sensitive microphone (UltraSoundGate Condenser Microphone CM 16, Avisoft Bioacoustics, Berlin, Germany)
has been placed 20 cm above the container to record USVs emitted by pup at postnatal day (PND) 6, 8 and 12 as previously
described13, 24, 29. Briefly, the recordings have been performed 3 minutes along by the Avisoft software (Avisoft Bioacoustics,
Berlin, Germany), which collects the data streams from the microphone (sampling frequency equal to 250 kHz, 16 bit per
sample), it saves them into an audio file and returns a real-time spectrogram in order to allow the operator to monitor the
presence of calls during the recording. To generate the spectrogram of the segments, a step size of 8 samples and 512 Fourier
coefficients have been used. A kaiser window has been applied, with a length matching the number of Fourier coefficients and a
beta value of 5.

Dataset creation
At the end of the recording stage, 198 pup mice three minutes long audio tracks have been collected. The associated spectrograms
Si compose the dataset, with i = 1, . . . ,198. Our experts have then manually segmented the USVs, by identifying 49,750 USVs
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Figure 1. An example of USV segmentation.

present in all the spectrograms. Thus, a label vector yi is associated with the i-th spectrogram, the elements of which indicate
the presence or the absence of a USV for each time frame of the spectrogram. Each label can assume either the value 1 when a
USV corresponding to that time instant has been manually detected by the operator, or the value 0 when no USV has been
identified. In total, there are 911,120,892 samples corresponding to the USV class and 1,471,342,084 samples related to the
noise class. The entire dataset has been finally randomly split into a training set and a test set in a 4:1 proportion, so 158 and
40 spectrograms with related label vectors compose the training and test sets, respectively.

Proposed methods
The aim of this work is to automatically segment USVs (see Fig. 1 as an example). We approach this task by proposing and
comparing 3 distinct deep-learning architectures: an Auto-Encoder Neural Network (AE), a U-NET Neural Network (UNET)
and a Recurrent Neural Network (RNN). Ideally, each model would take as input a spectrogram Si with size (M×N) and
would return a (1×N) binary vector y(p)

i , that would indicate whether a USV is present for each time frame. However, the
training process is too expensive from a computational point of view if the entire spectrogram is used as input. Thus, each Si is
subdivided into shorter temporal length (M×n)-spectrograms si j with an overlap equal to the 50% of the segment length, and
n = 211, namely, 65.536 ms.

Thus, each model takes an (M×n)-spectrogram si j as input and returns an n-length binary vector y(p)
i j as output, where the

label y(p)
i j [k̄] indicates whether a USV occurs at the corresponding time frame si j[k̄, f ], independently of the frequency f . Then,

all the binary vectors y(p)
i j associated with the spectrograms si j are processed for generating the final label vector y(p)

i . Since Si

is divided into 50% overlapping si j, the second half of y(p)
i j matches with the time frames of the first half of y(p)

i( j+1). In order to
determine the final labels of those time frames, we perform the element-wise OR logical operation between the corresponding
positions. The resulting labels are thus concatenated for obtaining y(p)

i . The final segmentation of a USV call is identified with
its starting and end point. The starting point is determined by a transition from 0 to 1 in y(p)

i , while the consecutive transition
from 1 to 0 represents the end of that vocalization.

However, this association may be too rigid, since the models return as output the classification of each single time frame.
Thus, the wrong detection of isolated positives may lead to identify extremely short USVs which, however, cannot clearly
represent a true detection. For example, in Fig. 2a, it is shown the output of a model (orange signal) for a given spectrogram,
which is compared with the true USV call (blue signal). It can be noted that there are some spikes outside the main prediction,
which are seemingly not significant and that negatively affect the segmentation output. Another inconvenient situation is
depicted in Fig. 2b, where a short interruption creates two distinct USVs. Also in this case, it would be appropriate consider
that there exists just one single prediction, which would be obtained by connecting the two predictions.

