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ABSTRACT In this paper we propose a design methodology for a cascade control system where the two
controllers are of fractional-order-proportional-integral-derivative type. The tuning of the inner (secondary)
controller aims to achieve a high performance (in terms of the integrated absolute error) in the load
disturbance rejection task by exploiting the fractional-order derivative action. Then, a fractional-first-order-
plus-dead-time transfer function of the inner feedback system in series with the primary process is estimated
and the outer (primary) controller is tuned to maintain performance in rejecting load disturbances while
achieving a satisfactory set-point response. Simulation results show the effectiveness of the methodology and
the key role played by the additional flexibility in the design introduced by the fractional-order controllers.

INDEX TERMS Cascade control, FOPID controllers, tuning, disturbance rejection.

I. INTRODUCTION
Cascade control is very often used for industrial processes
when the presence of an additional sensor allows the
designer to achieve a significant performance improvement
in rejecting disturbances. This secondary sensor splits the
process dynamics into two parts. The secondary part is
controlled by a (inner) feedback controller to rapidly reject
load disturbances. Then, the process (primary) output is fed
back to the primary controller, which is usually designed to
obtain the required performance in the set-point following
task [1].

The classic feedback controllers employed in this context
are of Proportional-Integral-Derivative (PID) type, for which
many tuning rules for single-loop structures have been
devised [2]. However, the presence of two controllers makes
the overall design more complex, and for this reason, many
design techniques have been proposed in the literature
specifically for cascade control systems. For example, the
well-known relay-feedback autotuning method [3] has been
extended to cascade control systems in [4]. A simultaneous
tuning of the two controllers, based on the Internal Model
Control concept has been proposed in [5]. The concept of
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simultaneous tuning has also been pursued in [6], [7], [8],
and [9]. However, the typical design procedure applied in
industry is to tune, as a first step, the inner loop with the
outer loop disconnected. In this phase, the performance in
the load disturbance rejection is of main concern, and the
PID parameters are selected to obtain a large bandwidth.
Then, the primary controller is connected, and it is tuned to
recover the set-point following performance. This task can
be challenging as the overall system seen by the controller
consists of the series of the secondary closed-loop system
(which can have underdamped dynamics) and the primary
part of the process.

Recently, significant research effort has been devoted to
fractional control [10] and, in particular, to Fractional-Order-
Proportional-Integral-Derivative (FOPID) controllers, which
are a generalization of PID controllers, as the integral and
derivative actions are of real order [11]. This gives additional
flexibility in the controller design as there are more degrees
of freedom in the loop shaping approach, but this also implies
an increased complexity in the design. In order to facilitate
the design task, tuning rules for the five parameters of the
controllers have been proposed in the literature (see, for
example, [12], [13], [14], [15]).

In the same spirit, we propose exploiting the advantages
of FOPID controllers in a cascade control structure, devising
design methodologies that enable the user to increase the
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overall control performance without significantly increasing
the design effort. The use of FOPID cascade control systems
has been recently explored in the literature. In particular, such
a kind of structure has been applied to power systems in [16],
[17], [18], and [19]. In these cases, specific applications
have been addressed, and the considered processes have no
dead time. Also in the applications considered in [20] (level
control) and in [21] (permanent magnet synchronous motor
drives), the processes have no dead time. In [22] and [23],
a parallel cascade control architecture is employed, and the
regulator has a Smith predictor structure to compensate for
the dead time, thus making the overall control architecture
more complex than the classic one used for industrial
processes.