Of course, the presence of noisy spikes or inconvenient breaks strongly affects the segmentation performance of the models
because of the increase of false positives and, potentially, false negatives. For this reason, we propose to apply a post-processing
algorithm based on mathematical morphology on the output of the models, in order to correct such issues. The algorithm
consists in implementing the closing and the opening morphological operators on the label vector y(p)

i associated with the entire
spectrogram Si. We recall that the closing operation is defined as the sequence of the dilation and erosion basic morphological
operators, while the opening operation is the dual counterpart, and it is defined as the sequence of the erosion and dilation
operations. In this way, we are able to fill undesired adjacent regions of zeros potentially present in our binary prediction
and, at the same time, remove undesired adjacent regions of ones. We name z(p)

i the resulting post-processed label vector.
Summarizing, we depict the overall processing framework in Fig. 3.

Fig. 4 reports the proposed architectures corresponding to the 3 classification models investigated in this work. The final
configuration of those architectures has been achieved by performing several trials and tests over the training set. In particular,
we have evaluated the performance at varying of the complexity of the models, by modifying the number of layers and the
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(a) Wrong segmentations of spikes prior and after the true vocalization.
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(b) Presence of a noisy break in the main prediction.

Figure 2. Two examples of inconvenient situations emerging from a not post-processed segmentation. In 2a some spikes are
incorrectly detected prior and after the USV, while in 2b the main prediction is split into two regions because of an extremely
short break inside. Both cases can be properly fixed by applying a post-processing algorithm based on mathematical
morphology on the output of the models.

number of filters, neurons and time units in the convolutional, dense and recurrent layers, respectively. Remarkably, the final
architectures, which are presented in detail in the following, allow to reach high performance and, at the same time, they are
characterized by a relatively small number of parameters, thus requiring a particularly low computational complexity.

First model – Auto-Encoder Neural Network
An Auto-Encoder Neural Network is a particular artificial neural network architecture that is largely used for segmentation
of 2-D data, as, for example, images. The architecture is composed of two main parts: in the first, an encoder squeezes the
information stored in the input data through some filters (convolutional layers) in a third dimension, while reducing the first
and second dimensions. In the second stage, a decoder uses the information extracted by the encoder and stored in the third
dimension to reconstruct the first and second dimensions, in accordance to the expected output. Also the decoder is typically
composed of convolutional layers, interleaved by up-sampling layers. Based on the task, the output can be either a reconstructed
version of the original image or provide for a classification map (e.g., a binary mask as in this case).

The proposed AE architecture is illustrated in Fig. 4a. In the current implementation, the encoder is composed of 6
convolutional layers with 8, 8, 16, 16, 32 and 32 filters, respectively, each of them adopting a Rectified Linear Unit (ReLU)
activation function and initialized with a He normal kernel. Each convolutional layer is followed by a maximum pooling layer
which reduces both dimensions by a factor of 2. Then, an average pooling layer removes one dimension from the feature space
by computing the mean over the frequency axis, finally generating the latent space. Next, the decoder is composed of 6 1-D up
sampling layers with sampling factor equal to 2. These layers compensate the max-pooling factor applied at the encoder and
allow to increase the size of the time dimension to reach the original temporal resolution of the spectrogram. Each of them is
followed by two 1-D convolutional layers with (32,32), (32,32), (16,16), (16,16), (8,8), (4,1) filters, respectively. The last
convolutional layer adopts a sigmoid activation function which returns a real value between 0 and 1 for each time frame of the
spectrogram, that represents the prediction confidence and determines the final output of the model.

Second model – U-NET Neural Network
As the Auto-Encoder, also the U-Net Neural Network is an artificial neural network architecture widely used for 2-D
segmentation. While the structure of the two architectures is similar, the main difference lies to the fact that each component of
the encoder exchanges information with the corresponding component of the decoder. In particular, the output of a given layer
at the encoder is used as input by the corresponding level at the decoder, where it is concatenated with the output resulting from
the previous layer at the decoder.

The proposed architecture in the present context is depicted in Fig. 4b. The encoder is composed of 5 convolutional layers
with 8, 16, 32, 64, and 96 filters, respectively, each of them using a ReLU activation function and initialized with a He normal
kernel. Each layer performs the convolution with a kernel stride equal to 2 in both directions, reducing in this way both
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Figure 3. General framework for the USV segmentation. The spectrogram Si associated with an entire audio track is divided
into shorter fragments si j. A classification model takes the fragments separately as input and returns for each of them a binary
vector y(p)

i j , the elements of which indicate if a USV is present at the corresponding time frames (white square) or not (black

square). The vectors are then concatenated, generating the vector y(p)
i associated with Si. Finally, a post-processing algorithm

allows to remove potential isolated spikes or fill undesired small interruptions, generating this way z(p)
i . For the sake of

visibility, the squares associated with the single time predictions are drawn larger with respect to the time resolution of the
depicted spectrogram.

dimensions through the levels. Instead, the decoder is composed of 4 sets of layers, each of them consisting of an up-sampling
layer with factor 2 along both the two dimensions and a convolutional layer with 64, 32, 16, and 8 filters, respectively. The
kernel size is fixed at 3x3. Each output from the convolutional layer is concatenated with the output of the corresponding
convolutional layer at the encoder. Next, an additional up-sampling layer is implemented in order to reach the final temporal
resolution equal to the one of the input spectrogram, followed by two more convolutional layers with 8 and 1 filters, respectively.
The last one adopts a sigmoid activation function, which returns the output of the model associated with each time frame of
the spectrogram. Note that in the AE architecture the dimensionality reduction is performed in the bottleneck between the
encoder and the decoder. On the contrary, in the UNET the first dimension is eliminated just at the end of the network, through
an average pooling applied on the first dimension. In this way, it is possible to perform a concatenation with coherent data
between the encoder and the decoder.

Third model – Recurrent Neural Network
A Recurrent Neural Network (RNN) is an artificial neural network that is typically used with time series or sequence data. It
works with a memory element that is able to store the state of a previous input and use it to produce the next output. The RNN
can work in 4 principal mode: the one-to-one mode, in which a single output is produced for each input; the one-to-many
mode that returns one output per each sequence element for each new input element (e.g., used in music generation); the
many-to-many mode that assigns an output to each element of the sequence in input (e.g., used for translations); and the
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Figure 4. Flowchart of the three proposed models. The meaning of the blocks for all the 3 architectures is reported in the
legend in Fig. 4a. k, n and d specify the number of filters, the number of neurons and the dropout rate for the convolutional,
dense and dropout layers, respectively.

many-to-one mode that returns a single element for each sequence in input (e.g., used for next element prediction). The
RNN layers mostly used in order to introduce the recurrence in the network are Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU). The LSTM uses three gates called input, output, and forget gate. These gates determine which
information needs to be retained for future predictions. Instead, the GRU uses a reset and update gate for selecting the important
information.

The proposed architecture is shown in Fig. 4c. The first part allows to extract the features from the input data and it is
composed of three subsets of layers. All the sets contain a convolutional layer with 16, 32 and 64 filters, respectively. The
first adopts a 3×3 kernel, while the next ones a 5×5 kernel. The convolutional layers of all the sets are followed by a batch
normalization layer, which acts as regularizer, a ReLU activation function and a maximum pooling layer that reduces the tensor
size by a factor of 2 along both the dimensions. Next, a dimensionality reduction from 3 to 2 is performed by an average
pooling layer, which computes the mean over the frequency axis and returns one vector corresponding to the time axis of the
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spectrogram. Such time sequence is then passed to a cascade of recurrent layers consisting of a GRU mechanism with 32, 16,
and 1 time units. In these layers, the correlation of each time sample with the temporal neighbors is exploited for extracting the
relevant information, which is stored in a new tensor dimension. The last recurrent layer has one time unit for finally reducing
the new dimension to 1. Then, a dropout layer contributes to randomly discard some network parameters, in order to prevent
overfitting.