It appears that a procedure for designing a fractional
cascade control system to be applied in general is still
missing. In this paper, we propose a design methodology for
a classic cascade control structure with FOPID controllers.
The parameters of the inner controller are determined by
applying a tuning rule that minimizes the integrated absolute
error (IAE) in the load disturbance step response while
constraining the maximum sensitivity. Then, the dynamics
of inner closed-loop system in series with the primary part
of the process (that is, the process seen by the primary
controller) is estimated as a fractional-first-order-plus-dead-
time (FFOPDT) transfer function. This is a key step of
the procedure as a FFOPDT transfer function is capable of
modeling systems with both overdamped and underdamped
responses, thus making the approach general. Finally, the
primary controller is tuned by first selecting the fractional
derivative action in order to cancel the fractional pole of the
FFOPDT system and then selecting the remaining parameters
to maximize the gain crossover frequency (i.e., the closed-
loop bandwidth) of the system subject to a constraint on the
maximum sensitivity. The main contribution of this paper can
be summarized as follows.

• A unified tuning method that allows us to design a
cascade control system irrespective of the dynamics of
the series of the closed-loop secondary process and the
primary process.

• A method that does not require a closed-form model of
the process.

• A method that allows the designer to maximize the
closed-loop bandwidth subject to explicit constraints on
the robustness of the closed-loop system.

The paper is organized as follows. The control architecture
is presented in Section II. The tuning procedure is explained
in Section III. Illustrative simulation examples are given in
Section IV before the conclusions in Section V.

II. CONTROL ARCHITECTURE
We consider the two-loop cascade control scheme in Figure 1,
where the process P(s) = P2(s)P1(s) is split into two
parts thanks to the measurement of the secondary variable
y2. The secondary controller C2 and the primary controller
C1 are FOPID controllers in series form; that is, their transfer
functions are

C2(s) = Kp2
Ti2sλ2 + 1
Ti2sλ2

Td2sµ2 + 1
Td2
N2
s+ 1

, (1)

C1(s) = Kp1
Ti1sλ1 + 1
Ti1sλ1

Td1sµ1 + 1
1

20ωgc
s2 +

√
2

20ωgc
s+ 1

, (2)

where Kp1 and Kp2 are the proportional gains, Ti1 and Ti2 are
the integral time constants, Td1 and Td2 are the derivative
time constants, λ1 and λ2 are the fractional orders of the
integral actions, and µ1 and µ2 are the fractional orders of
the derivative actions. The secondary controller has a first-
order filter (whose time constant depends on the parameterN )
while the primary controller has a second-order filter (in order
to improve the system robustness) whose bandwidth depends
on the parameter ωgc. Note that this filter, by construction,
has a damping ratio of 1

√
2
, which guarantees the fastest

transition at the filter cut-off frequency. Finally, in order
to improve the performance of the set-point following task,
a set-point weight β can be conveniently employed for the
primary controller, thus exploiting a two-degree-of-freedom
structure [1], [24].

Note that a FOPID controller is a generalization of a PID
controller. Indeed, if the fractional orders of the integral and
derivative actions are set to one, a (filtered) PID controller in
series form is obtained.

The control problem consists of determining all the
controller parameters in order to compensate for load
disturbances d and to track changes in the set-point signal
r . In particular, the transient of process output y is evaluated
when either a load step disturbance or a set-point step signal
occurs.

III. DESIGN METHODOLOGY
The design methodology consists of two subsequent steps.
Initially, the inner FOPID controller is tuned based on the
transfer function P2(s) and mainly considering the load
disturbance rejection performance (whose improvement is
the reason for using a cascade rather than a single-loop
control scheme). Then, the primary controller parameters
are determined to achieve a satisfactory set-point step
response while ensuring that the load disturbance rejection
performance is preserved.