The second part of the network is composed of 3 fully connected (dense) layers with 256, 256 and 2048 neurons, respectively.
The dimension of the third dense layer corresponds to the number of time frames of the input data, in order to obtain the
final classification for each time frame of the spectrogram. The first and the second dense layers are followed by a batch
normalization layer for regularization purpose and a ReLu activation function. As for the AE and the UNET architectures, the
last dense layer is followed by a sigmoid activation function. It has been found beneficial to include also three dropout layers
with a drop factor equal to 0.3, 0.4 and 0.4, respectively, for reducing overfitting.

Experimental results
In this section, the performance of the proposed architectures are presented. A k-fold cross validation has been performed
over the training set for determining the optimal hyperparameters for each model, with k = 5. A binary cross-entropy has
been adopted as loss function. The Adam optimizer with learning rate in the ranges from 5 ·10−5 to 10−7, from 10−4 to 10−6

and from 10−4 to 10−7 has reported the best performance for the RNN, AE and UNET, respectively, when considering a
maximum number of epochs equal to 100 and setting an early stopping with patience equal to 10 epochs for all the architectures.
According with the obtained hyperparameters, the models have been thus trained over the entire training set and evaluate over
the independent test set.

For reference, the mean and variance computation times to segment an entire spectrogram associated with a 3-minutes
length audio track on a desktop computer (AMD Core Ryzen 9, 128GB RAM, graphic card NVIDIA GeForce RTX 3090 with
24 GB RAM) are 25.138±0.842, 24.758±0.540 and 49.231±0.922 seconds for AE, UNET and RNN, respectively, using
JupyterLab 3.3.2 with Python 3.8.10 and Tensorflow 2.8.0.

Time frame classification
First, we evaluate the performance of the proposed models to correctly detect the presence of a USV for each time frame of a
spectrogram, thus without considering the entire USV detection. Of course, even this initial assessment is performed on the test
set. So, we compare the ground-truth (GT) label vectors yi j with the predicted label vectors y(p)

i j and z(p)
i j . For the assessment,

we calculate the precision, recall and accuracy metrics, which are defined as follows:

precision =
TP

TP+FP
; recall =

TP
TP+FN

; accuracy =
TP+TN

TP+TN+FP+FN
. (1)

We explicit that when yi j[k̄] = 1 then y(p)
i j [k̄] = 1 represents a True Positive (TP), while y(p)

i j [k̄] = 0 is a False Negative (FN).

Similarly, when yi j[k̄] = 0 then y(p)
i j [k̄] = 1 represents a False Positive (FP), while y(p)

i j [k̄] = 0 is a True Negative (TN).
The results are illustrated in Fig. 5, in which the dashed and solid lines refer to the methods with and without the

implementation of the post-processing algorithm, respectively. To ensure clarity, we will use the symbol * to refer to the model
performance without post-processing from this point onward. In particular, Fig. 5a shows the comparison between the accuracy
curves of the three examined models. The accuracy points are computed at varying of the confidence threshold tc reported in
the x-axis, which is set in the last layer of the models for determining the predicted binary labels. The same tc values are used to
compute the Precision-Recall points in Fig. 5b. Even if the solid curves associated with the results without post-processing are
extremely high, the dashed lines still indicate a slight performance improvement. This remarks the benefit of implementing the
morphological operators on the output of the models, which, however, will be more evident when analyzing the results for the
USV segmentation. As a further comparison, Figs. 5c–5h display the corresponding confusion matrices when tc is set to 0.5.
These matrices highlight the balanced performance of the models in accurately classifying both classes.

USV segmentation
To evaluate the segmentation quality of the models, we compute the Intersection over Union (IoU) measure associated with
each USV detection. Such metric returns a value between 0 and 1 that represents the area of overlap between the predicted
segmentation and the GT divided by the area of union between the predicted segmentation and the ground truth. Thus, a
predicted segmentation is considered a TP when it intersects a GT such that the resulting IoU is greater than a given threshold
tIoU, otherwise it is identified as a FP. Also, we increase the FN when a true USV call does not intersect any predictions such
that the corresponding IoU is greater than tIoU.

7/15



0 0.2 0.4 0.6 0.8 1

Confidence threshold

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

A
c
c
u

ra
c
y

(a) Accuracy curves at varying of tc.

0.5 0.6 0.7 0.8 0.9 1

Precision

0.5

0.6

0.7

0.8

0.9

1

R
e
c
a
ll

AE*

AE

UNET*

UNET

RNN*

RNN

(b) Precision-recall curves.

99.57

4.03

0.43

95.97

USV No USV

True label

USV

No USV

P
re

d
ic

te
d

 l
a

b
e

l

(c) AE* confusion matrix (tc = 0.5).

99.53

2.70

0.47

97.30

USV No USV

True label

USV

No USV

P
re

d
ic

te
d

 l
a

b
e

l

(d) UNET* confusion matrix (tc = 0.5).

99.62

6.68

0.38

93.32

USV No USV

True label

USV

No USV

P
re

d
ic

te
d

 l
a

b
e

l

(e) RNN* confusion matrix (tc = 0.5).

99.57

3.81

0.43

96.19

USV No USV

True label

USV

No USV

P
re

d
ic

te
d

 l
a

b
e

l

(f) AE confusion matrix (tc = 0.5).

99.54

2.42

0.46

97.58

USV No USV

True label

USV

No USV

P
re

d
ic

te
d

 l
a

b
e

l

(g) UNET confusion matrix (tc = 0.5).

99.61

6.58

0.39

93.42

USV No USV

True label

USV

No USV

P
re

d
ic

te
d

 l
a

b
e

l

(h) RNN confusion matrix (tc = 0.5).

Figure 5. Performance comparison between the models in terms of time frame classification, with and without taking into
account the post-processing algorithm. 5a and 5b show the accuracy and precision-recall curves, respectively. 5c–5e depict the
confusion matrices associated with the models without post-processing. 5f–5h depict the confusion matrices associated with
the models when implementing post-processing.

First, in order to determine the optimal set-up of the post-processing algorithm, several 1-D kernel sizes have been tested for
each model over the training set. Fig. 6 shows the performance at varying of the kernel length. The intersection point between
the precision and the recall curves is selected as optimal value. Thus, kernels composed of 135, 150 and 65 samples are finally
used for AE, UNET and RNN, respectively, on the test set.

Thus, Figs. 7a and 7b show the precision and the recall curves associated with the models at varying of the considered IoU
threshold. As before, the solid lines correspond to the segmentation performance when the post-processing has not been applied.
Those curves show high recall, but low precision, values. This indicates that some noisy spikes can be wrongly detected outside
of a true USV call. As expected, such spikes increase the number of FP, affecting this way the precision of the models. On the
contrary, the implementation of the post-processing algorithm allows to remove this type of wrong detection. In fact, both
the recall and, especially, the precision curves associated with the post-processing algorithm (dashed lines) present a strong
improvement. Fig. 8 also shows the histogram of the detected USVs (positives) with respect to the corresponding IoU value,
which is significantly squeezed over IoU values greater than 0.8, thus proving the efficiency of the methods. Overall, the
UNET architecture outperforms both the AE and the RNN models, with the latter returning the lowest performance even if
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(a) Precision and recall curves for AE.
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(b) Precision and recall curves for UNET.
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(c) Precision and recall curves for RNN.

Figure 6. Training vocalization segmentation performance of the models at varying of the kernel size used in the
post-processing.
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Figure 7. Precision and recall curves of the models at varying of the IoU threshold with and without post-processing.
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(a) Histogram of positives for AE.
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(b) Histogram of positives for UNET.
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(c) Histogram of positives for RNN.

Figure 8. Histogram of detected USV calls (positives) with respect to the corresponding IoU value with post-processing.

characterized by the largest number of parameters.
To better appreciate the quality of the results, in Fig. 9 some visual results are illustrated. In particular, Figs. 9a–9c and

Figs. 9d–9f show the segmentation resulting from the three proposed methods applied to two different spectrograms associated
with two audio tracks. The blue and orange signals represent the GT and the prediction, respectively. The GT assumes just two
values, 1 and 0, depending on the presence or not of a vocalization. To remark the quality of the detection, the amplitude of the
prediction signal is set equal to either the corresponding IoU value (from 0 to 1) when a USV has been detected or −0.5 when,
correctly, no USV has been found. To improve clarity, the IoU values 0 (related to zero intersection between GT and prediction)
and 0.6 (threshold adopted in this work) are highlighted with a dashed line with color red and green, respectively.
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(a) First spectrogram: segmentation with AE.
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(b) First spectrogram: segmentation with UNET.
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(c) First spectrogram: segmentation with RNN.
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(d) Second spectrogram: segmentation with AE.
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(e) Second spectrogram: segmentation with UNET.
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(f) Second spectrogram: segmentation with RNN.