A. TUNING OF THE SECONDARY CONTROLLER
The tuning of the secondary FOPID controller C2(s) is
performed by identifying the (possibly unknown) dynamics
of P2(s) with a FOPDT transfer function

P2(s) =
K2

T2s+ 1
e−θ2s, (3)

whereK2 is the gain, T2 is the time constant and θ2 is the dead
time. It is worth stressing that the process model (3) is capable
of representing effectively the dynamics of many industrial
plants, and it can be determined through well-established
identificationmethodologies, for example, based on the open-
loop step response [1]. Then, we exploit the tuning rules
presented in [13], which minimize the integrated absolute
error, defined as

IAE =

∫
∞

0
|e(t)|dt (4)

for the load disturbance rejection, where e(t) is the control
error when a step signal is applied to the load disturbance
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FIGURE 1. The considered cascade control scheme.

input d and the reference r is zero. The IAE is minimized
by constraining the maximum sensitivity of the inner loop,
defined as

Ms2 = max
ω∈[0,+∞)

∣∣∣∣ 1
1 + C2(s)P2(s)

∣∣∣∣ , (5)

to the value Ms2 = 2. Note that the maximum sensitivity
is the inverse of the minimum distance between the Nyquist
plot of the open-loop system and the critical point, which
provides a measure of the robustness of the closed-loop
system. By denoting as

τ2 =
θ2

T2 + θ2
(6)

the normalized dead time of the secondary process. The
resulting tuning rules are

Kp2 =
1
K2

(
0.1804τ−1.449

2 + 0.2319
)

, (7)

Ti2 = T λ2

(
0.6426

(
θ2

T2

)0.8069

+ 0.05627

)
, (8)

Td2 = Tµ2

(
0.597

(
θ2

T2

)0.5568

− 0.09536

)
, (9)

λ2 = 1, (10)

µ2 =


1.0 if τ2 < 0.2
1.1 if 0.2 ≤ τ2 < 0.6
1.2 if 0.6 ≤ τ2.

(11)

B. TUNING OF THE PRIMARY CONTROLLER
The tuning of the primary controller is performed by
considering the transfer function of the inner loop in series
with the primary process P1(s), that is,

F(s) :=
C2(s)P2(s)

1 + C2(s)P2(s)
P1(s). (12)

Depending on the process parameters and the resulting
FOPID parameters of the inner controller C2(s), the system
F(s) can exhibit either overdamped or underdamped dynam-
ics. In addition, an analytical expression for F(s) is in general
unknown because we do not have a closed-form expression
for P1(s). For this reason, it is convenient to estimate F(s) as
a FFOPDT model

F̃(s) =
K̃

T̃ sα + 1
e−θ̃s, (13)

where the parameters K̃ , T̃ , α and θ̃ can be determined via
an optimization method that minimizes the difference (in

terms of integrated absolute error) between the open-loop step
responses of F(s) and F̃(s) [25].
Once the parameters of the process seen by the primary

controller have been estimated, the fractional derivative part
can be tuned by applying a fractional pole-zero cancellation
method, that is, by selecting

Td1 = T̃ (14)

and

µ1 = α. (15)

Then, as it has been shown that an integer integral action
provides the best performance in terms of IAE, the value
λ1 = 1 is selected, and, the values of the proportional gain
Kp1 and of the integral time constant Ti1 are determined by
maximizing the gain crossover frequency ωgc of C1(s)F̃(s),
which provides an accurate estimate of the gain crossover
frequency of the primary loop, while limiting the maximum
sensitivity of the system

Ms := max
ω

∣∣∣∣∣ 1

1 + C1(jω)
C2(s)P2(s)

1+C2(s)P2(s)
P1(s)

∣∣∣∣∣ (16)

below a selected threshold M̄s. Since the cut-off frequency
of the filter in the primary controller depends on the gain
crossover frequency, which is unknown beforehand, in this
optimization problem, we consider a simplified version Ĉ1(s)
of the primary controller C1(s) that does not have the second-
order filter, thereby avoiding an implicit problem. Since the
filter cut-off frequency is, by construction, 20ωgc, we note
that for the optimization problem at hand, we can safely
consider Ĉ1(jω) ≈ C1(jω). Formally, the optimization
problem to be solved is defined as

max
Kp1,Ti1

ωgc (17)

subject to ∣∣∣Ĉ1(jωgc)F̃(jωgc)
∣∣∣ = 1, (18)

max
ω

∣∣∣∣ 1

1 + Ĉ1(jω)F̃(s)

∣∣∣∣ < M̄s, (19)

where the maximum sensitivity is computed using the
FFOPDTmodel of the series of the inner loop and the primary
process. Typically, the value of the Ms should be in the
range [1.4, 2] [26], where 2 is associated with an aggressive
controller that performs well in the disturbance rejection
but might exhibit large overshoots and oscillations in the
set point tracking. Conversely, 1.4 yields a robust controller
that might lack performance thereby delivering a sluggish
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response. The value M̄s can be therefore selected by taking
into account that the main task of the primary controller
is to recover the set-point following performance, as the
load disturbance is primarily compensated by the secondary
controller. Additionally, it is necessary to provide adequate
robustness to the overall control system. For this reason,
we select a default value M̄s = 1.6 to obtain a robust tuning.
Finally, to speed up the reference tracking, a set-point weight
β = 2 is employed. We refer the reader to [24] for more
details on the usage of this technique with FOPID controllers.

Note that the filter parameter ωgc results directly from the
optimization problem (17). It is worth stressing that using a
second-order filter makes the overall transfer function C1(s)
strictly proper, irrespective of the value of the derivative
action, which can be larger than 1. This implies that there
are neither proportional nor derivative kicks in the control
variable when a step signal is applied to the set-point. In other
words, the control effort is limited, which is highly desirable
from a practical point of view. In addition, thanks to the
steeper high-frequency roll-off of the second-order filter,
compared to standard first-order filters, we can push the filter
cutoff frequency to 20ωgc, thereby reducing the filter-induced
phase delay around the gain crossover frequency.

IV. SIMULATION RESULTS
In order to prove the effectiveness of the proposed design
methodology, we consider three different illustrative exam-
ples. In particular, the first example consists of a system
where the slowest dynamics are in the primary process, the
second example explores the opposite scenario, and the last
example considers a high-order process comprising multiple
poles. The FOPID controllers have been implemented as
eight-order integer controllers by applying the well-known
Oustaloup’s approximation, which is based on a recursive
distribution of poles and zeros [27].

For all the control systems, both a unit step load
disturbance and a unit step set-point signal are applied. The
control performance is evaluated by calculating the integrated
absolute error. A comparison with the use of PID controllers
is also provided. In this case, the transfer functions of the
controllers are

C2(s) = Kp2
Ti2s+ 1
Ti2s

Td2s+ 1
Tf 2s+ 1

, (20)

C1(s) = Kp1
Ti1s+ 1
Ti1s

Td1s+ 1
Tf 1s+ 1

. (21)

A. EXAMPLE 1
As a first illustrative example, we consider the following
process:

P2(s) =
1

0.1s+ 1
e−0.05s, (22)

P1(s) =
1

2.71s+ 1
e−1.2s. (23)

By applying the tuning rules (7)-(11) we obtain Kp2 = 1.118,
Ti2 = 0.0424, Td2 = 0.0247, λ2 = 1, µ2 = 1.1. The
parameters of the transfer function F̃(s) are then estimated
as K̃ = 1, T̃ = 2.718, α = 1, θ̃ = 1.232. The step
responses of F(s) and F̃(s) are shown in Figure 2, where

it appears that the two transients are virtually overlapped,
and the inner closed-loop system is actually of integer order.
The primary controller is then tuned by first setting Td1 =