Figure 9. Visual results comparison between the proposed models with the post-processing algorithm. The pictures show the
spectrograms of two audio segments (the first segment is depicted in Figs. 9a, 9b and 9c, while the second one in Figs. 9d, 9e
and 9f) with the associated GT (blue signal) and prediction (orange signal) related to the three models.
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AE UNET RNN A-MUD DS USVSEG HM

Precision 95.62% 95.38% 95.97% 98.13% 95.79% 95.47% 76.85
Recall 95.46% 97.14% 92.10% 84.59% 81.92% 94.41% 94.95%

Accuracy 99.26% 99.35% 99.04% 98.39% 98.02% 99.05% 98.39%
FPR 0.35% 0.28% 0.78% 0.37% 0.36% 0.46% 2.98%

Table 1. Precision, recall, accuracy and FPR values for time frame classification obtained on the test set of our dataset.
Comparison between AE, UNET, RNN, A-MUD, DS, USVSEG and HM. tc = 0.5 for our methods. The best performer is
marked in red, while the second best performer is highlighted in blue for the two metrics.

AE UNET RNN A-MUD DS DS (w/ de-noiser) USVSEG HM

Precision 90.14% 91.11% 86.18% 90.62% 66.37% 75.75% 85.72% 82.03%
Recall 90.80% 92.08% 84.15% 80.03% 63.72% 63.66% 87.99 % 71.18%

Table 2. Precision and recall values for USV segmentation obtained on the test set of our dataset, considering tIoU = 0.6.
Comparison between AE, UNET, RNN, A-MUD, DS, DS with de-noiser, USVSEG and HM. tc = 0.5 for our methods. The
best performer is marked in red, while the second best performer is highlighted in blue for the two metrics.

Extended comparison
In order to further evaluate the validity of the proposed architectures, their performance have been compared with the
performance of 4 alternative methods: DeepSqueak22 (DS), HybridMouse25 (HM), A-MUD18 and USVSEG19. DS has been
proposed as the first vocalization segmentation and classification tool based on an artificial neural network, and it represents
one of the state-of-the-art methods in literature for USV segmentation. In our comparison, only the segmentation part of the
software will be considered. Note that it also offers the possibility to the user to review each segmented output indicating
if it is a real USV (true positive) or a wrong detection (false positive). This manual review can be used to train an ad-hoc
de-noising network in order to refine the first segmentation. Alternately, HM is a more recent ultrasonic audio analysis tool
which combines convolutional and recurrent neural networks for automatically identifying, labeling and extracting recorded
USVs, and showed very high performance. In contrast, A-MUD and USVSEG rely on signal processing analysis, prioritizing
low complexity even if parameter settings are necessary.

Tab. 1 presents the performance comparison between our proposed models with post-processing (when setting a threshold of
tc = 0.5, see Fig.5a) and the competitive methods in correctly classifying individual time frames. The evaluation metrics include
precision, recall, accuracy, and False Positive Rate (FPR), defined as FPR = FP

FP+TN . Also the evaluations of the competitive
methods have been obtained by testing all audio tracks in our test set. As it was observed in the previous section, the three
proposed models present very high performance, with the precision, recall and accuracy values greater than 90% for all the three
methods. Furthermore, FPR is consistently smaller than 0.8%. Overall, our models consistently outperform the competitive
methods, with the exception of precision, where A-MUD achieves an accuracy of 98%.