T̃ = 2.718, µ1 = α = 1, λ1 = 1 and then by
solving the optimization problem (17)-(19) (with M̄s = 1.6)
that yields Kp1 = 0.30 and Ti1 = 0.70 (the resulting
gain crossover frequency is ωgc = 0.45). The set-point
weight is set as β = 2. The load disturbance and set-point
step responses are shown in Figures 3 and 4, respectively.
They are compared with those achieved by using two PID
controllers tuned with an IMC-based method [8], obtaining
Kp2 = 0.357, Ti2 = 0.025, Td2 = 0.1, Tf 2 = 0.0071,
Kp1 = 1.0840, Ti1 = 2.71, Td1 = 0.02, Tf 1 = 0.002,
from which the resulting value of the maximum sensitivity
is also Ms = 1.6. Note that the control variable is plotted
with a different time scale with respect to the process variable
in order to highlight the initial part of the transient, which is
the most interesting. The performance improvement obtained
with the FOPID controllers in the load disturbance rejection
task is clearly observable in Figure 3, and it is confirmed
by the values of the integrated absolute errors, which are
IAE = 0.033 for the FOPID scheme and IAE = 0.070 for
the PID scheme. Regarding the set-point step response,
we have IAE = 2.12 for the FOPID scheme and IAE =

2.72 for the PID scheme. It appears that the performance in
the rejection of the load disturbance in the fractional-order
system is significantly better than that of the integer-order
one. Additionally, the set-point response obtained with the
FOPID controllers is also improved with a shorter rise time
and less overshoot, despite the maximum amplitude of the
control variable beingmuch smaller compared to the PID one,
thanks to the second-order filter that removes proportional
and derivative kicks.

FIGURE 2. Step responses of F (s) (solid line) and F̃ (s) (dashed line) for
Example 1. Note that the two responses are overlapped.

B. EXAMPLE 2
As a second illustrative example, we consider the following
process:

P2(s) =
1

10s+ 1
e−8s, (24)

P1(s) =
1

5s+ 1
e−2s, (25)
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FIGURE 3. Load disturbance step responses for the FOPID (solid line) and
PID (dashed line) cascade control schemes for Example 1.

FIGURE 4. Set-point step responses for the FOPID (solid line) and PID
(dashed line) cascade control schemes for Example 1.

where the slowest dynamics are in the secondary process (i.e.,
before the inner-loop feedback sensor). The tuning rules for
the secondary controller yield Kp2 = 0.816, Ti2 = 5.93,
Td2 = 5.44, λ2 = 1, µ2 = 1.1. This results in underdamped
dynamics of the closed-loop system F , which yields an
estimated FFOPDT transfer function equal to

F̃(s) =
1

8.31s1.247 + 1
e−11.61s. (26)

Note that the fractional order α is greater than 1, as expected
because of the overshoot in the step response. The step
responses of F(s) and F̃(s) are shown in Figure 5, where the
ability of FFOPDT systems to model underdamped systems
effectively appears. Based on these values, the parameters
of the derivative part of the primary FOPID controller are
determined as Td1 = 8.31, µ1 = 1.247. After setting λ1 = 1,
the optimization problem (17)-(19) (with M̄s = 1.6) results
in Kp1 = 0.245 and Ti1 = 5.50 (with ωgc = 0.047).
Also in this case, the performance achieved by using the
FOPID controllers is compared with that obtained by using
PID controllers (tuned again as in [8]) with Kp2 = 0.4,
Ti2 = 4, Td2 = 10, Tf 2 = 0.8, Kp1 = 0.25, Ti1 = 5,
Td1 = 2, Tf 1 = 0.2 (the resulting value of Ms is 1.64).

FIGURE 5. Step responses of F (s) (solid line) and F̃ (s) (dashed line) for
Example 2.

FIGURE 6. Load disturbance step responses for the FOPID (solid line) and
PID (dashed line) cascade control schemes for Example 2.

FIGURE 7. Set-point step responses for the FOPID (solid line) and PID
(dashed line) cascade control schemes for Example 2.

The load disturbance step responses are shown in Figure 6,
while the set-point step responses are plotted in Figure 7
(in this latter case, the time scale for the control variable
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has been again reduced to highlight the transient part). The
resulting values of the integrated absolute errors for the load
disturbance rejection task are IAE = 12.0 for the FOPID
scheme and IAE = 13.4 for the PID scheme. Regarding the
set-point step response, we have IAE = 18.4 for the FOPID
scheme (with β = 2) and IAE = 21.5 for the PID scheme.
The performance is improved for both the load disturbance
and set-point step responses.

This example shows that the devised design method
is general as it can be used disregarding the dynamics
of the primary and secondary process (that is, where the
secondary sensor is placed) and that the use of FOPID
controllers provides an improvement of the performance with
respect to PID controllers, thanks to the additional controller
parameters.

FIGURE 8. Step responses of F (s) (solid line) and F̃ (s) (dashed line) for
Example 3.

C. EXAMPLE 3
As a third illustrative example, we consider a high-order
process

P2(s) =
1

8s+ 1
e−5s, (27)

P1(s) =
1

(5s+ 1)3
e−2s. (28)

In this case the tuning of the inner controller results in Kp2 =

0.952, Ti2 = 3.968, Td2 = 3.587, λ2 = 1,µ2 = 1.1. The step
response of the series of the inner loop and of the primary part
of the process is plotted in Figure 8, together with the step
response of the estimated FFOPDT model, which is

F̃(s) =
1

8.33s1.047 + 1
e−14.76s. (29)

The application of the fractional pole-zero cancellation and
of the optimization procedure yields the following parameters
for the primary FOPID controller: Td1 = 8.33, µ1 = 1.047,
λ1 = 1, Kp1 = 0.26, Ti1 = 6.90 (ωgc = 0.04). The
obtained load disturbance and set-point step responses are
plotted in Figures 9 and 10. Once again, they are compared
with those obtainedwith PID controllers tuned by applying an
IMC technique [8] after a FOPDTmodel has been determined

for P1(s) with K1 = 1, T1 = 12.21 and θ1 = 6.027.
We have Kp2 = 0.379, Ti2 = 2.5, Td2 = 8, Tf 2 = 0.606,
Kp1 = 0.55, Ti1 = 12.21, Td1 = 1.6, Tf 1 = 0.16 (the
obtained maximum sensitivity is Ms = 1.83). The resulting
values of the integrated absolute error for the load disturbance
step response are IAE = 6.81 with the FOPID controllers
and IAE = 8.97 with the PID controllers. Regarding the set-
point step response, we have IAE = 27.4 with the FOPID
controllers and IAE = 25.4 with the PID controllers. Thus,
a large relative improvement in the load disturbance rejection
performance is achievedwith amarginal decrement in the set-
point following performance. Note that our method does not
require a model for P1(s), which is advantageous because,
in general, it might be difficult to apply an input to P1(s) in
order to estimate its dynamics.

FIGURE 9. Load disturbance step responses for the FOPID (solid line) and
PID (dashed line) cascade control schemes for Example 3.

FIGURE 10. Set-point step responses for the FOPID (solid line) and PID
(dashed line) cascade control schemes for Example 3.

V. CONCLUSION
In this paper, we have presented a design methodology for
FOPID cascade process control systems. The methodology
is general in that it can be applied to any (self-regulating)
dynamics of the secondary and primary process parts. A key
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role is played by the use of a FFOPDT transfer function
for the series of the inner loop and of the primary process.
Differently from an integer FOPDT model, a FFOPDT
system can accurately model systems with either overdamped
or underdamped dynamics while maintaining the samemodel
structure and lend itself to designing the derivative part of the
primary controller through fractional pole-zero cancellation.
The presented simulation results have demonstrated that a
significant improvement in the load disturbance rejection
performance can be obtained while also improving on the set-
point following performance. A limitation of the proposed
approach is that it can only be applied using FOPID
controllers, which are yet to be fully accepted in the industry
due to the perceived difficulty of implementing them using
standard off-the-shelf hardware. Future work will focus on
extending the method to integral and unstable processes and
studying the sensitivity to parameter uncertainty, such as
inaccurate delay estimation.
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