Next, Tab. 2 reports the comparison regarding the USV segmentation performance in terms of precision and recall. Note
that for DS, we have also reexamined its outputs for a subset of the dataset (one mouse per each cage) and used them for
training the de-noising network. Then, the trained de-noising network has been applied on the DS outputs of the whole test set.
As expected, the de-noising network has been able to discard some noisy segments, as proven by the increase of the precision,
while the recall is unchanged since the network does not fix potential false negatives. Regarding the results presented in the
table, they indicate that both AE and UNET achieve precision and recall rates exceeding 90%. These two models, along with
RNN, outperform DS and HM, even when the denoising network is employed alongside the DS segmentator. This achievement
is particularly notable given that UNET, which exhibits the best results, comprises only 187,113 parameters—approximately a
quarter of the parameters utilized in DS (693,320) and two-thirds of the parameters in HM (283,300). Additionally, both AE
and UNET outperform A-MUD and USVSEG in terms of recall, while A-MUD achieves the same precision performance as
AE, with UNET still demonstrating slightly superior performance.

Finally, to assess the applicability of our procedure for a wider range of strains and situations, we have also validated our
algorithms on a different variegate dataset, which was partially collected in19. The audio files with the related labels have
been downloaded from http://doi.org/10.5281/zenodo.3428024: in total, 5, 2, 10 and 3 audio tracks recorded
during C57BL/6J pups maternal isolation (B6pup), BALB/c male courtship, C57BL/6J male courtship and Shank2- male
courtship, respectively, have been analyzed. For details about Shank2- mice, that is a model of autism spectrum disorders,
see30. The audio tracks vary in duration, ranging from 53 seconds to 206 seconds. The time samples within the tracks are
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AE UNET RNN A-MUD DS DS (w/ de-noiser) USVSEG HM

Precision 66.33% 65.03%% 57.95% 49.21% 60.91% 62.00% 51.60% 57.86%
Recall 65.81% 66.81% 55.23% 47.41% 68.71% 68.75% 69.64% 58.46% B6pup

Precision 84.14% 90.52% 85.58% 77.52% 61.40% 62.76% 69.40% 70.89%
Recall 77.12% 80.45% 73.38% 48.25% 54.05% 53.84% 76.64% 56.40% BALB/c

Precision 70.65% 77.71% 76.87% 77.41% 83.15% 84.70% 66.56% 56.94%
Recall 64.91% 71.77% 66.60% 62.40% 61.18% 61.18% 78.12% 46.98% C57BL/6J

Precision 69.20% 70.02% 40.85% 23.48% 53.61% 53.61% 44.78% 75.85%
Recall 78.13% 73.33% 39.69% 16.73% 57.94% 57.05% 65.02% 71.53% Shank2-

Precision 70.70% 74.25% 68.03% 64.50% 61.19% 62.25% 60.68% 60.18%
Recall 68.34% 69.05% 62.99% 50.77% 56.73% 56.43% 74.87% 53.50% Overall

Table 3. Precision and recall values for USV segmentation obtained on the external dataset, considering tIoU = 0.6.
Comparison between AE, UNET, RNN, A-MUD, DS, DS with de-noiser, USVSEG and HM. tc = 0.5 for our methods. The
best performer is marked in red, while the second best performer is highlighted in blue for the two metrics.

distributed between USV and noise, with a ratio of approximately 1 to 10. Specifically, there are 751,733,518 noise samples
and 85,570,802 USV samples. Within the entire dataset, there are a total of 4,048 USVs, which serve as the ground-truth.

Thus, Tab. 3 reports the USV segmentation performance associated with our models (without re-training), as well as the
ones associated with the competitive methods, for this different dataset. Tab. S1 in the supplementary material also provides the
results regarding the time frame classification. To give a comprehensive analysis, we present both the overall performance
and the performance associated with each specific strain. The precision and recall values of our proposed methods are slightly
decreased due to the diversity of the data compared to the data used for training our models. However, both AE and UNET
consistently maintain precision and recall rates above 65% for every strain, unlike the other methods where the performance
notably declines in at least one strain. This serves as evidence of the robustness of AE and UNET. In terms of precision,
AE and UNET achieve the top two values, with UNET surpassing 74%. Regarding recall, USVSEG achieves the highest
result at approximately 74%, while UNET follows closely with around 69%. It is important to acknowledge that there might
be a potential bias in favor of USVSEG for this dataset. Indeed, USVSEG requires the configuration of certain parameters,
and in our experiments, we employed the optimal parameters recommended in the original paper19. It is worth noting that
USVSEG was specifically trained on tracks of C57BL/6J mice, which is, in fact, the only strain where USVSEG demonstrates
a substantial performance advantage over UNET, as depicted in Tab. 3.

It should be noted that the spectrograms of the audio data in this dataset have been generated using the same configuration
settings for obtaining the spectrograms of the audio tracks of our dataset. However, this has resulted in spectrograms with a
generally lower signal-to-noise ratio, possibly due to variations in the recording procedures. This discrepancy may be one of
the reasons for the overall lower performance observed. Nevertheless, this aspect allows us to appreciate the behavior of our
models and the competitive ones, even when dealing with spectrograms that exhibit variations in the intensity of the USV calls.

Analysis on detected USV lengths
In this Section, we aim to investigate potential differences in the duration of the USVs detected by our proposed models and the
previously compared competitive models. To accomplish this, we have computed the relative error (lGT − lpr)/lGT for each
correctly segmented USV across all methods, in both datasets. Thus, lpr is a vector in which each element represents the length
of a TP USV, while lGT is a vector in which each element represents the corresponding true length. Figs. 10a and 10b illustrate
the boxplots depicting the distribution of the relative errors of the models for our dataset and the external dataset, respectively.
For our dataset, AE and UNET exhibit a median relative error close to zero, indicating a high level of accuracy with a minimal
spread. Conversely, for the external dataset, UNET, RNN, and USVSEG appear to be the most accurate methods, although with
a wider spread compared to our dataset. In order to determine whether there are significant differences in the estimation of
syllable durations among the methods, we have conducted the Wilcoxon rank sum test (∗p < 0.05, ∗∗ p < 0.01, ∗∗∗p < 0.001),
specifically comparing the distributions of relative errors between UNET and the other methods (see Fig. 10). For the sake of
completeness, in Fig. S1 in the supplementary material, we also show the one-to-one comparison between all the lengths of the
predicted USVs and the true lengths for each model and dataset.
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(b) External dataset.

Figure 10. Boxplots related to the length relative errors distributions.

Conclusions
In this paper, the mice ultrasonic vocalization segmentation task has been faced comparing an Auto-Encoder Neural Network
(AE), a U-NET Neural Network (UNET) and a Recurrent Neural Network (RNN). To assess the performance of the models, we
have created a dataset by recording several audio tracks and manually segmenting the corresponding USV spectrograms. As a
preliminary analysis, we focused on the ability to detect the presence of a USV for each single time frame, without considering
the final identification of a vocalization. In this case, all the three proposed architectures returned precision and recall scores
greater than 90%, with the UNET and the AE which reporting values superior than 95%. When studying the performance
related to the USV segmentation, the results remain significantly high. In fact, the precision and recall scores for the UNET and
the AE are larger than 90%, while the values for the RNN are around 85%.

Such performance also overcome the one associated with popular software tools for USV segmentation, such as A-MUD,
DeepSqueak (DS), USVSEG, and HybridMouse (HM). Furthermore, the validation has been expanded also to an external
dataset. Overall, the UNET is the model reporting the highest performance, thus outperforming both the AE and the RNN.
Noticeably, the 3 proposed models are characterized by a quite small number of parameters (especially the AE and the UNET),
thus their use is also particularly efficient from a computational point of view.

In future endeavors, we plan to integrate our proposed models into a USV segmentation-classification system. This
integration will provide an opportunity to explore the correlation between enhanced segmentation accuracy and its subsequent
influence on achieving improved classification outcomes.

Data availability
The data and the software that support the findings of this study are publicly available at https://osf.io/8sgkh/
?view_only=4cb73a92e666485382696e410abd75a2.
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